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Abstract 
The planning and management of coastal and river structures such as 
breakwaters, groynes, jetties, bridges and tidal inlets require accurate 
predictions of equilibrium morphologies.  Generally these types of situations 
are modelled numerically using process-based models, where wave, current 
and sediment transport modules are applied over a number of time-steps 
until a steady-state morphology is obtained.  Two alternative methods have 
been developed and applied in this thesis, based on self-organisation and 
entropy approaches.   

The self-organisation-based method utilises a cellular automata model, 
where local rules produce a global stable pattern through positive and 
negative feedback.  The entropy-based method is able to predict equilibrium 
morphologies directly.  It compares different randomly generated 
morphologies using an objective function and optimisation, instead of 
moving to an equilibrium morphology through intermediate states.  This 
avoids some potential problems associated with traditional models such as 
error propagation and reliance on accurate initial conditions. 

The models developed in this thesis have been applied to a number of case 
studies.  It was found that the cellular automata model obtained a higher 
Brier Skill Score than a comparable process-based model when predicting 
the equilibrium morphology associated with a channel obstruction.  The 
entropy-based method was able to predict a realistic erosional channel in a 
coastal lagoon, similar to field observations at the Murray River Mouth in 
South Australia.  It had difficulties predicting the deposition pattern due to 
the bias of the objective function towards erosional environments.  The 
entropy-based method outperformed a conventional model prediction of the 
equilibrium erosional channel associated with a laboratory-sized lagoon, 
but similar problems were observed with its deposition predictive ability. 

The modelling methods developed in this thesis are a first step into the use 
of non-traditional, entropy- and self-organisation-based models for the 
prediction of complex equilibrium morphologies.  They have made use of 
non-conventional models in order to explore different objective function 
formulations or self-organisation rules and the sensitivity of these, and have 
compared the models to laboratory results.  The work documented in this 
dissertation shows that it is possible to use self-organisation- and entropy-
based modelling methods to predict stable, equilibrium morphologies in 
coastal and river environments. 
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