The mobilisation of soil phosphorus in surface runoff from intensively managed pastures in south-east Australia

Thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

Warwick John Dougherty

Department of Soil and Land Systems
School of Earth and Environmental Sciences
University of Adelaide

October 2006
Table of Contents

LIST OF FIGURES .. VI

LIST OF TABLES ... VIII

ACKNOWLEDGEMENTS ... IX

ABBREVIATIONS .. XI

ABSTRACT .. XII

DECLARATION ... XIV

CHAPTER 1 **INTRODUCTION AND SYNOPSIS** .. 15

1.1 **PHOSPHORUS, AGRICULTURE AND THE WATER QUALITY PROBLEM** 15

1.2 **THE EXPERIMENTS** ... 17

1.3 **CONCLUSIONS** .. 22

CHAPTER 2 **PHOSPHORUS TRANSFER IN SURFACE RUNOFF FROM INTENSIVE PASTURE SYSTEMS AT VARIOUS SCALES: A LITERATURE REVIEW** ... 23

2.1 **INTRODUCTION** ... 23

2.2 **CONCEPTUAL MODEL OF P TRANSFER** ... 25

2.2.1 **Phosphorus sources** .. 26

2.3 **PHOSPHORUS MOBILISATION** ... 28

2.3.1 **Physical processes of mobilisation** .. 30

2.3.2 **Chemical processes of mobilisation** .. 31

2.3.3 **Incidental mobilisation** ... 35

2.4 **P TRANSPORT – PATHWAYS AND PROCESSES** ... 36

2.4.1 **Hillslope hydrology** ... 36

2.4.2 **Major pathways of P transfer** ... 39

2.4.3 **Variable source area (VSA)** ... 40

2.5 **SCALE AND LANDSCAPE EFFECTS ON P MOBILISATION AND TRANSPORT** 42

2.5.1 **The effects of scale on processes determining P mobilisation** 43

2.5.2 **The effect of landscape on processes determining P mobilisation** 45

2.5.3 **The effect of changing flow conditions on runoff P** ... 46

2.5.4 **Overland flow hydrological theory** ... 46

2.5.5 **Effect of time of contact and water:soil ratio** .. 47

2.6 **RAINFALL SIMULATION** ... 50

2.6.1 **Rainfall/runoff intensity** .. 51

2.6.2 **Plot size (length)** ... 51

2.6.3 **Modelling the effect of rainfall simulation parameters** .. 52

2.7 **CONCLUSIONS** ... 53

CHAPTER 3 **GENERAL MATERIALS AND METHODS** ... 55

3.1 **INTRODUCTION** ... 55

3.2 **THE STUDY SITES** ... 55

3.2.1 **Flaxley** ... 55

3.2.2 **Camden** .. 57

3.3 **ANALYTICAL QUALITY ASSURANCE** ... 60

3.4 **RAINFALL SIMULATION** ... 60

3.5 **WATER SAMPLE HANDLING AND ANALYSIS** ... 62

3.5.1 **Sample handling and filtration** .. 62
CHAPTER 7 STRATIFICATION, FORMS AND MOBILITY OF PHOSPHORUS IN THE TOPSOILS OF CHROMOSOLS USED FOR DAIRYING135

7.1 INTRODUCTION ...135
7.2 METHODS ...137
7.2.1 Soil sampling ...137
7.2.2 Soil preparation and analysis ...138
7.2.3 Calculation of the effective depth of interaction (EDI)138
7.2.4 Runoff generation and collection139
7.2.5 Runoff analysis ..140
7.2.6 Ultrafiltration of runoff samples140
7.2.7 Statistical analysis ...142
7.3 RESULTS ..143
7.3.1 General soil properties ..143
7.3.2 Soil P forms ...146
7.3.3 P stratification ...147
7.3.4 Labile soil P forms ...150
7.3.5 Effective depth of interaction ..151
7.3.6 The physical and chemical distribution of P in runoff: the effect of soil P status ..151
7.3.7 Ultrafiltration of runoff samples and the importance of colloidal P ...153
7.4 CONCLUSIONS ...158

CHAPTER 8 EXAMINATION OF SOIL P FORMS USING SOLID-STATE 31P NMR ..159

8.1 INTRODUCTION ...159
8.2 MATERIALS AND METHODS ...161
8.2.1 Site description and soil sampling161
8.2.2 Soil analysis ...161
8.2.3 NMR Spectroscopy ..162
8.3 RESULTS AND DISCUSSION ...165
8.3.1 Wet chemical P analyses ..165
8.3.2 Comparison of 31P CP and DP NMR spectra for soil M-H166
8.3.3 Spin counting ...170
8.3.4 The effect of paramagnetic iron on NMR observability177
8.4 CONCLUSIONS ...181

CHAPTER 9 EVALUATION OF DE-STRATIFICATION TO REDUCE RUNOFF P CONCENTRATIONS ..182

9.1 INTRODUCTION ...182
9.2 MATERIAL AND METHODS

9.2.1 Laboratory incubation

9.2.2 De-stratification in runoff trays

9.3 RESULTS AND DISCUSSION

9.3.1 Laboratory incubation

9.3.2 De-stratification in runoff trays

9.3.3 Possible limitations on the benefits of de-stratification

9.4 CONCLUSIONS

CHAPTER 10 CONCLUSIONS AND INDUSTRY IMPLICATIONS

10.1 SUMMARY OF FINDINGS

10.2 FUTURE RESEARCH

CHAPTER 11 REFERENCES
List of Figures

FIGURE 2-1. Conceptual model of phosphorus (P) transfer ...26
FIGURE 2-2. The phosphorus (P) cycle in the soil-plant continuum ..27
FIGURE 2-3. Schematic representation of the soil/plant system ..29
FIGURE 2-4. Basic components of hillslope hydrology ..37
FIGURE 2-5. Common zones of moisture accumulation in the landscape ..39
FIGURE 2-6. Schematic diagram of changing saturation zones during a rainfall event39
FIGURE 2-7. Relationship between amount of phosphorus desorbed and time and phosphorus amendment levels and solution to soil ratio (W) ...49
FIGURE 3-1. Location of the two study sites in relation to dairying regions of Australia56
FIGURE 3-2. Average monthly rainfall and temperature at Flaxley ..57
FIGURE 3-3. Monthly average rainfall and temperature for Camden ..59
FIGURE 3-4. Rainfall simulator (Flaxley, SA) during calibration phase ...61
FIGURE 3-5. Calibration curves for the rotating disc rainfall simulator ...62
FIGURE 3-6. Apparatus for extracting soil water from moist soil samples ..67
FIGURE 3-7. Calibration data for theta probe ...69
FIGURE 4-1. Runoff plots at Camden showing the runoff collection drain, and the location of the flow measurement and sampling equipment ...74
FIGURE 4-2. Comparison of DRP and TP concentrations in runoff (from large plots) between artificial and natural runoff events (Time 1 – left; Time 2 – right) ...76
FIGURE 4-3. Swinging boom rainfall simulator used at Camden ...77
FIGURE 4-4. Plot arrangement at Camden showing the rainfall simulation plots (SH) nested within the larger (LL) plots (not to scale) ...78
FIGURE 4-5. Runoff hydrographs (averages across all treatments) from LL and SH methods at E1 and E2. Note different y-scales between SH and LL methods ..81
FIGURE 4-6. Relationship between CaCl2-P (0-0.01 M) and DRP in runoff at E1 and E2, (◊ - large-plot, low-intensity - LL; • - small-plot, high-intensity - SH). ...83
FIGURE 4-7. Relationship between adjusted (partial residuals) dissolved reactive phosphorus concentrations in runoff and, a) soil CaCl2-P (0-0.01 M), b) simulation method (LL - large plots - low intensity; SH - small scale - high intensity), and c) event (E1 and E2) ..84
FIGURE 4-8. Concentration of DRP during runoff events E1 and E2 for both LL and SH methods87
FIGURE 5-1. Effect of rainfall intensity on mean DRP concentration in runoff93
FIGURE 5-2. Runoff rates (average of four replicates) for each of the rainfall intensities as a function of time and applied rainfall95
FIGURE 5-3. The relationship between rainfall intensity and average residence time (Tav - ◆) and average depth (Dav - ◆) of runoff on 1 m² plots ..95
FIGURE 5-4. Change in DRP during an event ..97
FIGURE 5-5. Changes in runoff rates (◇) and relative P concentration (●) in runoff (Cp/C0 = concentration at time ‘T’ relative to that at time = 0) after the commencement of runoff for rainfall intensities of 20mm/hr (left) and 150 mm/hr (right) ..98
FIGURE 5-6. The effect of time and suspended sediment (SS) concentration on the concentration of DRP in solution ...100
FIGURE 5-7. Shallow runoff flowing over the soil surface during rainfall simulation illustrating the stability of the soil surface and the protection from raindrop impact afforded by the pasture biomass100
FIGURE 5-9. Relationship between actual (● & solid line) and predicted (◇ & dashed line) average runoff DRP concentration relative (at various intensities) to that at an intensity of 20 mm/hr (i.e. DRP/DRP20) as, A) a function of rainfall intensity, and B) as a function of runoff rate ..108
FIGURE 5-10. Relationship between actual (● & solid line) and predicted (◇ & dashed line) concentration of DRP (under constant hydrological conditions during the last 5 minutes of runoff) relative to that at an intensity of 20 mm/hr (i.e. DRP/DRP20) as, A) a function of rainfall intensity, and B) as a function of runoff rate ..109
FIGURE 5-11. Comparison of the measured and predicted ratios of runoff DRP between the Camden large plot-low intensity (LL) and small plot-high intensity (SH) rainfall simulations110
FIGURE 5-12. Sensitivity analysis of several key combinations of parameters in the model111
FIGURE 6-1. Olsen P (0-0.01 m) map of Flaxley east ..121
List of Tables

Table 2-1. Hydrological processes and approximate timeframes for their occurrence ..38
Table 2-2. Phosphorus transfer from intensive pasture systems by surface and sub-surface pathways...40
Table 3-1. Morphological description of typical soil profile in the mid-slope position at Flaxley .58
Table 3-2. Morphological description of typical soil profile from Camden ...59
Table 4-1. Key chemical characteristics of the runoff plot soil..79
Table 4-2. Major characteristics of river water used in rainfall simulations ..80
Table 4-3. Hydrological characteristics of the SH and LL methods for runoff events E1 and E280
Table 4-4. Model parameter estimates (Eq. 4-3) for runoff P characteristics ...83
Table 5-1. Runoff chemical characteristics for various rainfall intensities ...92
Table 5-2. Summary of key hydrological characteristics at different rainfall intensities94
Table 5-3. Means of loads of runoff P forms as a function of rainfall intensity ...96
Table 6-1. Summary of the hydrological characteristics of the rainfall simulations ...122
Table 6-2. Summary of soil characteristics (0-0.01 M) at sites used for the rainfall simulations. . .123
Table 6-3. Summary of runoff chemical characteristics. ...124
Table 6-4. Comparison of labile soil P (measured as CaCl₂-P) at Olsen P contents of 20, 60 and 100 mg/kg for the Flaxley soils with that of other soils reported in the literature127
Table 7-1. Key properties of the 0-0.01 M soil increments ...144
Table 7-2. Slope and significance of relationship between Olsen P₁₀ and CaCl₂-P for each of the depth increments sampled ..148
Table 7-3. Phosphorus and carbon contents of samples subject to ultrafiltration, ...153
Table 8-1. Summary of key soil sample properties ...165
Table 8-2. Summary of soil P fractions ..166
Table 8-3. ³¹P NMR observability in whole and treated soil fractions measured by spin-counting.172
Firstly I would like to thank my supervisors, Drs David Chittleborough, Jim Cox and David Nash for their guidance and encouragement. Our numerous discussions of the science of P mobilisation and transport and the merits of various approaches to the investigations were greatly appreciated. I am a much better scientist for your contributions.

To all the people that assisted in the laboratory and field I thank you for your advice, assistance and good company. To Colin Rivers (laboratory manager extraordinaire, without whom our laboratories would not function), thanks for your constant good humour and for advice with methods. To Dr Ron Smernik (Dr Chemistry) – thank you very much with your help with the NMR and discussions about soil chemistry – some of your passion for chemistry may well have rubbed off on me! Thanks go to Mark Gepps and Bob Ingram of SARDI who shared many miserable and cold winter days in the field carrying out rainfall simulations. They both provided invaluable assistance and more importantly great company (who knows how much coffee and fruit cake we consumed on those days!). Thank you very much to Nigel Fleming of SARDI for your support and helpful suggestions throughout my PhD. The contribution to spatial mapping by Phil Davies (CSIRO Land and Water) is gratefully acknowledged.

Thanks goes to Dairy Australia and the NSW Department of Primary Industries who provided financial support for my PhD and a conference/study trip to the USA and UK. In particular my thanks go to Dr Tom Davison and Dr Ken Peverill of Dairy Australia who supported my research. I hope my research has made some small contribution to the Australian Dairy Industry and its hard working farmers.

To my fellow students, thanks for the great times! I will take away with me many fond memories of my time spent with you all. To my fellow members of the ‘Prescott Group’ - I’m sure our tongue in cheek lunchtime discussions broadened our vision of the world – I know they shocked other peoples! Special thanks in particular go to Thérèse and Ryan for your friendship, wonderful company and the many discussions we had about science - but more importantly all the other important world issues that we mulled over!
Thanks you to my parents, who have always believed in me. When they read my PhD research proposal they looked a little bewildered but figured I must have been up to something useful – I swear I have! To ‘Granny Jones’ who once described me as ‘a most unlikely academic type’ and chuckled at the prospect of me undertaking a PhD, I took all that as a compliment and know that you meant it to be so. Don’t worry Granny, I don’t think I will ever be a ‘Nutty Professor’.

My greatest thanks though are reserved for my wife Edda. Thank you so very much for your support. You never questioned my need to ‘just duck in’ to the lab on our way somewhere, or just ‘pop out’ to Flaxley – always ‘just for an hour or two’ - when I could have been spending time with you. You encouraged my enthusiasm for my research and never stopped supporting me through the last 3 years. To Edda and our little boy Caleb, you are my inspiration.

I dedicate this thesis to the memory of my late Grandfathers, Raymond ‘The Chief’ Jones and Sir Ivan ‘Gramps’ Dougherty who both believed in environmental stewardship long before it became fashionable. For you both, I hope my research can make some small contribution to a better environment.
Abbreviations

CaCl₂-P – molybdate reactive P in 10 mM calcium chloride soil extracts
CaCl₂-TP – total P in 10 mM calcium chloride soil extracts
CaCl₂-UP – un-reactive P in 10 mM calcium chloride soil extracts
DOC – dissolved organic carbon
DRP – dissolved (<0.45 μm) molybdate reactive P
DUP – dissolved (<0.45 μm) un-reactive P (TDP minus DRP)
EC – electrical conductivity
EPC – equilibrium P concentration
EDI – effective depth of interaction
ICPAES – inductively coupled plasma emission spectroscopy
LLD – lower limit of detection
LSD – least significant difference
NMR – nuclear magnetic resonance
OC – organic carbon
P – phosphorus
Pᵢ – soil inorganic P
Pₒ – soil organic P
SE – standard error
TDP – total dissolved (<0.45 μm) P
TP – total soil P
* – P<0.05 (in statistical analysis and interpretation)
** – P<0.01 (in statistical analysis and interpretation)
*** – P<0.001 (in statistical analysis and interpretation)
Abstract

The application of substantial quantities of phosphorus (P) has been required to increase productivity on many Australian soils. Unfortunately, these applications have often resulted in increased concentrations of P in surface runoff that contributes to excessive algal growth in surface waters and consequently a decline in their quality. The concentrations of P in runoff from intensively managed pastures are often high (1-5 mg/L) and typically at least an order of magnitude higher than water quality targets. Although a substantial amount of research has been devoted to the problem of P accumulation and mobilisation in arable systems (in which P is typically mobilised by the action of raindrop impact and subsequently transported in particulate form), there has been substantially less research in intensively managed pasture systems. Consequently, there is a paucity of knowledge concerning the fundamental processes and factors responsible for P in runoff from these systems and a dearth of truly effective remedial strategies.

In this thesis, the accumulation of P in soil under intensively managed pastures used for dairying and the processes responsible for its mobilisation in surface runoff were investigated. This research was undertaken at two research sites in South-east Australia, i.e. Camden in New South Wales and Flaxley in South Australia.

A number of factors relating to scale and hydrology may influence the processes of P mobilisation and its concentration in runoff. A comparison was made of the forms and concentrations of P in runoff between a typical rainfall simulation methodology and large runoff plots. The effect of rainfall intensity on the forms and concentrations of P was also investigated. The concentrations of P in runoff from small-scale, high-intensity rainfall simulations were on average 33% lower than those from large plots (approximating hillslopes) although the processes of mobilisation (as evidenced by runoff P forms) were similar. Increasing rainfall intensity resulted in decreasing P concentrations, but similar forms of P. It was hypothesised that changes in hydrological characteristics (residence time and depth of runoff) were responsible for the differences in the P concentrations. A model of P mobilisation (incorporating hydrological and P-release characteristics) was developed and shown to successfully predict runoff P concentrations under a range of rainfall intensities. These findings and the subsequent model were used in the successful modelling of landscape-
scale nutrient exports based on rainfall simulation data as part of a separate, but complementary project.

There is anecdotal evidence to suggest that Australian soils are relatively ‘leaky’ in terms of P in runoff compared to soils overseas. Consequently, comparisons of the labile soil P characteristics and soil P-runoff P relationships were made between Australian soils and soils of similar fertility from the USA, UK and New Zealand (using both experimental data and data sourced from the literature). It was concluded that Australian soils leak more P than soils of similar fertility in the USA, UK and New Zealand, although it was beyond the scope of the thesis to make more detailed comparisons between Australian and overseas soils.

The accumulation and mobilisation of P in two soils used for intensive pasture production in Australia were investigated. In intensive pasture systems P accumulated in the shallowest zones of the soil and principally as inorganic P. The concentrations of labile P were 3-5 times higher in the top 0.01 m than in the top 0.1 m. Using a simple model, it was estimated that only the top several mm of soil influence runoff P concentrations. The dominant form of P in runoff was shown to be orthophosphate although in low to moderate fertility soils, dissolved organic P can constitute a substantial proportion of the P in runoff. These results confirm the need to reduce the pool of P available for mobilisation in the immediate topsoil in order to reduce runoff P concentrations.

Because P is stratified, it was hypothesised that one method to reduce the pool of P available for mobilisation is to de-stratify the soil (i.e. mix the topsoil). The effect of this technique on runoff P concentrations was investigated in laboratory and rainfall simulation experiments. These experiments revealed that reductions in runoff P concentrations between 45 and 70% can be achieved by de-stratification of soils under permanent pastures. It was hypothesised that the benefits of de-stratification could be maximised using a combination of information relating to catchment hydrology and the spatial distribution of soil P and that this would result in large reductions in P exports with a relatively small degree of inconvenience to land managers. Given the limited opportunities identified in previous research to reduce P exports in runoff, the strategic utilisation of de-stratification is a potentially important option in water quality management for the dairy industry and warrants further investigation.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in a university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

Components of the research described in this thesis have been published (as listed below). The author acknowledges that copyright of published material contained within this thesis resides with the copyright holders of those works.

Warwick J Dougherty ...

Publications arising from this thesis

