A Unified Approach to Nuclear Matter and Quark Matter

Sarah I. Howie

Supervisor: Prof. A. W. Thomas

Department of Physics, University of Adelaide, Australia

and

Thomas Jefferson National Accelerator Facility,

Newport News, Virginia, United States of America.

September 2006

Abstract

The properties of hadronic and quark matter are studied as a function of density using a chiral model based on quark degrees of freedom. Nucleons are described as quark - diquark states in the Faddeev approach and this description is extended to infinite nuclear matter in the mean field approximation. We calculate the properties of two flavour quark matter, allowing for the possibility of colour superconductivity in the form of a spin zero condensate (i.e. the 2SC phase). These calculations are performed using the proper-time regularisation method. We find that the phase diagrams for asymmetric matter in this description can have charge neutral phase transitions from the hadronic phase to the deconfined phase, depending on the pairing strength for quarks in the 2SC phase. We study the evolution of the phase diagrams as a function of the pairing strength. The properties of nuclear matter are significantly improved once we take into account the self-energy of the nucleon. We also find that the structure of the nucleon has important consequences for the phase diagram. The charge neutral equations of state are used to produce compact star configurations by solving the Tolman-Oppenheimer-Volkoff (TOV) equations. We use these solutions to investigate the possibility of hybrid stars.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Acknowledgements

Firstly, I would like to thank Wolfgang Bentz, who has been very dedicated to this project and a tremendous help to me throughout its duration. I have learned a great deal from him and I have enjoyed many interesting discussions with him during his visits to Adelaide and to Jefferson Lab. He was also a wonderful host during my stay at the University of Tokai, in Japan. I am very grateful to the people at Jefferson Lab and The University of Adelaide, who have all contributed in many different ways to the progress of this work. In particular, Ian Cloet, who has been exceedingly helpful and generous in sharing his time and knowledge. I am thankful for all of my friends and family who have encouraged me along the way and especially for my husband, who was prepared to move to the other side of the world for the sake of this work. Most of all, I would like to thank my supervisor, Tony Thomas, who has been a great teacher and a true friend. I am especially appreciative of the many unique opportunities that he has provided for me and my fellow students over the years. Primarily thanks to him I can say, that I have very much enjoyed and benefited from my time as a student.

Contents

1	Intr	oduction	1	
2	Finite Density Physics			
	2.1	Quantum Chromodynamics	5	
	2.2	Non-Relativistic Approaches	9	
	2.3	Relativistic Mean Field Theories	11	
	2.4	Quark Level Models	13	
3	Nambu - Jona-Lasinio model 17			
	3.1	Introduction to NJL model	18	
	3.2	Regularisation	20	
	3.3	Mesons and Diquarks	22	
	3.4	Nucleons in the Faddeev Approach	25	
	3.5	Fixing Parameters	28	
4	Nuclear Matter 31			
	4.1	Properties Nuclei and Nuclear Matter	32	
	4.2	Deriving of the Equation of State	34	
	4.3	Symmetric Nuclear Matter	38	
	4.4	Asymmetric Matter	41	
5	Quark Matter 45			
	5.1	Colour Superconductivity	45	
	5.2	The many phases of Quark Matter	47	
	5.3	The Effective Potential	50	
	5.4	The Equation of State	53	
6	Con	npact Star Matter	57	
	6.1	Phase Diagrams	58	
	6.2	Equations of State	63	
	6.3	Mixed Phases	65	
7	An Overview of Compact Stars 69			
	7.1	Pulsars and X-Ray Binaries	70	
	7.2	General Relativity and Nuclear Physics	72	
	7.3	Results	75	

	7.4 Rotation	77	
8	Revisiting the Nucleon		
	8.1 Axial Vector Diquarks	81	
	8.2 Nucleon Self-Energy	83	
	8.3 Improved Equation of State	86	
	8.4 Phase Diagrams and Compact Stars	87	
9	Conclusion	95	
\mathbf{A}	Conventions	99	
	A.1 Dirac Algebra	99	
В	NJL model Derivations	100	
	B.1 The Gap Equation	100	
	B.2 Proper Time Derivation of V_{vac}	101	
	B.3 The Pion Decay Constant	101	
	B.4 The Pole Approximation	103	
\mathbf{C}	The Faddeev Approach to Baryons	104	
	C.1 The quark - scalar-diquark model	104	
	C.2 Axial Vector Diquarks	105	
	C.3 The quark - diquark model of the Δ^{++}	105	
	C.4 The Two - Channel Faddeev Equation	106	
D	Hadronization	109	
	D.1 Functional Integration	109	
\mathbf{E}	Quark Matter Derivations	113	
	E.1 Effective Potential	113	
	E.2 Baryon Density	119	
	E.3 Charge Density	120	
\mathbf{F}	F General Relativity		
Bi	Bibliography		