A Switching Black-Scholes Model and Option Pricing

THE UNIVERSITY OF ADELAIDE

Department of Applied Mathematics

Melanie Webb

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
April 2003
Contents

Abstract vii
Signed Statement viii
Acknowledgements ix
Notation and Conventions x

1 Introduction 1
 1.1 Introduction to some Financial Concepts 2
 1.2 History and Motivation 6
 1.3 Regime Switching Literature Overview 9
 1.4 Outline of the Thesis 11

2 The Switching Black–Scholes Model 14
 2.1 Description of the Market 15
 2.1.1 The Riskless Asset 16
 2.1.2 The Hidden Markov Chain 16
 2.1.3 The Risky Asset 17
 2.1.4 Information in the Market 18
 2.2 Density Functions Associated with the Switching Black–Scholes Model 19
 2.3 Expectations Associated with the Model 23
7 Numerical Studies of the Option Pricing Methodologies

7.1 Comparison of Call Option Prices

7.1.1 Parameter Specification and Call Option Prices

7.1.2 Interpretation of the Results

7.2 Black-Scholes Implied Volatility Smiles

8 Estimation for the Switching Black–Scholes Model

8.1 Preliminaries

8.1.1 Asset Price and Observation Models

8.1.2 State Process Dynamics

8.1.3 Reference Probability

8.2 Estimation of the Market State

8.2.1 Filtered Estimate

8.2.2 Robust Filtered Estimate

8.2.3 Smoothed Estimate

8.2.4 Time-Discretised Filter and Smoother

8.3 Estimation of the Transition Matrix and Volatility Vector

9 Conclusion and Future Directions
List of Tables

7.1 Mean-variance, Esscher, minimum entropy and Black-Scholes prices for the call option discussed in Section 7.1.1, when the initial asset price is 90. .. 130

7.2 Mean-variance, Esscher, minimum entropy and Black-Scholes prices for the call option discussed in Section 7.1.1, when the initial asset price is 100. .. 131

7.3 Mean-variance, Esscher, minimum entropy and Black-Scholes prices for the call option discussed in Section 7.1.1, when the initial asset price is 110. .. 131

7.4 Mean-variance prices of a call option on an asset following the Switching Black–Scholes model with 2 possible states, for various transition matrices. Here, A_{11} is the probability of remaining in state 1, and A_{22} is the probability of remaining in state 2. 134
List of Figures

7.1 Implied volatilities obtained using the mean-variance pricing method, for varying strike prices and transition matrices. Here, the initial market state was taken to be 1, and the other parameters were as discussed in Section 7.2. .. 139

7.2 Implied volatilities obtained using the mean-variance pricing method, for varying strike prices and transition matrices. Here, the initial market state was taken to be 2, and the other parameters were as discussed in Section 7.2. .. 140

7.3 Implied volatilities obtained using the mean-variance pricing method, for varying strike prices and transition matrices. Here, the initial market state was taken to be 3, and the other parameters were as discussed in Section 7.2. .. 141

7.4 Implied volatilities obtained using the mean-variance pricing method, for varying strike prices and initial states. Here, transition matrix 3 was used, and the other parameters were as discussed in Section 7.2. .. 142

7.5 Implied volatilities obtained using the mean-variance pricing method, for varying strike prices and times to expiry. Here, transition matrix 3 and initial state 1 were used, and the other parameters were as discussed in Section 7.2. .. 143
7.6 Implied volatilities obtained using the Esscher pricing method, for varying strike prices and transition matrices. Here, the initial market state was taken to be 1, and the other parameters were as discussed in Section 7.2.

7.7 Implied volatilities obtained using the minimum entropy pricing method, for varying strike prices and transition matrices. Here, the initial market state was taken to be 1, and the other parameters were as discussed in Section 7.2.
Abstract

Derivative pricing, and in particular the pricing of options, is an important area of current research in financial mathematics. Experts debate on the best method of pricing and the most appropriate model of a price process to use. In this thesis, a “Switching Black-Scholes” model of a price process is proposed. This model is based on the standard geometric Brownian motion (or Black-Scholes) model of a price process. However, the drift and volatility parameters are permitted to vary between a finite number of possible values at known times, according to the state of a hidden Markov chain. This type of model has been found to replicate the Black-Scholes implied volatility smiles observed in the market, and produce option prices which are closer to market values than those obtained from the traditional Black-Scholes formula.

As the Markov chain incorporates a second source of uncertainty into the Black-Scholes model, the Switching Black–Scholes market is incomplete, and no unique option pricing methodology exists. In this thesis, we apply the methods of mean-variance hedging, Esscher transforms and minimum entropy in order to price options on assets which evolve according to the Switching Black-Scholes model. C programs to compute these prices are given, and some particular numerical examples are examined. Finally, filtering techniques and reference probability methods are applied to find estimates of the model parameters and state of the hidden Markov chain.
Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I given consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed: Date:
Acknowledgements

The research contained within this thesis has been produced with the assistance of many friends and associates. First and foremost, I would like to acknowledge and thank my supervisor, Dr John van der Hoek, who introduced me to financial mathematics and guided my postgraduate studies. He also provided a wealth of information at all stages during my PhD.

Secondly, I would like to express my appreciation to Dr Paul Malcolm (DSTO Edinburgh) for his interest in my studies and well-being, and for his general assistance. I would also like to acknowledge the contributions of Paul, and Professor Robert Elliott (University of Calgary, Canada), in the collaborative work leading to Chapter 8 of this thesis.

In addition, I am thankful to Dr Liz Cousins, Dr Peter Gill and Mrs Dianne Parish for their general advice, Nathaniel Jewell for his help with C programming, Yolanda del Valle, Nicole Bailey and Maria Peter for their proofreading and support, and my fellow postgraduates, Maria Lobo and Tony Scoleri, for their companionship.

Finally, I would like to express my gratitude to my friend, Sanjeev Arulampalam, for his support and encouragement over the last year.
Notation and Conventions

The following notation and conventions are used throughout this thesis.

General Financial and Probabilistic Concepts:

- (Ω, \mathcal{F}, P): a probability space
- $(\mathcal{F}_n)_{n=0,1,\ldots,N}$: a filtration of the σ-algebra, \mathcal{F}
- Q: a martingale measure
- $E^Q [\cdot]$: expectation with respect to the measure Q
- $Q \ll P$: the measure Q is absolutely continuous with respect to P
- H: a contingent claim
- $C(t)$: call option price at time t
- K: strike price of a call option
- T: expiry time of a call option
- $S(t)$: risky asset price at time t
- $X(t)$: discounted risky asset price at time t
- $B(t)$: riskless asset price at time t
- r: interest rate
- μ: drift of the risky asset price
- σ: volatility of the risky asset price
- W: Brownian motion
General Notation:

\(\mathbb{R} \) the set of real numbers

\(\mathbb{N} \) the set of natural numbers

\(L^2(\Omega, \mathcal{F}, P) \) the space of square-integrable, real-valued random variables

\(\langle \cdot, \cdot \rangle \) the inner product in \(\mathbb{R}^M \)

\(j_{i,k} \) the vector \((j_i, j_{i+1}, j_{i+2}, \ldots, j_k) \) of \(\mathbb{R}^{k-i+1} \).

\(I(A) \) the indicator function for the set \(A \)

\(N(\cdot) \) the Normal distribution function

\(\sum_{j_1, j_2, \ldots, j_n = 1}^M \sum_{j_1 = 1}^M \sum_{j_2 = 1}^M \cdots \sum_{j_n = 1}^M \)

Notation for the Switching Black–Scholes model:

\(\tau \) the time between switches

\(t_n \) the switching times

\(N \) the number of switching times

\(M \) the number of states

\(Z \) the Markov chain

\(\mathcal{H} \) the state space of the Markov chain, \(\mathcal{H} = \{e_1, e_2, \ldots, e_M\} \)

\(e_i \) the vector \((0, \ldots, 0, 1, 0, \ldots, 0)^T \) in \(\mathbb{R}^M \)

\(A_{ij} \) \(P(Z_n = e_i | Z_{n-1} = e_j) \)

\(\mu_i \) drift of the risky asset price for state \(e_i \)

\(\sigma_i \) volatility of the risky asset price for state \(e_i \)

\(\phi_n \) the joint conditional density function of \((S_n, Z_n) \)

given \(S_0 \) and \(Z_0 \), under a martingale measure, \(Q \)

\(\psi_n \) the joint conditional density function of \((S_n, Z_n) \)

given \(S_{n-1} \) and \(Z_{n-1} \), under a martingale measure, \(Q \)
Conventions:

The conventions that an empty product equals 1, and an empty sum equals 0 are employed throughout this thesis. An equation of the form

\[A := B \]

means that \(A \) is defined to equal \(B \).