The Teaching and Learning of Probability, with Special Reference to South Australian Schools from 1959–1994

John Maxwell Truran

June, 2001

Presented for the Degree of Doctor of Philosophy of the University of Adelaide

Faculty of Arts—Graduate School of Education
Faculty of Mathematical Sciences—Department of Pure Mathematics
DEDICATION

Max Leonard Truran
1909 - 1941

Jean Adella Truran
1904 - 1983

Timothy David Truran
1969 - 1990
© John Truran
PO Box 157
Goodwood
South Australia 5034
<truranjk@ozemail.com.au>
FRONTISPICE

BROAD-SPECTRUM ECOLOGICAL MODEL FOR MATHEMATICS EDUCATION
Brevity is the soul of wit

PART ONE

TITLE PAGE ... i
DEDICATION .. iii
FRONTISPIECE ... v
Short Table of Contents .. vi
Long Table of Contents ... viii
List of Figures .. xx
List of Tables .. xxi
Abstract .. xxiv
Statement ... xxvi
Acknowledgements .. xxvii
PART A: PRELUDE .. 1
 Chapter 1: Raison d’Etre for this Thesis 3
 Chapter 2: Editorial Policies 17
PART B: EDUCATIONAL SETTING ... 31
 Chapter 3: Philosophies of Mathematics Education 35
 Chapter 4: Probabilistic Language 57
 Chapter 5: The Meaning of Probability 73
 Chapter 6: The Mathematics of Probability 91
 Chapter 7: Interpretations of Curriculum Development 107
 Chapter 8: Research into the Learning of Probability 125
 Chapter 9: Historical Framework 179
 Chapter 10: South Australian Education up to 1959 205
PART C: HISTORICAL ASPECTS OF THE TEACHING OF PROBABILITY, WITH SPECIAL REFERENCE TO SOUTH AUSTRALIA ... 217
 Chapter 11: Preparations (1959–1964) 219
 Chapter 15: Decline (1985–1990) 381
 Chapter 16: Restructuring (1990–1994) 411

1 Shakespeare Hamlet II (2) l. 90
PART TWO

PART D: THE ASSESSMENT OF PROBABILISTIC UNDERSTANDING

- Chapter 17: Measuring Instruments ... 469
- Chapter 18: A Structure for Analysing Questions 497
- Chapter 19: Analysis of Individual Questions 515
- Chapter 20: Development of a Sound Question Methodology 633

PART E: LESSONS FROM HISTORY—DEVELOPING SOUND PEDAGOGICAL PRACTICE

- Chapter 21: Research, Classroom Practice and Change 679
- Chapter 22: Research into the Pedagogy of Probability 707
- Chapter 23: Some Case Studies of Probability and Pedagogy 723
- Chapter 24: Why is Probability Poorly Taught? 755

PART F: SUMMARY AND EVALUATION OF THE MODEL

- Chapter 25: Summary ... 789
- Chapter 26: Evaluation of the Model 803

APPENDICES

- Appendix I: List of Abbreviations ... 823
- Appendix II: Examples of Arguments Put Forward for Stochastics 831
- Appendix III: National Curriculum Documents from the 1990s 835

SOURCES

- Unpublished Primary Sources ... 899
- Published Primary and Secondary Sources 909

INDEX

- Citation Index ... 977
- Individuals and Institutions Index .. 1001
- General Index ... 1007

POSTLUDE

- AN END AND A BEGINNING ... 1021
LONG TABLE OF CONTENTS

As some day it may happen that a victim must be found
I’ve got a little list—I’ve got a little list.²

<table>
<thead>
<tr>
<th>TITLE PAGE</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>FRONTISPIECE</td>
<td>v</td>
</tr>
<tr>
<td>Short Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>Long Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xx</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxiv</td>
</tr>
<tr>
<td>Statement</td>
<td>xxvi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

PART A: PRELUDE

Chapter 1: Raison d’Etre for this Thesis

- **Apologia** ... 3
- **Initial Objectives** .. 8
- **Methodological Considerations** 9
 - **Dilemma** .. 10
 - **Behavioural Studies in Zoology** 11
 - **Ecological Methods and Educational Studies** 13
- **Revised Objective** .. 14

Chapter 2: Editorial Policies

- **Semantics** .. 17
 - **Chance & Data or Probability & Statistics?** 18
 - **Stochastics** .. 18
 - **Strategies and Heuristics** 20
 - **Statistics and Mathematics** 20
 - **Obuchennyi** .. 20
- **Other Policies** .. 21
 - **Approach to Time and Place** 21
 - **Bons Mots** .. 22
 - **Sexist Language** .. 22
 - **Technical Matters** .. 23
 - **Minor Matters** ... 24
- **Bibliographic Structures** 26
 - **Sources** .. 26
 - **Referencing** .. 27
 - **Indexing** .. 29

² *Mikado*, Gilbert (1885, Act I)
PART B: EDUCATIONAL SETTING 31

Chapter 3: Philosophies of Mathematics Education 35
A Brief History of Recent Pedagogical Time ... 35
Introduction .. 36
The Concept of a Debased Form of a Philosophy .. 38
Traditional Approaches ... 40
The Liberal-Humanist Tradition ... 42
Mathematics as a “Human” Subject .. 44
Constructivism and its Allies .. 45
Tensions Arising from Constructivism ... 49
Conclusion ... 54

Chapter 4: Probabilistic Language 57
Language as a Medium for Communication ... 58
Mathematics as a Language ... 60
The Language of Probability .. 64
Special Difficulties .. 64
A Concrete Example .. 66
Research into the Language of Probability ... 68
Children’s Interpretation of Probabilistic Words ... 68
Establishing Efficient Phraseology .. 69
The Effect of Social Variables on Probabilistic Language .. 71
Probabilistic Language in Life .. 71
Conclusion ... 72

Chapter 5: The Meaning of Probability 73
Changes in the Meaning of “Probability” .. 73
The Effect of the Discovery of Chance .. 74
Chance in Western Culture ... 78
Neutrality ... 78
Physical Control ... 79
External Control .. 79
Emotional Approaches to Chance ... 80
Attitudes to Scientific Analysis of Probability .. 82
The Presence of Probabilistic Thinking in Everyday Life .. 82
Chance in Other Cultures .. 84
Animistic Models .. 85
Use of Chance Processes for Decision-Making ... 85
Use of Dual Models .. 86
Western Scientific Approaches to Probability ... 87
Summary .. 89

Chapter 6: The Mathematics of Probability 91
Different Approaches to Mathematics .. 91
Mathematics—Pure, Applied and Statistical ... 91
Stochastics—Probability, Statistics and Combinatorics ... 93
Mathematical Aspects of Probability .. 93
Random Generators (RGs) ... 94
Elementary Events and Events ... 95
Probability .. 96
Notation .. 98
Combining Probabilities .. 99
Classical Independence—Events .. 99
Unrecognised Independence—Random Generators ... 100
Chapter 7: Interpretations of Curriculum Development

Connoisseurship as a Criterion for Evaluation ... 107

Some Perspectives on Curriculum ... 111

Rational-Scientific—Tyler ... 112

Philosophical—Print ... 112

Cybernetic—Print and Hargreaves .. 113

Structural—Beeby .. 114

Personal—Nolder & Johnson .. 115

Conceptual Approaches .. 116

Change—Howson ... 117

Some Practical Difficulties .. 119

Teachers and the Curriculum ... 120

Conclusion ... 123

Chapter 8: Research into the Learning of Probability

Structure of the Summary .. 127

Some Major Summaries .. 128

Stage-Related Theories .. 131

Stage-Related Theories using Qualitative Analysis ... 132

Piaget & Inhelder .. 132

The Origin of the Idea of Chance in Children .. 132

The Relationship between Combinatorics and Probability ... 134

An Appropriate Role for Piaget’s Work Today ... 139

The SOLO Taxonomy .. 140

Description .. 140

Weaknesses ... 142

Nature of the Model ... 143

Methodological Weakness ... 143

Meaning of Ikonic ... 143

Meaning of Multi-structural ... 143

Reliability of the Classifications .. 144

Validity of the Classifications .. 144

Evaluation .. 145

Green’s Stage-Related Theory using Quantitative Analysis .. 146

Strategy Related Analyses ... 148

Heuristics—Tversky & Kahneman ... 149

The “Outcome” Approach—Konold .. 151

Intuition—Fischbein ... 152

Comment on Strategy-related Analyses .. 154

Micro-analyses .. 154

Alarcon—An Illustration of Linguistic Fences .. 156

Falk—The Psychology of Chance .. 157

G. Jones—A New Framework .. 157

Language .. 159

Peard—Social Influences ... 159

Pratt—Computer Environments ... 159

Proportional Reasoning and Probability ... 160

Toohey—Randomness .. 162

K. Truran—Concept of a Random Generator .. 163

Variation ... 164
PART C: HISTORICAL ASPECTS OF THE TEACHING OF PROBABILITY, WITH SPECIAL REFERENCE TO SOUTH AUSTRALIA

Chapter 11: Preparations (1959–1964) 219
New Mathematics219

Other British Projects ...229

New Mathematics in South Australia ...233
Beginnings of the New Mathematics in South Australia ..233

An Experiment in Primary Schools: Dienes and the Adelaide Mathematics Project ...240

Way—Primary School Children ..164
Wollring—Animism ...165
Some Unexamined Areas ...165
Longitudinal Studies ...167
Ritson ...168
The Tasmanian SOLO Project ..169

What does a Literature Review Tell Us? ...170
Kerslake’s Findings ..170
Kempster’s Findings ..172
Green’s Findings ..172
Teigen’s Findings ...173
Comment ..174
Summary ...175

Chapter 9: Historical Framework 179
Historical Theories within Australian Mathematics Education180
The Colonial Echo Model (CEM) ..181
The Muddling Through Model (MTM) ...183
Curriculum as a Control Mechanism ..184
Debate about the Three Models ..184
The Broad-Spectrum Ecological Model (BSEM) ...186
Some Useful Ecological Concepts ..192
Ultimate and Proximate Factors ..193
Optimisation ...194
Convergence ...196
Variation ..197
Parsimony ..197
Numerical Models ..198
The BSEM and Memes ..201
Summary ...204

Chapter 10: South Australian Education up to 1959 205
Before 1945 ...205
The Post-War Period 1945–1959 ..208
General Setting ..209
Curriculum ..210
Administrators and Teachers ..211
Non-government Schools ...215
Conclusion ...216

PART C: HISTORICAL ASPECTS OF THE TEACHING OF PROBABILITY, WITH SPECIAL REFERENCE TO SOUTH AUSTRALIA 217

Chapter 11: Preparations (1959–1964) 219
New Mathematics219

School Mathematics Project (SMP) ..228
Other British Projects ..229
New Mathematics in Europe ...230
Beginnings of the New Mathematics in Australia ..231
Beginnings of the New Mathematics in South Australia233
An Experiment in Secondary Schools: Berndt at Enfield High School238

An Experiment in Primary Schools: Dienes and the Adelaide Mathematics Project ...240
Chapter 15: Decline (1985–1990)
- General background ... 381
- New Pedagogical Models .. 386
 - The Open University .. 387
 - Exploratory Data Analysis .. 388
 - Wheal’s South Australian Text .. 389
- New SSABSA Structures .. 391
 - Year 11 ... 392
 - Year 12 ... 393
- Implementation of the New Approaches .. 394
- Two Major Changes .. 397
 - The Removal of Probability from PES Courses 397
 - Mathematics 3—A New Applied Course 400
- What Forces were Acting? .. 406

Chapter 16: Restructuring (1990–1994)
- Background to the Changes ... 413
 - The National Statement .. 419
 - The Profiles ... 421
 - The Work Samples .. 424
 - The Attainment Levels ... 425
- Other Support Material ... 427
- The Use of the National Curriculum for Assessment 429
- Summary ... 430

An Assessment of Probability in the National Curriculum Documents
- General Principles ... 431
- Critiques of Specific Examples .. 432
 - Language ... 433
 - Example 1: The Nature of Chance 434
 - Example 2: The Nature of a Random Generator 437
 - Example 3: Using Two Random Generators at Once 439
- Some Other Areas of Concern .. 442
 - Links with Other Aspects of Mathematics 442
 - Links with the Language Learning Area 444
 - Links with Other Learning Areas 444
 - Links with Pedagogic Knowledge 447
 - Links with Research into Stochastics Obuchennyi 449
- Making Probability More Widely Known 450
 - Teachers’ Views on Probability and Curriculum Change 450
 - The Influence of External Examinations 452
 - The Effectiveness of Associations and Journals 453
PART D: THE ASSESSMENT OF PROBABILISTIC UNDERSTANDING 467

Chapter 17: Measuring Instruments 469
Some General Difficulties with Assessment ... 472
Mass Testing .. 476
 International Tests .. 476
 National Tests .. 478
 USA—National Assessment of Educational Progress .. 478
 England & Wales—Assessment of Performance Unit .. 481
 Australia—The ACER’s Two Surveys ... 482
 Australia—The ACER Item Banks ... 483
 Australia—A Victorian Survey .. 483
Some Smaller Studies of Interest .. 485
 An Early Example of Pedagogical Experimentation .. 485
 An Australian Research Project Linking Theory with Practice 486
 Research into Logical Thinking Based on Probabilistic Examples 487
 Assessment Linking the SOLO Taxonomy with the National Statement 488
Three Further Points .. 489
 The Relationship between Probability and Statistics ... 489
 The Place of Experts in the Assessment Process ... 490
 The Influence of the Tests on Classroom and Research Practice 493
Conclusion .. 494

Chapter 18: A Structure for Analysing Questions 497
Embellishments of Random Probability Functions (A) .. 498
Forms of Encountering Random Functions .. 501
 Place of Random Generator in Own Culture (B) .. 501
 Previous Practical Experience with Generator (C) ... 501
 Previous Theoretical Experience with Generator (D) .. 502
 Operator of Random Generator (E) ... 502
 Style of Response (F) .. 502
 Number of Elementary Events (G) ... 503
 Number of Events (H) ... 503
 Structure of Random Generator (I) ... 503
 Knowledge of Structure of Random Generator (J) .. 504
 Reward (K) .. 504
Classification of Questions ... 505
 Prediction of Outcome (α) ... 505
 Prediction of Set of Outcomes (β) ... 505
 Selection of Outcome (γ) .. 506
 Statement of “Likely” Outcome (δ) ... 506
 Comparison of Random Generators (ε) ... 506
 Fair Allocation of Payout for Bets (ξ) ... 508
 Examination of Sequences of Outcomes (η) ... 508
 Linguistic Questions of Technical Knowledge (θ) ... 509
 Listing of Outcomes (ι) .. 509
Classification of Probabilistic Situations ... 509
 Single Trial (I) ... 510
 More than One Trial (II) .. 510
Chapter 19: Analysis of Individual Questions

ACER 1: Analysing a Dice Game ... 518
APU 1: Probabilities with a Pack of Cards .. 520
APU 2: Probabilities with a Spinner ... 521
APU 3: Distinguishing Odds and Probability .. 522
Discussion of the APU Questions ... 523
Fischbein 1: Concept of Certainty ... 524
Introduction to Fischbein’s Questionnaire .. 524
Analysis ... 524
Fischbein 2: Independence and Superstition ... 526
Fischbein 3: Lucky Numbers .. 528
Fischbein 4: Consecutive Numbers ... 530
Fischbein 5: Gambler’s Fallacy .. 532
Fischbein 6: Comparison of Urns ... 534
Fischbein 7: Influence of Age over Chance ... 536
Fischbein 8: Comparison of Urns ... 538
Discussion of Fischbein’s Questions ... 539
Green 1: Tossing a Disc ... 540
Introduction to Green’s Questionnaire .. 540
Analysis ... 540
Criticisms of Green’s Methodology by Borovcnik & Bentz 542
Green 2: Names in a Hat ... 546
Green 3: Comparison of Spinners ... 548
Green 4: Tossing a Die ... 550
Green 5: Gambler’s Fallacy for Coins .. 552
Green 6: Comparison of Urns ... 554
Green 9: Making a Game Fair ... 558
Green 17: Non-contiguous Spinners ... 560
Green 18: Urns Without Replacement .. 562
Green 19: Comparison of Asymmetric Spinners .. 564
Green 23: Tossing a Drawing Pin ... 566
Green 25: Inference From a Sample ... 568
Discussion of Green’s Questions ... 569
Kempster 2: Drawing from an Urn ... 572
Kempster 3: Contiguous Spinners ... 574
Kempster 11: Asymmetric Spinners ... 576
Kempster 12: Tossing a Die .. 578
Kempster 18: Cumulative Results from Tossing a Die 580
Kempster 22: Tossing a Coin ... 582
Kempster 31: Measuring the Impossible ... 584
Kerslake 1: Outcomes from a Die ... 586
Konold 1: Gambler’s Fallacy for Coins ... 588
Konold 2: Sequences of Coin Tosses .. 589
NAEP 1: Estimating Frequency of Outcomes from a Spinner 590
Chapter 20: Development of a Sound Question Methodology

The Purpose of Assessment ... 634
Quality of Analysis Structure .. 637

Identified Weaknesses ... 637

Omitted Categories .. 637

Questions where a Categorisation cannot be Done at All 638

Questions which cover more than one Category 639

Questions Which Can be Categorised, but Still Leave out Important

Information .. 639

Implications of the Weaknesses .. 639

Asking Good Questions ... 640

Question Construction ... 640

Technical Precision .. 640

Suitable Format .. 641

Choice of Suitable Numbers .. 642

Mathematical Accuracy .. 643

Question Sensitivity .. 643

Some Neglected Themes and Approaches .. 645

Interpreting Results .. 645

Technical Precision .. 646

Interpretation of Individual Findings ... 646

Interpretation of Findings in Terms of the Literature 647

Constructing Good Tests .. 649

Green’s Test ... 650

Fischbein & Gazit’s Test ... 652

Kempster’s Questions .. 653

Comparing Tests .. 653
PART E: LESSONS FROM HISTORY—DEVELOPING SOUND PEDAGOGICAL PRACTICE

Chapter 21: Research, Classroom Practice and Change

Chapter 22: Research into the Pedagogy of Probability

Chapter 23: Some Case Studies of Probability and Pedagogy

Comparing “Spot Test” Questions ..654
Comparison of the Green and Fischbein Tests ...655
The Influence of Research on Assessing Probability656
Conclusions ..664
Providing a “Zoom Model” Facility for the BSEM670
The “Zoom Model” ..671
Applying the “Zoom Model” to Probability Assessment672
Discussion ..674

Comparisons of the Green and Fischbein Tests ..655
Comparing “Spot Test” Questions ..654

The Dynamics of Change ..689
Some Examples of Change ...689
Theoretical Models of Change ...689
Practical Examples of Change ...692
Why Have Change Movements so Rarely had Lasting Effects?696
Weaknesses in Pedagogical Theory ...700
Weaknesses in Educational Structures ..697
The Place of Pedagogy ..703
The Place of Charisma ...705

Can Probability be Taught? ...721

Anecdotal Reports of Classroom Practice ...707
General Reports ..708
Reports on Teaching Aids ..710
Anthologies of Activities ...711

Research Analyses of Classroom Practice ...712
Analysis of Probability Matching Behaviour ...712
Analysis of Short Instructional Courses ...713
Analysis of Full Instructional Courses ..715
Summary Papers ..719
Comment on the Research Papers ...719

Can Probability be Taught? ...721

Analysis of Full Instructional Courses ..715

Chapter 23: Some Case Studies of Probability and Pedagogy

Overview of the Cameos ...723
Three Cameos of Curriculum Development ..725
School Mathematics Project (1968) ...725
Melbourne Grammar School (1973) ...729
Some Comments from Others Concerned with this Work735
Technical and Further Education (1989) ..736
Clarifying My Increasing Understanding ...738
Standard Dissemination Procedures ...739
Three Cameos of Curriculum Change ..739
The Development of a Handbook Model ..740
Discussion of the Model ...740
An Experiment within a School ...742
General Procedure ..743
Examples from the Proposed Text ..745
Mathematics—Reconciling Three Different Probabilities745
PART F: SUMMARY AND EVALUATION OF THE MODEL

Chapter 24: Why is Probability Poorly Taught?
An Overview of the Problem .. 755
A Physical Model for Analysing Change ... 758
Some Possible Reasons for the Neglect of Research and Experience 763
The Research Corpus is Not Well Enough Developed 763
The Research Done has been Irrelevant to Schools 764
Inadequate Dissemination of Ideas ... 765
Inadequate Reception of Ideas ... 766
Lack of Belief in the Value of the Proposed Changes 767
Cautiousness about Change .. 768
Inadequate Time .. 768
Lack of Adequate Leadership .. 769
Can the BSEM Help us to Understand this Neglect of Research and Experience? 771
A Comparison with the Medical Profession .. 775
Teaching as a Profession ... 775
Consensus on Content Knowledge Base .. 776
Control over Content Knowledge Base ... 776
Consensus on Pedagogic/Consultation Knowledge Base 776
Control over Pedagogic/Consultation Knowledge Base 778
Obligation to Maintain and Develop Professional Skills 779
The Use of Journals for Dissemination of Knowledge 779
The Use of Referring Procedures for the Dissemination of Knowledge 781
Success in Achieving Professional Objectives 782
Using the BSEM to Describe Medicine ... 783
Summary .. 785

Chapter 25: Summary
Introduction ... 789
Specific Findings ... 791
Historical Analysis .. 791
Assessment of Probabilistic Understanding .. 796
Research and Pedagogy .. 799
Overview ... 800

Chapter 26: Evaluation of the Model
The Hard Core of the Model ... 805
The BSEM in Practice ... 806
Protection from Falsification ... 808
The Value of the Model for Future Research ... 809
The Predictive Value of the Model .. 810
Summary of the Period ... 810
Prognosis ... 810
The SACSA Framework ... 811
An Increase in the Importance of Stochastics .. 812
Redefining the nature of Mathematics ...813
Evaluation of the BSEM’s Predictive Value ..817
The Ability to Generate Novel Results ..818
Conclusion ..820

APPENDICES 823
Appendix I: List of Abbreviations 825
Appendix II: Examples of Arguments Put Forward for Stochastics 831
1959—College Entrance Examination Board ..831
1959—Royaumont Seminar ..832
Arguments about Mathematics in General ..832
Arguments about Stochastics in Particular ..833
Appendix III: National Curriculum Documents from the 1990s 835
A National Statement on Mathematics for Australian Schools837
Mathematics—A Curriculum Profile for Australian Schools847
Attainment Levels ...867
Mathematics—Work Samples ...881
Studies of Society and Environment—A Curriculum Profile for Australian Schools893

SOURCES 899
Unpublished Primary Sources 901
Archived Documents ...901
Documents in the Private Domain ..902
Personal Communications ...904
Newspapers, Journals and Periodicals ..906

Published Primary and Secondary Sources 909

INDEX 975
Citation Index 977
Individuals and Institutions Index 997
General Index 1007

POSTLUDE 1021
AN END AND A BEGINNING 1024
One picture is worth ten thousand words.\(^3\)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Model of Perspectives of Mathematics Education</td>
<td>55</td>
</tr>
<tr>
<td>6-1</td>
<td>Simple Diagram of a Random Probability Function</td>
<td>101</td>
</tr>
<tr>
<td>6-2</td>
<td>Detailed Diagram of a Random Probability Function</td>
<td>102</td>
</tr>
<tr>
<td>7-1</td>
<td>Howden & How’s Graphical Form of Print’s Curriculum Model</td>
<td>113</td>
</tr>
<tr>
<td>20-1</td>
<td>Zoom Model of the Revised Broad-Spectrum Ecological Model for the Mathematics Education Node</td>
<td>672</td>
</tr>
<tr>
<td>20-2</td>
<td>Summary using the Zoom Model of Forces Operating within the Probability Assessment Research Field</td>
<td>674</td>
</tr>
<tr>
<td>23-1</td>
<td>Tree Illustrating Sampling Without Replacement</td>
<td>732</td>
</tr>
<tr>
<td>24-1</td>
<td>Perspectives of Mathematics Education with Social Forces Central</td>
<td>758</td>
</tr>
<tr>
<td>24-2</td>
<td>Perspectives of Mathematics Education with Intellectual Forces Central</td>
<td>759</td>
</tr>
<tr>
<td>24-3</td>
<td>Perspectives of Mathematics Education Using Idea of Obuchennyi</td>
<td>760</td>
</tr>
<tr>
<td>24-4</td>
<td>Perspectives of Mathematics Education Illustrating Two Intellectual Forces</td>
<td>762</td>
</tr>
<tr>
<td>24-5</td>
<td>Diagrammatic Form of the Revised Broad-Spectrum Ecological Model for Mathematics Education</td>
<td>771</td>
</tr>
<tr>
<td>24-7</td>
<td>Diagrammatic Form of the Revised Broad-Spectrum Ecological Model for Medical Education</td>
<td>784</td>
</tr>
<tr>
<td>24-8</td>
<td>Broad-Spectrum Ecological Model Summarising Forces on Contemporary Medical Practice</td>
<td>784</td>
</tr>
</tbody>
</table>

\(^3\) Barnard (1927), cited in Partington (1996)
A child should always say what’s true,
And speak when he is spoken to,
And behave mannerly at table,
At least as far as he is able.⁴

Table 18-1 Random Probability Functions and Ways of Encountering Them ... 499
Table 18-2 Different Situations for Comparing Two Random Generators ... 508
Table 18-3 Example of Analysis of Question ... 512
Table 19-ACER 1-1 Analysis of Question ... 518
Table 19-APU 1-1 Analysis of Question ... 520
Table 19-APU 2-1 Analysis of Question ... 521
Table 19-APU 3-1 Percentage Analysis of Responses ... 522
Table 19-APU 3-2 Analysis of Question ... 522
Table 19-Fischbein 1-1 Analysis of Question ... 525
Table 19-Fischbein 2-1 Analysis of Question ... 526
Table 19-Fischbein 3-1 Analysis of Question ... 528
Table 19-Fischbein 4-1 Analysis of Question ... 530
Table 19-Fischbein 5-1 Analysis of Question ... 532
Table 19-Fischbein 6-1 Analysis of Question ... 535
Table 19-Fischbein 7-1 Analysis of Question ... 536
Table 19-Fischbein 8-1 Analysis of Question ... 538
Table 19-Green 1-1 Percentages for Responses to Tossing a Disc ... 541
Table 19-Green 1-2 Analysis of Question ... 541
Table 19-Green 2-1 Percentages Predicting Gender of Name on a Slip ... 546
Table 19-Green 2-2 Analysis of Question ... 547
Table 19-Green 3-1 Percentages of Comparisons between Two Spinners ... 549
Table 19-Green 3-2 Analysis of Question ... 549
Table 19-Green 4-1 Percentages for Which Number on a Die is Hardest to Throw 550
Table 19-Green 4-2 Analysis of Question ... 550
Table 19-Green 5-1 Percentages for Prediction after a Run of Heads ... 552
Table 19-Green 5-2 Analysis of Question ... 553
Table 19-Green 6-1 Summary of Green’s Comparison of Probabilities Questions 554
Table 19-Green 6-2 Percentages for Reasons when Comparing (3,1) v. (6,2) 555
Table 19-Green 6-3 Percentages Giving Different Reasons when Comparing (3, 1) v. (6, 2) ... 555
Table 19-Green 6-4 Analysis of Question ... 556
Table 19-Green 9-1 Percentages Stating Different Amounts to Make the Game Fair 558
Table 19-Green 9-2 Analysis of Question ... 558
Table 19-Green 17-1 Percentages for Comparing Contiguous and Non-contiguous Spinners ... 560
Table 19-Green 17-2 Percentages of Reasons Used to Compare Contiguous and Non-contiguous Spinners ... 561

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Green 17-3</td>
<td>Analysis of Question .. 561</td>
</tr>
<tr>
<td>19-Green 18-1</td>
<td>Percentages for Prediction of Fourth Draw without Replacement from Urn ... 562</td>
</tr>
<tr>
<td>19-Green 18-2</td>
<td>Analysis of Question ... 563</td>
</tr>
<tr>
<td>19-Green 19-1</td>
<td>Percentages for Reasons when Comparing Non-contiguous Spinners ... 564</td>
</tr>
<tr>
<td>19-Green 19-2</td>
<td>Analysis of Question ... 565</td>
</tr>
<tr>
<td>19-Green 23-1</td>
<td>Analysis of Question ... 567</td>
</tr>
<tr>
<td>19-Green 25-1</td>
<td>Percentages of Inferences after a Run of from an Unknown Random Generator 568</td>
</tr>
<tr>
<td>19-Green 25-2</td>
<td>Analysis of Question ... 569</td>
</tr>
<tr>
<td>19-Kempster 2-1</td>
<td>Percentage of Correct Answers for Outcomes after Removing One Item from Urn 572</td>
</tr>
<tr>
<td>19-Kempster 2-2</td>
<td>Analysis of Question ... 572</td>
</tr>
<tr>
<td>19-Kempster 3-1</td>
<td>Percentage of Correct Answers for Outcomes after One Spin of a Spinner ... 574</td>
</tr>
<tr>
<td>19-Kempster 3-2</td>
<td>Analysis of Question ... 574</td>
</tr>
<tr>
<td>19-Kempster 11-1</td>
<td>Prediction of Outcomes of an Asymmetric Spinner .. 576</td>
</tr>
<tr>
<td>19-Kempster 11-2</td>
<td>Analysis of Question ... 576</td>
</tr>
<tr>
<td>19-Kempster 12-1</td>
<td>Beliefs about Hardest Numbers on a Die ... 578</td>
</tr>
<tr>
<td>19-Kempster 12-2</td>
<td>Analysis of Question ... 579</td>
</tr>
<tr>
<td>19-Kempster 18-1</td>
<td>Percentages Considering Results from Tossing a Die to be “Significant” ... 580</td>
</tr>
<tr>
<td>19-Kempster 18-2</td>
<td>Analysis of Question ... 581</td>
</tr>
<tr>
<td>19-Kempster 22-1</td>
<td>Analysis of Question ... 583</td>
</tr>
<tr>
<td>19-Kempster 31-1</td>
<td>Analysis of Question ... 584</td>
</tr>
<tr>
<td>19-Kerslake 1.1</td>
<td>Percentages Believing in Easier Numbers on a Die .. 586</td>
</tr>
<tr>
<td>19-Kerslake 1.2</td>
<td>Percentages Considering a Number on a Die to be Most Difficult ... 586</td>
</tr>
<tr>
<td>19-Kerslake 1.3</td>
<td>Analysis of Question ... 586</td>
</tr>
<tr>
<td>19-Konold 1-1</td>
<td>Analysis of Question ... 588</td>
</tr>
<tr>
<td>19-Konold 2-1</td>
<td>Analysis of Question ... 589</td>
</tr>
<tr>
<td>19-NAEP 1-1</td>
<td>Analysis of Question ... 591</td>
</tr>
<tr>
<td>19-NAEP 2-1</td>
<td>Percentages Choosing Each Option for Drawing from an Urn .. 592</td>
</tr>
<tr>
<td>19-NAEP 2-2</td>
<td>Analysis of Question ... 593</td>
</tr>
<tr>
<td>19-NAEP 3-1</td>
<td>Percentages Responding To Probability Of Drawing Buttons From An Urn ... 594</td>
</tr>
<tr>
<td>19-NAEP 3-2</td>
<td>Analysis of Question ... 594</td>
</tr>
<tr>
<td>19-NAEP 6-1</td>
<td>Percentages Correctly Estimating Expected Number Of Outcomes ... 596</td>
</tr>
<tr>
<td>19-NAEP 6-2</td>
<td>Analysis of Question ... 596</td>
</tr>
<tr>
<td>19-NAEP 21-1</td>
<td>Percentages Choosing Each Game to Optimise Pay-off .. 598</td>
</tr>
<tr>
<td>19-NAEP 21-2</td>
<td>Analysis of Question ... 598</td>
</tr>
<tr>
<td>19-NAEP 23-1</td>
<td>Analysis of Question ... 600</td>
</tr>
<tr>
<td>19-NAEP 26-1</td>
<td>Percentages For Possibilities After Four Tails In a Row .. 601</td>
</tr>
<tr>
<td>19-NAEP 26-2</td>
<td>Analysis of Question ... 601</td>
</tr>
<tr>
<td>19-NAEP 98-1</td>
<td>Percentages Stating Probability Of Drawing a Ball from an Urn .. 602</td>
</tr>
<tr>
<td>19-NAEP 98-2</td>
<td>Analysis of Question ... 602</td>
</tr>
<tr>
<td>19-Peard 1-1</td>
<td>Analysis of Question ... 604</td>
</tr>
<tr>
<td>19-Peard 2-1</td>
<td>Analysis of Question ... 605</td>
</tr>
</tbody>
</table>
Table 19

∙ Peard 1 Analysis of Question ... 606
∙ SOLO 1 Analysis of Question ... 609
∙ Teigen 1 Analysis of Question ... 610
∙ Teigen 2 Analysis of Question ... 612
∙ TIMSS 1 Analysis of Question ... 615
∙ TIMSS 2 Analysis of Question ... 616
∙ TIMSS 3 Analysis of Question ... 618
∙ TIMSS 4 Analysis of Question ... 620
∙ Tobin 1 Analysis of Question ... 622
∙ Tobin 2 Analysis of Question ... 624
∙ Watson 1 Analysis of Question ... 627
∙ Watson 2 Percentages of Responses Using SOLO Levels 628
∙ Watson 2 Analysis of Question ... 629
∙ Watson 3 Analysis of Question ... 631

Table 20

∙ Green’s Questions Classification ... 650
∙ Fischbein’s Questions Classification .. 652
∙ Kempster’s Questions Classification ... 653
∙ APU Questions Classification ... 654
∙ Watson’s Questions Classification ... 654
ABSTRACT

The reader who wishes to obtain an overview of this thesis is advised to read Chapter 1 (second half), Chapter 9 (second half), Chapter 24 (first half), Chapter 25 and Chapter 26.

The teaching of probability in schools provides a good opportunity for examining how a new topic is integrated into a school curriculum. Furthermore, because probabilistic thinking is quite different from the deterministic thinking traditionally found in mathematics classrooms, such an examination is particularly able to highlight significant forces operating within educational practice.

After six chapters which describe relevant aspects of the philosophical, cultural, and intellectual environment within which probability has been taught, a “Broad-Spectrum Ecological Model” is developed to examine the forces which operate on a school system. The Model sees school systems and their various participants as operating according to general ecological principles, where and interprets actions as responses to situations in ways which minimise energy expenditure and maximise chances of survival. The Model posits three principal forces—Physical, Social and Intellectual—as providing an adequate structure.

The value of the Model as an interpretative framework is then assessed by examining three separate aspects of the teaching of probability. The first is a general survey of the history of the teaching of the topic from 1959 to 1994, paying particular attention to South Australia, but making some comparisons with other countries and other states of Australia. The second examines in detail attempts which have been made throughout the world to assess the under-

5 Shakespeare Hamlet III (2) ll. 159–163
standing of probabilistic ideas. The third addresses the influence on classroom practice of research into the teaching and learning of probabilistic ideas.

In all three situations the Model is shown to be a helpful way of interpreting the data, but to need some refinements. This involves the uniting of the Social and Physical forces, the division of the Intellectual force into Mathematics and Mathematics Education forces, and the addition of Pedagogical and Charismatic forces. A diagrammatic form of the Model is constructed which provides a way of indicating the relative strengths of these forces.

The initial form is used throughout the thesis for interpreting the events described. The revised form is then defined and assessed, particularly against alternative explanations of the events described, and also used for drawing some comparisons with medical education. The Model appears to be effective in highlighting uneven forces and in predicting outcomes which are likely to arise from such asymmetries, and this potential predictive power is assessed for one small case study. All Models have limitations, but this one seems to explain far more than the other models used for mathematics curriculum development in Australia which have tended to see our practice as an imitation of that in other countries.
STATEMENT

He that hath used no deceit in his tongue, nor done evil to his neighbour: and hath not slandered his neighbour.

... He that sweareth unto his neighbour, and disappointeth him not: though it were to his own hindrance.

... Whoso doeth these things: shall never fall.6

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library being available for photocopying and loan.

..

..

..

6 Psalm 15, vv. 3, 5, 7
ACKNOWLEDGEMENTS

While they were on their way Jesus came to a village where a woman named Martha made him welcome in her home. She had a sister, Mary, who seated herself at the Lord’s feet and stayed there listening to his words. Now Martha was distracted by her many tasks, so she came to him and said, ‘Lord, do you not care that my sister has left me to get on with the work by myself? Tell her to come and lend a hand.’ But the Lord answered, ‘Martha, Martha, you are fretting and fussing about so many things; but one thing is necessary. The part that Mary has chosen is best; and it shall not be taken away from her.’

For some of the last nine years I have been privileged to have the opportunity to sit and think about mathematics education. It is indeed an excellent way and I have been very sad when it was taken away from me. I was supported for three and one half years by an Australian Post-Graduate Research Award from the Government of Australia which was administered by the Graduate Studies Branch of the University of Adelaide. Further financial assistance came from my sponsoring departments and from the Faculty of Arts. I express my gratitude to all of these organisations and especially to the staff and Board of the former Graduate Studies Branch, whose concern for students is of the highest calibre.

Thanks are due to my supervisors, Mr Ian Brice, and Associate Professor Dr Paul Scott, for their extensive advice, patience and tolerance. The width of this thesis meant that both were to some extent flying blind, and I very much appreciate their willingness to support me in what they must have known was going to be an abnormally difficult task. I owe special thanks to Paul because it was one of his suggestions which led to the development of model which underlies this thesis. I also thank Dr Chris Dawson for acting as locum tenens and midwife after Ian moved to Sydney. Thanks are also due to the Departments of Education and Pure Mathematics for hosting my studies for much of this time, and especially to the Department of Education for providing me with the facilities for building up the networks which have made this thesis so much richer. These thanks extend also to the various fellow students who were asked by the Department to share a room with me and tolerate my energies and vagaries.

It is unfortunately necessary to record that the increasing financial restrictions on universities which have occurred during the 1990s, and the moves to manage-
ment models which are insensitive to the ways in which academics need to work have meant that this thesis has been written in a period of declining resources, increased pressures on staff, and dangerous library cuts. It ought not to have been necessary for me to go to Bielefeld in Germany to read books which had been in my own university’s library 35 years ago. These problems have been exacerbated by a substantial culling of the library of the Education Department of SA. Departmental officials have assured the relevant Minister that the process is a responsible one. For administrative records this advice may or may not be good; for curriculum and social records it is seriously flawed; those concerned do not seem to be able to conceive of the width of material which is of historical value.

In my own university, it ought not to have been necessary to have to fight so often for adequate equipment and, even more importantly, for rapid repairs to equipment which was usually satisfactory. It ought to have been possible to have provided each doctoral student with a computer which could not be interfered with or trashed by others. It ought also to have been possible to have had access to information about how best to use the expensive technology which we did have available, so that it was not necessary to spend long hours working things out for oneself, and that not always successfully. It ought to have been possible to provide us with good software, and not force us to work with obsolete and unfriendly material. It ought not to have been necessary to have spent so much time trying to boost my morale when all around me seemed to be crumbling. If universities are to be taken really seriously as educational institutions, they need to learn how to establish the best environments for learning and research to take place. So the thanks which I express here are particularly heart-felt: all of the people listed have been working in the same difficult circumstances.

There are so many people who have assisted. Those who made specific suggestions are acknowledged in the appropriate places. I am especially grateful to the staff of the school who agreed to help me with a teaching experiment, and am sorry that we were not able to carry it through to completion. Others who consented to be interviewed are listed in the Sources. Without their reminiscences this thesis would be much the poorer.

I must mention especially Dr Carmen Batanero, University of Granada. We first met by chance at a crowded morning tea in Marakesh, and since then have developed a high regard for each other’s work, and have become collaborators in

8 Hon Robert Lucas, Minister for Education and Children’s Service to author, 20 Aug 1994
so many activities. Our regular e-mail sessions have done much to sustain me in times of despair for mathematics education, and in those moments when I doubted my own abilities.

Many people have provided me with useful insights, advice, or information, and some have also sustained me more generally, often over long periods of time. These include:

Mrs Anne Arnold University of Adelaide
Dr Nicolas Balacheff Laboratoire Leibnitz, Grenoble France
Dr Andy Begg University of Waikato, NZ
Mr Peter Brinkworth Flinders University of South Australia
Miss Mary Brownlee University of Adelaide
Professor Ken Clements University of Brunei Darussalam
Dr Chris Dawson University of Adelaide
Mr Jim Giles Retired educational administrator
Dr Juan Godino University of Granada, Spain
Dr David Green Loughborough University, UK
Dr Brian Greer San Diego State University, USA
Mr Lindsay Grimison University of Sydney
Dr Dorothy Hudson University of Adelaide
Professor Alan James University of Adelaide
Dr Barry Jeromson University of South Australia, Magill
Dr Mollie MacGregor University of Melbourne
Mr Will Morony Department for Education and Children’s Services
Dr Andrea Peter-Koop University of Münster
Dr Jon Opie University of Adelaide
Dr Michael Price University of Leicester, UK
Dr Rene Ritson Queens University, Belfast
Dr Jack Rowell University of Adelaide
Dr Margaret Scott University of Adelaide
Dr Michael Shaughnessy Portland State University, USA
Dr Brian Sherman University of Adelaide
Dr Beth Southwell University of Western Sydney, Nepean
Mrs Kath Truran University of South Australia, Magill
Mrs Jenni Way University of Western Sydney, Nepean
Dr Gregory Yates University of South Australia, Magill

A few of these people have been involved with schools some of the time, but it is a sad reflection on both myself and mathematics education that I have had less to do with schools in constructing this thesis than would have been desirable. Some conferences of professional associations have helped to redress this imbalance, but most of those I have attended have been dominated by tertiary teachers and researchers. Nevertheless, they have provided a valuable way of meeting people
with like interests and an impetus to put one’s ideas onto paper, although the level of critical debate at these conferences is rather less than it might be. The number of people involved is too great to list individually, but their contributions and friendship have been much appreciated. Thanks are due to the leaders of the organisations as well as the organisers of the individual conferences, and especially to MERGA for providing a base for so much of my writing. The organisations and conferences involved have been:

Australian and New Zealand History of Education Society (ANZHES)
Australian Association of Mathematics Teachers (AAMT)
International Conferences on Teaching of Statistics (ICOTS)
International Congress on Mathematics Education (ICME)
Mathematical Association of Victoria (MAV)
Mathematics Education Research Group of Australasia (MERGA)
New Zealand Association of Mathematics Teachers (NZAMT)
Psychology of Mathematics Education Group (PME)

I have been able to make use of many libraries as well as our own. In these days of increasing university cuts, it is especially important to acknowledge the help of the librarians and archivists working in the following institutions:

Australian Council for Educational Research
Flinders University of South Australia
Mathematical Association, Leicester, UK
Mathematical Association of Victoria
University of Adelaide
University of Bielefeld, Germany
University of Melbourne
University of Newcastle
University of South Australia
University of Sydney
University of Tasmania

The Department of Education Training and Employment in SA kindly allowed me to read a number of official records not on open access.

Special thanks are due to the inventors of the personal computer, and also to Mervyn Macintosh Truran II, without whose flexibility these thoughts would never have lost their entropy. Thanks are also due to TransAdelaide, whose trains provided the cheap, clean and comfortable seclusion which the preparation of this document required.
The Dedication is to three significant people in my life who are no longer living. Although I do not remember my father, he left me the legacy of a fine library, which was a wonderful support for me during childhood and adolescence and which, with my mother’s determined encouragement in the face of many difficulties, set me well on the road towards my academic work. The dedication to Tim is an attempt to express, not only my sadness at what might have been but never happened, but also gratitude for the many good times we had together.

Finally, my thanks go to my wife and collaborator, Kath, for her support, both personal and professional, and especially for her patience and understanding. On top of all her trials and tribulations, she has seen me through so many of my own, and a large number of action replays as well. This work would not have been finished without her; words really cannot express my gratitude.

For this relief, much thanks; ‘tis bitter cold
And I am sick at heart.9

9 Shakespeare Hamlet I (1) ll. 8–9