Calibration of Numerical Models with Application to Groundwater Flow in the Willunga Basin, South Australia

Paul Edward Rasser

Thesis submitted for the degree of
Master of Science
in
Applied Mathematics
at
Adelaide University
(Faculty of Engineering, Computer and Mathematical Sciences)

Department of Applied Mathematics

June 1, 2001
Contents

Abstract x

Signed Statement xi

Acknowledgements xii

1 Introduction 1

2 Mathematical Description of Groundwater Flow 5
 2.1 Groundwater flow equation 5
 2.2 z-directional averaging ... 5
 2.3 Methods of Solution ... 7
 2.4 Numerical Solution ... 7

3 Calibration of Numerical Models 11
 3.1 Introduction .. 11
 3.1.1 Trial and error .. 11
 3.1.2 Direct methods ... 12
 3.1.3 Indirect methods .. 13
 3.2 Response functions and calibration 18
 3.3 Comparison of indirect methods 21
 3.3.1 Results .. 23
 3.4 Application to idealised steady-state groundwater model 25
 3.4.1 Results .. 26
 3.4.2 Further considerations 27
 3.5 Application to idealised transient groundwater flow model 28
 3.5.1 Results .. 29
 3.6 Summary ... 29
List of Tables

3.1 Results from the simple one-parameter model with two recorded (known) values and with $L = 0.1$, showing the estimated parameter values using (a) linear least squares, (b) non-linear least squares and (c) the response function method. ... 23

3.2 Results from the simple one-parameter model with two recorded (known) values and with $L = 1.0$, showing the estimated parameter values using (a) linear least squares, (b) non-linear least squares and (c) the response function method. ... 24

3.3 Results from the simple one-parameter model with two recorded (known) values and with $L = 10.0$, showing the estimated parameter values using (a) linear least squares, (b) non-linear least squares and (c) the response function method. ... 24

3.4 Results from the Segerlind model with 11 recorded (known) values, showing the estimated values for T_y and T_x using (a) linear least squares, (b) non-linear least squares and (c) the response function method. 27

3.5 Results from the Sun model [24] with 30 recorded (known) values over 10 times, showing the estimated values for S and T of Zone 1 and T of Zone 2. In this case a linear relationship has been assumed, so that the linear least squares, non-linear least squares and the response function method are equivalent. ... 30

5.1 Values for the transmissivity parameters T_y and T_x for each of the aquifers and the leakage PWF-MS L between the Port Willunga Formation and the Maskin Sands aquifers after calibration using the method of trial and error. ... 52
5.2 Values for the transmissivity parameter T_y and T_x for each of the aquifers and the leakance PWF-MS L between the Port Willunga Formation and the Maslin Sands aquifers after calibration using the response function method. 55

5.3 Values for the storativity parameter S for the Port Willunga Formation (PWF), the Maslin Sands aquifer (MS), and the Basement aquifer (B) after calibration using the response function method. 59
List of Figures

1.1 *Schematic representation of the flow of groundwater from the higher pressure* \(h_1 \) *to the lower pressure* \(h_2 \). .. 1

1.2 *Diagram of the effect on the water table in an aquifer resulting from extraction (mAHD = metres above head datum).* 2

2.1 *The finite-difference grid for every time step.* 8

2.2 *Two finite-difference grids showing (a) the transmissivity in the y-direction, \(T_{i,j,k,1} \) and (b) the transmissivity in the x-direction, \(T_{i,j,k,2} \).* 9

3.1 *Diagram of model output and approximate response function.* 19

3.2 *Diagram of the idealised model of the steady-state aquifer of Segerlind [23].* 25

3.3 *Diagram of the finite-difference grid used to model the idealised steady-state aquifer of Segerlind [23].* ... 26

3.4 *Diagram of the finite-difference grid used to model the idealised confined aquifer from Sun [24].* ... 29

4.1 *Location map of the Willunga Basin, South Australia.* 31

4.2 *Hydrographs of observation wells WLG051 and WLG067 from the Willunga Basin showing declining piezometric heads over the period 1988–1998.* . 32

4.3 (a) *The location of observation wells along the line AB used to develop (b) the cross-sectional view of stratigraphy of the Willunga Basin along the line AB. (c) The location of observation wells along the line CD used to develop (d) the cross-sectional view of stratigraphy of the Willunga Basin along the line CD. The well log for WLG010 had no details beyond land elevation.* .. 34

4.4 *Location of observation wells for the Port Willunga Formation aquifer.* . 35
4.5 (a) The spatial location of the observation wells for the Port Willunga aquifer relative to the line AB. (b) 1-dimensional view of piezometric head in the Port Willunga aquifer as of 14/8/1995 projected onto the line AB. ... 36

4.6 Hydrographs of observation wells WLG013, WLG049, WLG086 and WLG101 of the Port Willunga Formation aquifer showing the inconsistency in piezometric head of WLG013 with the other nearby wells. 37

4.7 Location of observation wells for the Maslin Sands aquifer. 38

4.8 (a) The spatial location of the observation wells for the Maslin Sands aquifer relative to the line AB. (b) 1-dimensional view of piezometric head in the Maslin Sands aquifer as of 14/8/1995 projected onto the line AB. ... 39

4.9 Hydrographs of observation wells WLG038 and WLG096 of the Maslin Sands aquifer. ... 39

4.10 Hydrographs of observation wells WLG023 and WLG092 of the Maslin Sands aquifer showing the declining piezometric head over the last decade. 40

4.11 Location of observation wells for the Basement aquifer. 41

4.12 (a) The spatial location of the observation wells for the Basement aquifer relative to the line AB. (b) 1-dimensional view of piezometric head in the Basement aquifer as of 14/8/1995 projected onto the line AB. 41

4.13 Hydrographs of observation wells KTP007 within the Basement aquifer and WLG079 within the Maslin Sands aquifer. 42

4.14 Hydrographs of observation wells WLG017 and WLG095 within the Basement aquifer. ... 42

4.15 Hydrographs of observation wells WLG005 and WLG024 within the Basement aquifer showing the declining piezometric head. 43

4.16 Location of production wells in the Willunga Basin for the 1995–1996 season [30]. ... 44

4.17 Yield (kL/yr) and location of production wells in the Willunga Basin for the 1995–1996 season [30]. ... 45

5.1 The finite–difference grid applied to the Willunga Basin. 46

5.2 The finite–difference grid boundaries of the Port Willunga Formation aquifer. ... 47
5.3 The finite-difference grid boundaries of the Maslin Sands aquifer.

5.4 Hydrograph of observation well KTP006 from the Maslin Sands aquifer.

5.5 The finite-difference grid boundaries of the Basement aquifer.

5.6 Hydrographs of observation wells KTP004 and KTP005 of the Basement aquifer.

5.7 A comparison between the observed and modelled piezometric head on 14/8/1995 for (a) the Port Willunga Formation aquifer, (b) the Maslin Sands aquifer and (c) the Basement aquifer along the line AB (see Figure 4.5), after calibration using the method of trial and error.

5.8 A comparison between the observed and modelled piezometric head on 14/8/1995 for (a) the Port Willunga Formation aquifer, (b) the Maslin Sands aquifer and (c) the Basement aquifer along the line AB (see Figure 4.5) from applying the response function method.

5.9 The grid points representing rainfall infiltration for the Port Willunga Formation, Maslin Sands and Basement aquifers.

5.10 Modelled location of production wells for the year 1995–1996.

5.11 Location of the observation wells used for the validation of the forward model using the parameter values estimated by the response function method.

5.12 The modelled and observed standing water levels at observation wells (a) WLG069 and (b) well WLG019 for the Port Willunga Formation aquifer.

5.13 The modelled and observed standing water levels at observation wells (a) WLG023 and (b) well WLG097 for the Maslin Sands aquifer.

5.14 The modelled and observed standing water levels at observation wells (a) WLG077 and (b) well WLG081 for the Basement aquifer.

6.1 The modelled piezometric head at observation wells (a) WLG069 and (b) WLG019 for the Port Willunga Formation aquifer, (c) WLG023 and (d) WLG097 for the Maslin Sands aquifer and (e) WLG077 and (f) WLG081 for the Basement aquifer using an annual extraction rate of 6915 ML/yr.

6.2 The modelled piezometric head at observation wells (a) WLG069 and (b) WLG019 for the Port Willunga Formation aquifer, (c) WLG023 and (d) WLG097 for the Maslin Sands aquifer and (e) WLG017 and (f) WLG081 for the Basement aquifer using an annual extraction rate of 5700 ML/year.
6.3 The modelled piezometric head at observation wells (a) WLG069 and (b) WLG019 for the Port Willunga Formation aquifer, (c) WLG023 and (d) WLG097 for the Maslin Sands aquifer and (e) WLG017 and (f) WLG081 for the Basement aquifer using an annual extraction rate of 610 ML/year.
Abstract

The process of calibrating a numerical model is examined in this thesis with an application to the flow of groundwater in the Willunga Basin in South Australia. The calibration process involves estimating unknown parameters of the numerical model so that the output obtained from the model is comparable with data that is observed in the field.

Three methods for calibrating numerical models are discussed, these being the steepest descent method, the nonlinear least squares method, and a new method called the response function method. The response function method uses the functional relationship between the model’s output and the unknown parameters to determine improved estimates for the unknown parameters. The functional relationships are based on analytic solutions to simplified model problems or from previous experience.

The three calibration methods are compared using a simple function involving one parameter, an idealised steady state model of groundwater flow and an idealised transient model of groundwater flow. The comparison shows that the response function method produces accurate estimates in the least amount of iterations.

A numerical model of groundwater flow in the Willunga Basin in South Australia has been developed and the response function method used to estimated the unknown parameters for this model. The model of the Willunga Basin has been used to examine the sustainable yield of groundwater from the basin. The effect on groundwater levels in the basin using current and estimated extraction rates from the literature for sustainable yield has been examined.

The response function method has also been used to estimate the rate of extraction to return the groundwater levels at a specific location to a desirable level.
Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: DATE:
Acknowledgements

I thank my supervisor, Dr Michael Teubner for his support, enthusiasm and guidance throughout this work.