THE INFLUENCE OF SEEDING DENSITY
AND ENVIRONMENTAL FACTORS ON
GRAIN QUALITY OF MAIN STEMS AND
TILLERS OF WHEAT IN SOUTH
AUSTRALIA

(WITH SPECIAL REFERENCE TO
PRIME HARD QUALITY WHEAT)

A thesis submitted for the degree of Doctor of Philosophy
School of Earth and Environmental Sciences
The University of Adelaide

Rebecca Tonkin
November 2004
TABLE OF CONTENTS

TABLE OF CONTENTS ... I

ABSTRACT ... VI

DECLARATION ... VIII

ACKNOWLEDGEMENTS ... IX

LIST OF FIGURES ... X

LIST OF TABLES ... XI

CHAPTER 1 GENERAL INTRODUCTION .. 1

CHAPTER 2 LITERATURE REVIEW .. 4

2.1 INTRODUCTION ... 4

2.2 WHEAT QUALITY ... 5
 2.2.1 Physical Quality ... 5
 2.2.1.1 Moisture content ... 6
 2.2.1.2 Appearance ... 6
 2.2.1.3 Damage ... 6
 2.2.1.4 Contamination .. 7
 2.2.1.5 Test weight .. 8
 2.2.1.6 Thousand grain weight .. 9
 2.2.2 Milling and Flour Quality .. 9
 2.2.2.1 Flour extraction ... 10
 2.2.2.2 Hardness .. 10
 2.2.2.3 Colour .. 11
 2.2.2.4 Falling number .. 11
 2.2.3 Dough and Baking Quality ... 12
 2.2.4 Other Quality Tests .. 12

2.3 GROWTH PROCESSES THAT DETERMINE SEED SIZE AND QUALITY 13
 2.3.1 Vegetative growth ... 13
 2.3.2 Reproductive growth .. 15
 2.3.3 Grain Enlargement ... 16
 2.3.4 Grain Filling .. 17
 2.3.5 Protein Content ... 18
 2.3.5.1 Genetic factors ... 18
 2.3.5.2 Environmental factors .. 19
2.4 ENVIRONMENTAL EFFECTS ON SEED SIZE AND QUALITY20
 2.4.1 Seasonal effects on quality ...20
 2.4.1.1 The effect of water availability on seed size and dough quality20
 2.4.1.2 The effect of temperature on seed size and quality21
 2.4.1.3 The effect of illuminance on seed size and quality22
 2.4.2 Management effects on quality ..22
 2.4.2.1 Nutrition ..22
 2.4.2.2 Pests and Diseases ...23
 2.4.2.3 Cultural Practices ...23

2.5 THE POTENTIAL FOR HIGH PROTEIN WHEAT IN SOUTH
 AUSTRALIA ..25

2.6 PROBLEMS WITH SMALL GRAINS ...26

2.7 SUMMARY ...28

CHAPTER 3 GENERAL METHODS AND INFORMATION31

3.1 EXPERIMENT DESIGN ...31

3.2 ENVIRONMENT ...32

3.3 SITE INFORMATION ...34

3.4 WHEAT CULTIVARS ...35

3.5 DETAILS OF PHYSIOLOGICAL DATA COLLECTION36

3.6 DETAILS OF QUALITY TESTS ...37
 3.6.1 Standard Quality Testing Procedures ...37
 3.6.1.1 Physical ...37
 3.6.1.2 Milling and Flour Quality ...37
 3.6.1.3 Dough and Baking Quality ...38
 3.6.2 Small Scale Quality Testing Procedures ...39
 3.6.2.1 2-gram Mixograph ..39
 3.6.2.2 Extension tester ...40
 3.6.2.3 Thimble loaf baking ...41

CHAPTER 4 EXPERIMENTS 1 & 2: EFFECTS OF TEMPERATURE AND
 DROUGHT ON MAIN STEM AND TILLER GRAIN QUALITY42

4.1 INTRODUCTION ...42

4.2 MATERIALS AND METHODS: ...44
 4.2.1 Location, Soil and Environment ..44
 4.2.2 Experiment Design ...45
 4.2.3 Measurements and Procedures ..47
 4.2.4 Location, Soils and Climate ...47
 4.2.5 Experiment Design ...47
 4.2.5.1 Experiment 2 – 1999 ...47
5.3 RESULTS .. 86
 5.3.1 Physiological data .. 86
 5.3.1.1 Emergence ... 86
 5.3.1.2 Tillering data ... 87
 5.3.1.3 Anthesis data .. 89
 5.3.2 Harvest .. 102
 5.3.2.1 Grain yields ... 102
 5.3.2.2 Clean grain .. 103
 5.3.2.3 Screenings .. 105
 5.3.2.4 Screenings % .. 106
 5.3.2.5 Protein ... 107
 5.3.3 Physical quality .. 107
 5.3.3.1 1000-grain weight .. 107
 5.3.3.2 Test weight .. 109
 5.3.4 Milling and Flour quality ... 109
 5.3.4.1 Flour yield ... 109
 5.3.4.2 Flour colour ... 110
 5.3.5 Dough and Baking quality .. 113
 5.3.5.1 Farinograph ... 113
 5.3.5.2 Extensograph ... 114
 5.3.5.3 RVA .. 115
 5.3.5.4 Bake tests ... 118
 5.3.5.5 Loaf colour ... 119

5.4 DISCUSSION .. 123
 5.4.1 Physiological data ... 123
 5.4.2 Harvest .. 126
 5.4.3 Physical Quality .. 127
 5.4.4 Milling and Flour Quality ... 127
 5.4.5 Dough and Baking Quality ... 129

5.5 CONCLUSION ... 130

CHAPTER 6 EXPERIMENT 4 - EFFECTS OF CROP DENSITY ON MAIN STEM AND TILLER GRAIN QUALITY .. 132

6.1 INTRODUCTION .. 132

6.2 MATERIALS AND METHODS ... 133
 6.2.1 Location, Soil and Climate ... 133
 6.2.2 Experiment Design ... 133
 6.2.3 Measurements and Procedures .. 133
 6.2.4 Statistical Analysis .. 135

6.3 RESULTS ... 136
 6.3.1 Harvest .. 136
 6.3.1.1 Ear Yield .. 136
 6.3.1.2 Number of grains per ear ... 138
 6.3.1.3 Screenings (% per Ear) ... 140
 6.3.2 Physical Quality ... 142
 6.3.2.1 Thousand-grain weights of grains from main stems and tillers 142
Prime Hard wheat, a high protein hard wheat classification of the Australian Wheat Board, has traditionally been grown in Queensland and the northern areas of New South Wales. Recently there have been moves to extend this area into the more southern regions of the wheat belt, to expand production of this grain and for greater reliability of supply. The emphasis of this thesis is on the opportunities and constraints to Prime Hard wheat production in South Australia. The environmental factors affecting wheat crops in South Australia are different to those in the traditional Prime Hard producing areas, with heat and moisture stress likely to be the most important climatic influences. Management practices such as the recent trends towards higher seeding densities could also be important (influencing main stem and tiller ratios).

An experiment using controlled temperature and moisture conditions showed that main stems and tillers differed in their responses to post-anthesis heat and drought. A field experiment with moisture stress as the only treatment also showed differences in harvest parameters and grain quality between main stems and tillers.

Grain produced from field plots at different plant densities showed significant differences in a number of quality measurements, the most important being 1000-grain weight and flour colour. Less screenings and higher 1000-grain weights were obtained from plots with higher seeding rates. However, flour from plots with higher seeding rates had slightly more yellow colour.

When main stems and tillers from these plots were tested separately, using small-scale equipment, grain weight and flour colour also differed between main stems and tillers. Main stems produced larger grains than tillers, as expected, and tillers
produced grains with yellower flour. The smaller grain size and yellower flour of the tillers is attributed to the higher degree of stress likely to be experienced by tillers, as they have later anthesis dates and are more likely to experience moisture, and/or heat stress at a critical stage of grain filling. Plants with more tillers, such as those grown in a low-density crop, have a later average anthesis date than an equivalent crop of higher seeding density, with more main stems. Therefore it is likely that increasing seeding density will give a shorter crop ripening period and a more uniform seed quality. However, care must be taken not to exceed the optimum plant population density.

In conclusion, the experiments showed that tillers are more sensitive to conditions of moisture or heat stress than main stems, and that they make a measurable contribution to the quality of a wheat crop. Increasing the crop density decreased the proportion of tillers present, leading to a more uniform crop and less screenings at harvest. Increased competition in high-density crops may result in slightly more yellow flour, but dough and loaf quality were not affected.
DECLARATION

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by
another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,
being available for loan and photocopying.

Rebecca E. Tonkin
I gratefully acknowledge the assistance of Hugh Reimers and David Coventry, my supervisors, and the technical assistance of Peter Cornelius. I would also like to acknowledge the support of the members of the Department of Agronomy and Farming Systems, particularly for help with computers and programs.

I also acknowledge the support of Ian and Ruth, Stephen, Ross and Pip, without whom this thesis would never have been attempted.
LIST OF FIGURES

Figure 1: Some measurements taken from the farinograph..........................38
Figure 2: Measurements from the Extensograph..39
Figure 3: Water retention by sandy loam..45
Figure 4: Rain-out shelters used in Experiment 2 at Avon..........................49
Figure 5: Mean dry matter production vs. seed rate, at tillering, for Experiment 3 (all years)..88
Figure 6: Dry Matter Production at anthesis, Experiment 3 (all years)........90
Figure 7: Screenings (%) from Experiment 3 (all years).............................106
Figure 8: Peak Viscosity (RVA) Experiment 3 (all years).........................117
Figure 9: Loaf colour “b” values Experiment 3, 1998 & 1999.....................122
LIST OF TABLES

Table 1: Monthly rainfall (mm) data recorded for Roseworthy, SA in 1998, 1999 and 2000 compared to the average monthly totals (1883 – 1997).................32

Table 2: Mean daily maximum and minimum temperatures (°C) at Roseworthy, SA in 1998, 1999 and 2000 compared to the average mean daily temperatures (1917 – 1997)..33

Table 3: Monthly evaporation (mm) recorded for Roseworthy, SA in 1998, 1999 and 2000 compared to the average monthly totals (1967 – 1997).........................33

Table 4: Rainfall data for the Avon experiment site..34

Table 5: Glutenin alleles of Janz and Kukri..36

Table 6: Ten principal stages in Zadok’s growth scale...37

Table 7: Retention of water by sandy loam. ...44

Table 8: Treatments in Experiment 1..46

Table 9: Treatments at Avon 1999...48

Table 10: Number of observations made for each treatment in Experiment 1.........53

Table 11: Harvest and physical quality results from Experiment 154

Table 12: Harvest and physical quality results from Experiment 2 at Avon, 1999....56

Table 13: Harvest and physical quality results from Experiment 2 at Avon, 2000....57

Table 14: Mean “L” Minolta flour colour Experiment 2, 1999.................................61

Table 15: Mean “a” Minolta flour colour Experiment 2, 1999.................................61

Table 16: Mean “b” Minolta flour colour Experiment 2, 1999.................................62

Table 17: Mean “L-b” Minolta flour colour Experiment 2, 1999...............................63

Table 18: Mean “L” Minolta flour colour Experiment 2, 2000.................................63

Table 19: Mean “a” Minolta flour colour Experiment 2, 2000.................................64

Table 20: Mean “b” Minolta flour colour Experiment 2, 2000.................................64

Table 21: Mean “L-b” Minolta flour colour Experiment 2, 2000...............................65

Table 22: Mean mix time (s) Experiment 2, 1999..66
Table 23: Mean mix time (s) Experiment 2, 2000. ...67
Table 24: Peak Resistance (MU) in Experiment 2, 1999..67
Table 25: Peak Resistance (MU) in Experiment 2, 2000..68
Table 26: Mean maximum bandwidth Experiment 2, 1999..69
Table 27: Mean maximum bandwidth Experiment 2, 2000..69
Table 28: Resistance breakdown Experiment 2, 1999..70
Table 29: Resistance breakdown Experiment 2, 2000..71
Table 30: Bandwidth breakdown Experiment 2, 1999..71
Table 31: Bandwidth breakdown Experiment 2, 2000..72
Table 32: Treatments in Experiment 3 - 1998...81
Table 33: Treatments in Experiment 3 - 1999...82
Table 34: Treatments used in 2000. ...83
Table 35: Mean emergence count (seedlings/m²) in Experiment 3, 1998.87
Table 36: Mean tiller dry matter weights grouped by variety in Experiment 3 (all years)...88
Table 37: Dry Matter Production at anthesis by each variety in Experiment 3 (all years). ...89
Table 38: Mean number and type of stems/m² at anthesis in Experiment 3, 1998.....91
Table 39: Mean number and type of stems/m² at anthesis in Experiment 3, 1999.....92
Table 40: Mean number and type of stems per m² at anthesis in Experiment 3, 2000.93
Table 41: Mean ears per m² in Experiment 3, 1998..94
Table 42: Mean ear numbers in 1999...95
Table 43: Mean ear numbers per m² in 2000. ...95
Table 44: Mean stem dry matter weights (g/m²) at anthesis, Experiment 3, 1998.96
Table 45: Mean stem dry matter weights (g/m²) at anthesis, Experiment 3, 1999.97
Table 46: Mean stem dry matter weight at anthesis (g/m²) Experiment 3, 2000........98
Table 47: Mean dry matter weight (g) per stem at anthesis in Experiment 1, 1998. ...99
Table 48: Mean dry matter weight (g) per stem 1999..100
Table 49: Mean dry matter weight (g) per stem at anthesis 2000.................................101
Table 50: Mean total harvested grain (g/m²) for each treatment in Experiment 3, 1998...102
Table 51: Mean total grain harvested (g/m²) 2000..103
Table 52: Mean weight of clean grain (g/m²) in Experiment 3, 1998..............................104
Table 53: Mean clean grain (g/m²) 2000..104
Table 54: Mean screened grain weight (g/m²) Experiment 3, 1999105
Table 55: Mean screened grain weight (g/m²) Experiment 3, 2000105
Table 56: Mean protein (%) for Experiment 3, all years. ...107
Table 57: Mean 1000-grain-weights (g) for Experiment 3, 1998....................................108
Table 58: Mean 1000-grain weights (g) 2000...109
Table 59: Varietal effects on flour yield (%), (Buhler mill) in Experiment 3, (all years) ...110
Table 60: Mean flour colour “L” and “a” values for the varieties in Experiment 3, 1998..110
Table 61: Mean Minolta flour colour (b value) in samples from Experiment 3, 1998.111
Table 62: Mean Minolta flour colour “L-b” in samples from Experiment 3, 1998.111
Table 63: Mean flour colour “L”, “a” and “L-b” values for the varieties in Experiment 3, 2000..112
Table 64: Mean flour Minolta “b” values, Experiment 3, 2000.112
Table 65: Mean varietal results for the farinograph, Experiment 3, 1998.113
Table 66: Mean varietal results for the farinograph, Experiment 3, 2000.114
Table 67: Extensograph varietal characteristics in Experiment 3, 1998........................114
Table 68: Extensograph varietal characteristics in Experiment 3, 2000........................115
Table 69: RVA varietal characteristics in Experiment 3, 1998..115
Table 70: RVA Peak Viscosity Experiment 3, 1998...116
Table 71: Mean RVA Peak height Experiment 3, 2000..117
Table 72: Mean Loaf volume 1998..118
Table 73: Mean Volume Score 1998...118
Table 74: Loaf colour – L (minolta) Experiment 3, 1998

Table 75: Loaf colour – “b” Experiment 3, 1998

Table 76: Loaf colour, L-b, Experiment 3, 1998

Table 77: Mean loaf colour “b” values Experiment 1, 1999

Table 78: Tests performed in Experiment 4

Table 79: Mean yield (g) per ear - Experiment 4, 1998

Table 80: Yield (g) per ear Experiment 4, 1999

Table 81: Yield (g) per ear Experiment 4, 2000

Table 82: Mean number of grains per ear (main stems and tillers) from Experiment 4, 1998

Table 83: Mean no. of grains per ear Experiment 4, 1999

Table 84: Mean no. of grains per ear, Experiment 4, 2000

Table 85: Mean screenings (%) Experiment 4, 1999

Table 86: Mean screenings % Experiment 4, 2000

Table 87: Mean 1000 grain weights (g) of main stems and tillers from Experiment 4, 1998

Table 88: Mean 1000-grain weights Experiment 4, 1999

Table 89: Mean 1000-grain weights of Experiment 4, 2000

Table 90: Mean screenings 1000-grain weights, Experiment 4, 1999

Table 91: Mean screenings 1000-grain weights, Experiment 4, 2000

Table 92: Mean flour yield (%), Experiment 4, 1998

Table 93: Mean flour yield (%), Experiment 4, 2000

Table 94: Mean flour protein, Experiment 4, 1998

Table 95: Mean flour protein content, Experiment 4, 2000

Table 96: Mean flour colour “b”, Experiment 4, 1999

Table 97: Mean flour colour “L-b”, Experiment 4, 1999

Table 98: Mean flour colour “L”, Experiment 4, 2000

Table 99: Mean “b” values, Experiment 4, 2000
Table 100: Flour colour “L-b” Experiment 4, 2000
Table 101: Mean mix time (s) Experiment 4, 1998
Table 102: Mean mix time (s), Experiment 4, 2000
Table 103: Mean Peak Resistance (MU), Experiment 4, 1999
Table 104: Mean Peak Resistance (MU) Experiment 4, 2000
Table 105: Mean Maximum Bandwidth (MU), Experiment 4, 1998
Table 106: Mean Maximum Bandwidth (MU), Experiment 4, 1999
Table 107: Mean Maximum Bandwidth (MU), Experiment 4, 2000
Table 108: Resistance breakdown (%), Experiment 4, 2000
Table 109: Bandwidth breakdown (%), Experiment 4, 1999
Table 110: Bandwidth breakdown (%) Experiment 4, 2000
Table 111: Dough extensibility (cm), Experiment 4, 1998
Table 112: Dough strength (N), Experiment 4, 1998