OPTICAL STUDIES OF THE MESOSPHERIC REGION

By

Jonathan Woithe, B.Sc. (Hons)

Thesis

submitted for the degree of

DOCTOR OF PHILOSOPHY

at the

UNIVERSITY OF ADELAIDE

(Department of Physics and Mathematical Physics)

November 2000
Contents

Abstract vii

Originality declaration ix

Acknowledgements xi

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 The earth’s atmosphere . 1

1.2 Motivation and thesis overview . 3

2 Background and Theory 7

2.1 Atmospheric airglow . 7

2.2 Origin of the airglow . 8

2.2.1 OH emission . 9

2.2.2 OI emission . 11

2.3 Atmospheric gravity waves . 12

2.4 Gravity wave effects on the atmosphere 17
CONTENTS

2.4.1 Airglow intensity ... 17
2.4.2 Background winds ... 18

2.5 Previous studies ... 20
 2.5.1 Historical development 20
 2.5.2 Recent gravity wave research 22

3 Equipment ... 27
 3.1 Buckland Park three field photometer 27
 3.1.1 Physical description 27
 3.1.2 Control system .. 30
 3.1.3 Instrument operation 33
 3.1.4 Operational difficulties 35
 3.2 Davis three field photometer 40
 3.2.1 Differences from Buckland Park photometer 40
 3.2.2 Instrument operation 42
 3.3 Buckland Park MF radar 42
 3.3.1 Hardware .. 42
 3.3.2 Software improvements 46
 3.3.3 Spaced antenna operation 47
 3.3.4 Doppler beam steering operation 47
 3.3.5 Operational difficulties 48
 3.4 Davis MF radar ... 50

4 Data processing and analysis 51
 4.1 Photometer data ... 51
 4.1.1 Data preprocessor 52
 4.1.2 Background filter techniques 55
 4.1.2.1 Subtraction of an average background 56
 4.1.2.2 Fourier amplitude filter 57
 4.1.2.3 Fourier phase filter 62
Abstract

A three-field photometer has been employed at the University of Adelaide’s Buckland Park field site to collect optical observations of the 557.7 nm OI and 730 nm OH airglow emissions. Data have been collected on an almost continuous basis since May 1995 through to May 2000, with observations made whenever the moon was not up.

Techniques and analysis procedures have been developed which allow routine extraction of the parameters of gravity waves observed each night. A cross-spectral analysis was performed on processed data from the photometer to identify short period (≤ 3 hours) wave activity on nights where the impact of clouds on the data was minimal. The resulting wave parameters are analysed for seasonal variability and used to build up a climatology of wave parameters over the 5 years of observation. No consistent seasonal variation was observed, although there was a strong eastward preference to the wave’s propagation direction. Implications of this finding are discussed.

A co-located MF radar has been operating in spaced antenna mode providing wind data concurrent with the optical observations for most of the acquisition period. When available the wind data allowed calculation of the intrinsic parameters for waves identified in the optical data. The seasonal variability of these parameters was investigated. An evaluation of energy and momentum fluxes estimated using the method of Swenson & Liu (1998) was carried out. Approximations made in this method were found to be inappropriate for the waves detected by the photometer, and a refined procedure was
therefore developed. This gave more realistic results, although large number of physically unreasonable momentum flux measurements were reported. Possible reasons for these were explored, and the need for further investigations emphasised.

The five year dataset also allowed investigation of the long-term behaviour of the airglow. Both the intensity and variance were analysed using the Lomb-Scargle method across the complete dataset to identify the dominant periods present. Following similar treatment, the MF spaced antenna winds were compared with the optical results; this utilised a complex spectrum extension to the basic Lomb algorithm. Seasonally related periodicities of two years, one year, one half of a year and one third of a year were observed in the optical data, along with a possible signature of a five and a half year period potentially linked to the eleven year solar cycle. The radar data did not have strong signatures of the one third of a year periodicity although the presence of a five and a half year periodicity could not be ruled out. Gravity wave activity, as measured by the optical intensity variance, reached a maximum during autumn with a secondary maximum occurring in spring. The annual variability of the wave spectrum detected by the photometer was also studied which showed a falloff in the wave energy at short periods (less than thirty minutes) during autumn and spring. This suggested that the enhanced wave activity at these times consisted mainly of waves with periods greater than thirty minutes.
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed: dated:

Jonathan Woithe, B.Sc. (Hons)
This thesis is the culmination of four years’ work carried out between 1996 and 2000, and indirectly, all the years of my life preceding it. The teaching afforded by many experiences and people in the years before its commencement and during the candidature have helped in many ways during this PhD. Everyone who has had any part to play in helping me bring this volume to its eventual fruition is to be thanked for their support. In the interests of brevity and to keep the size of this thesis within reasonable limits, I would like to particularly thank the following people (in no particular order):

- my supervisor, Dr Iain Reid, for hours of useful discussions and general guidance over the last four years;

- Dr Bob Vincent, for numerous clarifications and other helpful assistance as the need arose;

- fellow students in the Atmospheric Group during my time here, many of whom have now finished or are about to — Daniel Badger, Steven Grant, Bridget Hobbs, Ali Kazempo, Andrew MacKinnon, Sujata Kovalam, Rupa Vuthaluru and Florian Zink — I would say that together we have managed to remain sane despite the best efforts of the university lifestyle, although others might well disagree;
• Mike Shorthose: for assistance with some electronic aspects of the photometer’s operation, for putting up (and generally agreeing) with my numerous put-downs of a certain computer operating system from Redmond, California;

• Bob Hurn whose help with debugging a variety of photomultiplier faults has been appreciated;

• Authors of Linux-based free software everywhere, including but not limited to Linus Torvalds and the kernel team, the XFree86 guys, Donald Knuth and the \LaTeXe people, Robert Maier of GNU PlotUtils fame and the wxWindows developers: for making it possible to conduct an entire PhD on a stable, dependable computer platform without having to worry about when the next crash will come;

• Dallas Kirby, Lyn Birchby and Carmel Palumbo for being friendly, efficient administration people, of which there are far too few; and

• Malcolm Kirby and Alex Didenko, for checking up on equipment at Buckland Park and carrying out often obscure instructions delivered by the tenuous telephone link, thereby saving me ninety minutes of driving for the sake of a five minute activity.

In addition to the above, special thanks is due to my family: mum and dad for giving me valued opportunities and guidance during my initial years on this planet; my wife Kylie, for love, understanding, companionship, for being willing and able to proof this thesis, and for many other things which could easily fill a second thesis volume if written down; and my brothers Brendan and Adrian, for their special and unique contributions to my life experience. Finally, and most importantly, thanks to God for making me what I am, giving me the abilities I have, and for being my friend and Saviour.

Jonathan Woithe

November 2000
List of Figures

1.1 The earth’s atmosphere .. 2

3.1 Schematic depiction of the Buckland Park three field photometer. ... 28
3.2 Arrangement of filters on the filter wheel 30
3.3 System block diagram of the three field photometer 31
3.4 System flowchart for control of the photometer 34
3.5 Schematic diagram of revised lightning detector 38
3.6 Davis three field photometer field arrangement 41
3.7 The Buckland Park MF antenna array 44

4.1 Data from 2 August 1996 showing a peak of 2 minutes’ duration 53
4.2 Typical performance of the average background subtraction 57
4.3 Detail of data and average background signals 58
4.4 Simulated photometer data used to evaluate filter methods 59
4.5 Typical performance of the Fourier amplitude filter 60
4.6 Performance of the Fourier amplitude filter on uncontaminated data .. 61
4.7 Typical performance of the Fourier phase filter 63
4.8 Performance of the Fourier phase filter on uncontaminated data 64
4.9 Schematic representation of the functionality of the wavelet filter. . . . 67
4.10 Typical performance of wavelet based filter 69
4.11 Response of the wavelet filter to uncontaminated data 70
4.12 Filter performance on contaminated data shown by wavelet transforms 73
4.13 Filter performance on uncontaminated data shown by wavelet transforms 74
4.14 Method of calculating phase velocities given three component velocities 76
4.15 Example of typical Davis photometer data 82
4.16 15 minute averaged 730nm intensity data from 1996 at Davis 83
4.17 Illustration showing estimation method for average 730nm intensity . . 92
4.18 Difference between the alternative methods of amplitude estimation . . 96
4.19 Arrangement of 2D data array used for long-term analysis 98

5.1 Typical uncontaminated photometer timeseries 106
5.2 Effect of cloud on preprocessed photometer time series data 107
5.3 Cloud effects on wavelet-filtered data 108
5.4 Typical phase velocity plot from photometer data 109
5.5 Wavelet-filtered data for a cloudless night 110
5.6 Summary of all observed wave parameters 112
5.7 Summary of historical wave parameters inferred from optical data . . 113
5.8 Composite plot of data shown in figure 5.7 114
5.9 Occurrence histograms of summer gravity wave parameters 117
5.10 Occurrence histograms of autumn gravity wave parameters 118
5.11 Occurrence histograms of winter gravity wave parameters 119
5.12 Occurrence histograms of spring gravity wave parameters 120
5.13 Summary of intrinsic wave parameters from photometer observations . 122
5.14 Histograms of summer gravity wave intrinsic parameters 123
5.15 Histograms of autumn gravity wave intrinsic parameters 124
5.16 Histograms of winter gravity wave intrinsic parameters 125
5.17 Histograms of spring gravity wave intrinsic parameters 126
5.18 Vertical wavelength vs horizontal period for all waves observed 129
5.19 Momentum flux estimations for all identified waves 131
5.20 Polar plot of energy and momentum flux derived from optical data . . 133
5.21 Revised momentum fluxes of waves from the 730nm emission 137
5.22 Revised polar plot of energy and momentum flux from 730nm data . . 138
5.23 Energy and momentum flux greater than 0.1mWm$^{-2}$ and 1m2s$^{-2}$ re-
spectively . 140
5.24 Momentum flux distribution, and average flux within 5km vertical wave-
length bins . 142
5.25 Seasonal variation of zonal and meridional momentum flux components 144
6.1 Overview of 557.7nm intensity data recorded at Buckland Park 148
6.2 Overview of 730nm intensity data recorded at Buckland Park 149
6.3 Three hour averaged 557.7nm intensity data from Buckland Park . . . 152
6.4 Three hour averaged 730nm intensity data from Buckland Park 153
6.5 Normalised Lomb periodogram of 557.7nm OI intensity data 156
6.6 Normalised Lomb periodogram of data with moon-induced gaps present 158
6.7 Normalised Lomb periodogram of data without moon-induced gaps . . 159
6.8 Three hour averaged OI data with fitted harmonic timeseries 162
6.9 Comparison between 10.7cm solar flux and 557.7nm intensity 165
6.10 Normalised Lomb periodogram of 730nm airglow intensity 166
6.11 Variance of 557.7nm photometer data relative to overall mean 167
6.12 Periodogram of 557.7nm variance . 169
6.13 557.7nm variance data relative to daily mean intensities 170
6.14 730nm variance data relative to daily mean intensities 171
6.15 Lomb periodogram of 557.7nm local variance data 172
6.16 Lomb periodogram of 730nm local variance data 173
6.17 Example half-month averaged photometer spectrum 175
6.18 Normalised averaged photometer spectra from Buckland Park 177
6.19 84–88km wind components 179
6.20 92–96km wind components 180
6.21 Lomb periodogram of 84–88km wind components 181
6.22 Lomb periodogram of 92–96km wind components 182
6.23 Eight-day averaged variance of 84–88km wind components 184
6.24 Eight-day averaged variance of 92–96km wind components 185
6.25 Periodogram of MF wind variance between 84km and 88km 187
6.26 Periodogram of MF wind variance between 92km and 96km 188
6.27 Example cross spectrum obtained using the Lomb method 191

A.1 Davis MF radar antenna arrangement 204
List of Tables

5.1 Assignment of months to seasons used in seasonal parameter plots . . . 116
5.2 Number of gravity wave events observed per season 116
5.3 Number of gravity wave events observed per season for which back-
ground wind data (and hence intrinsic parameters) were available. . . . 121

6.1 Cross spectral phases: 557.7nm vs 92km–98km winds 192
6.2 Cross spectral phases: 730nm vs 84km–90km winds 192
6.3 Cross spectral phases: 557.7nm vs 730nm 192