MOLECULAR INTERACTIONS OF LATENT TRANSFORMING GROWTH FACTOR–β BINDING PROTEIN–2 (LTBP–2) WITH FIBRILLINS AND OTHER EXTRACELLULAR MATRIX MACROMOLECULES: LTBP–2 COMPETES WITH LTBP–1 FOR BINDING TO FIBRILLIN–1 SUGGESTING THAT LTBP–2 MAY MODULATE LATENT TGF–β STORAGE

Rena M. Hirani

Discipline of Pathology
School of Medical Sciences, The University of Adelaide, Australia
MOLECULAR INTERACTIONS OF LATENT TRANSFORMING GROWTH FACTOR–β BINDING PROTEIN–2 (LTBP–2) WITH FIBRILLINS AND OTHER EXTRACELLULAR MATRIX MACROMOLECULES:

LTBP–2 COMPETES WITH LTBP–1 FOR BINDING TO FIBRILLIN–1 SUGGESTING THAT LTBP–2 MAY MODULATE LATENT TGF–β STORAGE

Rena M. Hirani

Submitted for the degree of Doctor of Philosophy (PhD) in August, 2006 with permission from the Faculty of Health Sciences, the University of Adelaide.

Supervisors: Dr. Mark A. Gibson
Dr. Eric Hanssen
Prof. Mark Bartold

ACADEMIC DISSERTATION

This work does not, to the best of my knowledge, contain any material previously published or written by another person except where due reference is given in the text and has not been previously presented as a component of any other academic course. This copy of my thesis may be made available by the University of Adelaide library for loan and photocopying.

Rena M. Hirani
August 2006
Acknowledgements

There are many people to thank for the production of this thesis. It has been a long time in the making but I am grateful for the opportunity to complete this challenge. I extend a warm thanks to all my friends (they all know who they are) whom over the many years of my studies have kept me sane and shared all the great memories, pains and traditions of university life with me. I will hold many of you dear for life and sincerely hope that things go well for each and every one of you in all your future endeavours.

I thank the fantastic members, both past and present, of the Gibson lab and the discipline of Pathology who have been fantastic support to me every step of the way. You have all done so much and I have enjoyed every moment spent with you all. I would like to extend special thanks to Eric Hanssen for all his directional and supervisory advice; Betty Reinboth and Mahroo Parsi for their technical support, continual friendships and life-saving chocolate or ice-cream sessions; Emma Moore, Nigel Percy and Fan-Hing Hew for all their support, hard work and dedication during production of some of the recombinant fragments used during these studies and Ted Cleary for the many wonderful conversations and excellent insights he has given me throughout my candidature.

Finally, I would like to thank my principal supervisor, Dr. Mark Gibson for believing in my ability to conduct this PhD despite the many difficulties experienced by the lab during my candidature. I have enjoyed working with you immensely and I have learnt so much during my time in your lab. I thank you for all the fantastic guidance, advice, Friday night beer sessions and English football conversations through the years. I hope you continue to enjoy many more successes following the completion of my PhD.

I am also deeply in debt to my wonderful parents and family who have supported and encouraged me in every way possible. I would not have reached this stage of academia without them. I dedicate this thesis to my family as they have shaped all of my achievements and I cannot hope to pay them back in any way except to hope that the fantastic medical research that is currently conducted within various institutions in the world will help benefit them in every way possible.
Table of contents

Published scientific presentations...7
Awards arising from PhD candidature...8
Abbreviations ...9
List of figures ..11

1 Summary ..14

2 The extracellular matrix (ECM) and its components16
 2.1 Elastic fibres ...18
 2.1.1 Amorphous Elastin ...18
 2.1.2 Microfibrils ..19
 2.1.3 Fibrillins ...21
 2.2 Heritable connective tissue disorders linked to fibrillin function27
 2.2.1 Marfan Syndrome (MFS) and Congenital Contractural Arachnodactyly (CCA) ..27
 2.2.2 Homocystinuria ..31
 2.2.3 Weill-Marchesani Syndrome (WMS) ...32
 2.3 Other microfibril associated components ...32
 2.3.1 Microfibril-Associated Glycoproteins (MAGPs)33
 2.3.2 Small Microfibril-Associated Proteins (MFAPs)34
 2.3.3 Proteoglycans ...35
 2.3.4 Fibulins ..37
 2.3.5 Miscellaneous Proteins ...38
 2.4 LTBP-2 ..45

3 Aims of the present study ..49

4 Materials and methods ..51
 4.1 General molecular biology protocols ..51
 4.1.1 Reverse-Transcription-Polymerase Chain Reaction (RT-PCR)51
 4.1.2 Polymerase Chain Reaction (PCR) ...51
 4.1.3 Agarose Gel Electrophoresis and DNA Purification52
 4.1.4 “A”-tailing and Ligation ...52
 4.1.5 Transformation of Competent Cells ...52
 4.1.6 DNA Sequence Analysis ...53
 4.1.7 Restriction Digests ..54
 4.1.8 Dephosphorylation ...54
 4.1.9 Quikchange Mutagenesis ..54
 4.1.10 Gateway® Cloning ...54
 4.2 Cloning of human LTBP and Fibrillin cDNA sequences55
 4.3 Expression and purification of recombinant polypeptides58
 4.4 SDS-PAGE and western immunoblot analysis62
 4.5 Mass spectrometric analysis ...64
 4.6 Collagens and other matrix macromolecules65
 4.7 Protein digestions ..65
 4.8 Antibodies ..65
 4.9 Radiolabelling of recombinant polypeptides67
 4.10 ELISAs ..67
4.11 Solid phase binding assays...68
4.12 Competitive solid phase binding assays...69
4.13 Tissue sectioning and immunofluorescence.....................................70

5 Binding interactions of human LTBP-2 with human fibrillin proteins........71
 5.1 Expression and purification of recombinant human extracellular matrix
 macromolecules...72
 5.1.1 Recombinant Human Full-length LTBP-2.................................72
 5.1.2 Human Recombinant Fibrillin Fragments.................................77
 5.1.3 Antibody Detection of Recombinant LTBP-2 and Fibrillins..........79
 5.2 The analysis of LTBP-2 interactions with fibrillins..........................82
 5.2.1 Solid Phase Binding Studies...82
 5.2.2 LTBP-2 Interacts with the N-terminal Region of Fibrillin-1........85
 5.2.3 The Interaction Between LTBP-2 and Fibrillin-1 is Cation Dependent..90
 5.2.4 Kinetic Analysis Between LTBP-2 and Fibrillin-1....................91

6 The C-terminal region of LTBP-2 contains the interacting domains for fibrillin-1.95
 6.1 Expression and purification of the C-terminal region of LTBP-2 [LTBP-2CT(H)]..95
 6.1.1 Digestion of LTBP-2CT(H) with the Enterokinase Enzyme........97
 6.2 The C-terminal region of LTBP-2 contains the major binding site for fibrillin-1...99
 6.2.1 Kinetic Analysis Between LTBP-2CT(H) and Fibrillin-1.............102

7 LTBP-2 competes with LTBP-1 for binding to fibrillin-1.........................103
 7.1 Expression and purification of the recombinant C-terminal region of LTBP-1
 [LTBP-1CT(H)]..103
 7.1.1 LTBP-1CT(H) Antibodies...106
 7.2 LTBP-1 and LTBP-2 compete for binding to fibrillin-1.......................109
 7.2.1 LTBP-1CT(H) Interacts with the N-terminal Region of Fibrillin-1...109
 7.2.2 Kinetic Analysis of the Interaction Between LTBP-1 and Fibrillin-1..109
 7.2.3 LTBP-1 and LTBP-2 Compete for Binding to Fibrillin-1............113

8 Immunohistochemical analysis of human foetal aorta indicates LTBP-2 has a distinct but
 partially overlapping distribution with LTBP-1....................................115
 8.1 LTBP-2 has a distinct but partially overlapping tissue-localisation pattern from that
 of LTBP-1..115
 8.1.1 Analysis of Bovine Tissues...115
 8.1.2 Analysis of Foetal Human Aorta...118

9 Analysis of interactions between LTBP-2 and other extracellular matrix macromolecules...126
 9.1 LTBP-2 and MAGPs..126
 9.2 LTBP-2 and laminin, proteoglycans, fibronectin and tropoelastin........129
 9.3 LTBP-2 and collagens..131

10 LTBP-2 interactions with a crude salt-fractionated pepsin-collagen-IV preparation....132
 10.1 r-LTBP-2 interactions with bovine collagen-IV enriched pepsin extract....132
 10.1.1 The Interaction Between r-LTBP-2 and the Crude Bovine Collagen-IV
 Preparation is not Ca^{2+} Ion Dependant................................132
 10.1.2 Mass Spectrometric Analysis of the Interacting Protein Within the Crude
 Collagen-IV Preparation...135
Published Scientific Presentations

Poster and Oral presentation

2004. Matrix Biology Society of Australia and New Zealand (MBSANZ) annual scientific meeting, Perth, Western Australia.

Hirani, Rena M, Hanssen, Eric, Hew, Fan-Hing and Gibson, Mark

Binding studies of recombinant human LTBP-2 with elastic fibre components

Poster presentation

Rena Hirani, Eric Hanssen and Mark A. Gibson

LTBP-2 competes with LTBP-1 for interaction with fibrillin-1

2005.- Matrix Biology Society of Australia and New Zealand (MBSANZ) annual scientific meeting, Victor Harbor, South Australia

Rena Hirani, Eric Hanssen and Mark A. Gibson

LTBP-2 competes with LTBP-1 for interaction with fibrillin-1

2004. The Australian Society for Medical Research (AMSR) annual scientific meeting, South Australian Division, Adelaide

Rena Hirani, Eric Hanssen, Fan-Hing Hew and Mark A. Gibson

Binding studies of recombinant human LTBP-2 with elastic fibre components

2003. The Australian Society for Medical Research (AMSR) national scientific conference, Glenelg, South Australia

Rena Hirani, Eric Hanssen, Fan-Hing Hew and Mark A. Gibson

Mammalian expression of recombinant human LTBP-2 and specific binding to the N-terminal region of Fibrillin-1

2003. Matrix Biology Society of Australia and New Zealand (MBSANZ) annual scientific meeting, Acheron, Victoria, Australia

Rihani, RM, Hanssen, E and Gibson, MA

Mammalian expression of recombinant human LTBP-2
Awards arising from PhD candidature

2005/06 - **Student representative** for the Matrix Biology Society of Australia and New Zealand

2005 - **Dennis Lowther award** (student poster prize 2005) awarded by the Matrix Biology Society for Australia and New Zealand in Victor Harbor, South Australia

2005 - **Travel Stipend** awarded by the Faculty of Health Sciences, the University of Adelaide to attend the Gordon Research Conference on Elastin and Elastic Fibres in New Hampshire, USA

2005 - **Research Abroad Scholarship** awarded by the University of Adelaide to attend the Gordon Research Conference on Elastin and Elastic Fibres in New Hampshire, USA

2004/05 - **Local organising committee** for the 2005 Matrix Biology Society of Australia and New Zealand (MBSANZ) South Australian meeting held in Victor Harbour

2004 - **Travel award** awarded by the Sydney Tissue Engineering and Matrix (STEAM) organisation, New South Wales, Australia to attend the Matrix Biology Society of Australia and New Zealand (MBSANZ) annual meeting in Perth
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-</td>
<td>alpha</td>
</tr>
<tr>
<td>β-</td>
<td>beta</td>
</tr>
<tr>
<td>Δ-</td>
<td>heat-deactivated (56°C) or (in the case of DNA constructs) has meaning “with removal of”</td>
</tr>
<tr>
<td>8-Cys</td>
<td>8-cysteine containing motif, also known as TB (TGF-β binding protein like) domain and CR (cysteine-rich) domain</td>
</tr>
<tr>
<td>BCIP-</td>
<td>5-bromo-4-chloro-3-indolylphosphate toluidine salt</td>
</tr>
<tr>
<td>βIG-H3-</td>
<td>β-inducible gene-H3</td>
</tr>
<tr>
<td>BSA-</td>
<td>bovine albumin serum</td>
</tr>
<tr>
<td>BMPs-</td>
<td>bone morphogenetic proteins</td>
</tr>
<tr>
<td>C-</td>
<td>carboxy-terminus</td>
</tr>
<tr>
<td>Ca²⁺-</td>
<td>calcium ions</td>
</tr>
<tr>
<td>CaCl₂-</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>cbEGF-</td>
<td>calcium-binding epidermal growth factor-like</td>
</tr>
<tr>
<td>CCA-</td>
<td>Congenital Contractural Arachnodactyly</td>
</tr>
<tr>
<td>cDNA-</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>Da-</td>
<td>Dalton</td>
</tr>
<tr>
<td>ddH₂O-</td>
<td>double distilled water</td>
</tr>
<tr>
<td>DMEM-</td>
<td>Dulbecco’s Modification of Eagles Medium</td>
</tr>
<tr>
<td>DMSO-</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA-</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>E-</td>
<td>embryonic day</td>
</tr>
<tr>
<td>ECM-</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA-</td>
<td>ethylenediaminetetraacetic acid (disodium salt)</td>
</tr>
<tr>
<td>EGF-</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EK-</td>
<td>enterokinase enzyme</td>
</tr>
<tr>
<td>ELISA-</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMILIN-</td>
<td>elastin-microfibril interface located protein</td>
</tr>
<tr>
<td>FBN-</td>
<td>fibrillin</td>
</tr>
<tr>
<td>FCS-</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>GAG-</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>GDFs-</td>
<td>growth and differentiation factors</td>
</tr>
<tr>
<td>HCl-</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HEK-</td>
<td>human embryonic kidney</td>
</tr>
<tr>
<td>his₆-tag-</td>
<td>6-histidine tag</td>
</tr>
<tr>
<td>hrs-</td>
<td>hours</td>
</tr>
<tr>
<td>IPTG-</td>
<td>Isopropyl β-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>kb-</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa-</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>LAP-</td>
<td>latency-associated protein</td>
</tr>
<tr>
<td>LLC-</td>
<td>large latent complex</td>
</tr>
<tr>
<td>LTBP-</td>
<td>latent TGF-β binding protein</td>
</tr>
<tr>
<td>m-</td>
<td>mouse</td>
</tr>
<tr>
<td>mRNA-</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MAGP-</td>
<td>microfibril-associated glycoprotein</td>
</tr>
<tr>
<td>MFAP-</td>
<td>small microfibril-associated protein</td>
</tr>
<tr>
<td>MFS-</td>
<td>Marfan syndrome</td>
</tr>
<tr>
<td>MMP-</td>
<td>matrix metalloprotease</td>
</tr>
<tr>
<td>N-</td>
<td>amino-terminus</td>
</tr>
<tr>
<td>NaCl-</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NBCS-</td>
<td>new born calf serum</td>
</tr>
<tr>
<td>NBT-</td>
<td>nitro-blue tetrazolium chloride</td>
</tr>
<tr>
<td>NEAA-</td>
<td>non-essential amino acids</td>
</tr>
<tr>
<td>Ni-</td>
<td>nickel</td>
</tr>
<tr>
<td>nm-</td>
<td>nanometers</td>
</tr>
<tr>
<td>NRS-</td>
<td>normal rabbit serum</td>
</tr>
<tr>
<td>OCT-</td>
<td>optimal cutting temperature compound</td>
</tr>
</tbody>
</table>
OMIM- online Mendelian inheritance in man
PBS- phosphate-buffered saline
PCR- polymerase chain reaction
PO4- phosphate buffer
PVDF- polyvinylidene difluoride
r- recombinant
rb- rabbit
RGD- arginine-glycine-aspartic acid motif
RNA- ribonucleic acid
RT-PCR- reverse transcriptase-polymerase chain reaction
SCID- severe combined immune deficiency
SDS- sodium dodecylsulphate
SDS-PAGE- sodium dodecylsulphate-polyacrylamide gel electrophoresis
SLC- small latent complex
TGFβRI or II- TGF-β type I and II receptors
TB- TGF-β binding protein like domain, also known as 8-Cys (8-cysteine containing) motif and CR (cysteine-rich) domain
TBS- tris-buffered saline
TGF-β- transforming growth factor-β
TMB- tetramethylbenezidine substrate
TTX- tris/tween-20/triton X-100 buffer
U- unit(s)
UTR- untranslated region
V- volts
v/v- volume for volume
w/v- weight for volume
WMS- Weill-Marchesani Syndrome
x- times
X-Gal- 5-bromo-4-chloro-3-indolylbeta-D-galactopyranoside
List of figures

Figure 2.1 Electron micrograph of elastic fibre structure ...18
Figure 2.2 Schematic representation of the model for the formation of elastic fibres20
Figure 2.3 Elastin free microfibrils present within the zonular apparatus of the eye ...21
Figure 2.4 Electron micrograph image of a fibrillin-containing microfibril after rotary shadowing ...22
Figure 2.5 Schematic representation of domain modules found in fibrillin23
Figure 2.6 Diagrammatic representation of fibrillin calcium binding EGF-like domains ...24
Figure 2.7 Diagrammatic representation of the 8-Cys domains found exclusively in fibrillin and LTBP's ..25
Figure 2.8 Examples of Marfan syndrome phenotypes27
Figure 2.9 An example of Ectopia lentis ...28
Figure 2.10 Examples of patients affected by the connective tissue disorder, congenital contractural arachnodactyly (CCA) ...31
Figure 2.11 Ribbon diagram of mature TGF-β homodimer40
Figure 2.12 Schematic representation of the large latent complex41
Figure 2.13 Schematic representation of the LTBP and fibrillin superfamily42

Figure 5.1 Schematic representation of the r-LTBP-2 expression vector and expressed recombinant protein ...74
Figure 5.2 Analysis of the purified r-LTBP-2 from cells cultured in DMEM and Excell 293 serum-free medium ...74
Figure 5.3 Confirmation of the identity of the purified r-LTBP-2 protein76
Figure 5.4 r-LTBP-2 has authentic post-translational modifications76
Figure 5.5 Schematic representation of recombinant fibrillin fragments78
Figure 5.6 Recombinant fibrillin fragments analysed using SDS-PAGE78
Figure 5.7 ELISA to show r-LTBP-2 was detectable using anti-[tetrahis] antibody80
Figure 5.8 ELISA to show the minimum amount of r-LTBP-2 detectable with a 1:200 dilution of the anti-[tetrahis] antibody ..80
Figure 5.9 ELISA to screen for cross-reactivity of the anti-[tetrahis] antibody with collagens ..81
Figure 5.10 ELISA to screen for cross-reactivity of anti-[LTBP-2 peptide] antibody, FLP-E, with extracellular matrix macromolecules81
Figure 5.11 ELISA to determine the sensitivity of the polyclonal anti-[LTBP-2 peptide] antibody, LTBP-2C ...83
Figure 5.12 ELISA to determine cross-reactivity of anti-[LTBP-2 peptide] specific antibody, LTBP-2C with decorin, biglycan and collagen-IV83
Figure 5.13 ELISA to test for cross-reactivity of anti-[LTBP-2 peptide] antibody, LTBP-2C with fibrillins, collagens and a range of other extracellular matrix macromolecules ...84
Figure 5.14 ELISA to determine reactivity of antibody Fib1A with fibrillins-1 and –2 and LTBP's ...84
Figure 5.15 Solid phase binding assay showing milk solution gives lowest background binding of r-LTBP-2 to the plastic wells86
Figure 5.16 Solid phase binding assay showing tween-20 and collagen-I do not block background binding of r-LTBP-2 to the plastic86
Figure 5.17 Solid phase binding assay showing 5% (w/v) diploma brand milk solution gives optimal blocking ..87
Figure 5.18 Solid phase binding assay showing that the 125I-labelled N-terminal recombinant fragment of fibrillin-1 [Fib1(H)NT] interacts with r-LTBP-288
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19</td>
<td>Solid phase binding assay showing 35S-labelled r-LTBP-2 interacts exclusively with Fib1(H)NT.</td>
</tr>
<tr>
<td>5.20</td>
<td>Solid phase binding assay to show the interaction between r-LTBP-2 and unlabelled Fib1(H)NT can be detected using anti-[fibrillin-1] antibody, MAB2502.</td>
</tr>
<tr>
<td>5.21</td>
<td>Overlay immunoblot to confirm interaction between r-LTBP-2 and Fib1(H)NT.</td>
</tr>
<tr>
<td>5.22</td>
<td>Solid phase binding assay showing that the interaction between r-LTBP-2 and Fib1(H)NT is marginally enhanced by the presence of 2mM Ca$^{2+}$ ions and abolished in the presence of EDTA.</td>
</tr>
<tr>
<td>5.23</td>
<td>r-LTBP-2 is insoluble in low salt, low pH buffer solutions.</td>
</tr>
<tr>
<td>5.24</td>
<td>Saturation curve for determining the K_d value for the interaction of Fib1(H)NT with LTBP-2.</td>
</tr>
<tr>
<td>6.1</td>
<td>Schematic representation of the r-LTBP-2CT(H) expression construct and the encoded recombinant LTBP-2CT(H) fragment.</td>
</tr>
<tr>
<td>6.2</td>
<td>PCR amplification of a cDNA encoding for r-LTBP-2CT(H) and analysis of purified recombinant protein.</td>
</tr>
<tr>
<td>6.3</td>
<td>Digestion of purified r-LTBP-2CT(H) with enterokinase.</td>
</tr>
<tr>
<td>6.4</td>
<td>The C-terminal region of r-LTBP-2 interacts with the N-terminal region of fibrillin-1 but not fibrillin-2.</td>
</tr>
<tr>
<td>6.5</td>
<td>The interaction of r-LTBP-2CT(H) with Fib1(H)NT is proportional to the amount of solid phase ligand.</td>
</tr>
<tr>
<td>6.6</td>
<td>The C-terminal region of LTBP-2 contains a binding site(s) for fibrillin-1.</td>
</tr>
<tr>
<td>6.7</td>
<td>The C-terminal region of r-LTBP-2 contains the only major binding site for fibrillin-1.</td>
</tr>
<tr>
<td>6.8</td>
<td>Binding curve for determining K_d values for the interaction of fibrillin-1 with LTBP-2CT(H).</td>
</tr>
<tr>
<td>7.1</td>
<td>Schematic representation of the LTBP-1CT(H) expression construct and expressed recombinant fragment r-LTBP-1CT(H).</td>
</tr>
<tr>
<td>7.2</td>
<td>PCR amplification of the cDNA encoding the C-terminal region of LTBP-1 and analysis of the purified recombinant protein fragment.</td>
</tr>
<tr>
<td>7.3</td>
<td>Digestion of the purified r-LTBP-1CT(H) with enterokinase.</td>
</tr>
<tr>
<td>7.4</td>
<td>ELISA to determine the titre of the anti-LTBP-1 antibody, MAB388.</td>
</tr>
<tr>
<td>7.5</td>
<td>ELISA to determine the minimum amount of r-LTBP-1CT(H) detectable with a 1:6000 dilution of the anti-[LTBP-1] specific antibody, MAB388.</td>
</tr>
<tr>
<td>7.6</td>
<td>ELISA to screen antibody MAB388 for cross-reactivity with a range of extracellular molecules.</td>
</tr>
<tr>
<td>7.7</td>
<td>ELISA to determine cross-reactivity of r-LTBP-1CT(H) with a range of antibodies raised to detect other extracellular matrix macromolecules.</td>
</tr>
<tr>
<td>7.8</td>
<td>r-LTBP-1CT(H) interacts specifically with Fib1(H)NT.</td>
</tr>
<tr>
<td>7.9</td>
<td>r-LTBP-1CT(H) does not interact with the N-terminal region of fibrillin-2.</td>
</tr>
<tr>
<td>7.10</td>
<td>Binding curve for determining K_d values for the interaction of fibrillin-1 with LTBP-1.</td>
</tr>
<tr>
<td>7.11</td>
<td>r-LTBP-1CT(H) and r-LTBP-2CT(H) compete for binding to Fib1(H)NT.</td>
</tr>
<tr>
<td>7.12</td>
<td>r-LTBP-1CT(H), r-LTBP-2 and r-LTBP-2CT(H) do not interact with each other.</td>
</tr>
<tr>
<td>7.13</td>
<td>Competition inhibition curves for the LTBP-1CT(H) and LTBP-2CT(H) interactions with fibrillin-1.</td>
</tr>
</tbody>
</table>
Figure 8.1 Fibrillin-1 and LTBP-2 co-localise on elastic fibres in bovine nuchal ligament...116
Figure 8.2 Fibrillin-1 and LTBP-2 localisation within foetal bovine kidney.................................117
Figure 8.3 Fibrillin-1 and LTBP-2 staining within foetal bovine aorta.................................119
Figure 8.4 Distributions of LTBP-1 and LTBP-2 staining within human foetal aorta.........................121
Figure 8.5 The distinct localisation of LTBP-1 and LTBP-2 within the adventitial and medial layers of human foetal aorta...122
Figure 8.6 LTBP-1 and LTBP-2 have minimal co-localisation within the intimal and medial layers of human foetal aorta...123

Figure 9.1 Solid phase binding assay to determine possible interactions between r-LTBP-2 and tissue-extracted MAGP-1...127
Figure 9.2 Solid phase binding assays showing r-LTBP-2 does not interact with MAGP-1...127
Figure 9.3 Solid phase binding assay to test for potential interactions between r-LTBP-2 and tissue-extracted MAGP-2...128
Figure 9.4 Solid phase binding assay showing r-LTBP-2 does not interact with MAGP-2...128
Figure 9.5 Solid phase binding assay showing r-LTBP-2 does not interact with laminin...129
Figure 9.6 Solid phase binding assay showing r-LTBP-2 does not interact with biglycan or decorin...130
Figure 9.7 Solid phase binding assay showing r-LTBP-2 does not interact with tropoelastin or fibronectin...130
Figure 9.8 r-LTBP-2 interacts with a crude bovine collagen-IV preparation.................................131

Figure 10.1 Solid phase binding assay to show that the interaction between r-LTBP-2 and the crude bovine collagen-IV preparation is concentration dependant...133
Figure 10.2 r-LTBP-2CT(H) does not interact with the crude bovine collagen-IV preparation...133
Figure 10.3 The interaction between r-LTBP-2 and the crude bovine collagen-IV preparation is not dependant on the presence of calcium ions...134
Figure 10.4 Overlay western blot to identify the r-LTBP-2 interactive bands of the crude collagen-IV preparation...134
Figure 10.5 Comparison of the protein bands present between the crude collagen-IV and the commercial human placenta collagen-IV preparations...136
Figure 10.6 r-LTBP-2 does not interact with the commercial human placenta collagen-IV preparation...136
Figure 10.7 Analysis of the commercial native human placenta collagen-IV preparation following pepsin-digestion...137
Figure 10.8 r-LTBP-2 does not interact with the commercial human placenta collagen-IV preparation that has been pepsin-treated...137
Figure 10.9 Proteins within the crude bovine collagen-IV preparation immunoreacts with anti-[fibrillin-1] antibody...139
Figure 10.10 r-LTBP-2 interacts with the crude bovine collagen-IV preparation after blocking with anti-[fibrillin-1 peptide] antibody, Fib1A...141
Figure 10.11 Proteins within the crude bovine collagen-IV preparation form a complex with r-LTBP-2...141
Figure 10.12 Silver stained gel of complexes between the crude bovine collagen-IV preparation and r-LTBP-2...142