EFFECT OF FATTY ACID COMPOSITION ON THE FLAVOUR OF KOREAN AND AUSTRALIAN BEEF

Elke. M. Stephens
B. Ag. Sc (Hons)

A Thesis prepared in partial fulfilment of the requirements for the Degree of Master in Agricultural Science.

Study undertaken within the Department of Animal Sciences
Waite Agricultural Research Institute
and Roseworthy Livestock Systems Alliance,
Adelaide University.
Submitted for Examination
December 2001
TABLE OF CONTENTS

ABSTRACT .. i
DECLARATION .. ii
ACKNOWLEDGEMENTS ... iii

CHAPTER 1 - INTRODUCTION ... 1
 1.1 INTRODUCTION ... 2
 1.2 CONSUMER PERCEPTIONS OF AUSTRALIAN BEEF IN KOREA 3
 1.3 HANWOO CHARACTERISTICS .. 5
 1.4 TREATMENT OF AUSTRALIAN BEEF IN KOREA ... 8
 1.5 PROJECT AIMS .. 8
 1.5.1 Specific Aims ... 9

CHAPTER 2 - REVIEW OF LITERATURE ... 10
 2.1 MEAT QUALITY ... 11
 2.2 ODOR & FLAVOUR PERCEPTION ... 12
 2.2.1 Physiology of Taste (Gustation) ... 12
 2.2.2 Physiology of Olfaction ... 14
 2.2.3 Sensory Physiology ... 15
 2.3 BEEF FLAVOUR .. 17
 2.4 DESCRIPTION OF MEAT FLAVOUR .. 28
 2.5 ROLE OF LIPIDS, FATS AND FATTY ACIDS - INFLUENCE ON PALATABILITY 31
 2.5.1 Genetic Differences in Flavour – Fatty Acid Composition 36
 2.5.2 Nutrition Effects on Flavour – Fatty Acid Composition 39
 2.6 PROCESSING AND COOKING INFLUENCES ON FLAVOUR 42
 2.6.1 Effect of pH on Flavour ... 42
 2.6.2 Effect of Freezing and Thawing on Flavour .. 44
 2.6.3 Effect of Cooking on Flavour .. 45
 2.7 SUMMARY .. 47

CHAPTER 3 - MATERIALS AND METHODS ... 49
 3.1 SUMMARY OF MATERIALS AND METHODS ... 50
 3.2 EXPERIMENTAL ANIMALS .. 50
 3.2.1 Selection of Animals for Preliminary Trial ... 50
 3.2.2 Selection of Animals for Main study .. 52
 3.2.3 Selection of Animals for Odour Assessment using a Chemical Sensor 56
 3.3 LABORATORY MEASUREMENT OF FAT TRAITS .. 56
 3.3.1 Muscle Fat Content ... 56
 3.3.2 Melting point of fat .. 57
 3.3.3 Fatty acid composition ... 57
 3.4 CHEMICAL SENSOR ANALYSIS ... 58
 3.5 OBJECTIVE MEASUREMENTS OF TENDERNES...
CHAPTER 5 - CHARACTERISATION OF THE FLAVOUR OF BEEF FROM THE NATIVE KOREAN BREED, THE HANWOO, IN RELATION TO THE FLAVOUR OF BEEF FROM AUSTRALIAN BREEDS

CHAPTER 6 - RELATIONSHIP BETWEEN FLAVOUR AND FATTY ACID COMPOSITION

CHAPTER 7 - CHARACTERISATION OF THE FLAVOUR OF KOREAN AND AUSTRALIAN BEEF USING A CHEMICAL SENSOR

CHAPTER 8 - DEVELOPMENT OF AN EQUATION TO PREDICT FLAVOUR
TABLE OF TABLES

Table 2.1 - Chemical Classes Reported in Cooked Beef (Mottram, 1991) .. 18
Table 2.2 - Some reactions generating the meaty aromas of Figure 2.2 (MacLeod, 1986) ... 19
Table 2.3 - Compounds of Cooked Beef Aroma Possessing Relatively High Flavour Dilution Factors 27
Table 2.4 - Common descriptors of meat flavour characteristics .. 30
Table 2.5 - Names and Numeric Symbols of some common Fatty Acids in Bovine Adipose and Muscle Tissues ... 33
Table 2.6 - Correlations between long-chain fatty acids with sensory characteristics of m. longissimus dorsi (LD) of crossbred feedlot steers (Camfield et al., 1997) ... 34
Table 2.7 - Correlations between fatty acids and flavours (Melton et al., 1982a) .. 34
Table 2.8 - Correlations between individual fatty acids and flavour score in neutral and polar lipid fractions (Melton et al., 1982b) and in SC & IM fat (LD) samples (Westerling & Hedrick, 1979) 34
Table 2.9 - MUFA % differences between Japanese Wagyu (produced in Japan) and American Wagyu and Angus beef (fed for 524 days in America). Boylston et al. (1995) ... 38
Table 2.10 - Sensory attributes and pH of meat cooked at different pH values ... 43

Table 3.1 - Means, standard deviations and ranges (minimum and maximum) for carcase measurements for 10
Angus and Angus cross pasture fed steers ... 51
Table 3.2 - Carcass Characteristics of ’96 drop SXB Heifers ... 54
Table 3.3 - Carcass Characteristics of ’95 drop SXB Steers ... 55
Table 3.4 - Carcass Characteristics of ’95 drop DGM Steers .. 55
Table 3.5 - Carcass Characteristics of ’97 drop Hanwoo Steers 55
Table 3.6 - HP 4440 Chemical Sensor Headspace Autosampler Parameters ... 59
Table 3.7 - Meat Tasting Score Sheet for Preliminary Trial ... 64
Table 3.8 - Meat Tasting Score Sheet for Main Trial ... 66

Table 4.1 - Main effects and interactions tested in the initial model - GLM (SAS, 1996) ... 75
Table 4.2 - Tests of Significance for all attributes tested by the taste panel ... 77
Table 4.3 - Least squares means and standard errors for each treatment as reported by taste panel ratings and
 tenderness objective measurement ... 78
Table 4.4 - General Linear Models Procedure – Residual Correlations between palatability attributes 79
Table 4.5 - Least squares means and standard errors for percentage moisture loss for each treatment 80
Table 4.6 - Tests of Significance for meat colour and pH attributes ... 81
Table 4.7 - Least squares means and standard errors for Meat Colour (CIE L*, a*, b*), Fat Colour (CIE L*, a*,
 b*) and pH for each aging and thawing treatment .. 81
Table 4.8 - Means and standard deviations for fatty acid composition for the two extreme treatments F1 (frozen,
one thaw) and A3 (aged, 3 thaws) .. 82

Table 5.1 - Main effects and interactions tested in the basic model using the GLM procedure (SAS, 1996) 92
Table 5.2 - Analysis of Variance Table for the Basic Modelb ... 93
Table 5.3 - Analysis of Variance for the different models (1-4) fitted to the flavoursb .. 94
Table 5.4 - Least Square Means for IMF%, Tenderness, pH and individual Flavoursb .. 100
Table 5.5 - Least Squares Means for Flavours which were significant for breed by sex class for Model 2 (IMF% fitted as covariate) ... 101
Table 5.6 - Estimate of the Slope for IMF% .. 102
Table 5.7 - Principal Component Eigenvectors and variation accounted for .. 106
Table 5.8 - Analysis of Variance Table for Breed Sex Class for Principal Components ... 106
Table 5.9 - Residual Correlationsb between Flavours ... 109

Table 6.1 - Analysis of Variance Table - the effect of sex and breed on fatty acids ... 120
Table 6.2 - Least Squares Means for Breed Sex Classb ... 127
Table 6.3 - Correlations between fatty acids .. 128
Table 6.4 - Correlations between fatty acids and residual flavours ... 130
TABLE OF APPENDICES

APPENDIX 1 - Preliminary Trial
Figure 1 - Ambient chiller temperature and mean chilling rate of carcasses throughout 21 hour period
Figure 2 - Ambient chiller and freezer temperatures during initial freezing and aging of samples (4 days)
Table 1 – Treatment allocation for Preliminary Trial

APPENDIX 2 - LSMEANS for Ions significant for country

APPENDIX 3 - Correlations of Ions with fatty acids and flavours

APPENDIX 4 - Eigenvectors from the Principal Components Analysis showing the amount of variation explained by each ion making up Principal components 1 to 10
ABSTRACT

A preliminary trial to determine the effect of repeated freezing and thawing on beef striploins, showed that the effect of thawing on frozen non-aged beef significantly improved tenderness, flavour and acceptability, indicating that thawing had a similar effect to aging.

In the subsequent study, 207 beef striploins were collected from the Southern Crossbreeding Project (SXB: 70 heifers grainfed for 80 days, 70 steers grainfed for 180 days), Davies Gene Mapping Project (DGM: 30 steers grainfed for 180 days) and also 37 Hanwoo striploins imported into Australia from Korea. SXB animals consisted of Hereford cross calves sired by Belgian Blue, Limousin, South Devon, Hereford, Angus, Wagyu and Jersey bulls. DGM animals consisted of purebred Limousins and Jerseys and Limousin by Jersey crosses. Sensory analysis of beef striploins involved semi-trained taste panel assessments, using nine-point category scales for initial and sustained juiciness, beef flavour, beef fat flavour, oily flavour, buttery flavour, chicken-skin flavour, corn flavour, grassy flavour and overall acceptability.

Flavour acceptability was positively enhanced by increased levels of intramuscular fat (IMF%). Significant differences in breed were apparent for juiciness, beef flavour, buttery flavour and flavour acceptability, after adjusting data to a constant level of intramuscular fat, suggesting that some variation in flavour may be genetic. The Korean Hanwoo displayed a numerically higher intensity of chicken score and lower intensity of beef flavour.

Australian cattle breeds differed in fatty acid composition between each other and also to that of the Korean Hanwoo. The latter had 57% mono-unsaturated fatty acids, which was significantly higher (P<0.001) than the Australian breeds (47%). Since IMF% was confounded with breed, breed differences were not significant when adjusted for IMF%. Jersey animals most closely resembled the Hanwoo in fatty acid profile, whilst animals containing Limousin differed markedly from the Hanwoo.

A chemical sensor was able to establish significant differences between Korean Hanwoo and Australian animals and predominantly mirrored differences in fatty acid composition and to some extent flavour.

Development of prediction equations from individual fatty acids was disappointing (R^2< 15%). However, when fatty acid data, IMF% and chemical sensor data were combined to form prediction equations, moderate R^2 values were obtained of (24% to 43%).
DECLARATION

I declare that this work contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution, and that to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Elke. M. Stephens
ACKNOWLEDGEMENTS

I wish to thank a number of people for their assistance and support throughout the duration of my study on this project.

Firstly, I must thank Dr. Brian Siebert for assistance with the fatty acid analysis in a preliminary trial and also for analysing all of the fatty acids from the Southern Crossbreeding Project, Davies Gene Mapping Project and the Korean Hanwoo animals. This data set was used in the majority of analyses throughout this thesis.

Thanks must also go to Dr. Peter Speck for enabling me to use the Meat Laboratory at Rutherglen Research Institute, Ag. Victoria. Mr. Greg Ferrier, from Rutherglen Research Institute was invaluable in helping to measure tenderness, meat colour and pH in the preliminary trial. Thankyou to the management and staff at T&R abattoir, Murray Bridge, in particular Neal Teasdale, who allowed me to take samples from the boning room for my preliminary trial.

A number of people gave up their time voluntarily to participate as tasters throughout the trial. I would like to thank the staff and student members from the Waite Institute in 1998, who were my tasters for the preliminary trial, in particular staff and students from the Department of Animal Science. A big thank-you must also go to the 25 Roseworthy students from the Meat Production class in 1999, who made up the taste panel for the main trial. Their enthusiasm and interest in what I was doing made it a pleasure to work with them.

Whilst conducting the taste panels out at Roseworthy for the main trial, a number of people helped me throughout this time, including Ian Molloy (SARDI), Helen Daley (Wool CRC) and a number of the laboratory staff from the Roseworthy teaching wing.

I would also like to thank the Australian Wine Research Institute at the Waite, for the use of the ‘chemical sensor’. In particular to Dr. Michelle Wirthensohn and Dr. Graham Jones for their time in helping me set up the machine for use.

I must thank ELDERS Limited, for their financial support on this project. Mr. Dennis Wignall, Mr. Nick Chrichton and Mr. Tim Smith provided direction and support throughout the project and enabled beef samples to be collected in Korea and imported into Australia. Without this industry support, this project would not have been possible.

In the latter stages of writing, I would like to thank Primary Industries and Resources staff Bruce Hancock, Dale Manson and Andrew Curtis, who were supportive of me finishing my Masters and allowing me time off from my PIRSA SA Lamb project to complete it.

I would like to thank Dr. Wayne Pitchford for motivational assistance and moral support throughout the period of study. His assistance with Statistics was invaluable. I must also thank my parents, Peter Hocking and Michelle Fenton who were always there to provide moral support. Also, to Michelle, Megan, Veronica and Jane, thank you for your continual friendship and support.