Amphibian Neuropeptides: Isolation, Sequence Determination and Bioactivity

A Thesis submitted for the Degree of Doctor of Philosophy in the Department of Chemistry

by

Vita Marie Maselli B.Sc. (Hons)

July 2006

Contents

Abst	ract		viii
State	ement of	fOriginality	X
	nowledg		xi
List	of Figur	es	xii
List	of Table	2S	XV
The	20 Com	mon Amino Acids	xvi
Chaj	pter 1- A	Amphibians and their Peptides	1
1.1	Amp	hibian Peptides	1
	1.1a	Amphibians	1
	1.1b	The Role of Anuran Peptides	2
1.2	The Pharmacology of Peptides		4
	1.2a	Neuropeptides	5
	1.2b	Hormonal Peptides	7
	1.2c	Antibacterial Peptides	8
	1.2d	Anticancer Agents	9
	1.2e	Antifungal Peptides	9
	1.2f	Antimalarial Peptides	9
	1.2g	Pheromones	10
	1.2h	Miscellaneous Peptides	10
1.3	Pepti	de Biosynthesis	11
1.4	Meth	odology	12
	1.4a	Collection of Frog Secretions	12
	1.4b	Analysis by High Performance Liquid Chromatography	13
	1.4c	Mass Spectrometry	14
	1.4d	Q-TOF 2 Hybrid Quadrupole Time of Flight Mass Spectrometer	15

1.5	Pepti	de Sequencing	18
	1.5a	Positive and Negative Ion Mass Spectrometry	18
	1.5b	Automated Edman Sequencing	21
	1.5c	Enzyme Digestion	22
	1.5d	Determination of the C-terminal End Group	23
1.6	Bioac	tivity Testing	24

Chapter 2- Studies of Skin Secretions from the Crinia genus

2.1	Intro	luction	25
	2.1a	General	25
	2.1b	Cyclic Peptides	29
2.2	Host-l	Defence Compounds from Crinia riparia	30
	2.2a	Results	30
		2.2.1a Isolation and Sequence Determination of Active Components	30
		2.2.2a The Riparin 1 Neuropeptides	32
		2.2.3a Riparin 2.1	40
		2.2.4a Signiferin 3.1	42
		2.2.5a Riparin 5.1	43
	2.2b	Discussion	44
2.3	Host-l	Defence Compounds from Crinia deserticola	47
	2.3a	Results	47
	2.3.1a	Isolation and Sequence Determination of Peptides	47
	2.3.2a	Signiferin 1	48
	2.3.3a	Deserticolin 4.1	51
	2.3b	Discussion	52
2.4	Concl	usion	53
2.5	Exper	imental	55
	2.5a	Collection and Preparation of Secretions	55
	2.5b	Separation of Glandular Secretions by HPLC	56

2.5c	Analysis by Mass Spectrometry	56
2.5d	Automated Edman Sequencing	56
2.5e	Determination of the C-terminal End Group	57
2.5f	Enzyme Digestion using Lys-C	57
2.5g	Preparation of Synthetic Peptides	58
2.5h	Antibacterial Testing	58
2.5i	Anticancer Testing	58
2.5j	Neuronal Nitric Oxide Synthase Inhibition Testing	58
2.5k	Smooth Muscle Contraction Assay	59
2.51	Lymphocyte Proliferation Assay	59

Chapter 3- Peptides from *Litoria dentata*

3.1	Intro	duction	60
3.2	Resu	lts	64
	3.2a	Isolation of Active Peptides	64
	3.2b	Sequence Determination of Peptides	66
	3.2c	Tryptophyllin L 1.3	66
	3.2d	Dentatins 1	68
	3.2e	Dentatins 2	70
	3.2f	Dentatin 3.1	72
3.3	Discu	ission	73
3.4	Experimental		74
	3.4a	Collection of Secretions	74
	3.4b	Separation of Secretions by HPLC	74
	3.4c	Analysis by Mass Spectrometry	75
	3.4d	Automated Edman Sequencing	75
	3.4e	Determination of the C-terminal End Group	75
	3.4f	Preparation of Synthetic Peptides	75
	3.4g	Smooth Muscle Contraction Assay	75

Chapter 4- Antimalarial Activity of Anuran Peptides

4.1	Intro	duction	76
	4.1a	General	76
	4.1b	The Malaria Parasite	78
4.2	Antin	nalarial Peptides	81
	4.2a	Classical Malarial Drugs	81
	4.2b	Anuran Antimalarial Compounds	84
4.3	Resul	lts	88
	4.3a	Antimalarial Activity of Peptides against Plasmodium falciparum	88
	4.3b	Haemolytic Activity versus Antimalarial Activity	89
	4.3c	Dissipation of the Parasite Plasma Membrane Potential	90
	4.3d	D- versus L- isomers	91
4.4	Discu	ission	92
4.5	Expe	rimental	95
	4.5a	Isolation and Synthesis of Peptides	95
	4.5b	Determination of Haemolytic Potential	95
	4.5c	Determination of Antimalarial Activity by IC ₅₀	95
	4.5d	Peptide-Mediated Dissipation of the Parasite Membrane Potential	96
4.6	Gloss	ary	97

Chapter 5- Amphibian Neuropeptides

5.1	Introduction		
	5.1a	General	98
	5.1b	Bombesins and Litorins	99
	5.1c	Caeruleins	101
	5.1d	Tachykinins	101
	5.1e	Bradykinins	103
	5.1f	Tryptophyllins	103

	5.1g	Dermorphins and Deltorphins	104
	5.1h	Miscellaneous Neuropeptides	106
5.2	Imm	unomodulatory Peptides	107
	5.2a	General	107
	5.2b	Immunomodulators and T Cell Activation	109
5.3	Chole	ecystokinin	111
	5.3a	General	111
	5.3b	Cholecystokinin Receptors	112
	5.3c	Peptide-Receptor Interactions	115
5.4	The I	Rothein Peptides	117
	5.4a	Introduction	117
	5.4b	Results	119
		5.4.1b Contraction Studies	120
		5.4.2b Lymphocyte Proliferation Studies	125
	5.4c	Discussion	127
5.5	The I	Bioactivities of Disulfide Neuropeptides from Crinia	131
	5.5a	Introduction	131
	5.5b	Results	134
		5.5.1b Contraction Studies	134
		5.5.2b Lymphocyte Proliferation Studies	136
	5.5c	Discussion	138
5.6	Conc	lusion	140
5.7	Expe	rimental	141
	5.7a	Smooth Muscle Contraction Assay	141
	5.7b	Lymphocyte Proliferation Assay	142

Chapter 6- Eugenin- a Marsupial Neuropeptide

6.1	Intro	oduction	144
	6.1a	Marsupials and their Defence System	144
	6.1b	Tammar Wallaby	146
6.2	Euge	enin	147
	6.2a	Isolation and Sequence Analysis	147
	6.2b	Neuropeptide Activity	147
6.3	Resu	lts	149
	6.3a	Contraction Studies	149
	6.3b	Lymphocyte Proliferation Studies	151
6.4	Discu	ission	153
6.5	Experimental		156
	6.5a	Collection of Pouch Material	156
	6.5b	Separation of Material by HPLC	156
	6.5c	Contraction Studies	156
	6.5d	Lymphocyte Proliferation Assay	156
Sum	mary ar	nd Future Directions	157
Refe	rences		159
Publ	ications	5	183

Abstract

The skin extracts from amphibians have been investigated for over fifty years and have been found to contain numerous components with therapeutic and medicinal uses. Host-defence compounds are secreted onto the dorsal surface of the animal from specialised granular glands in response to a variety of stimuli, such as stress induced by a predator. Isolated peptides can exhibit either pharmacological properties or antibiotic activity.

Previous studies isolated a potent hypotensive neuropeptide, crinia angiotensin II, within skin secretions of the Australian frog *Crinia georgiana*. This prompted further investigations into the isolation and sequence determination of host-defence compounds from other species in this genus- *C. signifera*, *C. riparia* and *C. deserticola*. Fifteen novel peptides were identified. The major peptide components were potent disulfide containing neuropeptides of a type not observed in other Australian anurans that have been previously investigated. The remaining peptides demonstrate either antibiotic activity or inhibit the enzyme neuronal nitric oxide synthase.

The skin components from anurans of the *Litoria* genus have been extensively studied, with a number of peptides exhibiting both antibacterial and pharmacological activity. The skin secretion of *Litoria dentata* has been investigated, with five novel peptides identified. The neuropeptide tryptophyllin L 1.3 was previously isolated from the related frog *L. rubella*. Other components that are unique in structure have not yet been tested for biological activity.

The parasitic disease malaria is responsible for over one million deaths per year. The increase in resistance of current antimalarial compounds has led to the development of new treatments from various animal-derived peptide antimicrobials. A number of amphibian peptides and their derivatives were investigated as potential antiplasmodial agents against the malaria parasite *Plasmodium falciparum*. Results indicate that these compounds inhibit parasite growth with minimal haemolytic activity, making them promising tools for malaria research.

The defence chemistry of amphibian neuropeptides has been extensively studied and is important in understanding both the ecology and physiology of the vertebrate. Neuropeptides are classified into groups with similar structural characteristics. Biological activity occurs via interaction with a G protein-coupled receptor. The most studied of all amphibian neuropeptides is caerulein, which has a similar spectrum of activity to the mammalian peptide cholecystokinin. This includes smooth muscle contraction that occurs via interaction with cholecystokinin receptors.

The pharmacological activity of Australian anuran neuropeptides from various genera was investigated. Two biological assays were conducted- a smooth muscle contraction test and a lymphocyte proliferation assay. A range of neuropeptides contracted smooth muscle at nanomolar concentrations, while others only proliferated lymphocytes. Some peptides were inactive in both assays.

Young marsupials are born at an immature stage of development and rely on immune protection provided by the mother. Eugenin is a host-defence compound isolated from pouch secretions of the Tammar wallaby. The immunomodulator activates CCK_2 receptors, resulting in lymphocyte proliferation. Therefore, eugenin stimulates immune cells in the pouch providing vital immune protection for pouch young.

Statement of Originality

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, to be available for loan and photocopying.

Vita Marie Maselli

Date

Acknowledgements

I would like to thank my supervisor, Professor John H. Bowie, for allowing me the opportunity to undertake a Ph.D. and conduct research in such an interesting and diverse field. I have enjoyed the experience and gained immensely from it.

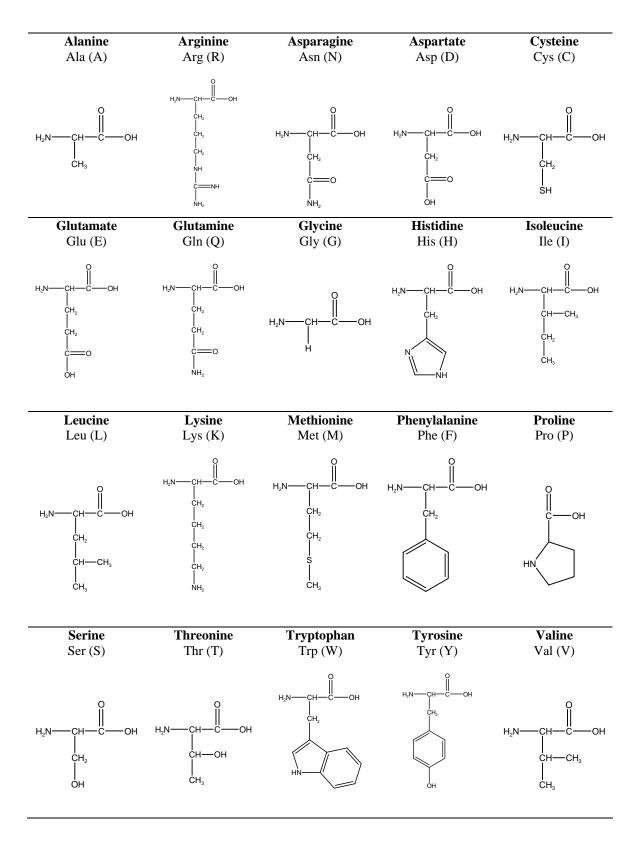
Special thanks to Dr. Ian F. Musgrave, from the Department of Experimental and Clinical Pharmacology, University of Adelaide, for his assistance with the pharmacological aspects of this work. Thank you for donating your time.

In addition, I would like to thank Associate Professor Michael J. Tyler, from the Department of Environmental Biology, University of Adelaide, for providing frog specimens and skin secretions, and Dr. Leanne Tilley (Department of Biochemistry, La Trobe University) for her assistance with antimalarial tests.

Many thanks to both past and present members of the Bowie research group, especially those who assisted in the preliminary stages of my research in teaching me the required technical skills.

Special thanks to my family and friends for all the support and encouragement they have given me over this time. It has been greatly appreciated. Finally, I would like to thank my partner Chris. First, a big thanks for joining me on my frog hunt expeditions and collecting a record number of frogs. Thank you for your continual interest in my research, and for providing the much needed laughs and positive outlook when I lost focus. But most importantly, thank you for your love and belief in me.

List of Figures


1.1	The biosynthetic pathway of peptides	11
1.2	(a) 'milking' <i>L. caerulea</i> for skin secretions using the SES method and (b) the crude material	
	collected	13
1.3	Schematic diagram of the Q-TOF 2 mass spectrometer	15
1.4	The mechanism of electrospray ionisation	16
1.5	The B and Y+2 fragmentation ions formed in the positive ion mode	19
1.6	The α and β fragmentation ions formed in the negative ion mode	20
1.7	The mechanism for the formation of the δ and γ fragmentation ions formed from Asp	21
1.8	Enzyme digestion of peptides using Lys-C	22
1.9	Methylation of peptides to determine the C-terminal end group	23
2.1	Crinia signifera	26
2.2	The distribution of Crinia signifera	26
2.3	Crinia riparia	27
2.4	The distribution of Crinia riparia	27
2.5	Crinia deserticola	28
2.6	The distribution of Crinia deserticola	28
2.7	HPLC chromatogram of the glandular secretion from Crinia riparia	30
2.8	Mass spectrum (MS/MS) of the MH ⁺ parent ion of riparin 1.1	33
2.9	Mass spectrum (MS/MS/MS) of the $[(M-H)^{-} - (H_2S_2 + CO_2)]^{-}$ fragment anion of riparin 1.1.	
	C^* is NHC(=CH ₂)CO	34
2.10	Mass spectrum (MS/MS) of the MH ⁺ parent ion of riparin 1.3	36
2.11	Mass spectrum (MS/MS/MS) of the $[(M-H)^{-} - (H_2S_2 + CO_2 + MeCHO)]^{-}$ fragment anion of	
	riparin 1.3. C* is NHC(=CH ₂)CO	37
2.12	Positive ion mass spectrum (MS/MS) of riparin 2.1	40
2.13	The Edmundson wheel projection of riparin 2.1	45
2.14	HPLC chromatogram of the glandular component from Crinia deserticola	47
2.15	Mass spectrum (MS/MS) of the MH ⁺ cation of signiferin 1	49
2.16	Mass spectrum (MS/MS) of the (M-H) ⁻ anion of signiferin 1. C* is NHC(=CH ₂ CO)	50
2.17	Positive ion mass spectrum (MS/MS) of deserticolin 4.1	51
2.18	The Edmundson wheel projection of deserticolin 4.1	52
3.1	Litoria dentata	60
3.2	The distribution of <i>Litoria dentata</i>	60

3.3	Litoria rubella	61
3.4	Litoria electrica	61
3.5	HPLC chromatogram of the glandular secretion from Litoria dentata	65
3.6	Mass spectrum (MS/MS) of the MH^+ parent ion of tryptophyllin L 1.3	67
3.7	Positive ion mass spectrum (MS/MS) of dentatin 1.1	69
3.8	Positive ion mass spectrum (MS/MS) of dentatin 2.1	71
4.1	The distribution of malaria, which is predominant in tropical and subtropical areas	76
4.2	The molecular structure of chloroquine	77
4.3	A female Anopheles mosquito feeding on the human host	78
4.4	The life cycle of the malaria parasite	80
4.5	Two commonly used antimalarial drugs- (a) quinine and (b) proguanil	81
4.6	The action of antimalarial peptides on the parasite feeding process in the infected erythrocyte	83
4.7	The (a) normal discoid shape of the host erythrocyte and (b) an infected erythrocyte with the	
	appearance of knobs on the membrane	84
4.8	The solution structure of citropin 1.1 illustrating a well-defined amphipathic α -helical structure	86
4.9	The solution structure of caerin 1.1 illustrating two amphipathic helices separated by a flexible	
	hinge region	87
4.10	Antiplasmodial activity of anuran peptides. Caerin 1.1 and caerin 1.8 are the most active, whilst	
	aurein 3.2 and citropin 1.1 show little antimalarial activity	89
4.11	Haemolytic activity of amphibian peptides	90
4.12	Dissipation of the membrane potential by relative fluorescence	91
5.1	The proposed analgaesic pathway. Endogenous opiates bind to opiate receptors to suppress the	
	release of neurotransmitters like substance P, thereby blocking the transmission of pain impulses	
	to the brain	105
5.2	The three lines of defence involved in the immune system	108
5.3	Activation of CCK ₂ receptors induces lymphocyte proliferation	109
5.4	The (a) CCK_1 receptor and (b) CCK_2 receptor shown as snake diagrams	113
5.5	Diagram of a muscarinic nerve/smooth muscle interaction in the ileum. CCK peptides cause	
	smooth muscle contraction by direct interaction of CCK_1 receptors on smooth muscle and	
	indirectly by activation of CCK2 receptors on muscarinic nerve terminals, with subsequent	
	release of acetylcholine (Ach)	114
5.6	The CCK ₂ receptor antagonist LY-288,513	115
5.7	The seven transmembrane α -helix structure of a G protein-coupled receptor	116
5.8	Litoria rothii	115
5.9	The structure of rothein 1	118
5.10	(a) Individual trace illustrating the contraction of ileum produced by acetylcholine, and	
	(b) concentration-response curve to acetylcholine in guinea-pig ileum	120

5.11	Individual traces of guinea-pig ileum contraction to (a) CCK-8 and (b) CCK-8-NS, and	
	(c) CCK-8 and CCK-8-NS concentration-response curves	121
5.12	The bimodal response of rothein peptides- (a) individual trace of rothein peptide displaying the	
	"rebound response", (b) concentration-response curves of rothein peptides, and (c)	
	contraction of ileal segments produced by rothein peptides during the "rebound response"	123
5.13	Guinea-pig ileum contraction produced by rothein 1 and rothein 1.4 in the presence and absence	
	of the CCK ₂ receptor antagonist LY	124
5.14	CCK-8 and CCK-8-NS concentration-response curves in mouse splenocytes	125
5.15	Rothein concentration-response curves in mouse lymphocytes	126
5.16	The stimulatory and inhibitory effects of peptides on smooth muscle	128
5.17	The structure of tigerinin 3	131
5.18	The structures of (a) signiferin 1 and (b) riparin 1.1	133
5.19	Concentration-response curves of signiferin 1 in the presence and absence of LY, in comparison	
	with CCK-8 and CCK-8-NS	135
5.20	Riparin 1.1 and riparin 1.2 concentration-response curves in mouse lymphocytes	137
6.1	The developmental changes of the marsupial young in the pouch	144
6.2	Tammar wallaby	146
6.3	The distribution of Macropus eugenii	146
6.4	CCK-8, CCK-8-NS and eugenin concentration-response curves in guinea-pig ileum	149
6.5	The effect of atropine on contractions produced by CCK-8 and eugenin in guinea-pig ileum	150
6.6	CCK-8 and CCK-8-NS concentration-response curves in mouse splenocytes	151
6.7	Eugenin and eugenin-NS concentration-response curves in mouse splenocytes	152

List of Tables

2.1	Name, sequence and activity of major peptides identified from Crinia signifera	26
2.2	A selection of cyclic peptides and their activities	29
2.3	Name, sequence and activity of major peptides identified from Crinia riparia	31
2.4	Mass spectral data for riparin 1 peptides isolated from Crinia riparia	38
2.5	Sequence data of riparin 2.1	41
2.6	Sequence data of signiferin 3.1	42
2.7	Sequence data of riparin 5.1	43
2.8	Name, sequence and activity of major peptides isolated from Crinia deserticola	48
3.1	Tryptophyllin L peptides isolated from Litoria species	62
3.2	Name, sequence and activity of major peptides isolated from Litoria dentata	65
3.3	Sequence data of dentatin 1.2	68
3.4	Sequence data of dentatin 2.2	70
3.5	Sequence data of dentatin 3.1	72
4.1	The four categories of antimalarial compounds and their effect on the life cycle of the	
	malaria parasite	82
4.2	The antimalarial activity of dermaseptin S4 and some derivatives	85
4.3	A selection of peptides isolated from the Litoria genus that exhibit a range of activities	86
4.4	Anuran peptides and modifications tested for antimalarial activity	88
5.1	Smooth muscle contraction activities of bombesin and litorin type neuropeptides	100
5.2	Smooth muscle contraction activities of a selection of tachykinin peptides	102
5.3	Smooth muscle contraction activities of a selection of bradykinin neuropeptides	103
5.4	Smooth muscle contraction activities of a selection of tryptophyllins	104
5.5	Opioid activities of dermorphin and deltorphin neuropeptides	105
5.6	Activities of miscellaneous neuropeptides	106
5.7	Sequences of rothein 1 and rothein 1 synthetic modification peptides	119
5.8	Smooth muscle contraction activities of rothein peptides	122
5.9	Lymphocyte proliferation activities of rothein peptides	126
5.10	A selection of disulfide peptides and their activities isolated from the Rana genus	132
5.11	Disulfide-containing peptides tested for pharmacological activity	134

The 20 Common Amino Acids