SELF-REGULATION OF THE DRIVING BEHAVIOUR OF OLDER DRIVERS

MATTHEW R.J. BALDOCK

Department of Psychology
and
Centre for Automotive Safety Research
at
The University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy
July 2004
TABLE OF CONTENTS

ABSTRACT ... vi
STATEMENT ... viii
ACKNOWLEDGEMENTS .. ix
INDEX OF TABLES .. xi
INDEX OF FIGURES ... xv

CHAPTER 1: INTRODUCING THE OLDER DRIVER ... 1

1.1 Introduction .. 1
1.2 Increases in Older Drivers ... 3
 1.2.1 An Aging Population ... 3
 1.2.2 Increasing Licensure Among Older Residents ... 4
 1.2.3 Older Drivers Driving More and for Longer .. 5
 1.2.4 Summary .. 6
1.3 The Crash Involvement of the Older Driver ... 6
 1.3.1 Raw Crash Numbers ... 6
 1.3.2 Crashes Per Head of Population ... 9
 1.3.3 Crashes Per Licensed Driver .. 10
 1.3.4 Crashes Per Distance Driven .. 11
 1.3.5 Changes Across Cohorts in Older Drivers’ Crash Risk .. 13
 1.3.6 The “Frailty Bias” ... 14
 1.3.7 The “Low Mileage Bias” ... 17
 1.3.8 Future Projections for Older Driver Crash Involvement 19
 1.3.9 Crash Characteristics ... 20
 1.3.10 Conditions in Which Crashes Occur ... 27
 1.3.11 Summary of Patterns of Older Driver Crash Involvement 28

CHAPTER 2: OLDER DRIVER CRASH INVOLVEMENT IN SOUTH AUSTRALIA 31

2.1 Introduction .. 31
 2.1.1 Number of Crashes ... 33
 2.1.2 Crash Characteristics .. 34
 2.1.3 Conditions in Which Crashes Occur .. 35
2.2 Method .. 35
 2.2.1 Crash Data ... 35
 2.2.2 Population Data ... 37
 2.2.3 Driver Licensing Data .. 37
 2.2.4 Driver Exposure Data .. 38
 2.2.5 Analyses .. 39
2.3 Results .. 41
 2.3.1 Number of Crashes ... 41
 2.3.1.1 Driver Age ... 41
 2.3.1.2 Crashes per Head of Population .. 41
 2.3.1.3 Crashes per Licensed Driver ... 45
 2.3.1.4 Crashes per Kilometres Driven ... 47
 2.3.1.5 Number of Crashes: Summary .. 51
 2.3.2 Crash Characteristics ... 51
 2.3.2.1 Crash Injury Severity ... 51
 2.3.2.2 Driver Injury Severity ... 53
 2.3.2.3 Intersection Type ... 54
 2.3.2.4 Crash Type ... 54
 2.3.2.5 Vehicle Movement Before the Crash .. 55
 2.3.2.6 Apparent Driver Error .. 58
 2.3.2.7 Driver’s Responsibility for the Crash ... 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.3 Memory</td>
<td>66</td>
</tr>
<tr>
<td>3.5.1 Mental Status</td>
<td>66</td>
</tr>
<tr>
<td>3.4.1 Sustained Attention</td>
<td>67</td>
</tr>
<tr>
<td>3.2.4 Cardiovascular Diseases</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1 Eye Diseases</td>
<td>66</td>
</tr>
<tr>
<td>2.4. Discussion</td>
<td>70</td>
</tr>
<tr>
<td>2.4.1 Number of Crashes</td>
<td>71</td>
</tr>
<tr>
<td>2.4.2 Crash Characteristics</td>
<td>72</td>
</tr>
<tr>
<td>2.4.3 Conditions in Which Crashes Occur</td>
<td>75</td>
</tr>
<tr>
<td>2.4.4 Summary</td>
<td>75</td>
</tr>
</tbody>
</table>

CHAPTER 3: RISK FACTORS FOR CRASH INVOLVEMENT AMONG OLDER DRIVERS

3.1 Introduction | 77 |
3.2 Medical Conditions and Crash Involvement	77
3.2.1 Eye Diseases	78
3.2.2 Dementia	80
3.2.3 Cerebrovascular Accidents (CVAs)	82
3.2.4 Cardiovascular Diseases	84
3.2.5 Diabetes Mellitus	84
3.2.6 Arthritis	85
3.2.7 Parkinson’s Disease	86
3.2.8 Seizure Disorders	87
3.2.9 Mental Health	88
3.2.10 Medications	89
3.2.11 Summary and Conclusions	91
3.3 Visual Functioning	93
3.3.1 Visual Acuity	94
3.3.2 Contrast sensitivity	97
3.3.3 Visual field	98
3.3.4 Other Visual Abilities	99
3.3.5 Summary	100
3.4 Attention	102
3.4.1 Sustained Attention	102
3.4.2 Switching Attention	103
3.4.3 Selective Attention	104
3.4.4 Divided Attention	107
3.4.5 Summary	108
3.5 Other Cognitive Abilities	109
3.5.1 Mental Status	110
3.5.2 Visuospatial and Constructional Abilities	111
3.5.3 Memory	112
3.5.4 Speed of Information Processing	113
3.5.5 Summary	115
3.6 Physical or Motor Functioning	116
3.7 Summary	116

CHAPTER 4: RESPONSES TO THE CRASH RISK OF OLDER DRIVERS:
IDENTIFICATION OF DRIVERS AT GREATEST RISK OF CRASHING AND
SELF-REGULATION OF DRIVING BEHAVIOUR | 120 |
ABSTRACT

The aim of this thesis was to examine the extent, and correlates, of self-regulation of driving behaviour among a sample of South Australian older drivers (aged 60 or more). The first of four studies was an analysis of official crash statistics in South Australia over a period of five years. The patterns of crash involvement for South Australian older drivers were found to resemble those reported in the literature for other jurisdictions. Lower levels of crash involvement for older drivers in difficult driving situations (peak hour, rain, darkness) were interpreted as indirect evidence for self-regulation of driving behaviour.

The second study involved pilot testing a measure developed specifically for assessing the visual attention of older adults (the Computerised Visual Attention Test - CVAT). The CVAT assesses visual attention by measuring target detection and reaction time for central and peripheral stimuli, and in conditions requiring selective and divided attention. The third study involved assessing the test-retest reliability, construct validity and predictive validity of the CVAT. It was concluded that the CVAT is a reliable measure of abilities including, but not restricted to, attention, and that it is correlated with on-road driving ability.

The fourth study involved an examination of the driving behaviour and attitudes of 104 drivers aged over 60, with avoidance of difficult driving situations providing an index of self-regulation. These drivers also completed a battery of tests measuring psychological factors, vision, physical functioning, various cognitive abilities, and attention (the CVAT). Ninety participants additionally completed an on-road assessment of driving ability. It was found that older drivers most often avoided reverse parallel parking and driving at night in the rain, while driving alone was avoided least often. Measures of visual attention, medication use and visual acuity were most predictive of levels of self-regulation, while poorer driving ability was only associated
with avoidance of a small number of specific situations. Functional deficits related to poorer driving ability but not to self-regulation included poorer contrast sensitivity, speed of information processing and spatial memory. Such deficits could identify drivers who may need to restrict their driving more than they do.
STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed: _________________________

Date: ___________________________
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my two supervisors for this project: Dr Jane Mathias of the Department of Psychology and Professor Jack McLean of the Centre for Automotive Safety Research (CASR), both at the University of Adelaide. This thesis would not have been possible without their guidance and support. I would also like to specifically thank Dr Mathias for her regular meetings with me and for ensuring that I achieved all of the study milestones within the necessary timeframe. Professor McLean I would like to thank for providing me with sufficient funds from CASR to conduct my research.

Additionally, I would like to thank the following people:

• The staff of the Driver Assessment Rehabilitation Service (DARS) at the University of South Australia. Special thanks go to the Clinical Director of DARS, Angela Berndt, who devised the driving route for the assessments and conducted many of the assessments herself. Also from DARS, I would like to thank Mareeta Dolling who conducted the remainder of the driving assessments, and Sandra Heading who helped recruit participants from among DARS referrals and booked the assessments.

• Peter and Maureen Cook of Mitcham Driving School for providing the driving instruction component of the driving assessments and for being well-organised and professional at all times.

• Carmen Rayner from the Department of Psychology for making testing resources available through the Department test library and for helping me with formatting the Driver Mobility Questionnaire.

• Bob Willson from the Department of Psychology for programming the Computerised Visual Attention Test developed for use in the project, bringing my ideas to life perfectly.
• Craig Kloeden from CASR for helping to prepare data from the Traffic Accident Reporting System so that it was in an easily analysable form.

• Nicole Ricketts and Andrew Meier from CASR for alerting me to new articles concerned with older drivers and for requesting data for me from Transport SA and the Australian Bureau of Statistics.

• All of the kind people who agreed to participate in my study. Completing a questionnaire, two hours of functional testing, and a driving test is a considerable amount to be asked to do but all participants were generous with their time and enthusiastic about helping with research.

• My mother, Nancy Baldock, for recruiting participants for pilot tests from her place of work (not for the first time).

• Finally, my wonderful wife, Sarah Anderson, for her unwavering support and encouragement through a very busy three years. Her love and understanding are a constant source of strength and inspiration to me. I can only hope that I am as helpful to her as she continues with her own studies.

Matthew Baldock
INDEX OF TABLES

Table 2.1 Age of crash-involved drivers in South Australia, 1994 to 1998 42
Table 2.2 Mean estimated population in South Australia, 1994 to 1998, by age group .. 42
Table 2.3 Number of licensed drivers in South Australia, 1999, by age group 45
Table 2.4 Number of crash-involved drivers by type of crash in South Australia, 1994 to 1998 .. 55
Table 2.5 Vehicle movements for crash-involved drivers prior to the crash for South Australia, 1994 to 1998 .. 56
Table 2.6 Apparent driver errors by crash-involved drivers in South Australia, 1994 to 1998 .. 59
Table 5.1 Percentage detection failures, percentage false alarms, and median reaction times for the primary (X detection) task on the CVAT 162
Table 5.2 Percentage detection failures, percentage false alarms, and median reaction times for the secondary (car detection) task on the CVAT 163
Table 5.3 Percentage detection failures, percentage false alarms, and median reaction times for the primary (X detection) task on the CVAT 174
Table 5.4 Percentage detection failures, percentage false alarms, and median reaction times for the secondary (car detection) task on the CVAT 175
Table 6.1 Driver attitude and driving behaviour measures in the Driver Mobility Questionnaire .. 185
Table 6.2 Health and functional measures used in the self-regulation study 191
Table 6.3 Combinations of error types, cut-off scores, sensitivity, specificity, and diagnostic power for the on-road assessment (N = 90) 196
Table 7.1 Means and standard deviations for standard attention tests 208
Table 7.2 Descriptive statistics for median reaction times on the CVAT in the two testing sessions .. 208
Table 7.3 Descriptive statistics for detection errors on the CVAT in the two testing sessions .. 209
Table 7.4 Test-retest correlations for median reaction times and detection errors on the CVAT .. 210
Table 7.5 Inter-correlation matrix for the CVAT reaction time scores and standard tests of attention .. 211
Table 7.6 Inter-correlation matrix for the CVAT detection error scores and standard tests of attention

Table 7.7 Correlations between driving performance and median reaction times and detection errors on the CVAT

Table 7.8 Correlations between driving performance and standard attention tests

Table 8.1 Number of medical conditions reported by participants (N = 104)

Table 8.2 Self-reported medical conditions and impact on daily functioning (N = 104)

Table 8.3 Number of medications used at least once a month by participants (N = 104)

Table 8.4 Types of medications and number of users (N = 104)

Table 8.5 Number of medications potentially affecting driving that were used regularly by participants (N = 104)

Table 8.6 Types of medications potentially affecting driving used by participants (N = 104)

Table 8.7 Functional test performance (N = 104)

Table 8.8 Visual acuity frequencies (N = 104)

Table 8.9 Median reaction times and detection error percentages on the CVAT (N = 104)

Table 8.10 Correlations between standard functional tests and age (N = 104)

Table 8.11 Correlations between age and CVAT median reaction times and detection errors (N = 104)

Table 8.12 Correlations between functional tests and driving performance (n = 90)

Table 8.13 Results of hierarchical regression procedures examining the contributions of functional measures to the prediction of driving performance, after controlling for age (n = 90)

Table 8.14 Correlations between driving performance, and CVAT median reaction times and detection errors (n = 90)

Table 8.15 Results of hierarchical regression procedures examining the contributions of median reaction times and detection errors on the CVAT to the prediction of driving performance, after controlling for age (n = 90)
Table 8.16 Results of a linear regression procedure predicting driving performance, using functional measures as predictor variables (n = 90) ..239
Table 9.1 Days driven per week (N = 104) ..253
Table 9.2 Number of crashes in the previous five years (N = 104)254
Table 9.3 Responses to the individual 'driving space' questions concerning areas driven in during the previous year (N = 104) ...257
Table 9.4 Perceived barriers to self-regulation, percentage of participants (N = 104) ..260
Table 9.5 Self-regulatory self efficacy, percentage of participants (N = 104)261
Table 9.6 Correlations between age and driving-related variables (N = 104)262
Table 9.7 Correlations between age and driving confidence in difficult situations (N = 104) ..262
Table 9.8 Correlations between age and avoidance of difficult driving situations (N = 104) ..263
Table 9.9 Correlations between overall driving confidence and various driving attitudes and behaviours (N = 104) ...265
Table 9.10 Correlations between confidence and avoidance scores for a variety of difficult driving situations (N = 104) ...266
Table 9.11 The differences in overall driving confidence between those who had been involved in crashes or been charged with traffic violations and those who had not (N = 104) ...266
Table 9.12 Correlations between overall driving avoidance and various driving attitudes and behaviour variables (N = 104) ...267
Table 9.13 The differences in overall driving avoidance between those who had been involved in crashes or been charged with traffic violations and those who had not (N = 104) ...268
Table 10.1 Correlations between self-ratings of driving ability and health and functional measures (N = 104) ..284
Table 10.2 Correlations between CVAT median reaction times and detection error scores, and self-ratings of driving ability (N = 104) ..285
Table 10.3 Correlations between vision test scores and self-ratings of vision (N = 104) ..285
Table 10.4 CVAT divided attention scores: means, standard deviations, and correlations with self-ratings of dual task ability (N = 104) ..286
Table 10.5 Correlations between overall driving confidence and health and functional measures \((N = 104)\) ...288

Table 10.6 Correlations between median reaction times and detection error scores on the CVAT and overall driving confidence \((N = 104)\)288

Table 10.7 Correlations between confidence in difficult driving situations and driving performance \((n = 90)\) ...289

Table 10.8 Correlations between overall driving avoidance and health and functional measures \((N = 104)\) ...290

Table 10.9 Results of hierarchical regression analyses examining the contributions of functional measures to the prediction of overall driving avoidance, after controlling for age \((N = 104)\) ...291

Table 10.10 Correlations between overall driving avoidance and median reaction times and detection error scores on the CVAT \((N = 104)\)292

Table 10.11 Results of hierarchical regression procedures examining the contributions of CVAT measures to the prediction of overall driving avoidance, after controlling for age \((N = 104)\) ...292

Table 10.12 Multiple regression predicting overall driving avoidance using functional measures as predictor variables \((N = 104)\) ...293

Table 10.13 Correlations between avoidance of difficult driving situations and driving performance \((n = 90)\) ...294
INDEX OF FIGURES

Figure 2.1. Crash-Involved Drivers Per Head of Population in South Australia from 1994 to 1998, by Age Group ... 43

Figure 2.2. Crash-Involved Drivers Per Head of Population in South Australia from 1994 to 1998, by Age Group and Crash Injury Severity, Compared to Drivers Aged Over 84 ... 44

Figure 2.3. Percentage of Licensed Drivers Involved in Crashes in South Australia from 1994 to 1998, by Age Group ... 46

Figure 2.4. Crash-Involved Drivers per Licensed Driver in South Australia from 1994 to 1998, by Age Group and Crash Injury Severity, Compared to Drivers Aged 75 to 84 ... 47

Figure 2.5. Average Kilometres Driven (x 1,000) by Drivers in South Australia in the 12 Months 1997-1998, by Age Group ... 48

Figure 2.6. Crash-Involved Drivers Per Million Kilometres Driven in South Australia from 1994 to 1998, by Age Group ... 49

Figure 2.7. Crash-Involved Drivers Per Million Kilometres Driven in South Australia from 1994 to 1998, by Age Group and Crash Injury Severity, Compared to Drivers Aged 45 to 54 ... 50

Figure 2.8. Crash-Involved Drivers Whose Crashes Resulted in a Serious or Fatal Injury to One or More Crash Participants in South Australia from 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals 52

Figure 2.9. Crash-Involved Drivers Who Were Seriously Injured or Killed in the Crash in South Australia from 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals ... 54

Figure 2.10. Crash-Involved Drivers Who Were Involved in Right Turn Crashes in South Australia from 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals ... 56

Figure 2.11. Crash-Involved Drivers Who Were Turning Prior to the Crash in South Australia from 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals ... 57

Figure 2.12. Right Turn Crash-Involved Drivers Who Were Turning Right at the Time of the Crash in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals ... 58

Figure 2.13. Crash-Involved Drivers Who Disobeyed a Traffic Signal, Stop Sign or Give Way Sign in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals ... 60

Figure 2.14. Crash-Involved Drivers Deemed to be Responsible for the Crash in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent
Confidence Intervals

Figure 2.15. Crash-Involved Drivers Deemed to Have Been Driving at Excessive Speed in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 2.16. Percentage of Crash-Involved Drivers for Whom a Blood Alcohol Concentration was Known and Whose Crashes Produced a Fatal or Serious Injury for One or More Crash Participants in South Australia 1994 to 1998, by Age Group

Figure 2.17. Crash-Involved Drivers with a Blood Alcohol Concentration over 0.05 g/L in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 2.18. Crash-Involved Drivers Who Crashed During Peak Traffic Times in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 2.19. Crash-Involved Drivers Who Crashed During Daylight in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 2.20. Crash-Involved Drivers Who Crashed on Wet Roads in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 2.21. Crash-Involved Drivers Who Crashed in the Presence of Rain in South Australia 1994 to 1998, by Age Group, Percentages and 99 Percent Confidence Intervals

Figure 5.1. Picture of a car used as a secondary task target stimulus in the CVAT

Figure 5.2. Picture of a house used as a secondary task distracter stimulus in the CVAT

Figure 5.3. Digital photograph of the computer screen during a CVAT subtest requiring divided and selective attention

Figure 5.4. Median reaction times for the secondary task (car detection) on the Computerised Visual Attention Test, by task condition

Figure 5.5. Median reaction times for the secondary task (car detection) on the Computerised Visual Attention Test, by task condition

Figure 8.1. Scatterplot showing weighted error scores on the driving test, by age and participant group

Figure 9.1. Confidence in difficult driving situations, percentages

Figure 9.2. Avoidance of difficult driving situations, percentages