THE EFFECT OF PARTIAL ROOTZONE DRYING ON THE
PARTITIONING OF DRY MATTER, CARBON, NITROGEN
AND INORGANIC IONS OF GRAPEVINES

Petrus Gerhardus du Toit

School of Agriculture and Wine
Faculty of Sciences
The University of Adelaide

A thesis submitted to the University of Adelaide in the fulfillment of the requirement for
the degree Doctor of Philosophy

January 2005
Declaration

I hereby declare that this thesis contains no material that has been accepted for the award of any other degree or diploma at any University. To the best of my knowledge and belief, no material described herein has been previously published or written by any other person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Petrus Gerhardus du Toit

January 2005
Acknowledgements

I would like to acknowledge the following individuals that made a significant contribution to this thesis and institutions for financial support:

WinetechSA for financial support and the privilege to complete my PhD studies in Australia.

The Australian Grape and Wine Research Development Corporation (GWRDC) for supporting the project financially.

My supervisors, Associate Professor Peter Dry and Dr. Brian Loveys for their guidance during an incredible learning experience and for whom I have the greatest respect and gratitude.

My wife, Suzanne that stood by me during a long 4 years away from home and contributed with casual work during her free time. Thank you for your love and support.

Dr. Chris Soar, a good friend and colleague who was always very helpful and someone I could come to with a question or ten.

Sue Maffei for technical assistance in the CSIRO laboratory.

Keren Bindon with whom I shared the Nuriootpa Shiraz experimental site.

Nadia van der Merwe and Lizbe Muller who contributed with casual work.

Stuart McLure from CSIRO Land and Water for hundreds of labeled nitrogen analyses.

Penny Day from the Department of Soil and Land systems, University of Adelaide, for hundreds of C and N analyses.

Adrian Beech, the manager of Analytical Services at CSIRO Land and Water, for the use of acid digests, laboratory and ICP for mineral analyses.

The support and the use of laboratories and facilities of the University of Adelaide.

The use of laboratories and facilities of the Commonwealth Scientific & Industrial Research Organization (CSIRO) - Plant Industry.
Publications

Parts of the work described in this thesis have been published in the following articles:

Summary

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water-use efficiency (measured as t/ML) (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil-derived signals to above-ground plant organs to induce a physiological response. Major PRD effects include a reduced canopy size and greatly increased WUE with possible improvements in fruit quality. Although we have a good understanding of the hormonal physiology of PRD, little is known on the effect of PRD on partitioning of C, N and inorganic ions such as K. This thesis broadens our knowledge on the effects of PRD on grapevine field performance, growth and dry matter accumulation as well as its effects on physiology and biochemistry. In field experiments over 3 seasons, PRD reduced water use in grapevines without a significant decline in yield. PRD effects included reduced shoot growth and greatly increased WUE. Field-grown Cabernet Sauvignon, where the PRD grapevines were irrigated at half the control rate, and Shiraz where the PRD grapevines were irrigated at same rate as controls, confirmed that PRD is not simply an irrigation strategy that applies less water, rather it alters the way in which the plant responds to its environment, e.g. PRD alters the sensitivity of the stomatal response to atmospheric conditions and significantly influence enzymes that regulate nutrient accumulation and partitioning. PRD did not change the total amount of carbon and nitrogen on a whole plant basis. However, it caused a significant partitioning of carbon and nitrogen towards trunk, roots and fruit at the expense of shoot growth. This change in partitioning occurred as a result of altered activity of the enzymes controlling the assimilation of carbon and nitrogen. PRD significantly reduced nitrate reductase (NR) activity in grapevine leaves, which catalyses the first step in the assimilation of nitrate irrespective of the amount of water applied. The reduction in NR activity is correlated with the development of the PRD cycle and the associated reduction in stomatal conductance.

PRD also significantly altered grapevine sucrolytic enzyme activity that regulate source:sink relationships. PRD showed transient increases in leaf sucrose phosphate synthase (SPS) activity (formation of sucrose) compared to control, but significantly reduced leaf neutral invertase (sucrose cleavage) and leaf starch content in both field and potted experiments. This may indicate an increased photosynthetic capacity and a reduction in its sink strength for sucrose in favor of organs such as fruit and roots. This hypothesis was reinforced by the fact that berries showed significantly higher levels in glucose and fructose early in the season. Berry sugar content and Brix at harvest however was unaffected. Although PRD had no significant effect on berry characteristics at harvest such as Brix and pH, it occasionally reduced per berry K⁺ content and increased total amino acid concentration that may lead to positive outcomes for wine quality.

PRD-treated grapevine roots on the ‘wet’- and ‘drying’-sides differed greatly in enzyme activity and osmolality. PRD significantly increased osmolality in both wet and drying roots by increasing total osmolyte concentration that may facilitate the movement of water from wet to dry roots. The increases in osmolality were also associated with increased free polyamine production (spermidine and spermine) in PRD roots that may be related to increased root growth and density.
List of Abbreviations

ABA abscisic acid
ADC arginine decarboxylase
AI acid invertase
GWRDC Australian Grape and Wine Research Development Corporation
Ci intracellular CO$_2$ concentrations
CK cytokinins
CSIRO Commonwealth Scientific & Industrial Research Organization
°C degrees Celsius
ET$_0$ evapotranspiration
FAA free amino acid
FAN free amino nitrogen
GDD growing degree days
GOGAT glutamine synthase/glutamate synthase
g$_s$ stomatal conductance
GS glutamine synthase
IRGA infrared gas analysis instrument
LA leaf area
NADPH nicotinamide adenine dinucleotide phosphate
NCCs nitrogen-containing compounds
NI neutral invertase
NR nitrate reductase
PAR photosynthetic active radiation
PAs polyamines
Pn photosynthesis
PRD partial rootzone drying
RH relative humidity
RuBP ribulose-1,5-bisphosphate
s.e. standard error of the mean
SPS sucrose phosphate synthase
SucSy sucrose synthase
TDR time domain reflectometry
TSS total soluble solids
VSP vertical shoot positioning
WUE water use efficiency
Ψ$_L$ leaf water potential
Table of contents

<table>
<thead>
<tr>
<th>Chapter 1: General introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Partial rootzone drying management</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Why is alternation in wetting zones important?</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Why will a simple reduction in irrigated water not have the same effect?</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Why is PRD of different irrigation volumes compared to control?</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Main focus points of the PRD research in this study</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Carbon assimilation and the source:sink relationship</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 Sources and sinks</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Phloem transport</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3 Source to sink relationship</td>
<td>8</td>
</tr>
<tr>
<td>1.3.4 Carbohydrate storage and the role of sucrolytic enzymes</td>
<td>8</td>
</tr>
<tr>
<td>1.3.5 Biomass partitioning and water stress</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Nitrogen assimilation and water stress</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1 The role of enzymes involved in nitrogen assimilation</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 Nitrogen containing compounds (NCCs)</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3 Polyamines (PAs)</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Function and accumulation of inorganic ions in grapevines</td>
<td>16</td>
</tr>
<tr>
<td>1.5.1 Potassium (K)</td>
<td>16</td>
</tr>
<tr>
<td>1.5.2 Phosphorus (P)</td>
<td>17</td>
</tr>
<tr>
<td>1.5.3 Calcium (Ca)</td>
<td>17</td>
</tr>
<tr>
<td>1.5.4 Magnesium (Mg)</td>
<td>18</td>
</tr>
<tr>
<td>1.5.5 Sodium (Na)</td>
<td>18</td>
</tr>
<tr>
<td>1.5.6 Sulphur (S)</td>
<td>18</td>
</tr>
<tr>
<td>1.6 Seasonal dry matter and nutrient distribution in grapevines</td>
<td>18</td>
</tr>
<tr>
<td>1.7 Importance of vigor for plant nutrition</td>
<td>19</td>
</tr>
<tr>
<td>1.8 Importance of water use in plant nutrition and the carbon and nitrogen ratio</td>
<td>19</td>
</tr>
<tr>
<td>1.9 General research hypothesis</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: General materials and methods</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Sites and conditions</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Production of split-root vines</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Soil moisture measurements</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Gas exchange measurements</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Leaf gas exchange and photosynthesis</td>
<td>27</td>
</tr>
<tr>
<td>2.6 Xylem sap collection</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Plant organ sampling</td>
<td>29</td>
</tr>
<tr>
<td>2.7.1 Root sampling</td>
<td>29</td>
</tr>
<tr>
<td>2.7.2 Leaf sampling</td>
<td>29</td>
</tr>
<tr>
<td>2.7.3 Shoot sampling</td>
<td>29</td>
</tr>
<tr>
<td>2.7.4 Fruit sampling and measurements</td>
<td>29</td>
</tr>
<tr>
<td>2.8 Soluble sugars analysis</td>
<td>30</td>
</tr>
<tr>
<td>2.9 Amino acid analysis</td>
<td>31</td>
</tr>
<tr>
<td>2.10 Free polyamine analyses</td>
<td>31</td>
</tr>
<tr>
<td>2.11 Inorganic mineral analyses</td>
<td>32</td>
</tr>
<tr>
<td>2.12 Starch analysis</td>
<td>32</td>
</tr>
</tbody>
</table>
Chapter 3: Summary of weather conditions 2000-2004 36

Chapter 4: Effects of partial rootzone drying on water use efficiency and the reduction of shoot growth and canopy density 39

4.1 Introduction 39
4.2 Materials and methods 40
4.2.1 Field experiments where PRD received half the amount of control irrigation 40
4.2.2 Field experiments where PRD received the same amount of water as control. 41
4.2.3 Pot-grown Cabernet Sauvignon 44
4.2.4 Measurement of yield and harvest parameters 44
4.2.5 Stomatal conductance 44
4.2.6 Leaf area and canopy measurements 44
4.2.7 Shoot growth rate 45
4.2.8 Pruning weights 45
4.2.9 Leaf and stem water potentials 46
4.3 Results 46
4.3.1 Effects of PRD on shoot growth 46
4.3.2 Effects of PRD on leaf and stem water potentials 55
4.3.3 Effects of PRD on stomatal conductance 56
4.3.4 PRD and Photosynthesis 61
4.3.5 Effect of PRD on leaf area and canopy density 63
4.3.6 Effect of PRD on grapevine performance, dry weight accumulation and water use efficiency 67
4.4 Discussion 76
4.5 Conclusions 81

Chapter 5: PRD and exogenous ABA affect accumulation and partitioning of nitrogen, minerals and assimilated carbon in grapevine. 83

5.1 Introduction 83
5.2 Materials and methods 85
5.3 Results 89
5.3.1 PRD and exogenous ABA effects on fruit and accumulated dry weight. 90
5.3.2 PRD and exogenous ABA effects on grapevine starch accumulation and partitioning. 91
5.3.3 PRD and exogenous ABA effects on grapevine mineral accumulation and partitioning 92
5.3.4 PRD and exogenous ABA effects on the partitioning of newly absorbed nitrogen. 98
5.3.5 PRD and exogenous ABA effects on the assimilation and partitioning of total nitrogen and carbon. 99
5.3.6 PRD field-experiment: effects on assimilation and partitioning of total nitrogen and carbon. 105
5.4 Discussion 112
5.5 Conclusions 122

Chapter 6: Partial rootzone drying reduces grapevine root and leaf nitrate reductase: the role of ABA and soil drying 124
6.1 Introduction 124
6.2 Materials and methods 126
 6.2.1 Experimental material and design 126
 6.2.2 Stomatal conductance 129
 6.2.3 Soil moisture measurements 129
 6.2.4 Glutamine synthase (GS) activity 129
 6.2.5 Nitrogen reductase (NR) activity assay by infiltration method 130
 6.2.6 Nitrogen Reductase (NR) assay by extraction method 130
 6.2.7 Determination of ammonium 131
 6.2.8 Determination of nitrate 131
6.3 Results 131
 6.3.1 PRD effect on ammonium levels and glutamine synthesis 131
 6.3.2 PRD effect on berry NR activity 132
 6.3.3 PRD effect on leaf NR activity 133
 6.3.4 Factors affecting stomatal conductance and NR activity 138
 6.3.5 PRD effect on xylem sap nitrate concentration 141
 6.3.6 PRD effect on root NR activity 142
6.4 Discussion 145
6.5 Conclusions 148

Chapter 7: Osmotic regulation and sucrolytic enzyme activity in roots of partial rootzone drying: accumulation of sugars, amino acids and polyamines. 150
7.1 Introduction 150
7.2 Materials and methods 153
 7.2.1 Experimental material and design 153
 7.2.2 Measurements of leaf physiology 154
 7.2.3 Root tissue sampling and analyses 154
 7.2.4 Root osmolality 154
 7.2.5 Soluble sugars and osmolyte analysis 155
 7.2.6 Amino acid analysis 155
 7.2.7 Free polyamine analysis 155
 7.2.8 Inorganic mineral analysis 155
 7.2.9 Sucrolytic enzyme activity 155
7.4 Results 156
 7.4.1 Root osmolality 156
 7.4.2 Sugars and osmolytes 157
 7.4.3 Amino acids 161
 7.4.4 Free polyamines 163
 7.4.5 Sucrolytic enzyme activity 166
 7.4.6 Inorganic ions 169
c) Polyamines 233

9.4 Discussion 234
9.5 Conclusions 238

Chapter 10: PRD effects on berry inorganic ion accumulation, especially potassium, and the effect of berry size. 240
10.1 Introduction 240
10.2 Materials and methods 241
10.3 Results 242
 10.3.1 Coombe Vineyard experiments in 2000/1 242
 10.3.2 Coombe Vineyard experiments in 2001/2 248
 10.3.3 Coombe Vineyard experiments in 2002/3 251
 10.3.4 Nuriootpa Shiraz in 2000/1 254
10.4 Discussion 256
10.5 Conclusions 261

Chapter 11 General discussion and conclusions 263
11.1 Discussion on PRD research 263
 11.1.1 PRD effects on growth and the accumulation of dry matter 264
 11.1.2 PRD effects on C and N assimilation at the biochemical level 265
 11.1.3 PRD effects on the partitioning of carbon and nitrogen 273
 11.1.4 PRD effects on berry characteristics and the accumulation of inorganic ions 275
11.2 Practical implications 278
11.3 Future directions 281

Literature cited 282

Appendix 299
List of figures

1.1 Implementation of partial root-zone drying in the field. 3
1.2 Scheme showing relationships between photosynthesis, respiration and the formation of carbohydrates and amino acids. 2-oxoglutarate (2OG), oxaloacetate (OAA), 3-phosphoglycerate (PGA), triose phosphate (TP), fructose bisphosphate (FBP), glucose 1-phosphate (G1P), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), uridine diphosphoglucose (UDPG) [Lewis, 2000 #224]. 6
1.3 GS/GOGAT assimilation cycle [Givan, 1979 #183; Salisbury, 1992 #94]. 13
1.4 Schematic outline of detoxifying hypothesis [Rabe, 1990 #87]. 14
1.5 Schematic illustration of polyamine biosynthetic pathways. (1) Arginine decarboxylase (ADC); (2) Agmatine Iminohydrolase (AIH); (3) N-Carbamoylputrecine amidohydrolase; (4) S-Adenosylmethionine decarboxylase (SAMDC); (5) Arginase; (6) Spermidine synthase; (7) Spermine synthase; (8) ACC synthase [Flores, 1990 #36]. 15

2.1 Implementation of PRD irrigation set up in pots: A) PRD: water withheld from one side; B) control: water on both sides. 23
2.2 Xylem collection apparatus. A. Shoot insertion point. B. Collection vial. 30
3.1 Cumulative growing degree-days after budburst for two growing seasons of the Waite campus. 38
4.1 Soil water content (mm) of control irrigation of Cabernet Sauvignon in the Alverstoke vineyard measured at 0–700 mm depth by EnviroSCAN® during the 2000/01 season. 45
4.2 Soil water content (mm) of PRD irrigation of Cabernet Sauvignon in the Alverstoke vineyard measured at 0–700 mm depth by EnviroSCAN® during the 2000/01 season. (Two lines represent the data collected from different sides of the PRD vine). 45
4.3 PRD effect on shoot growth in Waite Cabernet Sauvignon during the 2000/1 season. (A+B) accumulated and (C+D) daily shoot growth rates of actively growing main and lateral shoots. PRD received half the amount of water as control. (means n=7; average of 5 measurements per plot; Vertical bars indicate standard errors of the mean; P value indicate the significance level of the main effect of irrigation). 50
4.4 PRD effect on shoot growth in Waite Shiraz during the 2000/1 season. (A+B) accumulated and (C+D) daily shoot growth rates of actively growing main and lateral shoots. PRD received the same amount of water as control. (means n=7; average of 5 measurements per plot; Vertical bars indicate standard errors of the mean; P value indicate the significance level of the main effect of irrigation). 51
4.5 PRD effect on shoot growth in Waite Cabernet Sauvignon during the 2001/2 season. (A+B) accumulated and (C+D) daily shoot growth rates of actively growing main and lateral shoots. PRD received half the amount of water as control. (means n=7; average of 5 measurements per plot; Vertical bars indicate standard errors of the mean; P value indicate the significance level of the main effect of irrigation). 52
4.6 PRD effect on shoot growth in Waite Shiraz during the 2001/2 season. (A+B) accumulated and (C+D) daily shoot growth rates of actively growing main and lateral shoots. PRD received the same amount of water as control (means n=7; average of 5 measurements per plot; Vertical bars indicate standard errors of the mean; P value indicate the significance level of the main effect of irrigation). 53
4.7 PRD and girdling effects on active shoot growth of Alverstoke Cabernet Sauvignon in 2001/2. (A) Accumulated shoot length (cm); (B) Shoot growth rate (cm/day). PRD started on the 24/11/01 and received the same amount of water as control. (means n = 6; average of 5 measurements per plot; Vertical bars indicate standard errors of the average). 54
4.8 PRD and pruning level effects on shoot growth of Nuriootpa Shiraz in 2000/1. (A) Accumulated shoot length (cm) and (B) average shoot growth rate (cm/week). PRD started on the 23/11/00 and received half the amount of irrigation water as control. Pruning levels consisted of retaining 30, 60 or 120 nodes per vine. (means n = 5; average of 5 measurements per plot; Vertical bars indicate standard errors of the average). 56
4.9 Stomatal conductance of Coombe Cabernet Sauvignon in 2001. PRD received half the amount of water as control. (Vertical bars indicate standard errors of the average. * = significantly different (P<0.05)). 59
4.10 Stomatal conductance of Coombe Shiraz in 2001. PRD received the same amount of water as control. (Vertical bars indicate standard errors of the average. * = significantly different (P<0.05)). 59
4.11 Stomatal conductance of Coombe Cabernet Sauvignon in 2002. PRD received half the amount of water as control. (Vertical bars indicate standard errors of the average. * = significantly different (P<0.05)). 60
4.12 Stomatal conductance of Coombe Shiraz in 2002. PRD received the same amount of water as control. (Vertical bars indicate standard errors of the average. * = significantly different (P<0.05)). 60
4.13 Stomatal conductance of Coombe Cabernet Sauvignon in 2003. PRD received half the amount of water as control. (Vertical bars indicate standard errors of the average. * significantly different (P<0.05)).

4.14 Stomatal conductance of Coombe Shiraz in 2003. PRD received the same amount of water as control. (Vertical bars indicate standard errors of the average. * = significantly different (P<0.05)).

4.15 A) Stomatal conductance of Alverstoke Cabernet Sauvignon 2000/1 and B) PRD and girdle treatments as % of control. PRD and girdled vines received the same amount of irrigation water as control. PRD started on the 24/11/00. (means n = 6; vertical bars represent standard error of the average. * = significantly different (P<0.05)).

4.16 Effect of PRD on the relationship between stomatal conductance (mol.m-2-s-1) and assimilation rate (log Pn, μmolm-2-s-1) at midday in Cabernet Sauvignon grown under glasshouse conditions (2003). (3 observations on each of 6 replicates).

4.17 The effect of PRD and no irrigation (as % of control) on photosynthesis (Pn) and stomatal conductance (gs) in split-rooted Cabernet Sauvignon grown under glasshouse conditions (2003). (means n=6; PRD received water in only pot at any time; ‘No water’ received no water in either pot; * = significant (P<0.05)).

4.18 (A) Soil moisture and (B) leaf water potential measurements (13:00-15:00) in split-rooted Cabernet Sauvignon grown under glasshouse conditions (2003). (Control received water on both sides; PRD received water on only one side at any time (means n = 6 ± s.e.); ‘No water’ received no water on either side (means n = 2).

4.19 Light penetration into the bunch zone at harvest in Cabernet Sauvignon (2002) and Shiraz vines. (means n = 7; Vertical bars indicate standard errors of the average).

5.1 Split-rooted Cabernet Sauvignon used in labeled nitrogen experiment at the Waite campus (summer 2003).

5.2 Effects of PRD and exogenous ABA on grapevine stomatal conductance ((mmolm-2-s-1) as a percentage of control; Cabernet Sauvignon, split-root potted vines). Data points represent the mean of 4 measurements on each of the 5 replicates (± s.e) * = significantly different compared to control (P<0.05).

5.3 Effect of PRD and exogenous ABA on organ starch concentration (mg/g dry weight) of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates and bars with different letters are significantly different (P<0.05).

5.4 Effect of PRD and exogenous ABA on total starch (mg/organ) of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates and bars with different letters are significantly different (P<0.05).

5.5 Effect of PRD and exogenous ABA on grapevine organ A) carbon (% dry weight) and B) nitrogen (% dry weight) of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates; ± s.e. Bars with different letters are significantly different (P<0.05).

5.6 Effect of PRD and exogenous ABA on organ %N/%C ratio of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates; ± s.e. Bars with different letters are significantly different (P<0.05).

5.7 A+B) Effect of PRD and exogenous ABA on accumulated organ carbon content (g) of split-rooted Cabernet Sauvignon vines (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates; ± s.e. Bars with different letters are significantly different (P<0.05). Percentages represent the relative distribution of total carbon between organs.

5.8 A+B) Effect of PRD and exogenous ABA on accumulated organ nitrogen content (g) of split-rooted Cabernet Sauvignon vines (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates; ± s.e. Bars with different letters are significantly different (P<0.05). Percentages represent the relative distribution of total nitrogen between organs.

5.9 Effect of PRD and exogenous ABA on organ total N/C ratio of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 μM ABA on one side). Bars represent means of 5 replicates; ± s.e. Bars with different letters are significantly different (P<0.05).
5.10 Relative partitioning of A) total carbon and B) total nitrogen between organs at harvest in split-rooted grapevines (2003).

6.1 Split-rooted Cabernet Sauvignon used for exogenous ABA treatment at the Waite campus (summer 2002).

6.2 Pot configuration for Split rooted Cabernet Sauvignon used for root analyses. Top two pots filled with standard potting mix and the bottom two pots with vermiculite.

6.3 Effect of PRD treatment on (A) stomatal conductance and (B) NR activity in leaves of field-grown Cabernet Sauvignon over one PRD cycle in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05)).

6.4 Effect of PRD treatment on (A) stomatal conductance and (B) NR activity in leaves of field-grown Shiraz over one PRD cycle in 2001. (PRD received the same amount of irrigation as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05).

6.5 Effect of PRD on the relationship between stomatal conductance (mmol.m-2.s-1) and nitrate reductase activity (log NR activity, nmol NO2.g Fw-1.h-1) in field grown Cabernet Sauvignon in 2001. (Data from 3 sampling days (20/02/2001, 27/02/2001, 5/03/2001); 7 replicates per treatment)

6.6 The effect of PRD on stomatal conductance (gs) and NR activity as a percentage of control in Coombe Cabernet Sauvignon and Shiraz grapevines.

6.7 Correlation between leaf stomatal conductance (mmol.m-2.s-1) and nitrate reductase (nmol NO2.g Fw-1.h-1) in field grown Cabernet Sauvignon on (A) 05/03/2001 and (B) 08/03/2001.

6.8 A) Stomatal conductance and B) Nitrate reductase activity of Alverstoke Cabernet Sauvignon in 2000/1. PRD and girdled vines received the same amount of irrigation water as control (means n = 6; vertical bars represent standard error of the average. * = significantly different (P<0.05)).

6.9 Effect of exogenous ABA on the stomatal conductance (gs) of split-rooted Cabernet Sauvignon in 2002 (Control: water on both sides; ABA: water on both sides with additional 10 μM ABA on one side). (means n = 5; Bars represent the standard error of the mean; * = significantly different (P<0.05).

6.10 Effect of exogenous ABA on the leaf nitrate reductase activity of split-rooted Cabernet Sauvignon in 2002 (Control: water on both sides; ABA: water on both sides with additional 10 μM ABA on one side). (means n = 5; Bars represent the standard error of the mean).

6.11 The PRD effect on xylem sap nitrate concentration in Coombe Cabernet Sauvignon and Shiraz grapevines during the 2001/2 growing season (15/03/2002). PRD Cabernet Sauvignon received half the amount of control irrigation and PRD Shiraz received the same amount of irrigation as control. (means n = 7 ± s.e.).

6.12 A) Soil matric potential (kPa) and B) stomatal conductance (mmolm-2s-1) of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines in 2002. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10; vertical bars represent the standard error of the mean; * = significantly different (P<0.05)).

6.13 Soil matric potential and root NR activity after (A) 4 days and (B) 8 days of PRD treatment of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines. PRDwet = PRD pot currently under irrigation; PRDdry = PRD pot with water withheld. (Control: vines received water on both sides; PRD: water withheld from one side at any time. (means n = 5; vertical bars represent the standard error of the mean; Bars with different letters are significantly different (P<0.05).

6.14 Root sap osmolality of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines (8/04/2002). Eight days after the switch of wetting pots in PRD. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 ± s.e).

6.15 Sugar contents of control, PRD ‘wet’ and ‘dry’-side roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines in 2002. (A) Sucrose, (B) glucose and (C) fructose. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 ± s.e.; * = significantly different (P<0.05)).

6.16 Osmolyte contents of control, PRD ‘wet’ and ‘dry’-side roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines in 2002. (A) Hydroxy-methyl-proline, (B) glycine betaine and (C) DL-Proline. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 ± s.e.; * = significantly different (P<0.05)).

6.17 Total osmolyte contents of control, PRD ‘wet’ and ‘dry’-side roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines in 2002. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 ± s.e.; * = significantly different (P<0.05)).
7.5 Free polyamine contents of control, PRD ‘wet’ and ‘dry’-side roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines (8/04/2002). (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 + s.e.; bars with different letters are significantly different (P<0.05)).

7.6 (A) Soil matric potential and (B) Stomatal conductance of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines in 2003. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 5 ± s.e.; Non-irrigated vines received no water for the duration of the experiment; means n = 2; * = significantly different (P<0.05)) PRD irrigation was switched on average every 4 days.

7.7 Root SucSy activity of non-irrigated, control, PRD ‘wet’ and ‘dry’-side roots in split-rooted ‘double-pot’ Cabernet Sauvignon grapevines under glasshouse conditions in 2003. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 5 ± s.e.; * = significantly different (P<0.05)). Non-irrigated vines received no water for the duration of the experiment; means n = 2).

7.8 Root AI activity of non-irrigated, control, PRD ‘wet’ and ‘dry’-side roots in split-rooted ‘double-pot’ Cabernet Sauvignon grapevines under glasshouse conditions in 2003. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 5 ± s.e.; * = significantly different (P<0.05)). Non-irrigated vines received no water for the duration of the experiment; means n = 2).

7.9 Root NI activity of non-irrigated, control, PRD ‘wet’ and ‘dry’-side roots in split-rooted ‘double-pot’ Cabernet Sauvignon grapevines under glasshouse conditions in 2003. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 5 ± s.e.; * = significantly different (P<0.05)). Non-irrigated vines received no water for the duration of the experiment; means n = 2).

7.10 Inorganic ion contents (mg/g dry wt) of control, PRD ‘wet’ and ‘dry’-side roots and non-irrigated roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines after A) 2 days and B) 12 days of PRD treatment and soil drying. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 5 ± s.e.; * = significantly different from control (P<0.05); Non-irrigated vines received no water for the duration of the experiment; means n = 2).

8.1 Leaf SPS activity in split-rooted Cabernet Sauvignon in 2002. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05)).

8.2 (A) Stomatal conductance (mmol.m-2.s-1) and (B) stomatal conductance (mmol.m-2.s-1) of split-rooted Cabernet Sauvignon under glasshouse conditions in 2002. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05)).

8.3 (A) Stomatal conductance (mmol.m-2.s-1) and (B) leaf SPS activity of field-grown Cabernet Sauvignon in the Coombe vineyard (2002). (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05)).

8.4 (A) Stomatal conductance (mmol.m-2.s-1) and (B) leaf SPS activity of field-grown Shiraz in the Coombe vineyard (2002). (PRD received the same amount of irrigation as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = Significantly different (P < 0.05)).

8.5 Leaf starch contents of field-grown Coombe Cabernet Sauvignon in 2001 (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.6 Shoot sap sugar and NCC concentrations of field-grown Coombe Cabernet Sauvignon in 2002. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.7 Sucrose concentration of petiole sap in split-rooted Cabernet Sauvignon under glasshouse conditions in 2003. (Control received water on both sides; PRD received water on only one side at any time (means n = 6 ± s.e.); ‘No water’ received no water on either side (means n = 2).

8.8 The evolution in leaf (A) sucrose, (B) fructose and (C) glucose concentration (µM/g fresh wt) of field-grown Coombe Cabernet Sauvignon vines during the 2001 season from veraison to harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).
8.9 The evolution in leaf sugar-alcohols (A) mannitol and (B) pinitol concentration (µM/g fresh wt) of field-grown Coombe Cabernet Sauvignon during the 2001 season from veraison to harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).

8.10 The evolution in leaf NCCs (A) hydroxy-methyl-proline, (B) glycine betaine, (C) methyl proline and (D) proline concentration (µM/g fresh wt) of field-grown Coombe Cabernet Sauvignon during the 2001 season from veraison to harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).

9.1 Effect of PRD on the increase in (A+C) berry weight (g fresh wt) and (B+D) evolution in TSS (°Brix) of field-grown Coombe Cabernet Sauvignon vines during the 2001 and 2002 period from veraison to harvest (PRD received half the amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significant (P<0.05); ** = significant (P<0.01)).

9.2 Effect of PRD on the increase in (A+C) berry weight (g fresh wt) and (B+D) evolution of TSS (°Brix) of field-grown Coombe Shiraz vines during the 2001 and 2002 period from veraison to harvest (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

9.3 The evolution in berry (A) sucrose, (B) glucose and (C) fructose concentration (µM/g fresh wt) of field-grown Coombe Cabernet Sauvignon vines during the 2001 season from veraison to harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).

9.4 The evolution in berry NCC (A) glycine betaine, (B) methyl proline and (C) proline concentration (µM/g fresh wt) of field-grown Coombe Cabernet Sauvignon vines during the 2001 season from veraison to harvest (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).

9.5 The evolution in berry (A) sucrose, (B) glucose and (C) fructose concentration (µM/g fresh wt) of field-grown Coombe Shiraz vines during the 2001 season from veraison to harvest. (PRD received the same amount of irrigation water as control but only on one side at any time; control received water on both sides; means n = 7 ± s.e.).

9.6 The evolution in berry NCC (A) glycine betaine, (B) hydroxy-methyl-proline, (C) methyl proline and (D) proline concentration (µM/g fresh wt) of field-grown Coombe Shiraz vines during the 2001 season from veraison to harvest (PRD received the same amount of irrigation water as control, but only on one side at any time; control received water on both sides; means n = 7 ± s.e.).

9.7 The polyamine contents of berries of Coombe Cabernet Sauvignon and Shiraz at harvest in 2002. Cabernet Sauvignon PRD vines received half the amount of irrigation water as control by irrigating on only one side at any time; PRD Shiraz received the same amount of irrigation water as control, but only on one side at any time; Control vines received water on both sides at the same time; means n = 7 ± s.e.).

10.1 The changes in K (A+C) and Ca (C+D) ion concentration (mg/g dry wt) and ion content (mg/berry) respectively in Coombe Cabernet Sauvignon berries during the ripening period in 2001 between veraison and harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.; * = significantly different (P<0.05)).

10.2 The changes in Mg (A+C), P (C+D) and S (E+F) ion concentration (mg/g dry wt) and ion content (mg/berry) respectively in Coombe Cabernet Sauvignon berries during the ripening period in 2001 between veraison and harvest. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.; * = significantly different (P<0.05)).

10.3 The changes in Ca (A+C) and K (C+D) ion concentration (mg/g dry wt) and ion content (mg/berry) respectively in Coombe Shiraz berries in 2001 during the last month before harvest. (PRD received the same amount of irrigation water as control but only on one side at any time; control received water on both sides; means n=7 ± s.e.; * = significantly different (P<0.05)).

10.4 The changes in Mg (A+C), P (C+D) and S (E+F) ion concentration (mg/g dry wt) and ion content (mg/berry) respectively in Coombe Shiraz berries in 2001 during the last month before harvest. (PRD received the same amount of irrigation water as control but only on one side at any time; control received water on both sides; means n=7 ± s.e.).
11.1 Effect of PRD treatment on grapevine enzyme activities related to growth, source:sink relationship, carbon partitioning and nitrogen assimilation (* = may be related to reduced amounts of irrigation water compared to control and/or the effect on berry size; SPS = Sucrose Phosphate Synthase; SucSy = Sucrose Synthase; AI = Acid Invertase; NI = Neutral Invertase; NR = Nitrate Reductase).

11.2 Effect of PRD treatment on the accumulation and partitioning of carbohydrates and nitrogenous compounds (* = may be related to reduced amounts of irrigation water compared to control and/or the effect on berry size; Spd = Spermidine; Spm = Spermine).
List of tables

2.1 Climatic data for the experimental sites located in South Australia (Waite Campus data is a mean of 3 years (2000-2003); Nuriootpa is historic means up to 1998). 25

2.2 Standard potting mixture. 26

3.1 Growing season monthly average temperature (°C) 2000-2003 of the Waite campus. 38

3.2 Growing season monthly ETo(mm) of the Waite campus. 39

3.3 PRD period monthly rainfall (mm) 2000-2003 of the Waite campus (Effective rain is classified as precipitation more than 2 mm). 40

4.1 Leaf water potentials (MPa) of Coombe Cabernet Sauvignon and Shiraz vines (20/01/01). Control: vines received water on both sides; PRD: water withheld on one side at any time. (means n = 7 ± s.e.; n.s. = not significant (P<0.05)). 57

4.2 Leaf water potentials (MPa) of Alverstoke Cabernet Sauvignon vines (midday). Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation (means n = 6 ± s.e.; means with different letters are significantly different (P<0.05); n.s. = not significant). 57

4.3 Midday leaf and stem water potentials (MPa; midday) of Coombe Cabernet Sauvignon vines (18/03/03). Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation (means n = 7 ± s.e.; n.s. = not significant (P<0.05)). 58

4.4 PRD and pruning level effects on shoot growth components and leaf area (LA) at veraison in Nuriootpa Shiraz (2001). (Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation. Pruning levels consisted of retaining 30, 60 or 120 nodes per vine; means n = 5; ± s.e.; n.s. = not significant (P<0.05)). 68

4.5 Correlation matrix of canopy components at veraison of field-grown Shiraz at the Nuriootpa research station (2001). (PRD received half the amount of control irrigation; light grey cell: P<0.05; dark grey: P<0.01). 68

4.6 PRD and pruning level effects on shoot growth components and leaf area at harvest in Nuriootpa Shiraz (2001) (Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation. Pruning levels consisted of retaining 30, 60 or 120 nodes per vine; means n = 5; ± s.e.; n.s. = not significant (P<0.05)). 68

4.7 Correlation matrix of canopy components at harvest of field-grown Shiraz at the Nuriootpa research station (2001). (PRD received half the amount of control irrigation; light grey cell: P<0.05; dark grey: P<0.01). 69

4.8 The effect of PRD on and shoot growth components and leaf area at harvest in Cabernet Sauvignon at the Alverstoke site (2001) (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 6; ± s.e.; n.s. = not significant (P<0.05)). 71

4.9 Effect of PRD on yield and berry characteristics of Coombe Cabernet Sauvignon at harvest. (Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 71

4.10 Effect of PRD on grapevine shoot growth components and water use efficiency of Coombe Cabernet Sauvignon (Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 72

4.11 Summer hedging and winter pruning weights of Cabernet Sauvignon vines under PRD irrigation (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 73

4.12 Effect of PRD on grapevine yield and berry characteristics in Coombe Shiraz at harvest (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 74

4.13 Effect of PRD on grapevine shoot growth components and water use efficiency of Coombe Shiraz (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 74

4.14 Summer hedging and winter pruning weights (kg dry weight) of Coombe Shiraz in 2001 (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 7; ± s.e.; n.s. = not significant (P<0.05)). 75
4.15 Yield and shoot components at harvest for Cabernet Sauvignon at the Alverstoke site (2001). (Control: vines received water on both sides; PRD: water withheld on one side at any time and received the same amount as control irrigation; means n = 6; ± s.e.; n.s. = not significant (P<0.05)).

4.16 PRD and pruning level effects on yield components at harvest in Nuriootpa Shiraz (2001). (Control: vines received water on both sides; PRD: water withheld on one side at any time and received half the amount of control irrigation. Pruning levels consisted of retaining 30, 60 or 120 nodes per vine; means n = 5; ± s.e.; n.s. = not significant).

4.17 Correlation matrix of harvest components at harvest of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 µM ABA on one side). Means indicated with different letters are significantly different (P<0.05) and means without letters are not significantly different (P>0.05).

5.1 Harvest data for pot-grown Cabernet Sauvignon (2003). Means indicated with different letters are significantly different (P<0.05) and means without letters are not significantly different (P>0.05).

5.2 Organ dry-weights for pot-grown Cabernet Sauvignon (2003). Means indicated with different letters are significantly different (P<0.05) and means without letters are not significant different (P>0.05).

5.3 Total inorganic ion content (mg/organ) at harvest of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 µM ABA on one side). Means indicated with different letters are significantly different (P<0.05). Percentages represent the relative distribution of total mineral content within the vine.

5.4 Inorganic ion concentration (mg/g dry wt) at harvest of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 µM ABA on one side). Means indicated with different letters are significantly different (P<0.05).

5.5 Correlation matrix between inorganic ion contents (mg/berry) and berry dry weight at harvest of split-rooted Cabernet Sauvignon. Grey cell: P<0.05; dark grey: P<0.01.

5.6 Correlation matrix between inorganic ion concentrations (mg/g dry wt) and berry fresh weight at harvest of split-rooted Cabernet Sauvignon (Grey cell: P<0.05; dark grey: P<0.01).

5.7 Abundance of labeled nitrogen (atom% excess 15N) at harvest of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 µM ABA on one side). Data represent means after natural abundance of 15N was subtracted. (Means indicated with different letters are significantly different (P<0.05); means n = 5).

5.8 Total 15N (mg/organ) of split-rooted Cabernet Sauvignon (Control: water on both sides; PRD water withheld from one side; ABA: water on both sides with additional 10 µM ABA on one side).

5.9 Berry nitrogen content at harvest of field-grown Cabernet Sauvignon at the Waite campus. Control: vines received water on both sides of the vine; PRD: water withheld to one side – half of control irrigation; (means n = 7 ± s.e.).

5.10 Berry nitrogen content (g/berry) at harvest of field-grown Shiraz at the Waite campus. Control: vines received water on both sides of the vine; PRD: water withheld to one side – full amount of control irrigation; (means n = 7 ± s.e.).

5.11 Berry N/C ratio at harvest of field-grown Cabernet Sauvignon and Shiraz at the Waite campus. Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; (means n = 7 ± s.e.).

5.12 Berry nitrogen at harvest of field-grown Shiraz at the Waite campus. (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 7 ± s.e.).

5.13 Leaf nitrogen and carbon concentration (% dry wt) at harvest of field-grown Cabernet Sauvignon and Shiraz at the Waite campus. (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 5 ± s.e.).

5.14 Leaf N/C ratio (% dry weight) at harvest of field-grown Cabernet Sauvignon and Shiraz at the Waite campus. (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 7 ± s.e.).

5.15 Shoot nitrogen and carbon concentration (% dry wt) at harvest of field-grown Cabernet Sauvignon and Shiraz at the Waite campus. (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 7 ± s.e.).

5.16 Shoot N/C ratio (% dry weight) at harvest of field-grown Cabernet Sauvignon and Shiraz at the Waite campus. (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 7 ± s.e.).
Cabernet Sauvignon PRD received half of control amount of irrigation; Shiraz PRD received full amount of control irrigation; means n = 7 ± s.e.).

5.17 Shoot nitrogen and carbon content (% dry weight) at harvest of field-grown Shiraz at the Nuriootpa research station (2001) (Control: vines received water on both sides of the vine; PRD: water withheld to one side; Cabernet Sauvignon PRD received half of control amount of irrigation; (means; n = 5 ± s.e.)).

6.1 Xylem sap NH4+ of PRD-treated and girdled Cabernet Sauvignon grapevines in the Alverstoke vineyard (19/12/2000). (PRD and girdled vines received the same amount of irrigation water as control; means n = 6 ± s.e.).

6.2 Glutamine synthase activity measured in leaves of field-grown grapevines in the Coombe vineyard (8/02/2001) (PRD received half the amount of control irrigation) and Shiraz (PRD receiving the same amount as control). (means n = 7 ± s.e.; n.s. = Not Significant (P<0.05); GS activity is defined as μmol L-glutamate γ-monohydroxamate/min).

6.3 NR activity measured in berries of field-grown Cabernet Sauvignon grapevines in the Coombe vineyard (7/02/2001) (PRD received half the amount of control irrigation; means n = 7 ± s.e.; n.s. = Not Significant (P<0.05); NR activity measured as nmol NO2.gFw-1.h-1).

6.4 NR activity (%) and stomatal conductance (mmol.m-2.s-1) measured in leaves of split-rooted Cabernet Sauvignon under glasshouse conditions in 2001. (means n = 6 ± s.e.).

7.1 Root sugars and osmolytes (μMol/g fresh wt) for split-rooted pot-grown Cabernet Sauvignon (8/04/2002). PRD received water in only one pot while water was withheld from the other at any given time. Control received water in both pots. ‘PRD average’ is the mean between PRD ‘dry’ side and PRD ‘wet’ side roots. (means n = 10 ± s.e.; means indicated with different letters are significantly different (P<0.05)).

7.2 Amino acid contents (μmol/g fresh wt) of control, PRD ‘wet’ and ‘dry’-side roots of split-rooted ‘double-pot’ Cabernet Sauvignon grapevines (8/04/2002). ‘PRD average’ is the mean between PRD ‘dry’ side and PRD ‘wet’ side roots. (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 10 ± s.e.).

7.3 Leaf water potential (MPa) after 12 days of PRD treatment in split-rooted ‘double-pot’ Cabernet Sauvignon grapevines under glasshouse conditions (2003). (Control: vines received water on both sides; PRD: water withheld from one side at any time; means n = 6 ± s.e.; n.s.= not significant (P<0.05)).

7.4 Water content (%) of powdered root samples for analyses of split-rooted Cabernet Sauvignon under glasshouse conditions during PRD treatment in 2003. (means n = 5 ± s.e.; means with different letters are significantly different (P<0.05)).

7.5 Root sugars and osmolytes (μMol/g fresh wt) in split-rooted Cabernet Sauvignon under glasshouse conditions after 2 days of PRD treatment in 2003. PRD received water in only one pot while water was withheld from the other at any given time. Control received water in both pots. (means n = 5 ± s.e.; means indicated with different letters are significantly different (P<0.05)).

8.1 Leaf sucrolytic enzyme activity in split rooted Cabernet Sauvignon grapevines on 07/05/2002 (4 days after a switch in PRD; means n = 7 ± s.e.).

8.2 Sucrolytic enzyme activity in apical and basal leaves of field-grown Coombe Cabernet Sauvignon grapevines (2003). (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.3 Leaf starch concentration of field-grown Nuriootpa Shiraz at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.4 Sugars and NCCs (μM/g fresh wt) in shoots of field-grown Coombe Cabernet Sauvignon at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.5 Sugars and nitrogen containing compounds (μM/g fresh wt) in leaves of field-grown Coombe Shiraz at harvest in 2001. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

8.6 Sugars and NCCs (μM/g fresh wt) in shoots of field-grown Coombe Shiraz at harvest in 2001. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).
Amino acid concentration (nM/g fresh wt) in berries of field-grown Coombe Shiraz grapevines at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

Amino acid concentration (nM/g fresh wt) in shoots of field-grown Coombe Cabernet Sauvignon grapevines at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; n.d. = not detected).

Amino acid concentration (nM/g fresh wt) in leaves of field-grown Coombe Shiraz at harvest in 2001. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.; n.d. = not detected).

Amino acid concentration (nM/g fresh wt) in shoots of field-grown Coombe Shiraz at harvest in 2001. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

Amino acid concentration (nM/g fresh wt) in shoots of field-grown Coombe Cabernet Sauvignon grapevines at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; n.d. = not detected).

Sucrolytic enzyme activity in berries of field-grown Coombe Cabernet Sauvignon grapevines (2003) measured at two different times during ripening. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

Sucrolytic enzyme activity in berries of field-grown Coombe Shiraz grapevines measured shortly after veraison in 2003. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

Sucrolytic enzyme activity in berries of field-grown Coombe Cabernet Sauvignon grapevines at harvest in 2001. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

Sucrolytic enzyme activity in berries of field-grown Nuriootpa Shiraz grapevines at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.).

The evolution in the concentration of free amino acids (nM/g fresh wt) in Coombe Cabernet Sauvignon berries during the ripening period in 2001 (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7; a = significantly different (P<0.10); * = significantly different (P<0.05)).

The concentration of free amino acids (nM/g fresh wt) in Coombe Cabernet Sauvignon berries during veraison and harvest in 2002 (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n = 7 ± s.e.; * = significantly different (P<0.05)).

Amino acid concentration (nM/g fresh wt) in berries of field-grown Coombe Shiraz grapevines during the 2001 season. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7; a = significantly different (P<0.10)).
9.12 The concentration of free amino acids (nM/g fresh wt) in Coombe Shiraz berries during veraison and at harvest in 2002. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n = 7 ± s.e.; a = significantly different (P<0.10)).

10.1 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) in Coombe Cabernet Sauvignon berries at veraison in 2002. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.2 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) in Coombe Cabernet Sauvignon berries at harvest in 2002. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.3 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) in Coombe Shiraz berries at veraison in 2002. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.4 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) in Coombe Shiraz berries at harvest in 2002. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.5 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) of Coombe Cabernet Sauvignon berries at veraison in 2003. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.6 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) of Coombe Cabernet Sauvignon berries at harvest in 2003. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.7 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) of Coombe Shiraz berries at veraison in 2003. (PRD received the same amount of irrigation water as control on only one side at any time; control received water on both sides; means n=7 ± s.e.).

10.8 The inorganic ion concentration (μg/g dry wt) and ion content (μg/berry) of Coombe Shiraz berries at harvest in 2003. (PRD received the same amount of irrigation water as control only on one side at any time; control received water on both sides; means n=7 ± s.e.).

10.9 The Ca, K, Mg, P and S concentration (μg/g dry wt) in Nuriootpa Shiraz berries at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=5 ± s.e.).

10.10 The Ca, K, Mg, P and S contents (μg/berry) of Nuriootpa Shiraz berries at harvest in 2001. (PRD received half the amount of irrigation water as control by irrigating on only one side at any time; control received water on both sides; means n=5 ± s.e.).

11.1 Various physiological responses of grapevines on PRD treatment (% change compared to control). (n.s. = not significant). Shaded areas = PRD effects that may be related to a degree of water stress.