Deformation Capacity and Moment Redistribution of Partially Prestressed Concrete Beams

By

Mark Rebentrost
B.E. Civil Engineering (Hons.)

A thesis submitted for the degree of doctor of philosophy

Department of Civil and Environmental Engineering
Adelaide University
Australia

August 2003
ABSTRACT

Ductility is a measure of the ability of a material, section, structural element or structural system to sustain deformations prior to collapse without substantial loss of resistance. The Australian design standard, AS 3600, imposes minimum ductility requirements on structural concrete members to try to prevent premature non-ductile failure and hence to ensure adequate strength and ductile-type collapse with large deflections. The requirements also enable members to resist imposed deformation due to differential settlement, time effects on the concrete and temperature effects, whilst ensuring sufficient carrying capacity and a safe design.

Current AS 3600 requirements allow a limited increase or reduction in elastically determined bending moments in critical regions of indeterminate beams, accommodating their ability to redistribute moment from highly stressed regions to other parts of the beam. Design moment redistribution limits and ductility requirements in AS 3600 for bonded partially prestressed beams are a simple extension of the requirements for reinforced members. The possibility of premature non-ductile failure occurring by fracture of the reinforcement or prestressing steel in partially prestressed members has not adequately addressed.

The aim of this research is to investigate the overload behaviour and deformation capacity of bonded post-tensioned beams. The current ductility requirements and design moment redistribution limits according to AS 3600 are tested to ensure designs are both safe and economical.

A local flexural deformation model based on the discrete cracked block approach is developed to predict the deformation capacity of high moment regions. The model predicts behaviour from an initial uncracked state through progressive crack development into yielding and collapse. Local deformations are considered in the model using non-linear material laws and local slip behaviour between steel and concrete interfaces, with rigorous definition of compatibility in the compression and tension zones. The model overcomes limitations of past discrete cracked block models by ensuring compatibility of deformation, rather than strain compatibility. This improvement allows the modeling of members with multiple layers of tensile reinforcement and variable depth prestressing tendons having separate material and bond properties.
An analysis method for simple and indeterminate reinforced and partially prestressed members was developed, based on the proposed deformation model. To account for the effect of shear in regions of high moment and shear present over the interior supports of a continuous beam, a modification to the treatment of local steel deformation in the flexural model, based on the truss analogy, was undertaken. Secondary reactions and moments due to prestress and continuity are also accounted for in the analysis.

A comparison of past beam test data and predictions by the analysis shows the cracking pattern and deformation capacity at ultimate of flexural regions in reinforced and partially prestressed members to be predicted with high accuracy. The analysis method accurately predicts local steel behaviour over a cracked region and deformation capacity for a wide range of beams which fail either by fracture of steel or crushing of the concrete.

A parametric study is used to investigate the influence of different parameters on the deformation capacity of a typical negative moment region in a continuous beam. The structural system consists of a bonded post-tensioned, partially prestressed band beam. The primary parameters investigated are the member height and span-to-depth ratio; relative quantity of reinforcing and prestressing steel; material properties and bond capacity of the steels; and lastly the compression zone properties.

Results show that the effects of the various parameters on the overload behaviour of partially prestressed beams follow the same trends as reinforced beams. A new insight into the local steel behaviour between cracks is attained. The deformation behaviour displays different trends for parametric variations of the local bond capacity, bar diameter and crack spacing, when compared to past analytical predictions from comparable studies. The discrepancy in findings is traced back to the definition of the plastic rotation capacity and the sequencing of the yielding of the steels. Compared to the other local deformation models, the current model does not assume a linear distribution of strain at a crack. The current findings highlight an important difference between predicted behaviours from different deformation compatibility requirements in local deformation models which has not yet been discussed in the literature.

The local deformation model evaluates the relationship between maximum steel strain at a crack and average steel deformation over a crack spacing for the entire loading history. The total steel percentage, hardening properties of the steel and concrete strength are shown by the model to have the greatest effect on these steel strain localisation factors. Section analysis, as currently used in design, can be improved with the proposed simplification of the relationships to identify and quantify the effects of steel fracture on deformation capacity and strength.
The numerical effort required to simulate the overload behaviour of practical beam designs with multiple reinforcement elements and a prestressing tendon are currently too great to be used in an extensive numerical study. The numerically more efficient smeared block approach is shown to accurately predict the ultimate carrying capacity of prestressed beams failing by crushing of the concrete. Consequently, this method is adopted to study the allowable limits of moment redistribution in the present investigation. Simplified relationships of the steel strain localisation factors evaluated in the parametric study of deformation capacity is used to predict maximum steel strains and premature failure.

The limits of moment redistribution in bonded, post-tensioned partially prestressed band beams are explored by comparing the design load and predicted carrying capacity, for different section ductilities and design moment redistribution. In addition, the effects of different concrete strengths, up to 85 MPa, along with as three reinforcing and prestressing steel ductilities are quantified and compared to current Australian and international design requirements. Limitations in the carrying capacity are investigated for different reinforcement and prestress uniform elongation capacities.

More than one thousand beam simulations produce results showing that current design moment redistribution and ductility requirements in the Australian design code for concrete structures (AS 3600) are sufficient for normal strength concretes (<50 MPa). A suggestion for design moment redistribution limits, section ductility requirements and steel ductility limits is made for members constructed from higher strength concretes. A special high steel ductility class is proposed for both the reinforcement and prestressing steel to allow moment redistribution in higher strength concrete. No moment redistribution is proposed for members reinforced with low ductility (Class L) steel. An increase of the current elongation limit of Class L steel from 1.5 % to 2.5% is suggested to ensure strength and safety. An increase in the current ductility requirements from $f_{ud}/f_y=1.03$ and $\varepsilon_u=1.5 %$ to $f_{ud}/f_y=1.05$ and $\varepsilon_u=2.5 %$ for low ductility Class L steel is suggested to ensure strength and safety.
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Mark Rebentrost

Date
ACKNOWLEDGMENTS

I have shared the challenging and rewarding experience of my Ph.D. work with many important people. Their support and encouragement has been invaluable in many ways.

My parents who have always been there with unwavering support. Vielen Dank für eure Hilfe in Allen Dingen, aber ins besondere in den letzten fünf Jahren.

My wonderful and beautiful girlfriend who has only known me for the period of my Ph.D. studies. I look forward to reciprocating all that you have given me and more.

The people in the Department of Civil and Environmental Engineering who have kept me sane - the fellow postgraduate students for Friday drinks and a welcome distraction from the daily grind. In particular my friends Glenn and Shane, who have made the entire experience more enjoyable not just by consuming iced coffee (in the morning) and beer (after 11 am) with me. The academic staff, Assoc. Prof. Griffith, Assoc. Prof. Oehlers, Dr. Seracino for their interest in my work and helpful discussions. Mike for his open door and friendly chats. The laboratory and general staff for their efficiency and sense of humor (Greg). The computer administrators, Dr. Stephen Carr and Paul Carter for not letting electron migration get the better of us all.

The people around the world who I have met because of the work and whom I have shared many wonderful times with, especially Dalius, Marc'Antonio, Vaclav and Corina.

Prof. R. F. Warner who has been a great mentor and whom I would like to thank for his patience and wisdom. He has been an integral part in my learning and completion of this work.
LIST OF PUBLICATIONS

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiv</td>
</tr>
<tr>
<td>NOTATION</td>
<td>xxvii</td>
</tr>
<tr>
<td>UNITS and ACRONYMS</td>
<td>xxxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background Concepts

1.1.1 Non-Linear Analysis

1.1.2 Moment Redistribution

1.1.3 Secondary Moments

1.2 Research Background

1.3 Scope and Aims of Thesis

1.4 Thesis Contents

2 DUCTILITY AND MOMENT REDISTRIBUTION

2.1 Ductility

2.1.1 Material Behaviour

2.1.2 Member Ductility

2.2 Moment Redistribution in Structural Design Standards

2.2.1 Background to Moment Redistribution Limits for Design

2.2.2 Ductility Requirements for Reinforcing Steel and Prestressing Tendon in Design Standards
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3 Elastic Analysis with Moment Redistribution in Design Standards</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4 Ductility Requirements for Plastic Analysis in Design Standards</td>
<td>33</td>
</tr>
<tr>
<td>2.3 Previous Studies of Moment Redistribution</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 Past Definitions of Moment Redistribution</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 Secondary Moments and Moment Redistribution</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3 Past Analytical Studies of Moment Redistribution</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4 Observations from Continuous PPC Beam Tests</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Concluding Remarks</td>
<td>48</td>
</tr>
<tr>
<td>3 REVIEW OF BLOCK BASED LOCAL DEFORMATION MODELS</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Historical Development of Local Deformation Models</td>
<td>53</td>
</tr>
<tr>
<td>3.2 Recent Discrete Crack Block Models</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Concluding Remarks</td>
<td>65</td>
</tr>
<tr>
<td>4 ANALYSIS MODEL</td>
<td>67</td>
</tr>
<tr>
<td>4.1 Compatibility Assumptions for Progressively Cracking PPC Beams</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Analysis Model for Determinate PPC Members</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1 Initial and Uncracked Member Analysis</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2 Cracked Member Analysis</td>
<td>80</td>
</tr>
<tr>
<td>4.3 Analysis Procedure for Determinate PPC Beam</td>
<td>97</td>
</tr>
<tr>
<td>4.3.1 Uncracked Beam Analysis Procedure</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2 Cracked Beam Analysis Procedure</td>
<td>100</td>
</tr>
<tr>
<td>4.3.3 Numerical Example with a Determinate PPC Beam</td>
<td>102</td>
</tr>
<tr>
<td>4.4 Summary of Analysis Method</td>
<td>108</td>
</tr>
<tr>
<td>5 COMPARISON OF ANALYSIS MODEL WITH PAST BEAM TEST DATA</td>
<td>111</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Detailed Comparison with Past Beam Tests</td>
<td>115</td>
</tr>
<tr>
<td>5.2.1 RC Slab Tests of Eibl and Bühler (1991)</td>
<td>115</td>
</tr>
<tr>
<td>5.2.2 RC Beam Test of Eifler (1991)</td>
<td>120</td>
</tr>
<tr>
<td>5.2.3 PPC Beams Tested of Eibl, Mora and Strauß (1983)</td>
<td>122</td>
</tr>
<tr>
<td>5.2.4 PPC Beams Tested of Caflisch and Thürlimann (1970)</td>
<td>128</td>
</tr>
</tbody>
</table>
TABLE OF CONTENT

5.3 Accuracy of Analysis Predictions of Deformation Capacity

5.3.1 Predicted and Observed Deformation Capacity of RC Beams

5.3.2 Observed and Predicted Deformation Capacity of PPC Beams

5.4 Summary

6 DEFORMATION CAPACITY OF POST-TENSIONED PPC BEAMS

6.1 Introduction

6.1.1 Member Designs and Parameters Investigated

6.2 Parametric Study I – Effect of Member Size

6.2.1 Deformation Capacity for Failure in the Compression Zone

6.2.2 Deformation Capacity for Failure by Steel Fracture

6.3 Parametric Study II – Effect of Material Properties

6.3.1 Effect of Concrete Properties

6.3.2 Effect of Steel Ductility

6.3.3 Effect of Steel Bond Properties

6.4 Parametric Study III – Effect of Other Parameters

6.4.1 Effect of Support Pad Width

6.4.2 Effect of Crack Spacing

6.4.3 Effect of Prestressing Steel Quantity

6.4.4 Effect of Tendon Profile

6.4.5 Effect of Compression Reinforcement Quantity

6.5 Implications for Design Practice

6.6 Concluding Remarks

7 INDETERMINATE BEAM ANALYSIS

7.1 Extension of Discrete Crack Model to Indeterminate Beams

7.1.1 Bending Moments in a Continuous Beam

7.1.2 Analysis Procedure for a Two-Span PPC Beam

7.1.3 Modified Local Deformations Treatment for High Moment-Shear Regions

7.2 Numerical Examples using Bishara and Brar’s Beams

7.2.1 Beam Details

7.2.2 Global Behaviour

7.2.3 Local Behaviour
TABLE OF CONTENT

7.3 Alternative Analysis Method: Smeared Block Analysis ... 213
 7.3.1 Overview of Smeared Block Approach .. 214
 7.3.2 Accuracy of Smeared Block Approach .. 215

7.4 Summary ... 216

8 MOMENT REDISTRIBUTION IN POST-TENSIONED BAND BEAMS ... 219
 8.1 Introduction .. 221
 8.1.1 Procedure for Evaluating Allowable Moment Redistribution ... 221
 8.1.2 Structural System and Member Design ... 223
 8.2 Parametric Studies of Allowable Moment Redistribution .. 224
 8.2.1 Effect of Uniform Steel Elongation Limits .. 226
 8.2.2 Effect of Concrete Strength ... 231
 8.2.3 Effect of Steel Strain Hardening Properties .. 239
 8.2.4 Load Carrying Capacity with a Softening Hinge ... 267
 8.3 Recommendations for Design Practice .. 269
 8.3.1 Evaluation of Existing MR Limits in Design Standards ... 269
 8.3.2 Proposed Design MR Limits and Ductility Requirement .. 274
 8.4 Summary ... 276

9 CONCLUSIONS AND RECOMMENDATIONS .. 279
 9.1 Conclusions .. 281
 9.2 Recommendations for Design ... 285
 9.3 Suggestions for Further Research ... 287

10 REFERENCES ... 289

11 LIST OF APPENDICES .. 324
LIST OF FIGURES

Figure 1.1 - Models for determining deformation...4
Figure 1.2 - Moment redistribution in a continuous beam..5
Figure 1.3 - Secondary moments in a continuous beam...6
Figure 1.4 - Secondary moments in continuous PC beams...7

Figure 2.1 - Ductility of concrete for different concrete strength and confinement levels......14
Figure 2.2 - Typical Australian reinforcing and prestressing steel stress-strain response........15
Figure 2.3 - Properties of seven-strand prestressing tendons.....................................16
Figure 2.4 - Typical M-κ relationships for a PPC section and definitions of yield curvature....17
Figure 2.5 - Influence of shear on deformation capacity of plastic hinges......................21
Figure 2.6 - Influence of load application on deformation capacity (from Rao et al., 1971)........24
Figure 2.7 - Effect of degree of prestressing on rotation capacity (Li, 1998)......................25
Figure 2.8 - Evaluation of moment redistribution limits for design..................................28
Figure 2.9 - Allowable moment redistribution limits in design standards.......................32
Figure 2.10 - Plastic rotation capacity according to CEB MC 90 (1993), CEB MC 78 (1980) and ...
EC 2 (1990)..34
Figure 2.11 - Plastic rotation capacity according to DIN 1045-part 1 (2001)..........................35
Figure 2.12 - Required plastic rotation (θₚ) as a function of the degree of moment redistribution ...
for reinforced concrete members after Eligehausen and Fabritius (1993).........................36
Figure 2.13 - Moment redistribution limits from past studies using Plastic Adaption Ratio........41
Figure 2.14 - Moment redistribution from non-linear smeared block analysis of past experimental .
beams..47

Figure 3.1 - Plastic rotation according to Baker (1961) and Dilger (1966).........................54
Figure 3.2 - Hinge model according to Bachmann (1967)...55
Figure 3.3 - Model and convention according to Langer (1987)......................................57
Figure 3.4 - Strain distribution between cracks using polynomial function (Kwak and Song, 2002)
Figure 3.5 - Model extension to PPC beams by Li (1998) after Langer (1987) showing procedure for a single deformation increment
Figure 3.6 - Stress-fields with discrete crack element in a determinate beam (Marti et al. 1999)
Figure 3.7 - Tension chord model for PPC according to Alvarez (1998) after Sigrist (1995)
Figure 4.1 - Example of partially prestressed concrete beam
Figure 4.2 - Definition of bond breakdown length and disturbed region after first cracking
Figure 4.3 - Local behaviour over the disturbed region after first cracking in a PPC beam
Figure 4.4 - Cracked beam showing likely position of primary and secondary cracking
Figure 4.5 - Local behaviour over a cracked region containing multiple cracks
Figure 4.6 - Block representation of an uncracked determinate beam
Figure 4.7 - Section details, uncracked strains, stresses and forces
Figure 4.8 - Equilibrium of prestressing tendon and replacement nodal forces
Figure 4.9 - Initial strains at two sections along a PPC beam with prestress forces acting alone
Figure 4.10 - Application of self-weight to a beam as a load effect
Figure 4.11 - Application of first cracking load to the uncracked beam
Figure 4.12 - Application of concentrated load to a structural member
Figure 4.13 - Deformation controlled loading using local strain increments
Figure 4.14 - Block representation of a cracked determinate PPC beam
Figure 4.15 - Section strains with prestress acting alone, at decompression and cracked
Figure 4.16 - Procedures to solve bar equilibrium and slip compatibility for a steel bar
Figure 4.17 - Boundary conditions for local steel deformation analysis
Figure 4.18 - Relationship between cracked section strains and block deformation for smeared, proposed and strain compatibility based discrete crack block approach
Figure 4.19 - Solution procedure for local steel deformation analysis with multiple cracks and tensile steel layers
Figure 4.20 - Primary crack formation criteria
Figure 4.21 - Secondary crack formation criteria
Figure 4.22 - Beam rotation and deflections for a determinate member
Figure 4.23 - Initial and uncracked determinate beam analysis procedure
Figure 4.24 - Typical deformation increment for determinate cracked beam analysis procedure. 101
Figure 4.25 - Example beam after tests by Eibl, Mora and Strauß (half a span shown only)........102
Figure 4.26 - Curvature distribution along example beam for initial analysis stages.................103
Figure 4.27 - Local strain distribution for example beam before and after initial cracking.........103
Figure 4.28 - Local steel strain, slip and bond stress and maximum concrete strain, curvature and neutral axis depth distribution over the disturbed region after initial cracking..........................105
Figure 4.29 - Global deformation behaviour at peak load...106
Figure 4.30 - Local steel strain, slip and bond stress and maximum concrete strain distribution over the disturbed region at peak load...107

Figure 5.1 - Effects of gauge length on deformation measurements, after Langer (1989)..........113
Figure 5.2 - Load-deflection response and behaviour at M_u, Eibl and Bühler's beams..............116
Figure 5.3 - Local concrete strain distribution at M_u, Eibl and Bühler's beams........................117
Figure 5.4 - Plastic steel strain distribution at M_u, Eibl and Bühler's beams...............................118
Figure 5.5 - Crack pattern, Eibl and Bühler's beams...119
Figure 5.6 - Load-mid-span crack width, Eibl and Bühler's beams...119
Figure 5.7 - Load-deflection response and behaviour at M_u, Eifler's beams.............................121
Figure 5.8 - Local plastic reinforcement strain distribution at M_u, Eifler's beams......................121
Figure 5.9 - Crack pattern, Eifler's beams..122
Figure 5.10 - Load-deflection response and behaviour at M_u, Eibl, Mora and Strauß’s beams....123
Figure 5.11 - Deflected beam shape for increasing moments, Eibl, Mora and Strauß’s beams....124
Figure 5.12 - Local reinforcement strain distribution for increasing moments, Eibl, Mora and Strauß’s beams...124
Figure 5.13 - Concrete strain distribution for increasing moments, Eibl, Mora and Strauß’s beams..126
Figure 5.14 - Local strain distribution at M_u, Eibl, Mora and Strauß’s beam B2....................126
Figure 5.15 - Crack pattern, Eibl, Mora and Strauß’s beams (top: B1, middle: B2, bottom: B3)..127
Figure 5.16 - Structure and loading, Caflisch and Thürlimann's beams....................................128
Figure 5.17 - Moment-deflection response, Caflisch and Thürlimann's beams in series A...........129
Figure 5.18 - Moment-deflection response, Caflisch and Thürlimann's beam series B.............130
Figure 5.19 - Correlation for predicted and observed behaviour at M_u.................................137
Figure 6.1 - Concept of equivalent beam length..141
Figure 6.2 - Deformation capacity for failure in the compression zone and steel fracture............142
Figure 6.3 - Typical band beam used in parametric studies of deformation capacity..............143
Figure 6.4 - Default material properties and stress-strain assumptions.................................145
Figure 6.5 - Moment-rotation response of all members with default properties..........................147
Figure 6.6 - Rotation capacity for members with different L / D and D..148
Figure 6.7 - Average crack spacing and maximum crack width for different L / D and D..............149
Figure 6.8 - Definition of steel strain localisation factor...150
Figure 6.9 - Effect of L / D and D on reinforcement strain localisation factor history.................151
Figure 6.10 - Effect of L / D and D on prestress strain localisation factor history.........................152
Figure 6.11 - Effect of L / D and D on θ pl for premature steel fracture and increasing ε su and ε pu......153
Figure 6.12 - Local curvatures for members in Series A at ε s =1.5% with increasing p s.................155
Figure 6.13 - Plastic and rotation capacity using alternative definition of θ pl for premature steel fracture and increasing ε su and ε pu...156
Figure 6.14 - Effect of concrete strength on behaviour of members in Series A..............................158
Figure 6.15 - Effect of concrete strength on steel strain localisation factor history for members in Series A...159
Figure 6.16 - Effect of concrete strength on θ pl for failure in the compression zone......................160
Figure 6.17 - Effect of L/D and D on θ pl for steel fracture and increasing ε su and ε pu, f c = 85 MPa...161
Figure 6.18 - Effect of concrete deformability on θ pl and maximum strains at Mr for failure in the compression zone..162
Figure 6.19 - Effect of concrete deformability on the steel strain localisation factor history.............164
Figure 6.20 - Effect of concrete deformability on θ pl for premature steel fracture and increasing ε su and ε pu..164
Figure 6.21 - Parametric variation in reinforcing bar and prestressing tendon σ-ε in tension.....165
Figure 6.22 - Separated effect of f su/f sy and f pu/f py on θ pl for failure in the compression zone.......166
Figure 6.23 - Local steel strain at peak load for varying f su/f py and constant f suf Py.....................167
Figure 6.24 - Combined effect of f su/f sy and f pu/f py on θ pl for premature steel fracture and increasing ε su and ε pu...168
Figure 6.25 - Separate effect of f su/f sy on θ pl, for premature steel fracture and increasing ε su and ε pu. 168
Figure 6.26 - Separate effect of \(f_{su}/f_{sy} \) and \(f_{pu}/f_{py} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \)..........................169

Figure 6.27 - Effect of \(\tau_{s,max} \) on \(\theta_{pl} \) and \(s_{rm.avg} \) for failure in the compression zone.................170

Figure 6.28 - Combined effect of \(\tau_{s,max} \) and \(f_{su}/f_{sy} \) on \(\theta_{pl} \) for failure in the compression zone.........171

Figure 6.29 - Effect of \(\tau_{s,max} \) on steel strain localisation factor history..172

Figure 6.30 - Effect of \(\tau_{s,max} \) and \(f_{su}/f_{sy} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \). 173

Figure 6.31 - Effect of reinforcement bar diameter on plastic rotation capacity and average crack spacing 174

Figure 6.32 - Effect of \(\phi \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \).................175

Figure 6.33 - Effect of \(\tau_{s,max} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \)..............176

Figure 6.34 - Bending moment distribution and plastified length at \(M_u \) for increasing \(l_{pad} \).............177

Figure 6.35 - Effect of \(l_{pad} \) on rotations for failure in the compression zone..178

Figure 6.36 - Effect of \(l_{pad} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \)..............178

Figure 6.37 - Effect of crack pattern on deformation behaviour at \(M_u \)...180

Figure 6.38 - Effect of average crack spacing on steel strain localisation factor history.........................181

Figure 6.39 - Effect of \(s_{rm.avg} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \)..............182

Figure 6.40 - Effect of prestressing steel quantity on \(\theta_{pl} \) for failure in the compression zone............183

Figure 6.41 - Effect of prestressing steel quantity on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \)..184

Figure 6.42 - Effect of tendon profile on rotations for failure in the compression zone.......................185

Figure 6.43 - Effect of \(A_{sc} \) on \(\theta_{pl} \) and concrete strain for failure in the compression zone...........186

Figure 6.44 - Effect of \(A_{sc} \) on \(\theta_{pl} \) for premature steel fracture and increasing \(\varepsilon_{su} \) and \(\varepsilon_{pu} \).............186

Figure 6.45 - Comparison of \(\theta_{pl} \) results and design limits in European standards.......................187

Figure 7.1 - Model presentation of PPC two-span beam...193

Figure 7.2 - Bending moment distribution in a two-span continuous beam...194

Figure 7.3 - Nested loop structure and computational effort for a single deformation increment in the indeterminate beam analysis using discrete crack block and smeared block analysis..197

Figure 7.4 - Flexural-shear hinge model (after Bachmann, 1967)...198
Figure 7.5 - Internal forces in a flexural-shear hinge (based on Bachmann, 1967) ... 199
Figure 7.6 - Forces acting at adjacent flexural-shear cracks and at a typical inclined compression strut and stirrup ... 201
Figure 7.7 - Local variation in reinforcement strain over a flexural-shear hinge ... 204
Figure 7.8 - Predicted and observed load-deflection response, Bishara and Brar's beams 207
Figure 7.9 - Moment-load curves, Bishara and Brar's beams ... 208
Figure 7.10 - Predicted initial bending moment distribution for Bishara and Brar's beam BC3 208
Figure 7.11 - Deflected shape at different load levels, Bishara and Brar's beams 209
Figure 7.12 - Observed and predicted crack pattern, Bishara and Brar’s beams 209
Figure 7.13 - Local steel strain behaviour just-prior to, and at first cracking, RC beam BC1 210
Figure 7.14 - Local steel strain behaviour with cracking in the span, PPC beam BC3 210
Figure 7.15 - Local steel strains, slips and bond stress along the beam with a well developed crack pattern, prior to yielding, RC beam BC1 ... 209
Figure 7.16 - Local steel and concrete strains and curvature along the beam with yielded regions, PPC beam BC3 ... 211
Figure 7.17 - Local steel strains in PPC beam BC3 with flexural-shear and flexural hinges 212
Figure 7.18 - Local steel strain behaviour at high overload, PPC beam BC3 .. 213
Figure 7.19 - Correlation of predicted and observed carrying capacity of continuous bonded, partially prestressed members using the smeared block approach 216

Figure 8.1 - Continuous beam details for the study of moment redistribution 224
Figure 8.2 - Combinations of design moment redistribution and neutral axis parameter at the interior support for all beams ... 227
Figure 8.3 - MR and w_d/w_u, beams with $f_c=40$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited ε_{us} 228
Figure 8.4 - MR and w_d/w_u, beams with $f_c=40$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited ε_{pu} 229
Figure 8.5 - MR and w_d/w_u, beams with $f_c=40$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ concrete failure 229
Figure 8.6 - MR and w_d/w_u, beams with $f_c=65$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited ε_{us} 233
Figure 8.7 - MR and w_d/w_u, beams with $f_c=65$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and $\varepsilon_{us} = 8.0%$ 234
Figure 8.8 - MR and w_d/w_u, beams with $f_c=65$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited ε_{pu} 235
Figure 8.9 - MR and w_d/w_u, beams with $f_c=85$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited $\varepsilon_{us} = 1.5$, ... 2.5 and 8.0% ... 236
Figure 8.10 - MR and w_d/w_u, beams with $f_c=85$ MPa, $f_{us}/f_{sy}=1.0$, $f_{ps}/f_{py}=1.0$ and limited $\varepsilon_{us} = ...$ 5.0% ... 237
Figure 8.11 - MR and w/s beams with \(f_c = 85 \text{ MPa}, f_{\text{su}}/f_{\text{sy}} = 1.0, f_{\text{pu}}/f_{\text{py}} = 1.0 \) and limited \(\varepsilon_{\text{pu}} \)

Figure 8.12 - Plastic rotation capacity of interior support region for failure in the compression zone ..237

Figure 8.13 - MR and w/s beams with \(f_c = 65 \) and 85 MPa, \(f_{\text{su}}/f_{\text{sy}} = 1.0, f_{\text{pu}}/f_{\text{py}} = 1.0 \) ..239

Figure 8.14 - Moment over-strength at interior support as a function of \(f_{\text{su}}/f_{\text{sy}} \), \(f_{\text{pu}}/f_{\text{py}} \) and \(f_c \) ..240

Figure 8.15 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 1.5 \) ..242

Figure 8.16 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 2.5\% \)244

Figure 8.17 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 5.0\% \)245

Figure 8.18 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 8.0\% \)246

Figure 8.19 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 3.5\% \)248

Figure 8.20 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 6.0\% \)249

Figure 8.21 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 1.5\% \)252

Figure 8.22 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 2.5\% \)253

Figure 8.23 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 5.0\% \)254

Figure 8.24 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 8.0\% \)255

Figure 8.25 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 1.5\% \)258

Figure 8.26 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{su}} = 2.5\% \)259

Figure 8.27 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 5.0\% \)260

Figure 8.28 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 8.0\% \)261

Figure 8.29 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{su}}/f_{\text{sy}} \) and limited \(\varepsilon_{\text{pu}} = 3.5\% \)263

Figure 8.30 - MR and w/s beams with \(f_c = 65 \text{ MPa} \), varying \(f_{\text{pu}}/f_{\text{py}} \) and limited \(\varepsilon_{\text{pu}} = 6.0\% \)264

Figure 8.31 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{pu}}/f_{\text{py}} \) and limited \(\varepsilon_{\text{pu}} = 3.5\% \)265

Figure 8.32 - MR and w/s beams with \(f_c = 85 \text{ MPa} \), varying \(f_{\text{pu}}/f_{\text{py}} \) and limited \(\varepsilon_{\text{pu}} = 6.0\% \)266

Figure 8.33 - Carrying capacity with softening hinges ...268

Figure 8.34 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), for current AS 3600 minimum ductility reinforcing steel ductility limits ...270

Figure 8.35 - MR and w/s beams with \(f_c = 40 \text{ MPa} \), for current AS 3600 minimum ductility prestressing tendon ductility limits and for failure in the compression zone ..271

Figure 8.36 - Design MR and limits according to DIN, EC2 and CEB MC 90 categorised by steel ductility classes for normal-strength concrete ...272
Figure 8.37 - Design MR and limits according to DIN, EC2 and CEB MC 90 categorised by steel ductility classes for high-strength concrete. 273

Figure 8.38 - Proposed moment redistribution limits and section ductility requirements for design with elastic analysis in AS 3600 (2001) using current minimum steel ductility limits. 274

Figure 8.39 - Proposed moment redistribution limits and section ductility requirements for design with elastic analysis in AS 3600 (2001) using increased minimum steel ductility limits. 276

Figure 8.40 - Maximum safe limits of moment redistribution for failure in the compression zone. 277

Figure 9.1 - Proposed limits for design moment redistribution with proposed steel ductility classes. 286
Table 2.1 - Factors influencing member ductility and moment redistribution of linear members...19
Table 2.2 - Reinforcing steel ductility classes in design standards..29
Table 2.3 - Minimum elongation limits in ASTM for prestressing steels...............................29
Table 2.4 - Definitions of moment redistribution..38

Table 5.1 - Details of Eibl and Bühler's beams RPL1 to RPL3..116
Table 5.2 - Details of Eifler's beams R10 and R16...120
Table 5.3 - Details of Eibl, Mora and Strauß's beams B1 to B3...123
Table 5.4 - Section details of Caflisch and Thürlimann's beam series A....................................127
Table 5.5 - Section details of Caflisch and Thürlimann's beam series B......................................128
Table 5.6 - Material properties, cracking and ultimate behaviour, Caflisch and Thürlimann's beams in series A and B ..130
Table 5.7 - Beam and material properties of Bigaj and Walraven's RC beams.........................131
Table 5.8 - Observed and predicted rotations, Bigaj and Walraven's RC beams.......................132
Table 5.9 - Experimental and predicted behaviour at M_u, Eibl and Bühler's RC beams........132
Table 5.10 - Observed and predicted behaviour at M_u, Chandrasekhar and Falkner's RC beams.....133
Table 5.11 - Observed and predicted behaviour at M_u, Kamasundara's I-sectioned PPC beams. 135
Table 5.12 - Observed and predicted behaviour at M_u, Kamasundara's rectangular PPC beams.....135
Table 5.13 - Observed and predicted behaviour at M_u, Somes's PPC beams.........................136

Table 6.1 - Fixed structural parameters for all members in different series.............................144
Table 6.2 - Reinforcement and steel percentages for all members...145
Table 6.3 - Default material properties..145
Table 6.4 - Reinforcing bar and prestressing tendon properties variation..........................165
Table 6.5 - Parametric variation in reinforcing steel bond..174
Table 6.6 - Crack pattern at ultimate determined by the analysis for members in Series A........179
Table 6.7 - Parametric variation of prestressing details...183

Table 7.1 - Computational times for structural concrete beams with different block analysis.....196
Table 7.2 - Some suggestions for the flexural-shear hinge length from the literature.............204
Table 7.3 - Details for Bishara and Brar’s (1974) beams BC1, BC2 and BC3.................................206

Table 8.1 - Fixed structural parameters for all beams..223
Table 8.2 - Simplified steel strain localisation factors for interior support region of a continuous PPC band beam with $f_c = 40$ MPa and $f_{su}/f_{sy} = 1.0, f_{pu}/f_{py} = 1.0$..226
Table 8.3 - Simplified steel strain localisation factors for interior support region of a continuous PPC band beam with $f_c = 65$ and 85 MPa and $f_{su}/f_{sy} = 1.0, f_{pu}/f_{py} = 1.0$.................................231
Table 8.4 - Simplified reinforcing steel strain localisation factors for interior support region of a continuous PPC band beam with $f_c = 40$ MPa and varying f_{su}/f_{sy}..241
Table 8.5 - Simplified prestressing tendon strain localisation factors for interior support region of a continuous PPC band beam with $f_c = 40$ MPa and varying f_{pu}/f_{py}..247
Table 8.6 - Simplified steel strain localisation factors for interior support region of a continuous PPC band beam with $f_c = 65$ and 85 MPa and varying f_{su}/f_{sy} and f_{pu}/f_{py}.................................250
NOTATION

Material constants

E_{co} Tangent modulus of elasticity of unconfined concrete
E_{cu} Secant modulus of elasticity of unconfined concrete
E_p Modulus of elasticity of prestressing steel
E_s Modulus of elasticity of reinforcing steel
E_{sw} Modulus of elasticity of stirrup reinforcing steel (taken to be 200 GPa)
k, k_1 Material constants
n, N Material constants

Strains

ε_c Unconfined concrete strain
$\varepsilon_{c,\text{lim}}$ Concrete strain limiting application of CEB MC 90 (1993) ascending curve
ε_{c0} Outermost maximum compressive concrete strain
ε_{ct} Confined concrete strain
ε_{cp} Concrete strain at the prestressing steel level
ε_{cs} Concrete strain at the reinforcing steel level
ε_{ct} Concrete tensile strain
$\varepsilon_{ct,u}$ Concrete tensile fracture strain
ε_{ca} Concrete strain at maximum stress
ε_y Maximum concrete strain in the concrete at the yield of the reinforcement
ε_p Prestressing steel strain
ε_{pd} Prestressing steel strain at decompression
ε_{pu} Ultimate tensile prestress elongation
ε_{py} Yield strain of prestress
ε_s Reinforcing steel strain
ε_{su} Ultimate reinforcement steel elongation
ε_{sy} Yield strain of reinforcing steel

Stresses

f_k Maximum grout strength (mean value)
f_c Maximum unconfined concrete strength (mean value)
f_{ct} Fracture stress of unconfined concrete
σ_c Unconfined concrete stress
σ_{ct} Outermost compressive concrete stress
\(\sigma_{cc} \) \quad Confined concrete stress
\(\sigma_{ci} \) \quad Stress in the concrete along an inclined strut
\(\sigma_{cp} \) \quad Concrete stress at the prestressing steel level
\(\sigma_{cs} \) \quad Concrete stress at the reinforcing steel level
\(\sigma_p \) \quad Prestressing steel stress
\(\sigma_{pd} \) \quad Prestressing steel stress at decompression
\(\sigma_s \) \quad Reinforcing steel stress
\(\sigma_{sw} \) \quad Stirrup reinforcement stress

Bond stress-slip parameters

- \(s_1 \): Slip at which mechanical interlock is fully activated
- \(s_2 \): Slip at which mechanical interlock capacity starting to decrease
- \(s_3 \): Slip at which friction acts only
- \(s_4 \): Adjusted slip \(s_2 \) for post-yield range
- \(s_5 \): Adjusted slip \(s_4 \) for post-yield range
- \(s_y \): Slip at steel yield
- \(s_{yR} \): Slip at which friction acts only for post-yield range
- \(\tau \): Bond stress
- \(\tau_{\text{max}} \): Maximum steel bond stress
- \(\tau_p \): Prestressing steel bond stress
- \(\tau_f \): Friction steel bond stress
- \(\tau_s \): Reinforcing steel bond stress
- \(\tau_{\text{unit}} \): Unit bond stress
- \(\tau_{\text{ymax}} \): Maximum steel bond stress for post-yield range
- \(\tau_{yR} \): Friction steel bond stress for post-yield range
- \(x_{cr} \): Distance to nearest crack along prestress or reinforcing element in bar diameters

Factors

- \(\alpha_s \): Compatibility factor relating peak to average reinforcing steel strain
- \(\alpha_p \): Compatibility factor relating peak to average prestressing tendon steel strain increment
- \(\alpha_{co} \): Compatibility factor relating peak to average compressive concrete strain
- \(\alpha_{dc} \): Compatibility factor relating neutral axis depth at the crack to the neutral axis of deformation

Deformations

- \(\delta_{c0} \): Outermost compressive concrete deformations
- \(\delta_p \): Concrete deformations at the prestressing steel layer
- \(\delta_s \): Concrete deformations at the reinforcing steel layer
- \(d_{lab} \): Neutral axis of deformations over a region
- \(\delta_p \): Prestressing steel deformations
- \(\delta_s \): Reinforcing steel deformations
- \(\kappa \): Curvature
Notation

- s_p: Prestressing tendon slip
- s_i: Reinforcing bar slip
- w_p: Crack opening at the prestressing tendon layer
- w_i: Crack opening at the reinforcement steel layer
- w_{sp}: Splitting crack opening

Forces and moments

- C: Compression force
- C_c: Compression force in the concrete
- C_{sc}: Compression force in the reinforcing
- ϕ: Angle along which a force is directed
- F_i: Inclined strut force
- F_x: Horizontal force component
- F_y: Vertical force component
- M: Moment
- M_1: Primary moment due to prestress
- M_2: Secondary moment due to prestress
- M_{cr}: Cracking moment
- M_{driver}: Driver moment to set the bending moment level in the analysis
- M_{py}: Prestress yield moment
- M_{sw}: Self-weight moment
- M_{ry}: Reinforcement yield moment
- M_y: Yield moment
- N: Axial force
- N_u: Axial force capacity
- P: Effective prestressing force
- $P_{Gb, eq}$: Point load equivalent to w_{Gb} for simulating interior support regions with L_{eq}
- R: Reaction force
- S: Stirrup force
- \bar{s}: Distance to resultant stirrup force
- T: Tensile force
- T_c: Tensile force in the concrete
- T_p: Tensile force in the prestressing
- T_s: Tensile force in the reinforcing
- V: Shear force
- w: Cracking load (first crack w_{cr1}, second crack w_{cr2}...)
- w_{cr}: Uniformly distributed load balanced by prestress
- w_{Gb}: Uniformly distributed self-weight load
- w_{sw}: Uniformly distributed load

Dimension
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{sh}</td>
<td>Cross-sectional area of stirrup steel</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Width of member</td>
<td></td>
</tr>
<tr>
<td>B_t</td>
<td>Width of flange</td>
<td></td>
</tr>
<tr>
<td>B_w</td>
<td>Width of web</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Concrete cover</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Effective member depth</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Height of the member</td>
<td></td>
</tr>
<tr>
<td>d_f</td>
<td>Depth of flange</td>
<td></td>
</tr>
<tr>
<td>d_p</td>
<td>Depth to the centroid of the prestressing tendon</td>
<td></td>
</tr>
<tr>
<td>d_s</td>
<td>Height of a slab</td>
<td></td>
</tr>
<tr>
<td>D_s</td>
<td>Depth to centroid of the steel layer</td>
<td></td>
</tr>
<tr>
<td>d_w</td>
<td>Height of web</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Maximum tendon drape</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Span of the member</td>
<td></td>
</tr>
<tr>
<td>b_{bp}</td>
<td>Prestressing tendon slip distance</td>
<td></td>
</tr>
<tr>
<td>b_{bpk}</td>
<td>Deformation compatibility distance</td>
<td></td>
</tr>
<tr>
<td>b_{bpkL}</td>
<td>Prestressing tendon slip distance to the left of a reference point</td>
<td></td>
</tr>
<tr>
<td>b_{bpkR}</td>
<td>Prestressing tendon slip distance to the right of a reference point</td>
<td></td>
</tr>
<tr>
<td>b_{rak}</td>
<td>Reinforcing bar slip distance</td>
<td></td>
</tr>
<tr>
<td>b_{rakL}</td>
<td>Reinforcing bar slip distance to the left of a reference point</td>
<td></td>
</tr>
<tr>
<td>b_{rakR}</td>
<td>Reinforcing bar slip distance to the right of a reference point</td>
<td></td>
</tr>
<tr>
<td>$l_{D_{region}}$</td>
<td>D-region length</td>
<td></td>
</tr>
<tr>
<td>L_{eq}</td>
<td>Equivalent span of an interior support region (Chapter 6)</td>
<td></td>
</tr>
<tr>
<td>l_{pad}</td>
<td>Loading plate width</td>
<td></td>
</tr>
<tr>
<td>$l_{pad,eff}$</td>
<td>Effective loading plate width</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Stirrup spacing</td>
<td></td>
</tr>
<tr>
<td>t_{slice}</td>
<td>Thickness of a slice of concrete at a section</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Circumference</td>
<td></td>
</tr>
<tr>
<td>U_p</td>
<td>Reinforcing bar circumference</td>
<td></td>
</tr>
<tr>
<td>U_s</td>
<td>Prestressing tendon circumference</td>
<td></td>
</tr>
</tbody>
</table>

Section properties

- $A_{ct,eff}$: Cross-sectional area of tension reinforcing steel
- A_t: Effective area of concrete in tension
- A_p: Cross-sectional area of compression reinforcing steel
- A_s: Cross-sectional area of prestressing steel
- A_{sc}: Gross section area
- c: Percentage of tensile steel
- d_o: Percentage of prestressing steel
- k_e: Neutral axis of strains at a section (x is used in European design codes)
- n_c: Percentage of tension reinforcing steel
- n_p: Neutral axis parameter (AS 3600)
- n_s: Concrete cover
- p: Number of reinforcing layers at a section
- p_p: Number of prestressing layers at a section
\(p_s \)
Number of concrete slices at a section

\(\omega \)
Critical mechanical reinforcement ratio

\(\omega_t \)
Mechanical ratio of the reinforcing steel in tension

\(\omega_p \)
Mechanical ratio of the prestressing steel

\(\omega_c \)
Mechanical ratio of the reinforcing steel in compression

\(\omega_s \)
Mechanical reinforcing ratio

\(z \)
Lever arm of internal forces at a section

Common subscripts

-avg
An average value

.exp
A value observed in experiments

.L
To the left of a reference point

.max
A maximum value

.min
A minimum value

.R
To the right of a reference point

.span
Indicating a property in the span

.sup
Indicating a property at an interior support
SI units are used throughout this thesis. Experimental values are quoted as published with SI conversions given as applicable.

Strain [mm/mm]
Stress [MPa]
Area [mm²]
Length [mm]
Angle [degrees]
Rotation [radians]
Force [kN]
Moment [kNm]

The following acronyms are used in this thesis:

ACI American Concrete Institute
AS Australian Standards
ASCE American Society of Civil Engineers
BAM Bundesanstahlt für Materialforschungen
BS British Standards
CEB Comité Européen du Béton
CEB MC 90 Commite-Euro-International du Beton Model Code 90
CSA Canadian Standards Association
DCB Discrete crack block (analysis)
DIN Deutsche Industrie Normen
EC Eurocode
EN English
FIP Fédération Internationale de la Précontrainte
GER German
PCI Prestressed/Precast Concrete Institute
PPC Partially prestressed concrete
RC Reinforced concrete
SLS Serviceability limit state
UDL Uniformly distributed load
ULS Ultimate limit state