

Equilibrium Morphological Modelling in Coastal and River Environments: The Development and Application of Self-Organisation- and Entropy-Based Techniques.

By Joanna M. Nield

Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2005

FACULTY OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES School of Civil and Environmental Engineering Equilibrium Morphological Modelling in Coastal and River Environments: The Development and Application of Self-Organisation- and Entropy-Based Techniques.

By Joanna M. Nield

Submitted for examination: DECEMBER 2005 Comments received: MARCH 2006 Ammendments completed: JUNE 2006

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Civil and Environmental Engineering Faculty of Engineering, Computer and Mathematical Sciences

The University of Adelaide SA 5005 Australia Telephone: +61 8 8303 3744 Facsimile: +61 8 8303 4359 Web: www.civeng.adelaide.edu.au Email: enquiries@civeng.adelaide.edu.au

Abstract

The planning and management of coastal and river structures such as breakwaters, groynes, jetties, bridges and tidal inlets require accurate predictions of equilibrium morphologies. Generally these types of situations are modelled numerically using process-based models, where wave, current and sediment transport modules are applied over a number of time-steps until a steady-state morphology is obtained. Two alternative methods have been developed and applied in this thesis, based on self-organisation and entropy approaches.

The self-organisation-based method utilises a cellular automata model, where local rules produce a global stable pattern through positive and negative feedback. The entropy-based method is able to predict equilibrium morphologies directly. It compares different randomly generated morphologies using an objective function and optimisation, instead of moving to an equilibrium morphology through intermediate states. This avoids some potential problems associated with traditional models such as error propagation and reliance on accurate initial conditions.

The models developed in this thesis have been applied to a number of case studies. It was found that the cellular automata model obtained a higher Brier Skill Score than a comparable process-based model when predicting the equilibrium morphology associated with a channel obstruction. The entropy-based method was able to predict a realistic erosional channel in a coastal lagoon, similar to field observations at the Murray River Mouth in South Australia. It had difficulties predicting the deposition pattern due to the bias of the objective function towards erosional environments. The entropy-based method outperformed a conventional model prediction of the equilibrium erosional channel associated with a laboratory-sized lagoon, but similar problems were observed with its deposition predictive ability.

The modelling methods developed in this thesis are a first step into the use of non-traditional, entropy- and self-organisation-based models for the prediction of complex equilibrium morphologies. They have made use of non-conventional models in order to explore different objective function formulations or self-organisation rules and the sensitivity of these, and have compared the models to laboratory results. The work documented in this dissertation shows that it is possible to use self-organisation- and entropybased modelling methods to predict stable, equilibrium morphologies in coastal and river environments.

Statement of Originality

I Joanna M. Nield hereby declare that this work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, it contains no material previously published or written by any other person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available in all forms of media, now or hereafter known.

Acknowledgements

I wish to thank the many people that have helped contribute to the production of this thesis through their help, advise, support and useful discussions:

- My supervisors Dr David Walker and Assoc. Prof. Martin Lambert, without whom this project would never have made it to the form it is now in. Their ideas, discussions and suggestions have been invaluable.
- ★ My family (Melanie, Steven and Abigail Nield) and Steven Whichelo for all their support over the last 3.75 years. I greatly appreciate their help and perseverance. I also acknowledge the proofreading they have attempted of the Introduction and Conclusion chapters of this thesis, as well as reading my journal and conference papers and listening to practise presentations.
- ★ The role of the Australian Research Council in providing funding for this project and the Department of Water, Land and Biodiversity Conservation as the industry partner (project no. LP0227320).
- ★ Joe Davis for his help in the use of the laser scanner, for being a Matlab guru and never getting sick of me knocking on his door to ask a question.
- ★ The instrumentation and laboratory staff of the School of Civil and Environmental Engineering at the University of Adelaide, for their assistance in the laboratory studies.
- ★ Marcos Bernardes from the University of Plymouth for his help with the Brier Skill Score.
- Researchers at the University of Plymouth and Universitat Politécnica de Catalunya for useful meetings and discussions.
- ★ The organisers, lecturers and participants at the Renesse course, for giving me a strong base, endless list of contacts and many fond memories.
- ★ Everyone that I have met on conferences that have helped me form ideas during lively discussions.

Contents

Abstract.		i
Statemen	t of Originality	iii
Acknowle	edgements	. v
List of Fig	gures	. X
List of Ta	blesxv	iii
List of Sv	mbolsx	ix
List of Ab	ohreviations	xi
1 Introd	uction	1
1.1 Equi	ilibrium Morphology	.1
1.1.1	Traditional Modelling Methods	3
1.2 Aim	s	4
1.2.1	Development of New Modelling Methods	4
1.2.2	Case Studies	5
1.2.3	Differences Between the New and Traditional Modelling Methods	7
1.3 Rese	earch Outline and Approach	7
2 Literat	ture Review	11
2.1 Gen	eral Modelling Methods Currently Used For Medium- and Long-Term	
Pr	redictions	11
2.1.1	Process-Based Models and Their Potential Limitations	15
2.2 Use	of Entropy-Based Equilibrium Modelling in River Morphology	18
2.2.1	Open, Closed and Isolated System Definitions and Entropy Behaviour	19
2.2.2	Leopold and Langbein's Analogy	21
2.2.3	Extrema Hypotheses and Their Use in Fluvial Systems	23
2.2.4	The Use of Other Entropy Deced Analyses in Coastal Environments	24
2.2.5	misstion: A Comparison of Constin Algorithms and Simulated Appending	21
2.5 Opti	The Use of GAs and SA in Morphological Areas	20
2.3.1 2.4 Self.	-organisation: Its Use in River and Coastal Modelling	32
2.4 Sen 2.5 The	Research Gan	37
3 Self-O	rganisation-Based Method and its Application to River	01
Channels	and Lagoons	30
3.1 Met	and Lagouns	37
3.1 Met	nnel Constriction Case Study: Laboratory Method and Results	4 4
321	Flow and Depth Measurements	46
3.2.2	Velocity Measurements	46
3.2.3	Bathymetry Measurements	47
3.2.4	Channel Constriction Results	48
3.3 Chai	nnel Constriction Case Study: Traditional Process-Based Model Description	
ar	nd Results	53
3.4 Chai	nnel Constriction Case Study: Cellular Automata Results, Comparisons and	
D	iscussion	54
3.4.1	Comparison of Traditional and Self-Organisation-Based Model Results	55
3.4.2	Comparison of Self-Organisation-Based Model and Laboratory Results	56
3.4.3	Sensitivity Analyses: Use of Random Starting Morphology	56
5.4.4	Sensitivity Analyses: Grid Size	51

3.4.5	Sensitivity Analyses: Fixed or Variable Avalanche Criterion	57
3.5 Cha	annel Obstruction Case Study: Laboratory Method and Results	58
3.6 Bri	er Skill Score Definition	62
3.7 Cha	annel Obstruction Case Study: Traditional Process-Based Model Desc	cription and
F	Results	
3.8 Cha	annel Obstruction Case Study: Cellular Automata Results, Compariso	ns and
Ι	Discussion	65
3.8.1	Sensitivity Analyses: Random Starting Morphologies	67
3.8.2	Sensitivity Analyses: Different Sediment Increment Sizes	68
3.8.3	Sensitivity Analyses: Different Grid Sizes	68
3.8.4	Sensitivity Analyses: Fixed or Variable Angle of Repose	69
3.8.5	Sensitivity Analyses: Angle of Repose Value	70
3.8.6	Sensitivity Analyses: Sediment Grain Size	71
3.8.7	Rule Violations Pattern	71
3.8.8	Comparison of Laboratory Velocities and Hydrodynamic Model Ca 72	lculations
3.8.9	Conclusions	76
3.9 Uni	idirectional Lagoon Example	77
3.9.1	Case Study Definition	77
3.9.2	Results and Discussion	78
3.9.3	Energy Dissipation Trends – A Link to Entropy-Based Modelling	79
4 Entro	py-Based Method and its Application to Field and Labo	ratory
Lagoons		
4.1 Me	thod Description	
4.2 Glo	bal Search Method Characterisation	86
4.2.1	Method	
4.2.2	Real Genetic Algorithm Description	89
4.2.3	Binary Genetic Algorithm Description	92
4.2.4	Binary and Real Genetic Algorithm Comparison	93
4.2.5	Simulated Annealing Description	94
4.2.6	Real Genetic Algorithm and Simulated Annealing Comparison	96
4.2.7	Combination Comparison	99
4.2.8	Optimisation Conclusions	102
4.3 Uni	idirectional Lagoon Modelling	102
4.3.1	Optimisation Parameters Utilised	102
4.3.2	Results of General Application	104
4.3.3	Sequential SAs	105
4.3.4	Sensitivity Analyses	106
4.3.5	Discussion of Unidirectional Lagoon Results	111
4.4 Exp	pansion to Reversing Flow Lagoon Modelling	113
4.4.1	Method	113
4.4.2	Results	114
4.5 Ap	plication to a Lagoon Laboratory Experiment	118
4.5.1	Laboratory Experiment	119
4.5.2	Traditional Modelling Results	121
4.5.3	Modelling Modifications	122
4.5.4	Modelling Results and Laboratory Comparison	123
4.5.5		
	Discussion and Conclusions	125

5	Applie	cation to Coastal Situations – Detached Breakwater	
	5.1 Intr	oduction	129
	5.2 Mo	del Description	131
	5.3 Cas	e Study Description	136
	5.4 Bre	akwater Model Results and Sensitivity Analyses	
	5.4.1	Sensitivity to Initial Random Morphologies	141
	5.4.2	Inclusion of Variable Limits with Water Depth	143
	5.4.3	Coarse and Fine Fixed Grid Size Comparisons	147
	5.4.4	Use of Different Fixed Limits with a Coarse Morphological Grid	151
	5.4.5	Inclusion of Minimum Elevation Variance in Objective Function	153
	5.5 Dis	cussion	157
	5.6 Cor	clusions	159
6	Concl	usions and Recommendations	
	6.1 Cor	clusions	161
	6.1.1	Self-Organisation-Based Method	161
	6.1.2	Entropy-Based Method	163
	6.1.3	Application of Optimisation Method to a Coastal Breakwater	165
	6.2 Rec	ommendations for Further Research	167
	6.2.1	Self-Organisation-Based Model	167
	6.2.2	Entropy-Based Model	168
	6.2.3	Breakwater Application	168
	6.3 Clo	sing Remark	169
7	Refere	ences	
8	Public	ations	
A	nnendiy	x A - Self-Organisation Model Code	
	nnondi	R - Comparison of Ontimisation Mathada	201 202
	hheng:	x D - Comparison of Optimisation Methods	403 205
A	.ppendix		
A	ppendix	x D - Laboratory Lagoon Experiment Results	
A	ppendix	x E - Laboratory Breakwater Experiment Results	

List of Figures

Figure 1.1 Examples of equilibrium morphologies that form in the lee of breakwaters. (a) Semaphore Beach, Adelaide, Australia, (b) Costa Brava, Spain, (c) Blanes, Spain1
Figure 1.2 Examples of equilibrium morphologies that form due to groyne placement. (a) Somerton Beach, Adelaide, Australia, (b) Herne Bay Beach, Kent, UK, (c) Glenelg Beach, Adelaide, Australia
Figure 1.3 Examples of equilibrium morphologies associated with different river flow and tidal conditions through a tidal inlet at the Murray Mouth, South Australia during 1980 and 2000
Figure 1.4 Example from Sloff et al. (2004) of slightly different initial conditions producing a completely different modelling result, with a channel forming on the opposite side of the flume to that observed in laboratory experiments
Figure 1.5 Examples of the (a) constriction and (b) obstruction laboratory case studies to which the self-organisation based model was applied
Figure 1.6 Examples of the unidirectional sandy lagoon of (a) field sized and (b) laboratory sized case studies to which the self-organisation-based and entropy-based models were applied
Figure 2.1 General conventional process-based coastal model structure for predicting morphologies at equilibrium
Figure 2.2 Laboratory results obtained in a wide reservoir study (after Sloff et al., 2004).
Figure 2.3 Typical longitudinal equilibrium river profile determined by using entropy- based principles (after Fiorentino and Claps, 1992)
Figure 2.4 Definition of Open, Closed and Isolated Systems
Figure 2.5 Optimal channel network (after Rinaldo, 1999)25
Figure 2.6 An example of five river delta channels analysed by Wright et al. (after Wright et al., 1973)
Figure 3.1 Description of modelled case studies (a) a channel constriction, (b) a channel obstruction and (c) a unidirectional lagoon
Figure 3.2 General description of model methodology
Figure 3.3 Von Neumann neighbourhood
Figure 3.4 Constriction case study description
Figure 3.5 Constriction laboratory set-up
Figure 3.6 (a) The top moving mechanism of the scanner, (b) and (c), the laser measuring part of the scanner, measurements were taken while the flume bed was still submerged
Figure 3.7 Contour plot of a typical channel bed. The contours are plotted at 25mm intervals. The flow was from left to right
Figure 3.8 Contour plot of (a) Experiment Two results and (b) Experiment Three results.
Figure 3.9 Comparison of Experiment One (black) and Four (white). Contours are at 25mm intervals

Figure 3.10	Contour plot of (a) Experiment Four results and (b) Experiment Five results.
Figure 3.11 interval	Variation of depth to bottom and point velocity (averaged over a one minute) with time for Experiment Five
Figure 3.12 Experin	Variation of depth to bottom and average velocity across the flume for nent Six
Figure 3.13 Six	Variation of depth to bottom and average velocity with time for Experiment
Figure 3.14 reached	Contour plot (at 50mm intervals) of traditional model once simulation had equilibrium position. Flow was from left to right
Figure 3.15 the self	Contour plot (at 50mm intervals) of a sample bed morphology resulting from organisation model. Flow was from left to right
Figure 3.16 process right	Longitudinal cross-section of the channel morphology – a comparison of the -based and self-organisation-based methods. Flow direction was from left to
Figure 3.17 self-org	Longitudinal cross-section of the channel morphology – a comparison of the anisation-based method and laboratory results
Figure 3.18 configu	Comparison of longitudinal cross-sections from two different random starting rations. Flow direction was from left to right
Figure 3.19 constric	Comparison between coarse and fine grid model results through centre of etion. Flow direction was from left to right
Figure 3.20 directio	Comparison of model runs with different avalanche mechanisms. Flow n was from left to right
Figure 3.21	Obstruction case study description
Figure 3.22	Obstruction laboratory set-up
Figure 3.23	The obstruction in the rectangular flume, before and during experiments 59
Figure 3.24 represen using an	Depth to bottom and velocity measurements from Experiment One, each point nts an average of values recorded over a one minute time period, measured n ADV, positioned to the right of the obstruction (facing down flow)60
Figure 3.25	Velocity profiles at equilibrium for Experiment One
Figure 3.26 upstreat have be	The resultant morphology in the channel from Experiment One, looking m and downstream respectively. The water and upper parts of the obstruction en removed
Figure 3.27 measure	Illustration of a negative skill model result, in relation to a baseline ement
Figure 3.28 the trad right. C	Morphology of the channel bed surrounding an obstruction obtained from (a) itional model, and (b) laboratory Experiment One. Flow was from left to Contour lines are at 25mm intervals
Figure 3.29 the self- to right.	Morphology of the channel bed surrounding an obstruction obtained from (a) -organisation model, and (b) laboratory Experiment One. Flow was from left . Contour lines are at 25mm intervals

Figure 3.30 Longitudinal cross-section (A-A') comparison of channel morphology obtained from laboratory Experiment Two and the cellular automaton model. Flow was from left to right
Figure 3.31 Comparisons of channel morphology obtained from different starting morphologies using the self-organisation-based model. Flow was from left to right. Contour lines are at 25mm intervals
Figure 3.32 Morphology of the channel bed surrounding an obstruction obtained from the self-organisation-based model using two different increment sizes of (a) 10mm and (b) 0.5mm. Flow was from left to right. Contour lines are at 25mm intervals
Figure 3.33 Morphology of the channel bed surrounding an obstruction obtained from the self-organisation model using two different grid sizes of (a) 0.1 m and (b) 0.05 m. Flow was from left to right. Contour lines are at 25mm intervals69
Figure 3.34 Comparison of laboratory Experiment One and self-organisation model with fixed avalanche angle along the right side of the channel facing downstream
Figure 3.35 Longitudinal cross-section comparison of morphology on the right side of the obstruction (facing flow direction) obtained from the laboratory study and self-organisation-based modelling study using variable avalanche angle70
Figure 3.36 Contour plot of different angles of repose (40° (a) and 30° (b)). The contours are plotted at 25mm intervals. The flow was from left to right70
Figure 3.37 Contour plot of different d ₅₀ sizes (140µm (a), 200µm (b), 280µm (c) and 340µm (d)). The contours are plotted at 25mm intervals. The flow was from left to right
Figure 3.38 Path of self-organisation model for Experiment One set-up. Number of cells in which sediment increments are moved in each iteration and number of cells where avalanching occurs
Figure 3.39 Comparison of depth averaged velocity field obtained from model morphology and that measured near the bed in laboratory Experiment One, upstream of the obstruction
Figure 3.40 Comparison of depth averaged velocity field obtained from model morphology and that measured near the bed in laboratory Experiment One, immediately downstream of the obstruction
Figure 3.41 Comparison of Velocity field obtained from model morphology and that measured in laboratory Experiment One, down stream of the obstruction and deposition mounds
Figure 3.42 Comparison of depth averaged velocity field obtained from model morphology and that measured near the bed in laboratory Experiment Two, upstream of the obstruction
Figure 3.43 Comparison of depth averaged velocity field obtained from model morphology and that measured near the bed in laboratory Experiment Two, immediately downstream of the obstruction
Figure 3.44 Comparison of depth averaged velocity field obtained from model morphology and that measured near the bed in laboratory Experiment Two, downstream of the obstruction and deposition mounds
Figure 3.45 System layout for prediction of lagoon equilibrium morphology77

Figure 3.46 Flow v	Resultant morphology from application of self-organisation-based method. vas from right to bottom.	78
Figure 3.47	Global trend in energy dissipation as the lagoon system self-organises	79
Figure 3.48 organis	Global trend in energy dissipation as the channel obstruction system self-	80
Figure 4.1	Model setup for (a) field sized lagoon and (b) the laboratory scale case study.	81
Figure 4.2	General methodology of optimisation routines	83
Figure 4.3	Sketch of areas where global energy dissipation of the system are calculated.	84
Figure 4.4	Solving flow around a plate in a flume using optimisation methods	87
Figure 4.5	Staggered central finite difference grid system.	87
Figure 4.6	Real genetic algorithm methodology.	89
Figure 4.7 and AC	Average crossover, where A, B, C and D are four different elevation values, C and BD are averages of these values	90
Figure 4.8	One-point crossover, where A, B, C and D are four different elevation values.	90
Figure 4.9 in a sh	Velocity pattern around a plate – comparison of (a) RGA and (b) BGA results ort channel.	; 93
Figure 4.10	Comparison of BGA and RGA objective function values.	94
Figure 4.11	Simulated annealing methodology.	95
Figure 4.12 value i	Comparison of RGA and SA optimisation models. The objective function s given in log scale.	97
Figure 4.13 long ch	Velocity pattern around a plate – best results from (a) SA and (b) RGA in a hannel with a plate asymmetrically positioned.	98
Figure 4.14	Comparison of combined RGA-SA and SA optimisation models1	00
Figure 4.15 positio	Initial random velocity pattern in a long channel around an asymmetrically ned plate	00
Figure 4.16 (a) a st	Velocity pattern around an asymmetrically positioned plate – obtained using andard hydrodynamic solver and (b) the RGA-SA optimisation model1	01
Figure 4.17	Example of field-sized unidirectional lagoon	02
Figure 4.18	Path of objective function during GA optimisation	03
Figure 4.19 shown	Path of objective function found when an SA was employed after the GA in Figure 4.18 stagnated.	03
Figure 4.20 (b) mo and (d)	(a) Initial random morphology utilised in the GA optimisation model, rphology after 200 GA generations, (c) morphology after the GA optimisation) morphology after the SA optimisation	1 04
Figure 4.21	Path of Objective Function Values for Sequential SAs	06
Figure 4.22 sequen	Resultant morphology from the application of a GA and three SAs tially	06
Figure 4.23 objecti	Morphology of lagoon with only global energy dissipation component in ve function value calculations	07

Figure 4.24 Morphology of lagoon after SA using points closer to the boundaries for energy calculations
Figure 4.25 Morphology of lagoon using average water elevations and velocities after SA optimisation
Figure 4.26 Comparison of objective value paths using different energy dissipation descriptions
Figure 4.27 Morphology of lagoon using critical velocity penalties only as objective function after GA
Figure 4.28 Morphology of lagoon using critical velocity penalties only as objective function after SA
Figure 4.29 Path of objective function values for optimisation with and without global energy using GA only
Figure 4.30 Enlargement of SA results for path of objective function values for optimisation with and without global energy
Figure 4.31 Description of flow reversal lagoon objective function definitions114
Figure 4.32 Best morphologies after 600 and 3000 generations for unidirectional and flow reversal GA optimisation115
Figure 4.33 Best morphologies for unidirectional and flow reversal SA optimisation at final temperature
Figure 4.34 Aerial photograph of a small section of the River Murray mouth for comparison with the modelled morphology
Figure 4.35 Path of Objective Function Value for GA optimisation117
Figure 4.36 Path of Objective Function Value for SA optimisation117
Figure 4.37 Best morphology for flow reversal second SA optimisation118
Figure 4.38 Laboratory lagoon setup description
Figure 4.39 Laboratory setup for a lagoon experiment120
Figure 4.40 Equilibrium morphology after 75 hours of flow down the flume. IBL represents the initial average bed level
Figure 4.41 Equilibrium morphology prediction using traditional process-based model. The initial average bed level was zero
Figure 4.42 Path of objective function using a GA optimisation routine123
Figure 4.43 Further enhancement of the minimum objective function by the SA, after the stagnation of the GA routine
Figure 4.44 Equilibrium morphology prediction after SA optimisation124
Figure 5.1 Idealised salient equilibrium morphology associated with a shore-parallel detached breakwater
Figure 5.2 Comparison of equilibrium morphologies observed (a) before and (b) after shore-parallel breakwater insertion in a laboratory experiment. The shore-parallel detached breakwater was located at (0,0), with a width of 585mm
Figure 5.3 Typical randomly generated starting morphology
Figure 5.4 Description of random elevation prediction areas
Figure 5.5 General methodology of top-down model

Figure 5.6 Breakwater set-up after Nicholson et al. (1997)	
Figure 5.7 Examples of steady-state morphologies obtained using d based models – (a) DHI and (d) STC (after Nicholson et al., 19	ifferent 2DH process- 97)137
Figure 5.8 Morphology associated with a detached breakwater after model (after Zyserman and Johnson, 2002)	14 days using a 2DH 138
Figure 5.9 The resultant morphology after GA optimisation using a variable elevation limits of 60% of the water depth in depositio	top-down model and n and 30% in erosion.
Figure 5.10 Initial and final wave pattern for (a) a sloping beach and shown in Figure 5.9.	d (b) the morphology 140
Figure 5.11 Initial and final velocity pattern for (a) a sloping beach morphology shown in Figure 5.9.	and (b) the
Figure 5.12 Comparison of equilibrium morphologies obtained usin with variable limits and different seeds to generate the initial po- morphologies which the model then optimises	ng a top-down model opulations of random
Figure 5.13 Comparison of objective function paths for different ran morphologies, where (a), (b), (c) and (d) correspond to the mor Figure 5.12.	ndom starting phologies shown in 142
Figure 5.14 Definition of variable limits.	
Figure 5.15 Definition of fixed limits	
Figure 5.16 Resultant morphology using variable limits of (a) 45% and 20% water depth for deposition, and (b) 60% and 30% resp	water depth for erosion bectively144
Figure 5.17 Path of objective function using variable limits of (a) 44 erosion and 20% water depth for deposition, and (b) 60% and 3	5% water depth for 30% respectively 145
Figure 5.18 Resultant morphology using a top-down model with fix limits of ±2.5m	ed random elevation
Figure 5.19 Path of the objective function using atop-down model v elevation limits of ±2.5m.	vith fixed random
Figure 5.20 Comparison of results using variable random elevation morphological grid size of (a) 80m and (b) 20m	limits and a fixed
Figure 5.21 Path of objective function using fixed morphological gr (b) 20m	rid size of (a) 80m and148
Figure 5.22 Equilibrium morphology predicted using a GA, with a (grid size and (b) using a combined GA-SA with a 30m morpho Fixed limits of 4m deposition and 3m erosion, either side of the imposed.	(a) 50m morphological logical grid size. e initial slope were
Figure 5.23 (a) Path of the objective function using (a) a GA and (b a 30m morphological grid size and random elevation limits of 4 erosion) a follow on SA, with 4m deposition and 3m 151
Figure 5.24 Equilibrium morphology predicted using a GA, with a grid size and random elevation limits of (a) ±1.5m and (b) 4m c erosion.	50m morphological deposition and 3m 152
Figure 5.25 Path of objective function using (a) a +4m and -3m chand (b) ±1.5m elevation limit.	ange in elevation limit 152

Figure 5.26 Resultant morphology using top-down model with minimum variance inclusion in objective function
Figure 5.27 Path of objective function using top-down model with minimum variance inclusion in objective function
Figure 5.28 Resultant morphology with the inclusion of minimum variance and a fixed morphological grid size of 40m
Figure 5.29 Path of objective function using fixed morphological grid size of 40m, with minimum variance inclusion in objective function155
Figure 5.30 Comparison of results using a fine morphological grid (a) with and (b) without minimum variance included in the objective function calculations156
Figure 5.31 Path of objective function using fixed morphological grid size of 20m, (a) with minimum variance and (b) without minimum variance inclusion in the objective function
Figure D.1 Flume set-up for lagoon laboratory experiments
Figure D.2 Contour plot of the equilibrium bed morphology of Experiment One. The flow direction was from left to right
Figure D.3 Contour plot of the equilibrium bed morphology of Experiment Two. The flow direction was from left to right
Figure D.4 Morphology of Experiment Two after six hours, flow was from the top right corner to the bottom left corner. Notice the ripple patterns marking the flow path307
Figure D.5 Morphology of Experiment Two after six hours, flow was from the bottom right corner to the top left corner. Notice the ripple patterns marking the flow path.
Figure D.6 Contour plot of the equilibrium bed morphology of Experiment Three. The flow direction was from left to right
Figure D.7 Contour plot of the equilibrium bed morphology of Experiment Four. The flow direction was from left to right
Figure E.1 General breakwater laboratory set-up. (The wave direction was at a slight angle of approximately four degrees.)
Figure E.2 Calibration chart for initial beach formation in Experiment Three312
Figure E.3 Example of data used in zero up crossing method to obtain average wave height and period information from Experiment Three
Figure E.4 Contour plot of the initial equilibrium bed morphology of Experiment One. The 120mm contour line represents the SWL. The wave direction was from bottom to top
Figure E.5 Contour plot of the bed morphology of Experiment One after (a) ten minutes, (b) thirty minutes and (c) one hour of wave action on a breakwater protected beach. The wave direction was from bottom to top
Figure E.6 Contour plot of the bed morphology of Experiment One after (a) five hours, (b) six hours,(c) ten hours and (d) twelve hours of wave action on a breakwater protected beach. The wave direction was from bottom to top317
Figure E.7 Contour plot of the bed morphology of Experiment One after (a) 16 hours and (b) 17 hours of wave action on a breakwater protected beach. The wave direction was from bottom to top

Figure E.8 Difference in bed morphology of Experiment One between (a) 16 hour and 17 hour and (b) initial and 17 hour morphologies. The wave direction was from bottom to top
Figure E.9 Contour plot of the final equilibrium bed morphology of Experiment One after 17 hours of wave action towards the breakwater. The 120mm contour line represents the SWL. The wave direction was from bottom to top
Figure E.10 Difference in complete bed morphology of Experiment One between initial and 17 hour morphologies. The wave direction was from bottom to top319
Figure E.11 Contour plot of the (a) initial and (b) final equilibrium bed morphology of Experiment Two. The dashed line, just above the 60mm contour line represents the SWL. The wave direction was from bottom to top. The placement of the breakwater after this equilibrium beach was formed is alluded to by the black and the white rectangle in the bottom of the plot for (a) and (b) respectively
Figure E.12 Difference in complete bed morphology of Experiment Two between initial and 5.5 hour morphologies. The wave direction was from bottom to top. The dashed lines represent the initial and final SWL
Figure E.13 Contour plot of the (a) initial and (b) final equilibrium bed morphology of Experiment Three. The wave direction was from bottom to top
Figure E.14 Contour plot of the bed morphology of Experiment Three after (a) ten minutes, (b) thirty minutes, (c) one hour and (d) 3 hours of wave action (including 1 hour of storm wave action) on a breakwater protected beach. The wave direction was from bottom to top
Figure E.15 Contour plot of the bed morphology of Experiment Three after (a) 8.5 hours, (b) 13 hours, (c) 18 hours, (d) 23 hours, (e) 24.5 hours and (f) 25 hours of wave action on a breakwater protected beach. The wave direction was from bottom to top324

List of Tables

Table 3.1 Flow conditions used for each of the six experiments45
Table 3.2 Sampling scheme for velocity measurements
Table 3.3 Measured water depths and flow rates with corresponding calculated velocities.
Table 3.4 Velocities measured when Experiment Six had reached an equilibriumconfiguration, along transverse transects, as shown in Figure 3.12, using the ADVmeter
Table 3.5 Flow characteristics of laboratory experiments. 59
Table 3.6 Measured water depths and flow rates with corresponding calculated velocities.
Table 3.7 Velocities measured after formation of equilibrium morphology along transverse transects, as in Figure 3.25, using the ADV meter. 62
Table 3.8 Brier Skill Score interpretation guidelines (after Sutherland et al., 2004)64
Table 4.1 Values obtained using GA or SA only and RGA-SA optimisation combination.
Table 4.2 Comparison table for values of RMAE velocity, as suggested by van Rijn et al. (2003)
Table B.1 Sample of some GA sensitivity analyses. 203
Table B.2 Sample of some SA and combination sensitivity analyses
Table D.1 Flow conditions used for each of the five experiments
Table E.1 Initial and final distances to the SWL for each of the experiments
Table E.2 Initial distances from the breakwater to the SWL for each of the experiments.

Symbol	Quantity	SI Unit
а	Elasticity of acceptance	-
$A_{ij}(c)$	Metropolis criterion	-
В	Initial or baseline laboratory measurement	m
С	Current temperature	-
Co	Initial fitness	$m^{3}s^{-1}$
d	Mean depth of water	m
D	Local water depth	m
D_{35}	35th percentile of sediment size	m
d_{50}	50th percentile of sediment size	m
d_{90}	90th percentile of sediment size	m
E_e	Average specific energy	m
$E_{\rm s}$	Global specific energy contribution	m
f	Objective function value	m^3s^{-1}
f_w	Wave friction factor	-
g	Acceleration due to gravity	ms-2
Η	Height of the landscape	m
h	Water depth	m
k_{s}	Roughness length of the bed	
LL	Lower limit of each decision variable	m
M	Mass	kg
MSE	Mean squared error	m
η	Surface elevation with respect to a datum	m
OF	Overall objective function value	m^3s^{-1}
P_a	Excess steepness penalty	m
P_d	Excess velocity sediment depositing penalty	ms ⁻¹
P_e	Excess velocity sediment eroding penalty	ms-1
$ ho_s$	Density of sediment	kgm ³
ρ	Fluid density	kgm ³
Q	Thermal or heat energy	J
q_{ij}	Sediment transport	m^3s^{-1}
\mathbf{q}_{t}	Volumetric total sediment transport rate	m^2s^{-1}
$Q_{ m s}$	Volumetric transport rate of sediment	$m^{3}s^{-1}$
RND	Random number between 0 and 1.	-

List of Symbols

Symbol	Quantity	SI Unit
S	Entropy	JK^{-1}
SS1	Random or a predetermined step size	-
Т	Period of oscillation	S
Т	Temperature	K
t_1	Starting temperature	-
t	Time	S
${\hat au}_0$	Amplitude of $ au_0$	Pa
${ au}_0$	Shear stress on the bed	Pa
и	Velocity vector component in the x direction	ms-1
UL	Upper limit of each decision variable	m
${U}_{\scriptscriptstyle \infty}$	Amplitude of u ₀	ms-1
\overline{U}	Mean value of u over a vertical	ms-1
\overline{u}_*	Time-mean value of u∗	ms-1
\overline{u}_{cr}	Critical mean flow velocity	ms-1
ν	Kinematic viscosity	m^2s^{-1}
υ	Velocity vector component in the y direction	ms-1
var	Variance in elevation	m
X	Laboratory measurement	m
х	Streamwise distance	m
Y	Numerical model prediction	m
$oldsymbol{z}_0$	Baseline elevation	m
Z_{crit}	Angle of repose elevation	m
$oldsymbol{z}_{ij}$	Predicted elevation	m
λ_p	Bed porosity	-
θ	Scaling factor	-
Ψ	Scalar factor	-

List of Abbreviations

- ADV Acoustic Doppler Velocity Meter
- BGA Binary genetic algorithm
- BSS Brier Skill Score
- 2DH Two- dimensional, depth averaged horizontal
- DHI Danish Hydraulic Institute
- GA Genetic algorithm
- Q3D Quasi-three-dimensional
- RGA Real genetic algorithm
- RMAE Relative mean absolute error
- SA Simulated annealing
- STC Service Techique Central des Ports Matitimes et des Voies Navigables