CHARACTERISATION OF A 4BS.4BL-5RL WHEAT RYE TRANSLOCATION TO IMPROVE COPPER EFFICIENCY OF BREAD WHEAT

Thesis submitted for the degree of

Doctor of Philosophy

by

Richard Charles Leach (B. Ag. Sc. Hons)

Department of Plant and Pest Sciences,

The University of Adelaide

August, 2004
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>MATERIALS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1:</td>
<td>GENERAL INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2:</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>IMPORTANCE OF COPPER IN PLANTS</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>OCCURRENCE AND DISTRIBUTION OF COPPER DEFICIENCY IN SOUTHERN AUSTRALIA</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>SYMPTOMS OF COPPER DEFICIENCY AND DEMONSTRATION OF COPPER EFFICIENCY</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>CORRECTION OF COPPER DEFICIENCY</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>COPPER EFFICIENCY IN CEREALS</td>
<td>7</td>
</tr>
<tr>
<td>2.6</td>
<td>LOCALISATION OF THE COPPER EFFICIENCY CHARACTER</td>
<td>8</td>
</tr>
</tbody>
</table>
Table of contents

2.7 MECHANISM OF ACTION OF COPPER EFFICIENCY .. 8
2.8 GENE(S) FOR COPPER EFFICIENCY ... 9
2.9 ORIGIN OF COPPER EFFICIENT TRANSLOCATION LINES 10
2.10 YIELD AND QUALITY OF WHEAT RYE TRANSLOCATION LINES 10
2.11 PRODUCTION OF LINES WITH SMALLER INTROGRESSED SEGMENTS 11
2.12 MOLECULAR MARKERS IN CEREALS .. 12
2.13 LINKAGE MAPPING ... 14
2.14 COMPARATIVE GENETIC MAPPING OF LOCI IN CEREALS 15
2.15 HOMOEOLOGY OF CHROMOSOMES OF RYE COMPARED WITH WHEAT 16
2.16 LENGTH OF THE RYE SEGMENT AND PAIRING IN WHEAT-RYE TRANSLOCATIONS ... 18
2.17 THE Ph1 GENE CONTROLLING CHROMOSOME PAIRING 19
2.18 IDENTIFICATION OF THE Ph1 GENE AND Ph1b DELETION 20
2.19 MODE OF ACTION OF Ph1 ... 20
2.20 ISOLATION OF RECOMBINANTS ... 22
2.21 FINAL REMARKS ... 23

CHAPTER 3:

PHYSICAL AND GENETIC LENGTH OF THE RYE SEGMENT IN THE 4BS.4BL-5RL TRANSLOCATIONS

3.1 INTRODUCTION .. 24

3.1.1 Background to the Mapping Study .. 24

3.2 METHODS ... 31

3.2.2 Plant Materials .. 31

3.2.3 Plant Culture ... 32
3.2.4 Genomic DNA Extraction ...32
3.2.5 Genomic in situ Hybridisation ...33
 3.2.5.1 Synchronisation of Metaphase Cells in Root tip33
 (i) By Cholchicine ...33
 (ii) By Cold Treatment ..34
 3.2.5.2 Preparation of Root Tip Metaphase Squashes34
 3.2.5.3 Pre-treatment of Slides with RNase A ...35
 3.2.5.4 Post-fixation and Dehydration of Slides35
 3.2.5.5 Digoxigenin (DIG) Labelling, Hybridisation and Washing36
 3.2.5.6 Antibody Conjugation and Staining of Hybridised Slides36
 3.2.5.7 Visualisation and Photography ..37
3.2.6 Culturing of Plasmid Stocks ...37
 3.2.6.1 Culturing of Escherichia Coli (E.coli) Strain DH5α37
 3.2.6.2 Production of Competent Cells of E.coli38
 3.2.6.3 Transformation of E.coli ...38
3.2.7 Preparation of Plasmid Clone DNA ..39
3.2.8 Source and Verification of Plasmid Clone Stock39
3.2.9 Purification of Plasmid Clone Insert ..40
 (i) By Restriction enzyme Digestion ..40
 (ii) By Polymerase Chain Reaction (PCR) ...40
3.2.10 Large Scale Agarose Gel Electrophoresis41
3.2.11 Small Scale Agarose Gel Electrophoresis41
3.2.12 DNA Restriction, Electrophoresis and Southern Transfer42
3.2.13 Preparation of 32P-labelled RFLP Probes42
3.2.14 Hybridisation and Autoradiography ..43
3.2.15 Selection of Clones for Hybridisation to Target the Breakpoint44
3.2.16 Strategy for Comparative Mapping to Target the Translocation Breakpoint44
 (i) Chinese Spring Hairy Neck ...44
 (ii) Viking Hairy Neck ...45
3.3 RESULTS ...48
 3.3.1 Physical Size of the Rye Segment in CSHN48
 3.3.2 Targeting the Translocation Breakpoints of CSHN and VHN48
 3.3.3 Aneuploid Analysis of Identified Polymorphic Markers50
3.3.4 Construction of a map and deducing the approximate location of the translocation breakpoint ... 50

3.4 DISCUSSION ... 54

3.4.1 Comparisons of the Physical Size of the Rye Segment in the Chinese Spring Hairy Neck and Viking Hairy Neck ... 54

3.4.2 Mapping the 4BS.4BL-5RL Translocations ... 54

3.4.2.1 Assumptions of Comparative Mapping and other Approaches 54

3.4.2.2 Identification of Markers Along the Arm ... 56

3.4.2.3 Development of a Genetic Map of the Translocation .. 57

3.5 ACKNOWLEDGMENTS ... 64

CHAPTER 4:

INDUCED HOMEOLOGOUS RECOMBINATION BETWEEN WHEAT AND RYE

4.1 INTRODUCTION .. 65

4.2 METHODS ... 67

4.2.1 Plant Materials ... 67

4.2.2 Nucleic Acid Preparation ... 67

4.2.3 Nucleic Acid Preparation by Sodium Hydroxide Extraction 67

4.2.4 Generation of a Unique Amplification Product by a Single Nucleotide Polymorphism .. 67

4.2.5 PCR Amplification of a Unique Band ... 68

4.2.6 Agarose Gel Electrophoresis and Visualisation ... 68

4.2.7 Verification of Amplification Product .. 69

4.2.8 Crossing of Plants ... 70

4.2.9 Crossing Strategy ... 71

4.2.10 Identification of Sears'ph1b Mutant ... 71

4.2.11 Identification of Heterozygous Plants with a Normal Wheat 4B and the 4BS.4BL-5RL from the Cornell Wheat Selection 82a1-2-4-7 .. 72

4.2.12 Screening of Progeny and Analysis .. 72
Table of contents

4.3 RESULTS.. 73

4.3.1 Development of a Polymerase Chain Reaction Marker Detecting the Homoeoloci of β-amylase-R1 Gene of Secale cereale.. 73

4.3.1.1 Alignment of β-amylase from Wheat and Rye ... 73

4.3.1.2 Generation of a Unique Band for β-amylase-R1 and Optimisation of PCR conditions.. 73

4.3.1.3 Verification of PCR... 76

4.3.1.4 Generation of Control Band for PCR Reaction.. 76

4.3.1.5 Optimisation of Sodium Hydroxide Extracted DNA............................. 79

4.3.2. Screening for Recombinants between Wheat and Rye Chromosomes.......... 79

4.3.2.1 Sears’ ph1b Mutant... 79

4.3.2.2 Screening of BC1F2 Progeny for Heterozygous Plants with a Normal Wheat 4B and the 4BS.4BL-5RL Chromosome from the Cornell Wheat Selection 82a1-2-4-7.. 80

4.3.3.4 Screening of BC1F2 Families.. 80

3.3.4 Segregation of Markers Between the Centromere and the Translocation Breakpoint.. 81

4.4 DISCUSSION... 86

4.4.1 Wheat-Rye Recombination... 86

4.4.2 Wheat-Wheat Recombination... 88

4.4.3 A Marker for β-amylase-R1.. 89

4.4.4 Application of the β-amylase-R1 Specific Marker...................................... 91

4.4.5 Limitations of PCR Markers in Mapping.. 91

CHAPTER 5:

YIELD AND QUALITY OF WARIGAL AND WARIGAL 5R LINES

5.1 INTRODUCTION.. 92

5.2 METHODS.. 93

5.2.1 Genetic Stocks... 93

5.2.2 Purification of Stock... 93
Table of contents

5.2.3 Field Trials 1999 and 2000 ... 93
5.2.4 Yield and Test Weight ... 94
5.2.5 Grain Quality Testing and Salt-dough Extensograph 94
5.2.6 Statistical Analysis ... 95
5.2.7 Extraction of Gliadins and Glutenins Components of Flour 95
 5.2.7.1 Gliadins ... 95
 5.2.7.2 Glutenins ... 95
 5.2.7.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) .. 96
 5.2.7.4 Staining of Gliadins and Glutenins after SDS-PAGE 96
5.2.8 Field Trials 2001 .. 97

5.3 RESULTS ... 97
 5.3.1 Verification and Purification of Seed Stocks 97
 5.3.2 Field Observations of Trials 1999, 2000 and 2001 97
 5.3.3 Yield, Protein, Test Weight and Quality at Charlick 1999 98
 5.3.4 Yield, Protein, Test Weight and Quality during 2000 98
 5.3.5 SDS-PAGE analysis of High Molecular Weight Glutenins 102
 5.3.6 Yield, Protein, Test Weight and Quality During 2001 102

5.4 DISCUSSION ... 106
 5.4.1 Field Observations ... 106
 5.4.2 Yield, Protein, Test Weight and Quality of 5R Translocation 106
 5.4.2.1 Trials 1999 ... 107
 5.4.2.2 Trials 2000 ... 107
 5.4.2.3 Trials 2001 ... 108

5.5 ACKNOWLEDGMENTS .. 109

CHAPTER 6:
RESPONSE OF WARIGAL AND WARIGAL 5R TO APPLIED COPPER

6.1 INTRODUCTION .. 110
6.2 METHODS ... 111
6.2.1 Seed Stocks .. 111
6.2.2 Laffer Sand Culture .. 111
6.2.3 Macro and Micro Nutrient Solutions .. 111
6.2.4 Plant Growth Conditions .. 112
6.2.5 Determination of Copper Content of Wheat Grains .. 113

6.3 RESULTS .. 114
6.3.1 Water Usage and Height .. 114
6.3.2 Visual Symptoms ... 114
6.3.3 Time to Anthesis .. 117
6.3.4 Grain Yield .. 117
6.3.5 Copper Concentration in the Grain ... 120
6.3.6 Copper Content and Efficiency of Uptake ... 123
6.3.7 Soil Copper Content .. 123
6.3.8 Quality of the Grain ... 123

6.4 DISCUSSION ... 126
6.4.1 Visual Symptoms and Anthesis .. 126
6.4.2 Water and Anthesis ... 127
6.4.3 Grain Yield and Copper Content ... 128

CHAPTER 7:
GENERAL DISCUSSION

7.1 OPENING REMARKS ... 130
7.2 COMPARATIVE GENETIC MAPPING .. 130
7.3 COMPARATIVE STRUCTURE OF TWO 4BS.4BL-5RL TRANSLOCATIONS IN WHEAT .. 131
7.4 RECOMBINATION AND THE CORNELL WHEAT SELECTION 82a-2-4-7 TRANSLOCATION BREAKPOINT ... 132
7.5 MECHANISMS OF FORMATION 4BS.4BL-5RL TRANSLOCATIONS 133
Table of contents

7.6 Value of markers close to the Copper Efficiency Gene of Cereal Rye ... 135

7.7 Application of the β-Amylase-R1 Specific Marker 136

7.8 Limitations of PCR Markers in Mapping 137

7.9 Localisation of the Copper Efficiency Gene 138

7.10 Future Molecular Work on the Translocations 139

7.11 Agricultural Potential of the Cornell Wheat-Rye Translocation ... 139

7.12 Final Remarks .. 141

Literature Cited ... 142
STATEMENT

I hereby certify that this thesis contains no material, to the best of my knowledge, which has been previously published by another person, except where due reference has been given.

I consent to this thesis being made available for photocopying and loan.

Richard Leach
August, 2004
ACKNOWLEDGEMENTS

The undertaking of this project involved the input of a great many people. I would like to thank the following people in no particular order, for their involvement in helping me realise my full potential.

- My principal supervisors Ken Shepherd and Robin Graham for their input into my development as a scientist and their friendship and support.

- I would particularly like to thank Ian Dundas for stepping in as a principal supervisor after the retirement of both Ken and Robin, for his tireless efforts in proofing my thesis for submission and for his friendship and guidance.

- The CRC for Molecular Plant Breeding for providing a research scholarship and financial support for reagents.

- Daryl Mares for his critical evaluation of several chapters of this thesis.

- Brendon King, for his friendship and thought provoking conversations on life, the universe and everything/anything.

- My parents, Brian and Carolyn and my brother, Nicholas, for always being there.

- Specific individuals are acknowledged in the chapters detailing work for which they provided equipment/materials and/or technical support for the experiments described in this thesis.
Materials used in this study are listed below, together with the suppliers' names. All chemicals used for *in vitro* use were at least analytical grade in standard. Solutions were prepared under sterile conditions using Nanopure H$_2$O, and autoclaved when appropriate. Descriptions of RFLP clones and genetic material used in this study can be found in the individual chapters.

Chemicals:
- bovine serum albumen (BSA) fraction V, spermidine, ampicillin, kanomycin, salmon sperm DNA, N-(2-hydroxyethyl) piperazine-N’-(2-ethane-sulfonic acid (HEPES), Tris (hydroxymethyl) amino-methane (trizma base), ethidium bromide, polyvinyl pyrrolidone (PVP, 40,000 molecular weight), *E. coli* t-RNA, salmon sperm DNA, dithiothreitol (DTT), 1,4-Piperazinediethanesulfonic acid (PIPES), polyoxyethylenesorbitan monolaurate (TWEEN), N,N,N’,N’-tetramethylethylenediamine (TEMED), 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI), colchicine: Sigma Chemicals (USA).
- dextran sulphate, Ficoll 400: Pharmacia (USA)
- phenol: Wako Industries (Japan).
- NaCl, NaOH, Na$_2$EDTA, MgCl$_2$, potassium acetate (KAc), sodium acetate (NaAc), urea, sucrose, glucose, ethanol (EtOH), iso-propyl alcohol, iso-amyl alcohol, chloroform, bromophenol blue, HCl, glacial acetic acid, sodium dodecyl sulphate (SDS): BDH.
- xylene cyanol: Ajax Chemicals

Enzymes:
- pancreatic RNase A: Sigma (USA).
- *Taq* DNA polymerase, Klenow fragment (large fragment of *E. coli* DNA polymerase I): Bresatec (Australia).
- restriction enzymes: Bresatec (Australia), Boehringer Mannheim (Germany), New England Biolabs and Promega (USA)
- PNK T4 kinase: Geneworks (Australia).
Oligodeoxyribonucleotides: Synthetic oligodeoxyribonucleotides were made on an Applied Biosystems (USA) Model 380B DNA synthesizer by Neil Shirley in the Department of Plant Science, University of Adelaide. Oligonucleotides were purified by ion exchange HPLC using a MonoQ column (Pharmacia, USA).

Nucleotides and Radionucleotides: Ultrapure nucleotide triphosphates (NTPs) and deoxynuclotide triphosphates (dNTPs) were obtained from Pharmacia. α^{32}-dCTP (10 µCi/µl) was obtained from Bresatec (Australia).

Molecular weight markers, and cloning vectors: • SPPI DNA cut with EcoRI, λ DNA cut with HindIII, and pUC19 DNA cut with HpaII, 100 bp ladder: Bresatec (Australia).
 • pBluescript SK-: Stratagene (USA).
 • pGem®-T Vector Kit: Promega (USA).

Bacterial media ingredients: bacto-agar, bacto-tryptone and yeast extract: Difco Laboratories (USA).

Agaroses: • low melting point agarose: BRL (USA). •LE agarose, Analytical Grade: Promega (USA). • NuSeive GTG grade: FMC Bioproducts (USA). • SeaKem® LE agarose: FMC Bioproducts (USA).

Bacterial strains: *Escherichia coli* DH5α: Stratagene (USA).

Kits: • Bresa-Clean: Bresatec (Australia). • pGem®-T Vector Kit: Promega (USA). • Quiagen tip-20: Quiagen (Germany).
Copper deficiency causes significant annual losses in grain yield due to poor grain set. Cereals such as wheat and barley are particularly susceptible to low copper soils whereas, crops such as rye and triticale are better able to grow and yield under such conditions of nutrient stress. The ability of rye and triticale, which carries a complete set of rye chromosomes, to tolerate low copper conditions has been attributed to a gene on rye chromosome 5R.

Wheat-rye translocation lines have previously been produced carrying segments of the long arm of chromosome 5 of rye (5RL). Although these lines have expressed copper efficiency in University of Adelaide trials, until now they have been considered agronomically inferior and so have not been used as commercial cultivars.

The physical size of rye segment of the 4BS.4BL-5RL translocation in a Chinese Spring background derived from the Cornell Wheat Selection 82a1-2-4-7 was measured using GISH (genomic in situ hybridization) and found to be 16% of the long arm. The size of this translocation was similar to GISH measurements of another 4BS.4BL-5RL translocation in Viking wheat background, although both these lines arose spontaneously and at different times.

Molecular maps of both 4BS.4BL-5RL translocations in the two different wheat backgrounds were developed and used to screen for rare recombinants between wheat and rye in a background homozygous for the Sears’ \textit{ph1b} mutant. The maps revealed the approximate genetic location of the translocation breakpoint involved in these two 4BS.4BL-5RL translocations to be similar even though they are known to have arisen at different times and in different experimental populations. The similarity of these translocations suggests a unique property of the region at or near the translocation breakpoint that could be responsible for their similarity and spontaneous formation. After screening 703 critical seedlings for evidence of recombination between the 5RL segment and wheat homoeologues, no confirmed recombinants were identified.
Summary

Lines containing the 4BS.4BL-5RL translocation were shown to yield equally as well as their recurrent parent under normal field conditions. In addition the presence of the 4BS.4BL-5RL had no adverse effects on a range of grain quality characteristics measured in these lines.

A pot trial using lines derived from a cross between the CSHN translocation and the wheat cultivar Warigal (five backcrosses) revealed that they provided copper-efficiency even under the severest of deficiency conditions. While the results of this pot trial did not show the outstanding copper efficiency previously observed in these lines, the translocation did consistently out yield the recurrent parent under severe copper deficiency conditions.

Finally, a reliable PCR marker was developed for the rapid identification of lines containing the distal portion of the 5RL chromosome.