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Chapter 9 Extensions to the standard HMM 

formulation 

The results presented thus far in this thesis have been produced through the implementation of 

two-state and three-state HMMs to describe hydroclimatic persistence. Although the standard 

HMM formulation is parsimonious, it can also be developed in a variety of ways to model 

accurately different characteristics of hydrologic data. The previous chapter showed non-

parametric HMMs to be a valuable extension to the standard HMM formulation. The model 

developments that are described in this chapter relax various basic assumptions of HMMs, 

producing time series models that may improve the descriptions of certain persistent time series. 

The first aspect of the HMM framework analysed here is the efficacy of the Markovian 

assumption for climatic state series. Secondly, the issue of conditional independence of rainfall 

data is discussed. The third investigation focuses upon identifying the correct scale at which 

persistence should be analysed, and the development of a novel hierarchical HMM is presented. 

The time series models produced through these developments are then calibrated to the 

deseasonalised monthly rainfall for Sydney as an initial example of their practicality. 

9.1 Incorporating explicit state durations 

9.1.1 Hidden semi-Markov model (HSMM) structure 

A major assumption of conventional HMMs fitted to discrete-timed data is that state durations 

follow a geometric distribution, which is inherent in the Markovian assumption as discussed in 

Section 3.3.1. For many physical series this geometric density may be inappropriate (Rabiner, 

1989), and an explicit duration density such as the negative binomial may be preferred. The 

negative binomial distribution is a two parameter distribution that decays at a slower rate than 

the geometric. The longer tail of such a distribution allows longer durations in each state, which 

produces a more persistent process. If random independent trials result in a success (state 

transition) with probability p (the HMM transition probability), the distribution of X, which is 

the number of the trial on which the first success occurs, constitutes the geometric distribution. 

The number of trials however to produce k successes (where 1>k ) is provided by the negative 

binomial distribution, given as 

kXk pp
k

X
Xp −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−
= )1(

1

1
)(  (9.1) 

with k taking integer values. The negative binomial distribution is a useful density in this 

context, as it includes the geometric distribution as a special case when 1=k . For the case of 
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2=k , the probability mass function of the negative binomial distribution is compared to the 

geometric distribution in Figure 9.1, with each being generated using a transition probability of 

3.0=p . This figure shows higher values of X, analogous to longer state durations, to have a 

higher probability of occurring with the negative binomial distribution than with the geometric. 
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Figure 9.1 Probability mass function for negative binomial and geometric distributions 

The inclusion of a specific duration density transforms a conventional HMM to a hidden semi-

Markov model (HSMM), also termed a variable duration HMM. When adopted to describe 

hydrological persistence, state conditional distributions defining observations in conventional 

HMMs are retained in this extended framework. The number of discrete model states and the 

form of state conditional distributions are separate modelling assumptions, such that two-state 

HSMMs are the simplest implementation. When an explicit duration density is incorporated into 

a HMM, self-transition probabilities take a value of zero, and transitions between states only 

occur after specific numbers of observations defined by duration densities. It is clear then that 

by setting the explicit duration density to a geometric, the HSMM is equivalent to a 

conventional HMM.  

Hidden semi-Markov models have been described for various meteorological applications, 

mainly daily rainfall modelling (eg Sansom, 1998; 1999), yet have received little attention for 

modelling persistence at monthly or annual scales. Ferguson (1980) presented the original 

investigation into variable duration models for discrete time series, mostly in speech 

recognition, although the estimation algorithm presented by Ferguson is computationally 

expensive. Levinson (1986) presented an efficient method to calculate the joint probability 

distribution of a sequence of observations, evaluating the HSMM likelihood by adapting the 

forward-backward algorithm of conventional HMMs. Yu and Kobayashi (2003a; 2003b) further 

refined this estimation method by proposing a new forward-backward algorithm that 

dramatically reduces the calculation complexity of the HSMM likelihood. This algorithm is 
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used later in this work. The SCE algorithm is used to evaluate MLEs for the HSMM parameters, 

with parameter uncertainty evaluated with the Adaptive Metropolis algorithm as with 

conventional HMMs. Models with lognormal and gamma state conditional distributions are 

calibrated to the Sydney deseasonalised monthly rainfall, using negative binomial duration 

densities. 

9.1.2 Calibration of a two-state lognormal HSMM to Sydney monthly rainfall 

Two-state lognormal HMMs provide suitable descriptions of persistence in the series of 

monthly rainfall anomalies for Sydney; however the generalisation of state duration 

probabilities for this series has not been addressed up to this point. In order to investigate the 

efficacy of this model to describe hydrological persistence in Australian rainfall, two-state 

HSMMs with negative binomial duration densities are now fitted to Sydney data. With state 

conditional distributions of the HMM framework more closely approximating random draws 

from lognormal distributions than gamma distributions within the Sydney series, lognormal 

distributions are also assumed to describe monthly observations in the HSMM. The eight 

parameters for this model are estimated with the SCE algorithm, and 60,000 Metropolis samples 

are generated to estimate parameter uncertainty. The posterior distributions for the parameters 

of the lognormal conditional distributions of the HSMM are summarised in Table 9.1.  

Table 9.1 Comparison of posteriors for parameters of conditional distributions for two-state 

lognormal HSMM and two-state lognormal HMM, with median and 90% credibility interval 

 Wet state 
location 

Dry state 
location 

Wet state   
scale 

Dry state    
scale 

Two-state 
lognormal HMM 

4.814           
(4.67, 4.97) 

3.945           
(3.78, 4.15) 

0.555           
(0.50, 0.62) 

0.575           
(0.51, 0.66) 

Two-state 
lognormal HSMM 

4.840           
(4.63, 4.98) 

4.253          
(4.15, 4.32) 

0.561           
(0.47, 0.66) 

0.698           
(0.67, 0.73) 

The posterior median estimates of the HSMM wet state parameters are very similar to those 

from calibrating the HMM, whereas the dry state parameters are both higher than the HMM 

parameters, with narrower credibility intervals. Figure 9.2 shows the wet and dry state 

conditional distributions for this model, using the posterior medians as parameter estimates. The 

higher dry state parameters values for the HSMM produce a dry state distribution with higher 

mean, variance and skew than the HMM dry state. 
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Figure 9.2 Conditional distributions from the calibrations of a two-state lognormal HMM and a 

two-state lognormal HSMM to the deseasonalised monthly rainfall for Sydney 

The calibration of the HSMM estimates the wet state negative binomial density to have order 2 

and the wet state order 4. The posterior distributions for the real-valued probabilities for the two 

negative binomial distributions are shown in Figure 9.3. Median values of the wet state and dry 

state distributions are 0.631 and 0.430 respectively, with the dry state showing much tighter 

credibility bounds. 

Figure 9.3 Posterior distributions for probabilities associated with negative binomial duration 

densities from the calibration of a two-state lognormal HSMM to the deseasonalised monthly 

rainfall for Sydney, with medians shown 

With negative binomial densities of order greater than 1, it is difficult to describe persistence in 

a manner similar to transition probabilities in a HMM. The probability mass functions 

associated with the wet and dry state distributions are shown in Figure 9.4 alongside geometric 

distributions, with each described by the posterior medians. The minimum durations within the 

wet and dry states of the HSMM are 2 and 4 months respectively. Although the decay of the 

HSMM wet state distribution is quite rapid, the dry state demonstrates a much stronger 

persistence than the dry state of the HMM, with a higher probability for all durations greater 

than 5 months. 
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Figure 9.4 Probability mass functions for duration densities from the calibrations of a lognormal 

HMM and a lognormal HSMM with negative binomial duration densities to the deseasonalised 

monthly rainfall for Sydney 

In order to calculate the marginal likelihood of the HSMM, uniform prior distributions over the 

interval (1, 6) were taken for the integer order of the negative binomial distributions, with 

uniform priors over (0, 1) used for the negative binomial probabilities. This Bayesian model 

selection produces an estimate of 6.3ln , =HSMMHMMBF , which in this instance marginally 

favours the simpler model. 

9.2 Incorporating temporal dependence in observations 

9.2.1 Autoregressive hidden Markov model (ARHMM) structure 

Conventional HMMs assume that a sequence of observations are conditionally independent, 

being estimated as random draws from a defined parametric distribution. This assumption can 

also be extended to include alternative modelling approaches, by considering an observation at 

time t in terms of the following time series regression 

ttst zay i
t

+= β  (9.2) 

where ta  is a vector of past observations and tz  is a series of independently and identically 

distributed variation. The notion of underlying model states conditioning the observation series 

is incorporated in this model by specifying different values of the β  parameters for each 

discrete value of the state variable tx . A change in model state realises a change in regression 

model parameters. For first-order dependence in observations, the previous equation reduces to 
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ttst zyy i
t

+= −1β  (9.3) 

By estimating transition probabilities for movement between model states, the basic modelling 

assumptions of the HMM are preserved and this produces the class of autoregressive HMMs 

(ARHMMs), which are useful time series models accounting for changes in regime. This class 

of models reduce to standard autoregressive models when remaining in a constant state. 

Furthermore, the relationship between a first-order ARHMM and a conventional HMM is 

shown through representing the former model as the Bayesian net diagram in Figure 9.5. In this 

diagram, circles represent the unobserved state variables and squares show observed values. The 

thick arrows indicate Markovian transitions, with the thin red lines representing conditional 

relationships between variables. In a conventional HMM, the relationships designated with red 

lines are absent. 

Figure 9.5 Bayesian net diagram for first-order ARHMM 

The ARHMM class of models have received a broad application in the econometrics literature 

(eg Goldfeld and Quandt, 1973; Hamilton, 1989; Hamilton, 1990) as they are suitable for 

modelling nonstationarities that are due to abrupt changes of regime in the economy (Bengio, 

1999). Like HSMMs, these are also particularly suited to speech recognition (Juang and 

Rabiner, 1985; Rabiner, 1989), yet they have received little attention in the field of stochastic 

hydrology. Parameter estimation in ARHMMs adopts the standard forward-backward algorithm 

of conventional HMMs by replacing independent observations densities with an autoregressive 

density. As a consequence, the distribution of observations in a first-order ARHMM 

),|( 1−t
j

tt ysyP  takes a specific form such as a Gaussian distribution whose mean is a linear 

function of the previous observation 1−ty . 

9.2.2 Calibration of a two-state lognormal ARHMM to Sydney monthly rainfall 

The ARHMM provides a mechanism to incorporate regime changes into an autoregressive 

model. With the Sydney monthly rainfall series displaying significant persistence at a monthly 

scale, the inclusion of temporal dependence in observed values may improve the description of 

monthly variability. In order to determine a suitable order of this model, it is necessary to first 

observe its autocorrelation. The natural logarithm of scaled monthly anomalies produces a time 

xt+1  xt

  yt

xt+2

  yT

Model 
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series that approximates random draws from a Gaussian distribution )713.0,402.4( 2N . Within 

the series of log values, only the first order autocorrelation is significant, having a value 0.093 

with standard error 0.024. As a result, a two-state ARHMM with lognormal state conditional 

distributions and first-order autocorrelation in each state is calibrated to the Sydney monthly 

series. The posterior distributions for parameters of these conditional distributions are 

summarised in Table 9.2 alongside posteriors from a standard two-state lognormal HMM.  

Table 9.2 Comparison of posteriors for parameters of conditional distributions for two-state 

lognormal ARHMM and two-state lognormal HMM, with median and 90% credibility intervals 

 Wet state 
location 

Dry state 
location 

Wet state   
scale 

Dry state    
scale 

Two-state lognormal 
HMM 

4.814           
(4.67, 4.97) 

3.945          
(3.78, 4.15) 

0.555          
(0.50, 0.62) 

0.575           
(0.51, 0.66) 

Two-state lognormal 
ARHMM 

4.932            
(4.77, 5.19) 

4.136          
(3.91, 4.32) 

0.498          
(0.36, 0.58) 

0.637           
(0.55, 0.70) 

Posterior medians in Table 9.2 suggest that conditional distributions for this model are similar to 

those obtained from both the two-state HMM and two-state HSMM, with greater dry state 

variability that is consistent with the latter. Posterior distributions for the first-order 

autocorrelation parameters are shown in Figure 9.6. The dry state autocorrelation has a posterior 

median value of 0.080, which includes the autocorrelation of the marginal distribution within its 

90% credibility interval (0.002, 0.161). Although this parameter estimate appears consistent 

with the observed features of the data series, the autocorrelation within the wet state has a 

posterior median of -0.084. The broad posterior distribution for this parameter however has a 

90% credibility interval (-0.217, 0.038) that includes zero, suggesting that this parameter may 

not have statistical significance.  

Figure 9.6 Posterior distributions for lag-1 autocorrelations estimated from the calibration of a 

two-state lognormal ARHMM to the deseasonalised monthly rainfall for Sydney, with medians 

shown 
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The estimation of ARHMM parameters in the Sydney monthly series shows that observed 

autocorrelation is modelled only within a dry state, suggesting that this model might have too 

many parameters. In order to evaluate the Bayes Factor between this model and the simpler two-

state HMM, conjugate priors described earlier are again used with Gaussian priors ),( 2
φφ σµN

described for autocorrelations, with φµ  the estimated lag-1 autocorrelation and φσ  the standard 

error of this estimate. This produces an estimate of 8.1ln , =ARHMMHMMBF , which marginally 

favours the simpler model. 

The posterior distribution of DWWD PP +  for the first-order ARHMM is shown in Figure 9.7, 

with a median of 0.761 that is similar to the median from fitting a two-state lognormal HMM to 

these data. This distribution however has a wider 90% credibility interval (0.568, 1.092) than 

the HMM, and since this includes a value of 1, evidence against persistence is obtained at a 10% 

level. The inclusion of autocorrelation in the HMM therefore appears to mask the two-state 

persistence that is evident in the monthly rainfall series for Sydney; this is likely due to the 

weak autocorrelation of this time series. This modelling approach may indeed provide an 

improved description of persistence for hydrologic series showing strong temporal dependence. 

Figure 9.7 Posterior distribution for the sum of transition probabilities from the calibration of a 

two-state lognormal ARHMM to the deseasonalised monthly rainfall for Sydney, with median 

9.3 Analysing persistence at multiple time scales simultaneously 

9.3.1 Hierarchical hidden Markov model (HHMM) structure 

The results presented in this section are from the calibration of various HMMs to time series of 

both annual and monthly totals. With results indicating that either there is insignificant 

persistence at an annual scale, or that there is simply insufficient data available to detect such 

persistence, the most suitable models have used monthly data. From a climatic perspective, the 

physical processes producing hydrological persistence at a monthly scale are very different from 
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those producing annual variability. ENSO episodes tend to persist for 15 months on average, 

during which the monthly rainfall totals for parts of Australia are in turn amplified and 

moderated. The issue of whether annual rainfall totals are also influenced by this climatic mode 

depends upon the periods over which annual periods are defined. 

In order to describe the interaction of hidden state processes at various scales, a hierarchical 

HMM (HHMM) is described here to simultaneously fit climate states operating over both 

annual and monthly periods. In this model approach, regional climates are assumed to fluctuate 

between wet and dry states over annual time scales, and within these states there exists higher 

frequency variability with fluctuating wet and dry months. By defining the annual wet and dry 

states as aW and aD, and monthly states mW and mD, four model states are then estimated 

within the time series of monthly observations: )|( aWmWt , )|( aWmDt , )|( aDmWt  and 

)|( aDmDt . Persistence within the monthly states of this model is governed by two transition 

probabilities for months in a wet year (defined as aWmWDP  and aWmDWP ) and two for months in 

a dry year ( aDmWDP  and DamDWP ). Annual persistence is controlled by the values of two more 

transition probabilities, aWDP  and aDWP , producing six unknown probabilities that need to be 

estimated in model calibration. It is clear that by remaining in a constant annual state, this model 

can degenerate to the simple two-state monthly HMM. The relationship between these various 

model states is shown in Figure 9.8. 

Figure 9.8 Framework for the hierarchical HMM 
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Although hidden states are defined at both monthly and annual scales, state conditional 

distributions are only defined with monthly values. One set of monthly parameters are 

associated with an annual wet state ( Wθ ) with one set associated with an annual dry state ( Dθ ). 

In calibrating this model, monthly totals ( ty ) are assumed to approximate random draws from 

either lognormal or gamma distributions. The probability of rainfall in month t being generated 

in a wet monthly state of a wet year is expressed as ),|( aWmWyp tt  and likewise for other 

combinations. In order to calibrate the HHMM, the standard HMM forward-backward 

likelihood function is evaluated using the monthly data series with parameters for an annual wet 

state and then separately with the monthly parameters associated with an annual dry state.  

Since the climate is assumed in this model to fluctuate between two states at an annual level, a 

method to adapt the monthly series is developed. The application of the forward-backward 

likelihood function at an annual scale requires the probability of total rainfall in year i , iA , to 

be evaluated in each state, )|( ii aWAp  and )|( ii aDAp . Although these probabilities are not 

defined explicitly, monthly pdfs are used to facilitate their calculation, adopting the relationship 

between an annual total iA  and the sequence of 12 monthly totals within the same period. An 

annual pdf is therefore replaced with a probability of observing a sequence of twelve monthly 

totals as: 

( ) ( ) ( ) )|()|,...,,()|( 1212121211121 iiiiiiii aWYpaWyyypaWAp == +×−+×−+×−  (9.4) 

which is also the likelihood for a 12-month sequence given an annual climate state. The monthly 

forwards variables from the existing implementation of the HMM likelihood function are 

multiplied together over 12-month sequences to obtain this monthly likelihood. Annual 

forwards and backwards variables are calculated from these annual pdfs and the HMM 

likelihood function can proceed. The posterior probabilities for the climate being in each annual 

state are evaluated, and these then weight the two monthly posterior state series to produce an 

overall monthly state series. For models that contain two annual states and with monthly 

observations following lognormal, Gaussian or gamma distributions in each of two discrete 

states, a total of 14 parameters require estimation. 

9.3.2 Calibration of a two-state lognormal hierarchical HMM to Sydney monthly 

rainfall 

Results shown in Chapter 6 indicated that there is no significant persistence in the series of 

annual rainfall totals for the Sydney gauge. This observation was reinforced by the calibration 

of a two-state Gaussian HMM, which failed to reject the possibility of the marginal distribution 

being constructed from a mixture of two Gaussian distributions without temporal persistence. 
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This contrasts with the analysis of monthly totals, which provided evidence for two-state 

persistence at this scale. The HHMM framework develops the assumptions of the standard two-

state HMM by allowing monthly persistence to be conditioned by annual variability. The 

calibration of the HHMM to the Sydney monthly rainfall series assumes monthly data in each 

annual state to be lognormally-distributed such that ),()|)(ln( 2
jj

j
tt NsyP σµ≈ . The posterior 

distributions for monthly parameters of the HHMM are summarised in Table 9.3. 

Table 9.3 Summary of posterior distributions for parameters of wet and dry years from a two-state 

lognormal HHMM, showing medians and 90% credibility intervals 

WDP DWP Wet state 
location 

Dry state 
location 

Wet state   
scale 

Dry state    
scale 

Wet 0.334       
(0.21, 0.46) 

0.398       
(0.24, 0.51) 

4.806      
(4.67, 4.94) 

3.914      
(3.76, 4.11) 

0.556      
(0.50, 0.62) 

0.559      
(0.49, 0.65) 

Dry 0.400       
(0.02, 0.92) 

0.520       
(0.07, 0.95) 

4.895      
(2.84, 10.99) 

3.432      
(1.28, 7.06) 

0.645      
(0.20, 1.36) 

0.887      
(0.21, 1.44) 

A main feature of these results is that the credibility intervals around posterior medians in dry 

years are much wider than for monthly parameters from a wet year. Furthermore the posterior 

medians for wet year parameters closely match estimates from simple two-state lognormal 

HMMs. It is straightforward to show that the HHMM can degenerate to the simpler model by 

remaining within a single annual state, such that there is not annual persistence. Annual 

transition probability estimates for the HHMM indeed support this result. The annual WDP  has a 

posterior median of 0.010, with 90% credibility interval (0.002, 0.152), which contrasts 

dramatically with the posterior distribution for DWP , which has median 0.547 and 90% 

credibility interval (0.080, 0.951). These estimates are vastly different from the posterior 

medians obtained from the calibration of a Gaussian HMM to the time series of annual totals, 

and strongly indicate that the most likely model structure is predominantly within a single wet 

state. The posterior distribution of the monthly DWWD PP +  in a wet annual state has a median of 

0.732 with 90% credibility interval (0.601, 0.834), similar to the interval size obtained from the 

standard two-state HMM. The posterior distribution for monthly DWWD PP +  in a dry annual 

state however shows a median of 0.926 with a 90% credibility interval (0.323, 1.608) that 

indicates that monthly persistence is not observed in dry years. 

These results demonstrate that the absence of significant annual persistence causes the more 

complex HHMM to relax to the simpler model. After calculating the marginal likelihoods for 

both the lognormal HHMM and the lognormal HMM, the Bayes Factor between the models is 

estimated as 3.95ln , =HHMMHMMBF , which is strongly in favour of the two-state monthly 

model, and supports the inference made from parameter estimates. Although this development 
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of the monthly HMM was inappropriate for Sydney data, monthly hydrologic series showing 

the HHMM to be a superior model to the HMM are described in Chapter 10. 

9.4 Summary of chapter 

This chapter has introduced a range of stochastic models that are derived from the standard 

HMM formulation. Although hidden semi-Markov models and autoregressive HMMs are not 

new developments, these models have rarely been used for describing hydrological persistence 

at either a monthly or annual scale. The results from calibrating these models to the Sydney 

monthly data in this chapter indicate that these models may improve descriptions of 

hydrological persistence in certain data series. The ARHMM in particular provides a useful 

connection between the widely-used ARMA time series models and the HMM approach that 

better defines hydrological persistence in terms of climatic influences. The hierarchical HMM is 

a novel approach to modelling hydrological persistence that can account for different levels of 

hydroclimatic interactions. The efficacy of these models is further investigated in the following 

chapter, using a range of hydrologic data. 
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Chapter 10 Utilising NP HMMs to identify 

appropriate parametric models 

for persistent data 

Previous chapters have established that a monthly time scale is more appropriate than an annual 

scale for the identification and explanation of hydrological persistence. In this chapter non-

parametric HMMs estimate underlying probability distributions needed for the analysis of 

persistence in the monthly-scale hydrology of Australia. Using a range of observed data series, 

HMMs and variants described in Chapter 9 are employed to identify hydrological persistence, 

and to evaluate both its strength and its relationship to climate fluctuations. This chapter 

provides an overview of the benefits to stochastic modelling in hydrology provided by 

parametric and non-parametric HMMs, particularly as models for monthly rainfall data. 

10.1 Developing HMMs to model hydrological persistence in spatial 

rainfall 

The deseasonalised monthly rainfall for the four meteorological districts introduced in Chapter 4 

(Districts 9A, 16, 27 and 71), are analysed in this section to demonstrate the method by which 

the non-parametric HMM formulation can augment information obtained from established 

parametric methodology to identify hydroclimatic persistence. As described in Table 4.1 and 

Figure 4.2, these districts are representative of the four main rainfall regimes across this 

country. 

Two-state NP HMMs are calibrated to the deseasonalised monthly rainfall for each of these four 

districts. The posterior medians and 90% credibility intervals for transition probabilities from 

these calibrations are presented in Table 10.1. These results provide strong evidence for two-

state persistence in each district, with 95% credibility limits for their sum of transition 

probabilities being well below 1. The credibility interval around an estimate for the sum of 

transition probabilities for District 9A does not include 1 and two-state persistence is therefore 

significant at a 10% level. However, the upper limit for this interval is close to 1 which indicates 

persistence to be much weaker than the other districts. These observations are consistent with 

those shown in Table 5.1, which demonstrate strong persistence in each of these monthly 

rainfall series using an array of runs statistics. Furthermore in this Chapter 4 analysis, the 

deseasonalised monthly rainfall from District 9A showed the weakest persistence of runs either 

side of the median value, reflecting the results from NP HMM calibration. 
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Table 10.1 Posterior medians and 90% credibility intervals for transition probabilities from 

calibrating two-state NP HMMs to deseasonalised monthly rainfall 

District WDP DWP DWWD PP +

9A 0.258              
(0.078, 0.553) 

0.363               
(0.167, 0.668) 

0.673               
(0.358, 0.948) 

16 0.210              
(0.106, 0.330) 

0.244               
(0.143, 0.360) 

0.452              
(0.301, 0.642) 

27 0.247              
(0.144, 0.360) 

0.197               
(0.096, 0.299) 

0.445               
(0.254, 0.635) 

71 0.141              
(0.084, 0.234) 

0.252               
(0.178, 0.346) 

0.400               
(0.289, 0.532) 

Following the calibration of two-state NP HMMs, state conditional distributions are estimated 

through random samples taken around posterior median estimates of the partition locations. 

Anderson-Darling goodness-of-fit statistics for these distributions are shown in Table 10.2 for 

Gaussian, lognormal and gamma distributions. These statistics illustrate that for five of the eight 

conditional distributions shown, lowest AD values are obtained for fitting lognormal 

distributions, suggesting that these samples most closely represent random draws from 

lognormals. However seven of the eight lognormal AD values are still too high to be consistent 

with this parametric form at a 5% statistical level. 

Table 10.2 Anderson-Darling goodness-of-fit statistics for estimates of state conditional 

distributions from the calibration of two-state NP HMMs to deseasonalised monthly rainfall  

District 
Gaussian 

distribution 
Lognormal 
distribution 

Gamma 
distribution 

9A Wet 20.81 3.50 7.23 
 Dry 5.73 3.14 2.19 

16 Wet 40.78 1.36 6.91 
 Dry 34.35 4.67 9.52 

27 Wet 23.49 5.63 11.92 
 Dry 23.94 19.29 18.59 

71 Wet 19.63 0.41 2.35 
 Dry 6.57 3.29 0.82 

The calibration of NP HMMs to the deseasonalised monthly rainfall series allows the form of 

parametric two-state HMMs to be estimated, and this is often desirable as parametric models 

may provide a superior fit. Using the results of Table 10.2, two-state lognormal HMMs are now 

calibrated to each of the four monthly rainfall series. Transition probability estimates are then 

analysed in Table 10.3 to determine whether significant two-state persistence is identified 

through these parametric models. These results indicate that even by imposing a parametric 

form on state conditional distributions two-state persistence is identified within each of these 

four monthly rainfall series. 
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Table 10.3 Posterior medians and 90% credibility intervals for transition probabilities from the 

calibration of two-state lognormal HMMs to deseasonalised monthly rainfall  

District WDP DWP DWWD PP +

9A 0.091               
(0.039, 0.226) 

0.506              
(0.254, 0.730) 

0.607              
(0.329, 0.875) 

16 0.205              
(0.093, 0.361) 

0.175              
(0.084, 0.288) 

0.386              
(0.252, 0.549) 

27 0.154              
(0.118, 0.194) 

0.411              
(0.334, 0.499) 

0.566              
(0.469, 0.670) 

71 0.103              
(0.063, 0.164) 

0.233              
(0.154, 0.329) 

0.339              
(0.238, 0.459) 

The similarity between the calibrations of the NP HMMs and parametric HMMs is now 

investigated through the posterior state series of each model. Linear correlations between the 

median state series of the NP HMM, Lognormal HMM and Gamma HMM for each district are 

shown in Table 10.4. Each correlation is highly significant, 001.0<p  in each case, which 

shows that two-state parametric HMMs identified through the calibration of the NP HMMs 

identify similar persistence to the latter. The correlations are strongest for District 71, which 

suggests that a two-state lognormal HMM describes this series better than it can for any of the 

other three series. 

Table 10.4 Linear correlations between median state series from calibrating various HMMs to 

deseasonalised monthly rainfall  

District 
NP HMM and 

Lognormal HMM 
NP HMM and 
Gamma HMM 

Lognormal HMM and 
Gamma HMM 

9A 0.556 0.677 0.440 
16 0.982 0.856 0.813 
27 0.704 0.787 0.928 
71 0.974 0.986 0.928 

Another method to demonstrate relationships between the two-state persistence identified with 

the non-parametric and parametric HMMs is to analyse their respective associations with other 

measures of climate variability. After evaluating rank correlations between the monthly NINO3 

index and the median state series for each of the NP, lognormal and gamma HMMs, District 27 

shows the strongest correlations for the four samples analysed. For this monthly rainfall series, 

the correlation between the NINO3 series and the NP HMM state series )349.0( −=r  has 

greater magnitude than correlations achieved for either the two-state lognormal HMM 

)274.0( −=r  or two-state gamma HMM )295.0( −=r . This suggests that ENSO variability is 

revealed most clearly through the calibration of the NP HMM. In Section 4.2.1, it was noted that 

District 27 was predicted by NINO3 the most clearly of all districts.  
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The relationship between the HMM calibrations and descriptors of regional climate variability 

can be further examined by segregating the series of months over the period (1913-2002) on the 

basis of ENSO phase (as defined by the 5-mem values of the NINO3 series) and most likely 

climate state from calibrations of the three models. The numbers of months obtained through 

this separation are presented in Table 10.5. These results demonstrate that for the NP HMM 

almost 78% of El Niño months coincided with likely dry states and 65% of La Niña months 

coincided with wet states. These biases reflect expected hydroclimatic interactions for the 

ENSO phenomenon, and demonstrate the strong influence that this source of climatic variability 

has upon monthly rainfall in District 27. Although the lognormal HMM identified a strong bias 

towards La Niña months coinciding with wet states, it was unable to distinguish clearly between 

wet and dry states during El Niño periods. However, with the Gamma HMM showing bias in 

both La Niña and El Niño periods that opposed those identified with the NP HMM, it appears 

that for these monthly data the lognormal HMM is a superior parametric model. The 

relationships between state series and NINO3 values for the other districts were much less 

significant than for District 27, such that their results offer little assistance to elucidate the 

improvements gained from calibrating parametric as opposed to non-parametric HMMs. 

Table 10.5 Numbers of months in which most probable HMM states from the calibrations of two-

state NP, lognormal and gamma HMMs to the deseasonalised monthly rainfall for District 27 

coincide with ENSO phases 

El Niño ENSO Neutral La Niña 
NP HMM Wet state 71 216 174 
 Dry state 249 277 93 

   
LN HMM Wet state 162 372 233 
 Dry state 158 121 34 

   
Gamma HMM Wet state 201 186 71 
 Dry state 119 307 196 

Following the analyses of two-state persistence in these monthly rainfall series, it is pertinent to 

investigate whether such time series also demonstrate significant three-state climatic 

persistence. Three-state NP HMMs are calibrated to the four series, with Table 10.6 showing 

posterior medians and 90% credibility intervals for each HMM transition probability. The series 

of monthly anomalies from District 71 produces the lowest value for three of these probabilities, 

reinforcing the results in Table 10.3 that indicated this series of monthly values to be the most 

persistent of the four districts investigated. Furthermore the six transition probability estimates 

for District 9A, shown to be the least persistent series when observing two-state persistence, are 

higher than at least two other districts. 
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Table 10.6 Posterior medians and 90% credibility intervals for transition probabilities from the 

calibration of three-state NP HMMs to the deseasonalised monthly rainfall 

WNP WDP NWP NDP DWP DNP

9A 0.231 
(0.04, 0.46) 

0.232 
(0.07, 0.46) 

0.275 
(0.08, 0.54) 

0.194 
(0.03, 0.50) 

0.246 
(0.05, 0.50) 

0.303 
(0.09, 0.55) 

16 0.194 
(0.07, 0.32) 

0.113 
(0.02, 0.28) 

0.114 
(0.01, 0.36) 

0.207 
(0.08, 0.43) 

0.148 
(0.05, 0.28) 

0.150 
(0.02, 0.31) 

27 0.146 
(0.05, 0.25) 

0.147 
(0.04, 0.30) 

0.149 
(0.04, 0.28) 

0.136 
(0.05, 0.27) 

0.459 
(0.23, 0.62) 

0.309 
(0.13, 0.46) 

71 0.241 
(0.14, 0.34) 

0.077 
(0.01, 0.17) 

0.086 
(0.02, 0.21) 

0.162 
(0.08, 0.27) 

0.196 
(0.09, 0.29) 

0.105 
(0.02, 0.22) 

The sums of self-transition probabilities from the calibrations of three-state NP HMMs to the 

deseasonalised monthly rainfall in each of these districts are summarised in Table 10.7. These 

sums show evidence of significant three-state persistence in the monthly rainfall observations of 

Districts 16, 27 and 71, with 90% Bayesian credibility intervals well above a value of 1. The 

weak evidence for monthly persistence in District 9A rainfall is reinforced in these results, with 

a lack of evidence at a 10% level for significant three-state persistence. Bayes Factors from 

calibrating two-state and three-state NP HMMs to each series show that the simpler models are 

more appropriate for the monthly rainfall in Districts 9A, 16 and 27. District 71 shows a low 

value of NPNPBF 3,2ln  providing only weak evidence in favour of the two-state model such that 

the three-state NP HMM is an appropriate description of monthly persistence in District 71. 

Table 10.7 Posterior medians and 90% credibility intervals for the sums of self-transition 

probabilities from the calibration of three-state NP HMMs, and Bayes Factors comparing the 

calibrations of two-state NP HMMs to the calibrations of three-state NP HMMs 

DDNNWW PPP ++ NPNPBF 3,2ln  

9A 1.446               
(0.984, 1.906) 5.5 

16 2.028               
(1.531, 2.368) 5.3 

27 1.634               
(1.373, 2.003) 5.4 

71 2.116               
(1.832, 2.338) 0.4 

To describe parametric three-state HMMs for each of these series, it is again helpful to estimate 

the form of the state conditional distributions. Using posterior medians for partition locations to 

firstly estimate these distributions, Anderson-Darling goodness-of-fit statistics for fitting three 

continuous distributions are presented in Table 10.8. For 11 of the 12 state conditional 

distributions shown in this table, Gaussian distributions are less appropriate than either 
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lognormal or gamma. Lognormal distributions provide the lowest AD statistics for 8 of these 

distributions, suggesting that a three-state lognormal HMM may adequately model three-state 

persistence as identified with the three-state NP HMM. 

Table 10.8 Anderson-Darling goodness-of-fit statistics for estimates of state conditional 

distributions from the calibration of three-state NP HMMs to the deseasonalised monthly rainfall 

  
Gaussian 

distribution 
Lognormal 
distribution 

Gamma 
distribution 

9A Wet 13.67 2.84 4.58 
 Neutral 16.78 4.77 6.90 
 Dry 6.71 2.09 1.75 

16 Wet 21.10 1.38 2.30 
 Neutral 34.03 3.26 5.71 
 Dry 46.30 4.50 12.15 

27 Wet 32.38 8.42 16.81 
 Neutral 34.28 17.24 24.03 
 Dry 9.83 10.64 8.28 

71 Wet 5.39 1.89 0.47 
 Neutral 8.43 1.32 0.84 
 Dry 14.53 2.09 2.28 

Using the information from the calibrations of three-state NP HMMs to the deseasonalised 

monthly rainfall series, three-state lognormal HMMs are now calibrated. Transition probabilities 

from these models are summarised in Table 10.9, with District 71 displaying the lowest values 

from these four series for five of the six variables, a result that indicates three-state persistence 

to be strongest in the District 71 series. 

Table 10.9 Posterior medians and 90% credibility intervals for transition probabilities from the 

calibration of three-state lognormal HMMs to the deseasonalised monthly rainfall 

WNP WDP NWP NDP DWP DNP

9A 0.367 
(0.08, 0.68) 

0.173 
(0.02, 0.53) 

0.153 
(0.03, 0.46) 

0.161 
(0.03, 0.47) 

0.164 
(0.02, 0.43) 

0.360 
(0.07, 0.72) 

16 0.056 
(0.01, 0.14) 

0.171 
(0.08, 0.29) 

0.226 
(0.08, 0.42) 

0.264 
(0.08, 0.53) 

0.334 
(0.14, 0.47) 

0.293 
(0.13, 0.57)

27 0.136 
(0.02, 0.46) 

0.140 
(0.06, 0.22) 

0.285 
(0.10, 0.57) 

0.239 
(0.12, 0.38) 

0.166 
(0.04, 0.31) 

0.235 
(0.10, 0.38) 

71 0.337 
(0.18, 0.49) 

0.050 
(0.01, 0.15) 

0.065 
(0.02, 0.19) 

0.091 
(0.05, 0.16) 

0.147 
(0.07, 0.25) 

0.102 
(0.02, 0.22) 

The appropriateness of three-state parametric HMMs, with lognormal or gamma conditional 

distributions, to describe persistence in each district is now examined. Table 10.10 summarises 

posterior distributions for the sum of self-transition probabilities from the calibration of each 

model. These results show that for Districts 27 and 71 in particular, the three stochastic models 

identify persistence of similar magnitude, with District 71 displaying the strongest three-state 
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persistence using all three models. This result is consistent with the estimation of two-state 

persistence in these monthly rainfall series. Even though the calibration of a three-state 

lognormal HMM to the monthly rainfall of District 9A identifies significant persistence at a 

10% significance level, this is not supported through the calibration of a three-state gamma 

HMM. A three-state lognormal HMM is therefore a suitable model for this monthly rainfall 

series, as it potentially improves the NP HMM estimates of transition probabilities. 

Table 10.10 Posterior medians and 90% credibility intervals for the sum of self-transition 

probabilities from the calibration of various three-state HMMs 

 NP HMM Lognormal HMM Gamma HMM 

9A 1.446 
(0.98, 1.91) 

1.482 
(1.12, 1.88) 

1.376 
(0.80, 1.83) 

16 2.028
(1.53, 2.37) 

1.615 
(1.29, 1.90) 

1.863 
(1.38, 2.23) 

27 1.634 
(1.37, 2.00) 

1.770 
(1.29, 2.07) 

1.565 
(1.14, 1.96) 

71 2.116 
(1.83, 2.34) 

2.180 
(1.90, 2.38) 

2.069 
(1.81, 2.30) 

Although Table 10.10 summarises the calibrations of three-state HMMs to these monthly 

rainfall series, it is pertinent to investigate Bayesian model selection results from the 

calibrations of various parametric models. Using a two-state lognormal HMM as a reference 

model, the calibrations of other models are compared with Bayes Factors, which are shown in 

Table 10.11. Negative values for a particular model demonstrate its superiority to a two-state 

HMM with lognormal state conditional distributions. The best models for each monthly time 

series, identified by negative Bayes Factors of the highest magnitude, are shown as red. These 

results provide an interesting demonstration of how different stochastic models are appropriate 

for different monthly time series. 

Table 10.11 Bayes Factors (lnBFM,LN) comparing the calibrations of various parametric models (M) 

to the calibrations of two-state lognormal HMMs to the deseasonalised monthly rainfall 

Model 9A 16 27 71 
2-state Gamma HMM -38.3 -2.3 -2.4 -0.5 
3-state Lognormal HMM -44.0 -1.9 -10.6 -4.0 
3-state Gamma HMM -39.3 -2.7 -8.0 -2.9 
AR(1) to natural logarithms -31.4 3.3 55.3 10.3 
AR(2) to natural logarithms -29.9 -1.3 52.7 6.1 
AR(3) to natural logarithms -29.2 -1.6 51.7 9.8 
2-state Lognormal ARHMM lag-1 45.3 47.8 8.4 -2.0 
3-state Lognormal ARHMM lag-1 192.3 11.5 -5.1 5.3 
2-state Lognormal HHMM 14.5 10.4 236.4 -3.3 
2-state Lognormal HSMM -37.1 -1.7 -20.3 -5.8 
2-state Gamma HSMM -29.4 1.9 5.9 8.4 
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It has been noted that the time series of monthly anomalies for District 71 shows strong two-

state and three-state persistence. The strength of this persistence is demonstrated through Bayes 

Factors that provide evidence in favour of HMMs as opposed to autoregressive models. Large 

positive BF values for District 27 also indicate that autoregressive models fail to improve the 

description of these monthly anomalies, although this result is expected due to the weak 

temporal dependence in this series. The hierarchical HMM provides an improved description of 

the monthly persistence for District 71, although for the other time series the simpler two-state 

lognormal HMM is superior. It is suggested that the HHMM is a suitable model for time series 

that show strong two-state persistence.  

The two-state lognormal HMM is an inadequate description of hydrological persistence in 

District 9A. This is supported by the TP estimates from this model, which showed a tendency to 

remain in a single state for a majority of values. However when this series is calibrated with a 

gamma HMM, estimates of the two transition probabilities are almost equal, indicating similar 

persistence in each of the two climate states. A three-state lognormal HMM is the most 

appropriate parametric model for District 9A, and this is suggested through the sum of self-

transition probabilities, which has a 90% credibility interval that exceeds unity. Alternatively, 

the corresponding sum for the calibrations of a three-state NP HMM and a three-state gamma 

HMM includes a value of 1 within its 90% credibility interval. 

The lognormal HSMMs that are the most appropriate models for both District 27 and 71 include 

negative binomial (NB) distributions that have integer values of 2 for the dry state distributions 

in each series and geometric distributions for the wet states. Probabilities associated with the 

wet state NB distributions for Districts 71 and 27 (0.077 and 0.119 respectively) are similar to 

posterior medians for WDP  from the calibrations of two-state lognormal HMMs to both series 

(0.103 and 0.154). This indicates that these models identify similar wet state distributions to the 

two-state lognormal HMMs.  

The section has presented a comprehensive estimation of persistence within the monthly rainfall 

data for four meteorological districts that represent the main rainfall regimes of Australia. In 

light of the results of Chapter 5 that showed monthly streamflow data to be more persistent than 

rainfall data, a similar analysis is undertaken with River Murray flow data in the following 

section. 
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10.2 Developing HMMs to model hydrological persistence in 

streamflow 

Following the application of NP HMMs in the previous section to provide unbiased estimates of 

hydrological persistence in various district-averaged rainfall series, the focus of this section is to 

use these models to investigate the persistence within the monthly flow record for the River 

Murray. Deseasonalised monthly streamflows for the Murray were calibrated with two-state and 

three-state NP HMMs in Section 8.4.3. These results indicated strong persistence in monthly 

flows, with wet and dry climate states persisting on average for approximately 12 and 11 

months respectively with the former model. The estimated state conditional distributions, using 

2000 samples around posterior median values from the calibration of a two-state NP HMM to 

these data (as detailed in Section 8.4.3) are shown in Figure 10.1. These plots illustrate that a 

dry state distribution approximates a series of Gaussian variates, with the wet state distribution 

being heavily skewed. 

Figure 10.1 Gaussian probability plot showing estimates for state conditional distributions from the 

calibration of a two-state NP HMM to the deseasonalised monthly Murray flows 

To analyse the parametric structure of the wet state distribution in Figure 10.1, Table 10.12 

shows Anderson-Darling goodness-of-fit statistics for various parametric forms. These statistics 

show that conditional distributions are inconsistent with random draws from either Gaussian, 

lognormal or gamma distributions, with the probability of samples following these distributions 

rejected at 5% significance levels. These statistics demonstrate the complex nature of two-state 

persistence in these monthly flow data. 

Table 10.12 Anderson-Darling goodness-of-fit statistics for estimates of state conditional 

distributions from the calibration of a two-state NP HMM to deseasonalised monthly Murray flows 

State 
Gaussian 

distribution 
Lognormal 
distribution 

Gamma 
distribution 

Wet  55.61 15.66 30.31 
Dry 3.23 33.91 13.66 
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The calibration of the two-state NP HMM to the deseasonalised monthly Murray flows is now 

analysed in terms of its association to measures of broad-scale climate variability. The time 

series of monthly NINO3 values were shown in Section 4.2.4 to explain more of the variability 

in the time series of deseasonalised monthly streamflows in the Murray than monthly rainfall 

series, so it is possible that the significant two-state persistence in this series is also more closely 

related to ENSO variability than observed with district-averaged rainfall data. Table 10.13 

shows the results from segregating months in this flow record on the basis of ENSO phase and 

most likely climate state using median state probabilities, and indicate a tendency towards more 

dry state months during El Niño periods and more wet states during La Niñas. Both features are 

expected for the condition of ENSO being a dominant aspect of hydrological persistence in 

these monthly flow data.  

Table 10.13 Numbers of months in which most probable HMM states from the calibration of two-

state NP HMMs to the deseasonalised monthly Murray flows coincide with ENSO phases 

El Niño ENSO Neutral La Niña 
Wet state 153 316 201 
Dry state 242 242 142 

Model selection results in Section 8.4.3 showed that a three-state NP HMM is superior to a two-

state NP HMM for describing persistence in monthly Murray flows. To further investigate the 

nature of this three-state persistence, the form of state conditional distributions is examined. 

After taking 3000 random samples around the posterior medians for the two partitions in the 

three-state NP HMM, estimates of the wet, neutral and dry state distributions are obtained in the 

size ratio 0.24: 0.38: 0.38. Table 10.14 shows Anderson-Darling goodness-of-fit statistics from 

fitting Gaussian, lognormal and gamma distributions to these estimates. The neutral state 

distribution produces the lowest AD statistic for each parametric form, likely due to the fact that 

this distribution does not contain extreme values of the marginal that can complicate 

descriptions of parametric distributions. The AD statistics for each parametric form are clearly 

rejected at a 5% statistical level for both the wet state and the dry state estimates, indicating that 

parametric models may not be developed easily. 

Table 10.14 Anderson-Darling goodness-of-fit statistics for estimates of state conditional 

distributions from calibrating three-state NP HMMs to deseasonalised monthly Murray flows 

State 
Gaussian 

distribution 
Lognormal 
distribution 

Gamma 
distribution 

Wet 33.37 12.85 20.01 
Neutral 8.04 5.05 5.02 

Dry 12.55 53.87 27.42 
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The relationships between three-state persistence and ENSO variability are again used to 

investigate the performance of the three-state NP HMM. Table 10.15 shows the results from 

separating months on the basis of ENSO phase and most likely climate state. El Niño episodes 

are most often modelled as dry climate states, consistent with the ENSO influence upon these 

data. Furthermore ENSO neutral phases show a tendency to coincide with neutral climate states 

more often than either wet states or dry states, and La Niña episodes slightly favour wet climate 

states. This latter observation reinforces the fact that although ENSO is an important influence 

upon these monthly data, it is not the only source of climatic persistence. 

Table 10.15 Numbers of months in which most probable HMM states from the calibrations of 

three-state NP, lognormal and gamma HMMs to the deseasonalised monthly Murray flows coincide 

with ENSO phases 

 El Niño ENSO Neutral La Niña 
Wet state 53 161 124 

Neutral state 140 221 108 
Dry state 202 196 115 

As described in Section 3.2, autoregressive moving average (ARMA) time series models are 

regularly used to describe hydrologic time series. The most appropriate ARMA model for the 

monthly Murray series is determined after transforming monthly values to approximate a series 

of Gaussian variates such that a series of Gaussian residuals is produced. The scaled 

deseasonalised monthly streamflows are shown on a lognormal probability plot in Figure 10.2 

as an approximate straight line, suggesting consistency with random draws from a lognormal 

distribution.  

Figure 10.2 Lognormal probability plot showing scaled deseasonalised monthly Murray flows 

Although this series has an Anderson-Darling goodness-of-fit statistic of 2.93, which is rejected 

at a 5% significance level, it is likely that the logarithms of these deseasonalised data are 

appropriate for estimating the order of the most suitable ARMA model. A useful method for 
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estimating which autoregressive and moving average terms are suggested in the log-transformed 

data is to examine both the autocorrelation function (acf) and partial autocorrelation function 

(pacf). The correlogram for these data, in Figure 10.3, shows large spikes at initial lags that 

decay slowly to zero, which is indicative of an autoregressive process. Furthermore a partial 

correlogram having significant spikes at only the first three lags, as shown in Figure 10.4, 

suggests that an AR(3) model is the most appropriate ARMA model for the log-transformed 

series. The correlogram for the series of residuals from fitting this model is shown in Figure 

10.5. Without significant autocorrelations (or partial autocorrelations, which are not shown) at 

any lags, it is clear that the AR(3) model removes serial dependence in this series. 

Figure 10.3 Correlogram for natural logarithms of deseasonalised monthly Murray flows 

Figure 10.4 Partial correlogram for natural logarithms of deseasonalised monthly Murray flows 

Figure 10.5 Correlogram for residuals after fitting an AR(3) model to the natural logarithms of 

deseasonalised monthly Murray flows 
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With an AR(3) model being appropriate for the Murray flow series, it is important to investigate 

the role of persistence that was identified through NP HMMs. In essence, this reduces to 

investigating whether modelling this series with an AR(3) removes the need to model its 

persistence directly? One approach is to examine whether the time series of residuals from 

fitting an AR(3) to the log-transformed series retains significant persistence. By using the NP 

HMM as an exploratory tool to analyse the structure of this time series, it is clear that the 

influence of temporal persistence cannot always be removed through accounting solely for 

autocorrelation in a time series. Importantly the calibration of NP HMMs to these residuals 

indeed demonstrates persistence at both two-state and three-state levels, with 90% credibility 

intervals around the sums of self-transition probabilities being greater than unity for each model. 

Model selection results demonstrate weak evidence in favour of a simpler two-state model as 

the most appropriate description of these residuals )92.1( 3,2 =NPNPBF . 

These results suggest that a model that combines both time series regression with hidden state 

persistence, such as an ARHMM may indeed be the most appropriate model for this monthly 

flow series. These models are compared to the various other models introduced throughout this 

section for their description of monthly streamflows in the Murray through Bayesian model 

selection. Table 10.16 summarises the Bayes Factors for a range of stochastic models, 

comparing these to two-state lognormal HMMs. 

Table 10.16 provides some interesting model selection results, with negative values for BFln

indicating that different models are superior to two-state lognormal HMMs for describing the 

time series. Once again the uniform-transformed data used within the calibration of NP HMMs 

cannot be included in this comparison, as the likelihood is dependent upon the values of the 

marginal distribution. The comparison of parametric models in Table 10.16 shows that multiple-

state HMMs and the HHMM are improved models for this time series, indicating that 

persistence is strong. Furthermore both AR(1) and AR(3) models are superior to the two-state 

HMM, illustrating that temporal dependence is a significant characteristic of the monthly 

streamflow series. Importantly, the AR(3) is shown to be superior to the AR(1), reinforcing 

observed characteristics described in Figure 10.4. However the various ARHMMs shown in 

Table 10.16 are the best descriptors of the monthly persistence. The most appropriate model 

shown in bold in Table 10.16 combines third-order autocorrelation as suggested previously with 

the benefit of three model states. This clearly demonstrates that the monthly flow series for the 

Murray has both strong persistence and temporal dependence, a combination requiring a 

complex modelling approach. This section has provided further evidence for how unbiased 

estimations from non-parametric HMMs may inform the description of parametric time series 

models that develop the standard HMM framework. 
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Table 10.16 Model selection results from calibrations to the deseasonalised monthly Murray flows 

 Maximum likelihood Number of parameters BFln
2-state Lognormal HMM -8252.3 6   
2-state Gamma HMM -8234.3 6 -19.7 
2-state Gaussian HMM -8293.5 6 56.9 

   
3-state Lognormal HMM -8069.5 12 -157.9 
3-state Gamma HMM -8053.1 12 -177.6 
4-state Lognormal HMM -7864.0 20 -324.3 
4-state Gamma HMM -7865.6 20 -338.2 

   
2-state Lognormal HSMM -8248.0 8 -14.5 
2-state Gamma HSMM -8238.7 8 -10.8 

   
Lognormal HHMM -8057.3 14 -170.4 

   
AR(1) to logarithms -7621.5 3 -638.5 
AR(3) to logarithms -7560.4 5 -689.6 

   
2-state LN ARHMM lag-1 -7499.3 8 -747.5 
3-state LN ARHMM lag-1 -7437.8 15 -773.1 
2-state LN ARHMM lag-3 -7435.3 12 -762.6 
3-state LN ARHMM lag-3 -7357.7 21 -834.1 
3-state LN ARHMM lag-4 -7358.0 24 -827.7 
4-state LN ARHMM lag-3 -7333.3 32 -813.6 
5-state LN ARHMM lag-3 -7325.1 45 -777.4 

10.3 Summary of chapter 

This chapter has focused upon the use of non-parametric HMMs that were introduced in 

Chapter 8 and variants of the standard HMM formulation described in Chapter 9 alongside two-

state and three-state parametric HMMs, in order to provide improved descriptions of 

hydrological persistence. The NP HMM estimates underlying probability distributions in the 

spatially-averaged monthly rainfall for four meteorological districts of Australia. Calibrations of 

parametric models then showed that extensions to the standard HMM formulation presented in 

Chapter 9 produced models that were superior descriptors of persistence in these data. The 

second case study analysed the strong persistence in the monthly streamflow record of the River 

Murray. Although the NP HMM estimated that underlying probability distributions in these data 

approximated lognormals, two-state and three-state parametric HMMs were inferior to more 

complex models such as a HSMM and a hierarchical HMM. The most suitable model for this 

monthly series combined three-state persistence with temporal dependence. These results show 

the potential for ARHMMs to provide accurate descriptions of hydrologic data that demonstrate 

strong hydrological persistence. Furthermore the NP HMM approach has been shown to inform 

the accurate calibration of parametric HMMs as a model for hydrological persistence. 
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Chapter 11 Simulating persistent hydrologic 

data with HMMs: Three case 

studies 

The final investigation into the validity of HMMs as hydrological time series models focuses 

upon their application to simulate hydrologic records. Simulation has an important role in 

stochastic hydrology, supporting decision-making throughout water resource management. 

Autoregressive moving average (ARMA) models are widely-used for the simulation of 

hydrologic time series such as monthly and annual rainfall series; however HMMs have been 

rarely applied in this context. Hydrologic systems have components that act as random variables 

(McCuen and Snyder, 1986), and simulation provides a means for examining aspects of such 

systems. For example the management of a reservoir to provide optimal release patterns may be 

compromised through deficiencies in the length of input rainfall data, yet this can be improved 

through the simulation of such data. HMMs are an expedient method for describing time series 

that have significant persistence, and their application as a device for simulating such series is 

investigated in this chapter. Three case studies are investigated, with HMMs calibrated to three 

monthly time series that have very different statistical characteristics. 

11.1 Background to hydrologic simulation 

Simulation may be viewed as a mechanism for investigating the characteristics of a system 

(such as the hydroclimatic cycle) through a model rather than through the system itself. 

Historical rainfall data are sample series originating from statistical populations of unknown 

structure. In order to make decisions about these hydrologic data, such as conducting risk 

analyses for water supply systems, characteristics of the input population need to be determined, 

and simulation can provide this requirement. 

The accuracy of decisions made from simulations depend upon the accuracy of both the model 

description (for an analysis of HMMs this will be related to the strength of persistence in the 

observed time series), and the probability description of its random elements. Simulations 

depend strongly upon the generation of random numbers that follow correct probabilistic 

distributions. The method used here closely follows the calibration approach previously 

described, thus engaging the Metropolis output to incorporate uncertainty into the values of 

model parameters. In the simulation of a time series described by a two-state Gaussian HMM 

(such as a time series of annual rainfall totals), the model is first calibrated and posterior 

distributions for the mean and standard deviation of variates in each state and the two transition 
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probabilities are evaluated. Multiple simulations (1000 in the examples described here) having 

identical length to the original time series are then generated using different parameter values 

for each series, sampling these values from the posteriors. This provides a method for 

incorporating random variation not only in the Gaussian-distributed variates but also in the first 

and second moments of such variates. 

This section investigates the simulation of three hydrologic time series recorded at monthly 

scales. The HMM family are analysed here for their efficacy in providing accurate simulations 

of monthly hydrologic data. The simulations provide information about the distribution of the 

original series, and HMMs are compared to other stochastic models through the uncertainty 

around estimated distributions. Each simulated series is placed into ranked order, such that for 

each of the ranked values of the original time series, 1000 estimates are produced. The original 

ranked data are then placed on a probability plot, and a median estimate together with a 90% 

confidence interval is produced from the 1000 estimates of each datum. The accuracy of 

simulations is assessed through the size of the uncertainty bounds around the marginal 

distribution. 

Although these simulations are focused on a monthly scale, it is beneficial that the 

characteristics of totals aggregated from original monthly values are also accurately simulated. 

To test this, each simulated time series is aggregated over six-month, annual, two-year and five-

year periods. Statistical features for each aggregation are then compared with the aggregation of 

the original monthly series. The incorrect estimation of rainfall variability at a range of longer 

time scales is a significant criticism of models designed for higher-frequency rainfall 

simulation. Frost (2003) postulated that through the failure of daily rainfall models to account 

explicitly for long-term climatic persistence, a significant underestimate of the variability of 

annual rainfall results. A similar issue is faced when developing stochastic models for the 

simulation of monthly time series, which act as input to a variety of hydrological systems. It is 

suggested here that useful models of persistence will provide a superior approach for the 

simulation of monthly data. With each of the three monthly records in this section 

demonstrating significant two-state or three-state persistence, the capability of each stochastic 

model to simulate adequately the persistence characteristics of the original series is also 

evaluated. A number of the runs statistics described in Section 5.1 are therefore calculated for 

each monthly simulation, being compared with observed values. 

11.2 Simulating monthly rainfall for District 71 

The first time series simulated is the deseasonalised monthly rainfall series from District 71. 

This series demonstrated the strongest persistence of the four district-averaged series analysed 

in Section 10.1, both in terms of two-state and three-state persistence. Using Bayesian model 
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selection, the two-state lognormal HSMM was shown in Table 10.11 to be the best model for 

this series, and is subsequently used to simulate the monthly series. Comparisons are then made 

to simulations from an AR(2) model that is calibrated to the natural logarithms of the 

deseasonalised monthly series. Bayes Factors showed the AR(2) model to be more appropriate 

than either an AR(1) or an AR(3) model for the series of natural logarithms. Furthermore the 

series of autocorrelations and partial autocorrelations for these data, the latter shown in Figure 

11.1, have a pattern that is consistent with an AR(2) model. 

Figure 11.1 Partial correlogram for the time series of natural logarithms of deseasonalised monthly 

rainfall for District 71 

The residuals from the calibration of an AR(2) to the series of natural logarithms are shown as 

an approximate straight line on a Gaussian probability plot in Figure 11.2. The Anderson-

Darling goodness-of-fit statistic for these residuals 0.94 is consistent with a series of Gaussian 

variates, such that the modelling assumptions of an AR(2) model are justified. 

Figure 11.2 Gaussian probability plot showing residuals from fitting an AR(2) model to the natural 

logarithms of the deseasonalised monthly rainfall for District 71 

The mean, standard deviation and skew for the deseasonalised monthly series, along with the 

various aggregations of this series from using a one-month moving window are summarised in 

Table 11.1. These statistics are then calculated for each of the 1000 simulations of length 1080 

from the two stochastic models, and for the various aggregations of such simulations. The 
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median of these 1000 values and the interval that includes 90% of the values are also shown for 

each aggregation level. These results show that these two stochastic models produce accurate 

simulations of the monthly rainfall series, although both approaches over-estimate skew at a 

monthly scale. The monthly means and standard deviations are higher for simulations from the 

AR(2) model, and this leads to higher values of these statistics for the various aggregations. 

From the HSMM, twelve of the fifteen sample moments shown in Table 11.1 lie within 90% 

confidence intervals, which is one fewer than the number of sample moments accurately 

simulated with the AR(2). 

Table 11.1 Statistics for the time series of deseasonalised monthly totals from District 71 over 

various aggregations calculated with one-month moving windows, along with the median and 90% 

confidence interval of statistics from 1000 simulations using a two-state lognormal HSMM and an 

AR(2) model with lognormal residuals 

  Mean Standard deviation Skew 
1m Sample 

HSMM 
AR(2) 

77.06 
76.32  (72.8, 79.4) 
77.54  (73.5, 81.3) 

37.74 
39.02  (36.2, 42.2) 
42.56  (38.6, 47.9) 

0.974 
1.286  (0.99, 1.81) 
1.715  (1.34, 2.70) 

6m Sample 
HSMM 
AR(2) 

462.39 
458.04  (436.8, 476.6) 
465.23  (441.1, 487.6) 

116.82 
113.29  (102.6, 125.6) 
130.83  (115.4, 152.9) 

0.564 
0.270  (0.57, 0.02) 
0.818  (0.50, 1.38) 

1yr Sample 
HSMM 
AR(2) 

925.17 
916.26  (874.2, 954.1) 
930.08  (882.3, 974.6) 

174.42 
164.54  (145.2, 187.2) 
191.12  (164.6, 228.0) 

0.474 
0.183  (-0.13, 0.55) 
0.584  (0.25, 1.12) 

2yr Sample 
HSMM 
AR(2) 

1850.05 
1832.62  (1749.5, 1907.3) 
1859.03  (1762.7, 1950.9) 

268.91 
233.82  (197.7, 275.8) 
275.31  (228.0, 334.0) 

0.510 
0.142  (-0.25, 0.55) 
0.414  (0.01, 0.89) 

5yr Sample 
HSMM 
AR(2) 

4611.45 
4579.44  (4374.3, 4767.8) 
4650.87  (4412.0, 4876.4) 

490.79 
358.36  (277.5, 464.2) 
426.87  (334.3, 555.8) 

0.191 
0.071  (-0.47, 0.64) 
0.219  (-0.26, 0.84) 

Simulations from these two stochastic models are compared to the original data through 

Gaussian probability plots in Figure 11.3. More accurate simulations are characterised by 

distributions that match closely the shape of observed values, with narrow envelopes within 

which a majority of the simulated values lie. The deseasonalised monthly series is shown 

together with the distribution of 12-monthly totals (aggregated from the entire series using a 12-

month moving window) and the distribution of consecutive five-year totals. After ranking both 

the observed series and the series of aggregated values, intervals containing 90% of simulations 

are obtained for each value, and across the entire distribution these intervals are shown as red 

dashed lines. The series of median values from these 1000 simulations is shown in these plots as 

a blue line. Figure 11.3 indicates that the lognormal HSMM provides an improved simulation of 

the marginal series, with the 90% confidence interval including more of the observed values 

than is achieved from AR(2) simulations. The distributions of annual and five-yearly sums of 
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the deseasonalised monthly series are simulated adequately with each modelling approach, with 

observed data lying predominantly within 90% confidence intervals. 
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Figure 11.3 Gaussian probability plots showing deseasonalised monthly rainfall for District 71, 

together with annual and five-year aggregates of this series, alongside median values and intervals 

that contain 90% of values from 1000 simulations using a two-state lognormal HSMM (left column) 

and an AR(2) model with lognormal residuals (on right) 
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The accuracy of simulations using the lognormal HSMM and AR(2) models are further 

analysed in Table 11.2. These results show the capability of each model to replicate persistence 

in the monthly time series, with observed values within 90% envelopes. Furthermore for the lag-

1 autocorrelation, LORT probability and run skew, the median values from these multiple 

simulations are very similar when comparing the two models. Simulations from the AR(2) 

model show a tendency towards longer runs than the HSMM simulations, with the longest run 

from 90% of these simulations exceeding the longest run in the monthly samples. 

Table 11.2 Run statistics for the time series of deseasonalised monthly totals for District 71, 

together with the results of multiple simulations of this series using a two-state lognormal HSMM 

and an AR(2) model with lognormal residuals, showing medians and 90% confidence intervals 

Lag-1 
autocorrelation 

LORT        
probability 

Maximum run 
length 

Run skew 

Monthly totals 0.218 1.135x10-32 16 25.78 

HSMM_LN (2s) 0.200
(0.130, 0.265) 

2.551x10-16

(9.6x10-240, 5.0x10-4) 
13

(10, 19) 
23.10

(17.07, 33.04) 

AR(2)_LN 0.205 
(0.132, 0.277) 

3.937x10-16

(2.1x10-124, 2.7x10-4) 
23 

(17, 30) 
23.07 

(17.91, 30.91) 

The results in this section demonstrate that a two-state lognormal HSMM can produce accurate 

simulations of the deseasonalised monthly rainfall series from District 71. This model was 

chosen through Bayesian selection methods as the most appropriate description of these data. 

After incorporating parameter uncertainty following the calibration of this model, multiple 

simulations of identical length to the original series contain marginal values within 90% 

confidence intervals. Importantly the persistence of the monthly series is preserved. 

11.3 Simulating monthly streamflows for the Burdekin River 

The second time series that is simulated in this section is the series of monthly streamflows for 

the Burdekin River, Queensland. This series demonstrates significant two-state and three-state 

persistence and it is therefore a suitable choice for simulation with HMMs. The deseasonalised 

monthly rainfall series from District 71 was shown in the previous section to approximate a 

series of random draws from a lognormal distribution. In contrast to this, the Burdekin flow data 

shows a highly skewed distribution, even after removing seasonal nonstationarity, as 

demonstrated in Figure 11.4. The long tail of this marginal distribution contributes to a 

difficulty in transforming the data to approximate a series of Gaussian variates. 
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Figure 11.4 Histogram of scaled deseasonalised monthly Burdekin flows 

The scaled deseasonalised monthly flow series is shown in Figure 11.5 on a lognormal 

probability plot, and it is clear that this distribution deviates significantly from a straight line. 

An Anderson-Darling goodness-of-fit statistic of 6.58 demonstrates that this series is 

inconsistent with a series of lognormal variates.  

Figure 11.5 Lognormal probability plot showing scaled deseasonalised monthly Burdekin flows 

With the series of natural logarithms failing to show consistency with a series of random draws 

from a Gaussian distribution, it is possible that the assumptions of ARMA models may then be 

compromised when calibrated to this series. Furthermore, the failure of the marginal distribution 

to approximate a known parametric form provides a useful opportunity for showing how the 

unbiased NP HMMs can produce accurate simulations. 

In Section 8.4.3, NP HMMs identified significant three-state persistence in the time series of 

deseasonalised monthly flows for the Burdekin, with the three-state NP HMM also shown as a 

superior model to the two-state NP HMM through Bayesian model selection. Consequently, the 

former model is adopted in this example for the simulation of the scaled deseasonalised monthly 

flows. As a comparison to this model, an AR(3) model calibrated to the natural logarithms of 

the scaled variates is also used to obtain multiple simulations. A third order AR model is chosen 



244 

Chapter 11 – Simulation of persistent hydrologic data with HMMs: Three case studies 

through an inspection of both autocorrelations and partial autocorrelations, in a manner similar 

to that used in the previous example. 

Following calibration of these two models, 1000 simulations of identical length to the original 

series are produced using parameter values that are chosen from posterior distributions. After 

aggregating these monthly simulations over five different periods, the median values and 90% 

confidence intervals for various statistics are shown in Table 11.3. These results demonstrate 

that the mean, standard deviation and skewness of the deseasonalised monthly series, at each 

scale of aggregation, is simulated accurately by both stochastic models, with each statistic 

within 90% confidence intervals. Simulations from the three-state NP HMM have wider 

confidence intervals around the mean values of each aggregation than the AR(3) simulations, 

although the latter model produces wider bounds for the skew of the monthly series. This is a 

likely artefact of inaccurate assumptions concerning the AR(3) model fit. Both stochastic 

models are suitable for simulating the first three moments of the monthly flow series. 

Table 11.3 Statistics for the time series of deseasonalised monthly flows from the Burdekin River 

over various aggregations calculated with one-month moving windows, along with the median and 

90% confidence intervals of statistics from 1000 simulations using a three-state NP HMM and an 

AR(3) model with lognormal residuals 

  Mean Standard deviation Skew 
1m Sample 

NPHMM 
AR(3) 

12.72 
12.23  (9.9, 15.6) 

12.35  (10.2, 14.7) 

15.12 
14.79  (11.2, 18.1) 
13.71  (10.3, 19.9) 

3.378 
3.175  (2.44, 4.09) 
3.562  (2.43, 7.38) 

6m Sample 
NPHMM 
AR(3) 

76.60 
73.23  (58.7, 93.0) 
74.04  (61.3, 88.3) 

58.07 
53.69  (39.7, 67.9) 
49.78  (36.1, 73.4) 

1.985 
1.647  (1.06, 2.35) 
1.840  (1.11, 3.68) 

1yr Sample 
NPHMM 
AR(3) 

153.96 
146.32  (117.1, 186.1) 
148.26  (122.3, 176.3) 

95.11 
85.65  (62.6, 111.6) 
77.61  (54.3, 117.9) 

1.371 
1.279  (0.75, 1.99) 
1.352  (0.71, 2.84) 

2yr Sample 
NPHMM 
AR(3) 

310.72 
291.93  (234.8, 371.9) 
296.72  (244.5, 352.7) 

150.45 
129.71  (89.8, 177.8) 
115.48  (77.8, 177.0) 

0.788 
0.885  (0.34, 1.62) 
0.953  (0.30, 2.18) 

5yr Sample 
NPHMM 
AR(3) 

775.36 
730.46  (582.8, 932.1) 
746.02  (613.8, 887.8) 

249.64 
203.32  (133.9, 313.5) 
180.41  (106.9, 289.0) 

0.181 
0.439  (-0.19, 1.28) 
0.470  (-0.17, 1.38) 

Simulations of the Burdekin flow data from both the three-state NP HMM and AR(3) models 

are compared further with the Gaussian probability plots shown in Figure 11.6. In a similar 

fashion to Figure 11.3, these probability plots show the distributions of the scaled 

deseasonalised monthly flows with median and 90% confidence intervals from simulations at 

aggregation scales of one year and five years. The plots indicate that the median values for each 

ranked value in the marginal distribution from the 1000 NP HMM simulations closely match 

original values, whereas the inaccurate simulation of monthly skew by the AR(3) model is 
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clearly demonstrated by the wide confidence interval around larger values in the marginal. 

Distributions at each aggregation are contained within 90% confidence intervals for both 

models, indicating that these two approaches are appropriate for simulating this flow series. 
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Figure 11.6 Gaussian probability plots showing deseasonalised monthly flows for the Burdekin 

River, together with annual and five-year aggregates of this series, alongside median values and 

intervals that contains 90% of values from 1000 simulations using a three-state NP HMM (left 

column) and an AR(3) model with lognormal residuals (on right) 
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The simulation of various runs statistics by these two models are summarised in Table 11.4, 

although this differs from Table 11.2 in the previous example through its exclusion of 

simulation results for the LORT probability due to this statistic having low values that are 

beyond computational bounds. These results show that the NP HMM underestimates the lag-1 

autocorrelation in the deseasonalised monthly flow record. Although the observed lag-1 

autocorrelation is captured within 90% confidence intervals of the AR(3) simulations, this 

model is unable to simulate accurately the maximum run length within monthly simulations 

having length of 684 values. The run skew statistic is simulated accurately by both models. 

These statistics display the suitability of the three-state NP HMM for simulating a persistent 

monthly hydrologic series. 

Table 11.4 Run statistics for the time series of deseasonalised monthly flows from the Burdekin 

River, together with the results of multiple simulations of this series using a two-state lognormal 

HSMM and an AR(3) model with lognormal residuals, showing medians and 90% confidence 

intervals 

Lag-1 
autocorrelation 

Maximum run 
length 

Run skew 

Monthly totals 0.455 21 63.29 

NP HMM (3s) 0.343
(0.253, 0.439) 

20
(14, 31) 

56.20
(33.34, 111.58) 

AR(3)_LN 0.357 
(0.229, 0.474) 

51 
(31, 94) 

51.65 
(31.8, 94.7) 

11.4 Simulating catchment-scale rainfall for the Warragamba 

Reservoir 

The third simulation example in this chapter focuses upon a deseasonalised monthly rainfall 

series that represents rainfall across the Warragamba Reservoir catchment in New South Wales, 

Australia. The Warragamba Reservoir is located to the east of Sydney, and is the major water 

storage in the Hawkesbury-Nepean Basin. Its catchment is the main source of water supply to 

Sydney, supplying up to 80% of its annual demand. Shown in Figure 11.7 alongside four 

adjacent smaller catchments, the Warragamba catchment covers an area of approximately 9050 

km2. As previously mentioned, simulation plays an important role in the risk analysis of 

reservoirs. One method to simulate inflows to a reservoir is to first simulate catchment-scale 

rainfall, and using rainfall-runoff transformations to capture the basic physical processes of 

catchment hydrology, to then generate long-term catchment runoff data. In this example, the 

effectiveness of both HMMs and ARMA models to provide accurate simulations of catchment-

scale rainfall are considered together with the influence of monthly persistence upon risks to 

reservoir supply of such simulations.  
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Figure 11.7 Locations of the Warragamba Reservoir catchment and adjacent smaller catchments, 

together with rain gauges that provide long-term rainfall data (after Thyer and Kuczera, 1999b) 

Monthly rainfall totals are available from over 30 gauges within the Warragamba catchment, 

although these records vary in both length and quality. In order to represent the spatial 

distribution of rainfall across this catchment, monthly data are used from four individual gauges 

from which continuous records over a common 111-year period (1883-1993, 1332 months) are 

available. The quality of these data was verified, along with some in-filling of missing values, 

by Thyer and Kuczera (1999b). The locations of these four gauges: Moss Vale, Taralga and the 

Yarra-Goulburn composite and Mt. Victoria composite series, are shown in Figure 11.7 by their 

respective abbreviations MV, TAR, YC and MVC. Some statistics of these series are presented 

in Table 11.5, together with their Bureau of Meteorology (BOM) identification number. These 

statistics demonstrate the inherent variability in rainfall across the large catchment area. In order 

to analyse monthly persistence within rainfall across this area, a catchment composite rainfall 

series is constructed from these individual gauge records using the Thiessen polygon method. 

The ratio of the entire catchment area for which each of the four records are representative is 

also shown. The catchment composite rainfall series )( ty  is constructed from the four 

individual records in the following manner 

∑ =
=

4

1 ,i itit Rfy  (11.1) 

where itR ,  is the observed rainfall from gauge i  in month t  and if  is the ratio of the catchment 

area associated with gauge i  to the whole catchment area. Statistics for the composite rainfall 

series are also shown in Table 11.5. 
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Table 11.5 Statistics for monthly rainfall from the four rain gauges in the Warragamba catchment, 

together with ratios of catchment area represented by each rain gauge, and the catchment 

composite rainfall series 

Rain gauge 
BOM 

number 
Mean 
(mm) 

Standard 
Deviation (mm) 

Skew if

Mt. Victoria   63056 89.24 78.97 1.961 0.3026 
Moss Vale   68045 82.82 75.58 2.178 0.2836 
Taralga   70080 68.02 51.72 1.853 0.2136 
Yarra-Goulburn   70088 55.86 42.36 1.503 0.2002 
Catchment composite  76.20 58.42 1.739 1 

Prior to analysis, the seasonal nonstationarity in the composite series is removed in a similar 

manner as described previously, producing a series having zero mean and unit variance. After 

scaling these deseasonalised monthly variates to produce a series having mean (94.16) and 

standard deviation (58.06) equal to those of observed January values, the resulting marginal is 

shown on a lognormal probability plot in Figure 11.8. This figure indicates that the scaled 

deseasonalised composite record is consistent with random draws from a lognormal distribution, 

supported by an Anderson-Darling goodness-of-fit statistic of 0.84.  

Figure 11.8 Lognormal probability plot showing scaled deseasonalised monthly values for the 

Warragamba composite rainfall series 

The calibration of NP HMMs to the scaled deseasonalised composite series identifies significant 

two-state and three-state persistence; the sum of transition probabilities from the former has a 

95th percentile of 0.608, with 90% of the posterior distribution for the sum of self-transition 

probabilities for the latter lying within the interval (1.307, 2.647). Furthermore, estimates of 

conditional distributions from the two-state NP HMM calibration closely approximate 

lognormal variates (AD statistics 1.79 and 2.20 for the wet and dry state distributions 

respectively). Therefore lognormal HMMs are likely to describe these data accurately. From the 

calibration of lognormal HMMs to this series, Bayesian model selection identifies that a three-

state lognormal HMM is superior to a two-state lognormal HMM with 0.3ln 2,3 =LNLNBF . 
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Consequently, a three-state HMM is implemented to produce simulations of the scaled 

deseasonalised composite series. As a comparison to this model, an AR(3) model calibrated to 

the series of natural logarithms for this series is also used to generate simulations. Model 

selection results indicate that a three-state lognormal HMM is a superior for this series when 

compared to an AR(3) model with lognormal residuals, with 4.12ln )3(,3 =ARLNBF . 

The results from generating 1000 simulations of the Warragamba series are shown in Table 

11.6. The median values for statistics from the HMM simulations closely match observed 

values, at each aggregation level, with each statistic shown contained within 90% confidence 

intervals. Conversely, simulations from the AR(3) model tend to over-estimate the variability in 

the monthly series, failing to simulate accurately the standard deviation or skewness at this 

scale. This inaccuracy is further demonstrated in the probability plots of Figure 11.9. At 

monthly, annual and five-yearly scales, the median values form HMM simulations tend to more 

closely match observed distributions than AR(3) simulations. By closely reproducing the 

general shape of the marginal at a range of aggregations, including the extreme values, the 

three-state lognormal HMM is an appropriate model for simulations of the composite series.  

Table 11.6 Statistics for the time series of deseasonalised monthly totals from the Warragamba 

composite series over various aggregations calculated with one-month moving windows, along with 

the median and 90% confidence intervals of statistics from 1000 simulations using a three-state 

lognormal HMM and an AR(3) model with lognormal residuals 

  Mean Standard deviation Skew 
1m Sample 

HMM 
AR(3) 

94.16 
93.74  (88.3, 98.5) 

95.30  (90.3, 100.1) 

57.83 
57.84  (52.9, 63.4) 
65.05  (58.2, 74.2) 

1.526 
1.771  (1.40, 2.55) 
2.217  (1.75, 3.59) 

6m Sample 
HMM 
AR(3) 

564.69 
562.59  (529.4, 591.2) 
571.06  (542.3, 601.0) 

164.18 
160.34  (144.5, 179.1) 
187.33  (165.1, 217.0) 

0.600 
0.664  (0.40, 1.03) 
0.987  (0.62, 1.66) 

1yr Sample 
HMM 
AR(3) 

1129.78 
1125.05  (1058.7, 1183.2) 
1142.95  (1084.9, 1202.7) 

241.97 
235.62  (208.3, 269.7) 
274.36  (236.3, 324.9) 

0.437 
0.447  (0.17, 0.81) 
0.712  (0.35, 1.28) 

2yr Sample 
HMM 
AR(3) 

2262.32 
2249.27  (2116.6, 2365.5) 
2285.13  (2168.4, 2406.6) 

380.40 
338.23  (288.1, 402.0) 
391.44  (326.8, 473.7) 

0.384 
0.293  (-0.06, 0.72) 
0.494  (0.11, 1.05) 

5yr Sample 
HMM 
AR(3) 

5662.12 
5624.90  (5295.0, 5911.4) 
5712.66  (5413.1, 6019.8) 

695.22 
528.77  (414.3, 666.1) 
614.39  (476.9, 791.2) 

0.406 
0.115  (-0.37, 0.67) 
0.243  (-0.22, 0.92) 
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Figure 11.9 Gaussian probability plots showing deseasonalised monthly rainfall for the 

Warragamba composite rainfall series, together with annual and five-year aggregates of this series, 

alongside median values and intervals that contains 90% of values from 1000 simulations using a 

three-state lognormal HMM (left column) and an AR(3) model with lognormal residuals (on right) 

In order to demonstrate the effectiveness of the three-state lognormal HMM to replicate the 

persistence of the monthly composite series, the simulation results for various runs statistics are 

summarised in Table 11.7. These result indicate that the HMM and AR(3) models replicate 

characteristics of persistence in a similar manner, although the latter simulates the lag-1 
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autocorrelation of the composite series more accurately. This outcome is somewhat expected as 

ARMA models are designed to replicate autocorrelation explicitly. Overall the three-state 

lognormal HMM is shown here to be a suitable model for the simulation of the monthly 

composite rainfall series for Warragamba. This further demonstrates that models designed to 

replicate explicitly persistence in monthly hydrologic records can improve simulations from 

alternative linear time series models.  

Table 11.7 Run statistics for the time series of deseasonalised monthly totals from the Warragamba 

composite series, together with the results of multiple simulations of this series using a three-state 

lognormal HMM and an AR(3) model with lognormal residuals, showing medians and 90% 

confidence intervals 

Lag-1 
autocorrelation 

LORT        
probability 

Maximum run 
length 

Run skew 

Monthly totals 0.113 1.689x10-10 14 20.01 

HMM_LN (3s) 0.094 
(0.033, 0.154) 

1.450x10-8

(7.5x10-89, 6.7x10-2)
19 

(14, 25) 
19.14 

(15.00, 25.86) 

AR(3)_LN 0.128 
(0.054, 0.199) 

5.718x10-9

(8.4x10-53, 2.6x10-2) 
19 

(15, 25) 
19.47 

(15.24, 25.32) 

Simulations from the two stochastic models presented in this section are further compared by 

analysing their influence upon reservoir storage volumes. In order to conduct this comparison, a 

relationship between rainfall across the catchment and runoff must be used. Using observed 

values of catchment runoff for a period of 31 years, the relationship with annual values of the 

catchment composite rainfall series is shown in Figure 11.10. A piecewise linear regression, 

with breakpoints at annual rainfall values of 500mm and 982mm, is used to relate annual 

rainfall to annual runoff totals. 

Let },...,2,1,{ Ttrt =  be the time series of annual runoff corresponding to the time series of 

annual rainfall },...,2,1,{ Ttyt = . The piecewise linear regression line is described by zero tr

values for 500<ty , together with 

9018.0 −= tt yr , )982500( << ty  (11.2) 

and also 

65075.0 −= tt yr , )982( >ty  (11.3) 

For the 33 pairs of rainfall and runoff data shown on this plot, this regression explains 83% of 

the variability in the rainfall data, which is an improvement over a simple linear regression that 

explains 77% of variability.  
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Figure 11.10 Relationship between the annual composite rainfall data for Warragamba and annual 

runoff (blue points) together with a piecewise linear regression over the period (1961-1993) 

The piecewise linear regression is a suitable description of the relationship between total annual 

rainfall in the Warragamba catchment and streamflow responses. For this simulation 

investigation, the annual rainfall-runoff relationship is adapted to produce a method to calculate 

runoff totals corresponding to simulated monthly rainfall. 

From the sequences of 1332 simulated monthly values, series of 111 simulated annual totals are 

obtained by aggregating values 1-12, 13-24, etc. As seasonal variability within the composite 

monthly series was removed prior to simulation, monthly simulations are scaled, prior to 

aggregation, to produce monthly means and standard deviations equal to the observed values in 

each calendar month. These annual totals are then used to obtain annual runoff values, using the 

relationships outlined previously. Each annual runoff total is then disaggregated to a series of 12 

monthly runoff values, using the proportions of the total annual rainfall that are simulated in 

each month. Simulated monthly runoff values from the catchment (measured in millimetres) are 

then transformed into reservoir inflow volumes after multiplying by the approximate catchment 

area (9056 km2). One result of this simplified method is that if simulated annual rainfall totals 

are below 500mm, the annual runoff will be zero, as will the runoff corresponding to each 

month within that specific annual period. This technique is adopted for monthly simulations 

from both a three-state lognormal HMM and an AR(3) model calibrated to the time series of 

natural logarithms of the deseasonalised monthly composite rainfall.  

The time series of monthly reservoir inflows obtained with simulations from the two stochastic 

models are adopted in order to perform simplified reservoir water balance investigations, as a 

means to compare the accuracy of these simulation approaches. The water balance is conducted 

on a time series of reservoir storage volumes for each month )(t , calculated as 
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tttt DemandInflowStorageStorage −+= −1 (11.4) 

The capacity storage for the Warragamba reservoir is assumed to be 1,886 GL, above which the 

reservoir spills. The main function of this analysis is not to incorporate complex rainfall-runoff 

relationships that define reservoir inflows, rather to compare the accuracy of monthly rainfall 

simulations from two models, so a number of generalisations are included. It is assumed that 

average annual demand from the Warragamba remains constant at 750 GL across the simulation 

period of 111 years. The monthly demand from the system is one-twelfth of this annual demand 

(therefore 62,250 ML), except in years of low storage volumes. In these periods monthly 

demand is restricted, such that monthly demand levels are multiplied by the restriction factors 

defined in Table 11.8. 

Table 11.8 Restriction factors for monthly demand volumes from Warragamba reservoir 

corresponding to simulation storage volumes 

Monthly storage    
(% of capacity) 

Monthly storage 
(GL) 

Demand restriction 
level 

Demand restriction 
factor 

55% – 100% 1037 – 1886 0 1.00 
45% – 55% 849 – 1037 1 0.93 
40% – 45% 754 – 849 2 0.88 
35% – 40% 660 – 754 3 0.80 
25% – 35% 472 – 660 4 0.70 
5% – 25% 94 – 472 5 0.50 
0% – 5% 0 – 94 6 0.50 

The time series of monthly storage volumes that correspond to each simulated series are then 

analysed, with various statistics calculated. Firstly the tendency for demand restriction for each 

simulation is estimated as the percentage of months in which storage volumes fall below 50% of 

capacity. Secondly the reliability of monthly simulations is calculated as the percentage of 

months in which restriction levels are greater than 0 and finally a measure of the security of 

reservoir storages is obtained as the percentage of months which the restriction levels remain 

below 6. A restriction level of 6 corresponds to a storage volume below 5% of the total capacity. 

By calculating these statistics for each of the 1000 simulations, average values for the three-

state lognormal HMM are then compared to average values from the AR(3) model. These 

results are presented in Table 11.9. 

Table 11.9 Average water balance statistics from 1000 simulations of monthly composite rainfall 

series for Warragamba 

 3-state lognormal HMM AR(3) with lognormal residuals 
Reservoir restriction 24.0% 25.9% 
Reservoir reliability 98.7% 97.4% 
Reservoir security 74.4% 54.8% 
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These results demonstrate that a three-state lognormal HMM produces monthly simulations of 

the catchment composite rainfall that have lower drought risk on the supplies in Warragamba 

reservoir than simulations from an AR(3) model. This is consistent with previous results that 

showed the HMM to provide improved simulations of the monthly rainfall across the 

Warragamba catchment. The ability of the HMM to describe the persistence within the monthly 

rainfall of the Warragamba catchment leads to improved descriptions of reservoir hydrology. 

This is an important result in terms of possible applications of HMMs in water resources 

management. 

11.5 Summary of chapter 

This chapter has demonstrated that HMMs provide a useful method to simulate persistent 

hydrologic data. Previous studies have not compared the usefulness of these models with the 

widely-used ARMA family of models as tools to simulate monthly or annual rainfall data. This 

chapter showed the simulation of three monthly time series, each of which are indicative of the 

possible applications of such an approach. From the range of models in the HMM family that 

have been introduced throughout this thesis, a different model formulation was shown to be the 

most appropriate for each of these series. 

For each these simulation examples, the accurate simulation of statistics and also of the shape of 

marginal distributions, each at a range of temporal aggregations, were compared for a range of 

stochastic models. In each example, the HMM model used was at least as accurate as the 

appropriate AR model. In the simulation of catchment-scale runoff for the Warragamba, the 

three-state lognormal HMM provided reservoir inflows of lower drought risk than provided 

from an AR(3) model. These results suggest that HMMs not only provide accurate descriptions 

of hydrological persistence, but also provide accurate simulations of persistent data. This latter 

point provides an important benefit for the application of these models in stochastic hydrology. 
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