Structural and Mechanistic Studies of Bioactive Peptides

A thesis submitted for the Degree of Doctor of Philosophy

by Tara Louise Pukala B. Sc. (Hons.)

from the Department of Chemistry, The University of Adelaide

August 2006

~ CONTENTS ~

Acknowledgments	i
Statement of Originality	iii
Abstract	iv
Chapter 1: Naturally Occurring Bioactive Peptides	1
1.1 Overview	1
1.2 Peptide Biosynthesis	2
1.3 Anuran Skin Secretions	5
1.3.1 Collecting the Secretion	7
1.3.2 Peptides from Australian Frogs	9
1.4 Spider Venoms	14
1.4.1 Venom Collection	16
1.4.2 Peptides from Spider Venoms	17
Chapter 2: Methodology I – Mass Spectrometry	21
2.1 Mass Spectrometry	21
2.2 The Q-TOF 2 Mass Spectrometer	22
2.3 Electrospray Ionisation Mass Spectrometry	25
2.4 Peptide Sequencing	28
2.4.1 High Performance Liquid Chromatography	28
2.4.2 Sequence Specific Fragmentation of Peptides	29
2.4.3 Enzymatic Cleavage	30
2.4.4 Post-Translational Modifications	31
2.4.5 Edman Sequencing	32
2.5 ESI-MS of Protein Complexes	34
2.5.1 Validity of Gas Phase Measurements	35
2.5.2 Solvent Systems	36
2.5.3 Investigating Non-Covalent Binding Strength	37
2.5.4 Hydrogen-Deuterium Exchange	39

Chapter 3: Investigating the Skin Secretion of an Interspecific Hybrid Tree Frog	41
3.1 Introduction	41
3.1.1 Hybridisation	41
3.1.2 Amphibian Hybrids	42
3.1.3 Litoria caerulea	44
3.1.4 Litoria splendida	46
3.1.5 Litoria caerulea - Litoria splendida Hybrids	48
3.2 Results	50
3.2.1 Mitochondrial DNA Studies	50
3.2.2 Peptide Isolation and Sequence Determination	51
3.2.3 Caerin 2.6 and Caerin 2.7	53
3.2.4 Caerin 5.1	57
3.2.5 Biological Activity	58
3.2.6 Behavioural Testing	60
3.3 Discussion	61
3.3.1 Peptide Profile, Structure and Biological Activity	61
3.3.2 The L. caerulea - L. splendida Hybrid Pedigree	66
3.3.3 Peptide Inheritance	68
3.4 Experimental Procedures	70
3.4.1 Mitochondrial DNA Analysis	70
3.4.2 Collection of Secretory Products	71
3.4.3 HPLC Separation	71
3.4.4 Mass Spectrometry	72
3.4.5 Lys-C Digestion	72
3.4.6 C-Terminal Group Determination	73
3.4.7 Automated Edman Sequencing	73
3.4.8 Bioactivity Testing	73
3.4.9 Behavioural Studies	74
3.4.10 cDNA Studies	74
Chapter 4: Methodology II – Nuclear Magnetic Resonance Spectroscopy	75
4.1 NMR Spectroscopy for the Study of Peptides	75
4.2 Fundamental Principles of NMR Spectroscopy	76
4.3 Two-Dimensional NMR Spectroscopy	80

4.3.1 Correlated Spectroscopy	81
4.3.2 Total Correlation Spectroscopy	83
4.3.3 Heteronuclear Correlation Spectroscopy	84
4.3.4 Nuclear Overhauser Effect Spectroscopy	85
4.4 Resonance Assignment in Peptides	87
4.5 Secondary Structure Analysis Using NMR Spectroscopy	88
4.5.1 Secondary Shifts	88
4.5.2 NOE Connectivities	90
4.5.3 Coupling Constants	92
4.6 Structure Calculations	94
4.6.1 Distance Restraints	95
4.6.2 Ambiguous NOEs	98
4.6.3 Stereospecific Assignments	99
4.6.4 Dihedral Angle Restraints	100
4.6.5 Restrained Molecular Dynamics	101
4.6.6 Structure Quality	104
4.7 Model Solvent Systems	107
Chapter 5: Calmodulin-Peptide Complexes and the Inhibition of NOS	109
Chapter 5: Calmodulin-Peptide Complexes and the Inhibition of NOS 5.1 Introduction	109 109
5.1 Introduction	109
5.1 Introduction5.1.1 Nitric Oxide as a Biological Signalling Agent	109 109
5.1 Introduction5.1.1 Nitric Oxide as a Biological Signalling Agent5.1.2 Nitric Oxide Synthesis	109 109 110
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 	109 109 110 112
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 	109 109 110 112 115
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 	109 109 110 112 115 117
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 	109 109 110 112 115 117 117
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 5.2.2 Peptide-Calmodulin Complexes 	109 109 110 112 115 117 117 117
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 5.2.2 Peptide-Calmodulin Complexes 5.2.3 Binding Competition Studies 	109 109 110 112 115 117 117 117 119 121
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 5.2.2 Peptide-Calmodulin Complexes 5.2.3 Binding Competition Studies 5.2.4 Complex Dissociation Studies 	109 109 110 112 115 117 117 117 119 121 122
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 5.2.2 Peptide-Calmodulin Complexes 5.2.3 Binding Competition Studies 5.2.4 Complex Dissociation Studies 5.2.5 D₂O Exchange 	109 109 110 112 115 117 117 117 119 121 122 124
 5.1 Introduction 5.1.1 Nitric Oxide as a Biological Signalling Agent 5.1.2 Nitric Oxide Synthesis 5.1.3 Calmodulin 5.1.4 Amphibian Peptides and the Inhibition of nNOS 5.2 Results 5.2.1 Mass Spectrometry of Calmodulin 5.2.2 Peptide-Calmodulin Complexes 5.2.3 Binding Competition Studies 5.2.4 Complex Dissociation Studies 5.2.5 D₂O Exchange 5.2.6 NMR Spectroscopy of Unbound Caerin 1.8 	109 109 110 112 115 117 117 117 119 121 122 124 125

5.3 Discussion	139
5.3.1 Insights from Mass Spectrometry	139
5.3.2 Insights from NMR Spectroscopy	143
5.4 Experimental Procedures	147
5.4.1 Sample Preparation - Mass Spectrometry	147
5.4.2 Mass Spectrometry	147
5.4.3 D ₂ O Exchange	148
5.4.4 Sample Preparation - NMR Spectroscopy	148
5.4.5 NMR Spectroscopy	149
Chapter 6: 3D Structure Determination of Neuropeptides from the Genus Crinia	151
6.1 Introduction	151
6.1.1 Peptides from the Genus Crinia	151
6.1.2 Biological Activity of Signiferin 1 and Riparin 1.1	154
6.1.3 Structure of Cysteine Bridged Amphibian Peptides	157
6.2 Results	159
6.2.1 NMR Spectroscopy	159
6.2.2 Secondary Shifts	163
6.2.3 NOE Connectivities	164
6.2.4 Coupling Constants	166
6.2.5 Structure Calculations	166
6.3 Discussion	171
6.3.1 Structure Analysis	171
6.3.2 Structure Activity Relationship	172
6.4 Experimental Procedures	176
6.4.1 Sample Preparation	176
6.4.2 NMR Spectroscopy	176
6.4.3 Structure Calculations	177
Chapter 7: Methodology III – Solid State NMR Spectroscopy	178
7.1 Solid State NMR Spectroscopy	178
7.1.1 Chemical Shift Anisotropy	179
7.1.2 Quadrupolar Interactions	180
7.1.3 Dipolar Interactions	183

7.2 Magic Angle Spinning	184
7.3 Biological Membranes	186
7.4 Phosphorus NMR Spectroscopy	188
7.5 Deuterium NMR Spectroscopy	190
7.6 Nitrogen NMR Spectroscopy	193
7.7 Relaxation Rates	194
7.7.1 Longitudinal Relaxation	194
7.7.2 Transverse Relaxation	196
7.7.3 NMR Relaxation Measurements in Membranes	198
Chapter 8: Solid State NMR Studies of Membrane Active Antibacterial Peptides	199
8.1 Introduction	199
8.1.1 Antibacterial Peptides	199
8.1.2 Mechanism of Action	201
8.1.3 Target Membranes	204
8.1.4 Antibacterial Efficacy	207
8.1.5 Antibacterial Peptides from Australian Amphibians	211
8.2 Results	213
8.2.1 Structure Activity Relationship	213
8.2.2 ³¹ P NMR Spectroscopy	214
8.2.3 ³¹ P NMR Relaxation Studies	216
8.2.4 ² H NMR Spectroscopy	218
8.2.5 ¹⁵ N NMR Spectroscopy	220
8.3 Discussion	222
8.4 Experimental Procedures	227
8.4.1 Sample Preparation	227
8.4.2 NMR Spectroscopy	227
Chapter 9: Structure and Activity of Cupiennin 1a	229
9.1 Introduction	229
9.1.1 Cupiennius salei	229
9.1.2 Cupiennius salei Venom Composition	230
9.1.3 The Cupiennin Peptides	231
9.2 Results	234

9.2.1 NMR Spectroscopy	234
9.2.2 Secondary Shifts	239
9.2.3 NOE Connectivities	241
9.2.4 Coupling Constants	242
9.2.5 Structure Calculations	243
9.2.6 ³¹ P NMR Spectroscopy	247
9.2.7 ³¹ P NMR Relaxation Studies	249
9.2.8 ² H NMR Spectroscopy	252
9.2.9 nNOS Activity	254
9.3 Discussion	257
9.3.1 Structure Analysis	257
9.3.2 Antibacterial Activity	259
9.3.3 Inhibition of Nitric Oxide Synthesis	262
9.4 Experimental Procedures	264
9.4.1 Solution State NMR Spectroscopy	264
9.4.2 Structure Calculations	265
9.4.3 Solid State NMR Spectroscopy	265
9.4.4 nNOS Bioactivity Testing	267
9.4.5 ¹⁵ N HSQC Titration	267
Chapter 10: Summary	269
10.1 L. caerulea - L. splendida Hybrids	269
10.2 Amphibian Peptides and the Binding of Calmodulin	270
10.3 Crinia Neuropeptides	271
10.4 Antibiotic Amphibian Peptides	271
10.5 Cupiennin 1a	272
10.6 Conclusion	274
References	275
Appendix A: The 20 Common Amino Acids	326
Appendix B: Mass Spectral Sequencing Data	328
Publications	334

~ACKNOWLEDGMENTS ~

First and foremost I would like to offer a sincere thank you to my supervisor, Prof. John Bowie, for allowing me to undertake this research. This project has presented me with many interesting challenges and opportunities for which I am extremely appreciative, and I owe a great deal to his knowledgeable guidance and considerate advice.

I also gratefully acknowledge the Ferry Trust and the University of Adelaide for the Ferry and George Fraser Scholarships respectively, which provided financial support during my Ph.D studies.

In addition, I would like to recognise the help of a number of external collaborators. Many thanks to Assoc. Prof. Frances Separovic from the University of Melbourne for introducing me to the world of solid state NMR, and to past and present members of her group for all of their assistance during my visits. Thanks also to Dr. Jennifer Wilson of Griffith University for providing the resources and skills to undertake cancer cell work, and also for welcoming me into her home during my stay. Much appreciation also goes to Dr. Jenny Beck from the University of Wollongong for assistance with the calmodulin work and time on the mass spectrometer, and to Dr. Lucia Kuhn-Nentwig from the University of Bern for kindly providing the opportunity to leap from frogs to spiders.

A big thank you must also go to the academic, research and technical staff at the University of Adelaide for all of their advice and assistance, in particular Phil Clements for his help with NMR spectroscopy and mass spectrometry, Prof. John Carver for many valuable NMR discussions, Jeff Borkent for help with numerous computer problems, and Dr. Chris Cursaro for operating the Edman sequencer. Thanks also to Dr. Stephen Donnellan and Dr. Terry Bertozzi for providing the resources and guidance necessary for the hybrid DNA studies, as well as Dr. Grant Booker, in addition to past and present members of the Booker research group, for helping with everything biochemistry.

Much appreciation also goes to Prof. Michael Tyler for assistance in collecting the frog secretions and samples, as well as sharing an incredible wealth of amphibian knowledge. I would also like to say thank you to Harvey and Margaret Vaux for breeding and caring for the hybrids, as well as allowing me to visit for regular 'milkings'.

Many thanks to Dr. Craig Brinkworth, Dr. Mark Fitzgerald, Dr. Margit Apponyi and Hayley Andreazza for making lab 2 an enjoyable place to work over the years. Thanks also to remaining members of the Bowie group, in particular Daniel Bilusich and Rebecca Jackway for help with proofreading.

To Brett Miller, I thank you with all my heart for the patience, love and happiness that you have given me over the past few years. I look forward to discovering life after Ph.D with you.

Finally, I would like to thank my family for the amazing support they have provided throughout my life. Sincere love and gratitude to Mum, Dad and Joshua for the encouragement and assistance which has allowed me to reach my goals and dreams.

~ STATEMENT OF ORIGINALITY ~

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for a copy of this thesis, when deposited in the University Library, to be available for loan and photocopying.

Tara Louise Pukala August 2nd 2006

~ABSTRACT~

Venoms, toxins and host-defence systems constitute rich sources of biologically active molecules, many of which have enormous therapeutic and biotechnological potential. In particular, peptides are often a significant component of these chemical arsenals, and are fundamentally important as biological effector molecules. The research presented in this thesis is centred on the isolation and investigation of peptides from both frogs and spiders, and endeavours to probe the important structural and mechanistic features of these bioactive compounds.

The skin peptide profiles of interspecific hybrids between the green tree frog *Litoria caerulea* and the magnificent tree frog *Litoria splendida* have been investigated in a ninemonth survey. Fourteen peptides were characterised primarily using mass spectrometry, of which three had not been identified previously in the skin secretions of either parent. A number of these peptides are antibacterial agents, while others effectively inhibit the formation of nitric oxide by neuronal nitric oxide synthase. Implications for the genetics and expression of amphibian dermal peptides are also discussed.

The majority of frogs of the genus *Litoria* contain at least one peptide in their glandular secretion capable of inhibiting the formation of nitric oxide by the enzyme neuronal nitric oxide synthase. This was proposed to occur by preventing the association of the regulatory cofactor, Ca^{2+} -calmodulin, with its binding site on the enzyme. Non-covalent binding of the amphibian peptides to calmodulin in the presence of Ca^{2+} has been confirmed using electrospray ionisation mass spectrometry, by the observation of complexes in the gas phase with a 1:1:4 calmodulin/peptide/ Ca^{2+} stoichiometry. In addition, the structure and binding interactions of caerin 1.8, a potent nitric oxide synthase inhibitor, have been further probed using mass spectrometry and nuclear magnetic resonance spectroscopy techniques.

Recently a number of small, disulfide-containing neuropeptides of the signiferin and riparin families have been characterised from the skin secretion of frogs of the *Crinia* genus. Of these, signiferin 1 and riparin 1.1 are both ten residue peptides with similar primary sequences, however appear to have a significantly different spectrum of bioactivity. Although both act at cholecystokinin-2 receptors, signiferin 1 is smooth muscle active while riparin 1.1 is not, and instead causes proliferation of lymphocytes. The three-dimensional structures of these peptides were determined using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. Both signiferin 1 and riparin 1.1 adopt β -turn type conformations, however differences in these structures may be responsible for the variation in biological activity noted for these peptides.

The dermal secretions of most Australian frogs contain at least one broad-spectrum peptide antibiotic, and often a series of peptides with differing activity to afford greater protection against microbial pathogens. Solid state nuclear magnetic resonance spectroscopy studies were carried out to investigate the interaction of a number of these antibacterial peptides with anionic model membranes, and the results are compared with work previously reported using neutral lipids. It appears the peptides may have a different mode of interaction with the membranes depending upon the charge of the lipid head group.

The cupiennin 1 peptides have been identified in the venom of the neotropical wandering spider, *Cupiennius salei*, and demonstrate potent wide-spectrum antibacterial activity. Primary sequence analysis of these peptides suggests a unique amphipathic structure distinctly different from that of other potentially helical cationic antimicrobial peptides isolated thus far. Using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations, cupiennin 1a was found to adopt an α -helical structure with a flexible central hinge region in membrane mimicking solvents. Following this, nuclear magnetic resonance spectroscopy methods were used to further probe the antibacterial and the newly identified neuronal nitric oxide synthase inhibitory activity of this peptide.