Ecology and management of weeds under no-till in southern Australia

Bhagirath Singh Chauhan
B.Sc. Agriculture (Hons.), M.Sc. (Agronomy)

This thesis is presented for the degree of
Doctorate of Philosophy
of the
University of Adelaide

Discipline of Agricultural and Animal Science
The University of Adelaide, Roseworthy Campus
South Australia
2006
Table of Contents

Title page i
Table of contents ii
Abstract viii
Declaration x
Acknowledgements xi

Chapter 1. General introduction
1.1 Background to the study 1
1.2 References 4

Chapter 2. Review of literature
2.1 Abstract 6
2.2 Introduction 7
2.3 Tillage system effects on weed ecology 9
2.3.1 Weed seed bank 9
2.3.2 Weed emergence 12
2.3.2.1 Direct effects of tillage 12
2.3.2.2 Light effects 16
2.3.2.3 Seed coat effects 18
2.4 Tillage system effects on herbicide activity and persistence 19
2.4.1 Herbicide activity 19
2.4.2 Herbicide persistence 21
2.5 Conclusions 24
2.6 References 26

Chapter 3. Factors affecting seed germination and seedling emergence of six Australian weed species
3.1 Introduction 39
3.2 Materials and methods 44
3.2.1 Seed description 44
3.2.2 Germination tests 45
3.2.3 Effect of temperature, light and seed age on germination

3.2.4 Effect of scarification and leaching on germination

3.2.5 Effect of germination media, KNO$_3$ and GA$_3$ on germination

3.2.6 Effect of seed size on germination of threehorn bedstraw

3.2.7 Effect of cold stratification on germination

3.2.8 Effect of salt and osmotic stress on germination

3.2.9 Effect of age and depth on the fate of seed

3.2.10 Effect of seed burial depth on seedling emergence

3.2.11 Effect of tillage systems on seedling emergence patterns

3.2.12 Statistical analyses

3.3 Results and discussion

3.3.1 Effects of temperature, light and seed age on germination

3.3.1.1 Threehorn bedstraw

3.3.1.2 Common sowthistle

3.3.1.3 Wild turnip

3.3.1.4 Indian hedge mustard

3.3.1.5 Small-flowered mallow

3.3.2 Effect of scarification and leaching on germination

3.3.3 Effect of germination media, KNO$_3$ and GA$_3$ on germination

3.3.3.1 Threehorn bedstraw

3.3.3.2 Wild turnip

3.3.3.3 Indian hedge mustard

3.3.3.4 Small-flowered mallow

3.3.4 Effect of seed size on germination of threehorn bedstraw

3.3.5 Effect of cold stratification on germination

3.3.5.1 Threehorn bedstraw

3.3.5.2 Small-flowered mallow

3.3.6 Effect of salt and osmotic stress on germination

3.3.6.1 Salt stress

3.3.6.2 Osmotic stress

3.3.7 Effect of age and depth on the fate of seed
Chapter 4. Seedling emergence pattern and depth of emergence of several weed species in minimum tillage and no-till seeding systems

4.1 Abstract
4.2 Introduction
4.3 Materials and methods
 4.3.1 Site description and source of seed
 4.3.2 Seedling emergence patterns and depth of emergence
 4.3.3 Statistical analyses
4.4 Results and discussion
 4.4.1 Seedling emergence patterns and depth of grass weeds
 4.4.1.1 Annual ryegrass
 4.4.1.2 Silvergrass
 4.4.1.3 Wild oat
 4.4.2 Seedling emergence patterns and emergence depth of broadleaf weeds
 4.4.2.1 Threehorn bedstraw
Chapter 7. Influence of timing and dose of S-metolachlor on annual ryegrass control in wheat

7.1 Abstract 202
7.2 Introduction 202
7.3 Materials and methods 204
7.3.1 Field experiment 204
7.3.2 Bioavailability of S-metolachlor 205
7.3.3 Emergence and growth of annual ryegrass 206
7.3.4 Growth and grain yield of wheat 206
7.3.5 Statistical analyses 207
7.4 Results and discussion 208
7.4.1 Bioavailability of S-metolachlor 208
7.4.2 Emergence and growth of annual ryegrass 210
7.4.3 Growth and grain yield of wheat 212
7.5 Conclusions 221
7.6 References 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Tillage effects on weed ecology</td>
<td>223</td>
</tr>
<tr>
<td>8.2 Tillage effects on herbicide activity</td>
<td>227</td>
</tr>
<tr>
<td>8.3 Future research</td>
<td>228</td>
</tr>
<tr>
<td>8.4 References</td>
<td>229</td>
</tr>
</tbody>
</table>
Abstract

No-till systems have been widely adopted by farmers in Australia over the past decade to reduce soil erosion, improve soil physical and chemical properties, conserve soil moisture and save on fuel costs. These changes in tillage practices can have a major influence on the ecology and management of weeds. Studies were undertaken on the seed biology of six important Australian weed species to provide underpinning knowledge of their response to tillage. Field studies were also undertaken to investigate the effect of no-till on weed seedling emergence, seed bank persistence and herbicide behaviour.

Seed germination of threehorn bedstraw and wild turnip, the latter only at sub-optimal temperatures, was inhibited by light. In contrast, seed germination of common sowthistle and Indian hedge mustard was stimulated by light. Seed germination of small-flowered mallow was not influenced by the light conditions. Seedling emergence of threehorn bedstraw, wild turnip, small-flowered mallow and annual ryegrass was low on the soil surface but increased with shallow burial, which suggests that farming practices that achieve shallow burial of seeds are likely to promote greater seedling emergence of these weed species. In contrast, seedling emergence of common sowthistle and Indian hedge mustard was greatest for the seeds present on the soil surface and emergence decreased with increased burial depth.

In field experiments, low soil disturbance tillage systems left more seeds on the soil surface after crop sowing, whereas high soil disturbance systems buried most of the seeds. Seedling emergence of annual ryegrass, threehorn bedstraw and wild radish was greater under minimum tillage than no-till system. In contrast, seedling emergence of Indian hedge mustard, common sowthistle, silvergrass, small-flowered mallow and turnipweed was greater under the no-till system. Seedling emergence of wild oat and wild turnip was not influenced by the tillage system. Even though seedling emergence of annual ryegrass was much lower under no-till, the persistence of residual viable seeds of annual ryegrass from one season to the next was similar between the tillage systems. This was because of much greater seed decay under no-till (48 to 60%) than that recorded under minimum tillage (12 to 39%).
All dinitroaniline herbicides (trifluralin, pendimethalin and oryzalin) were more effective in reducing the number of plants, spikes, dry matter and seed production of annual ryegrass when incorporated at sowing with tines than with the discs. At Minlaton in 2004 and 2005, bioavailable trifluralin was greater under tillage systems with greater levels of soil disturbance than under lower soil disturbance systems. In the absence of the herbicide, annual ryegrass was less competitive with wheat under the disc-sown systems. The response of grain yield to herbicides was greater under the tine-sown systems than the disc-sown systems.

The performance of S-metolachlor on annual ryegrass control was investigated under no-till. The control of annual ryegrass was greater than 80% when S-metolachlor was applied at sowing (incorporated by sowing or post-sowing pre-emergence). However, application of the herbicide at sowing resulted in phytotoxic effects on crop emergence and grain yield of wheat. Application of S-metolachlor at 20 or 23 days before sowing not only provided effective control (74 to 83%) of annual ryegrass, it was also safe on wheat. Application of this herbicide at 40 or 46 days before sowing was relatively ineffective in controlling annual ryegrass (33 to 49% weed kill) but safe on wheat.

In conclusion, soil disturbance caused by tillage was found to have a major influence on the behaviour of the seed bank of different species including seedling emergence and decay rates of weed seeds. However, the response to tillage tended to be species-specific and was related to their seed biology. Tillage systems also had a major influence on the efficacy and bioavailability of trifluralin, which is prone to volatilisation losses. The findings of this research program are expected to contribute to the improvement in weed management under no-till systems.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the university libraries, being available for photocopying and loan.

Bhagirath Singh Chauhan

Date:
Acknowledgements

A PhD thesis does not happen without the assistance of many people. I am grateful to my supervisors- Dr Gurjeet Gill and Dr Christopher Preston. The past three and a half years of developing this perspective would not have been possible without my supervisors who, with their patience and red pen, have opened my eyes to the nature of real research and the art of written expression.

The cooperation extended to me by the staff and students of the Discipline of Agricultural and Animal Science are greatly appreciated.

Financial support in the form of a John Allwright Fellowship by the ACIAR (Australian Centre for International Agricultural Research) is thankfully acknowledged.

My deepest gratitude goes to my parents (Mr Jaibir and Mrs Kaushlaya) and brothers (Dilawar and RajKumar) who were a constant source of inspiration to me for the entire duration of this project. Finally I wish to express my utmost appreciation and special thanks to my wife Neetu, for her profound understanding and to my son Vivek and daughter Varsha. Without these people’s resolute support and encouragement, the task may never have been completed.