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Abstract

Boundary-layer flows near leading edges of generally curved ob-

stacles have been studied for a long time. Apart from having

many practical applications, the theory and approaches prevailing

in this area stimulate development of a variety of computational

tools and form a ground for testing them.

The specific aim of this work is to study two-dimensional laminar

boundary layer flows near the leading edges of airfoils and other

elongated bodies, and to explore geometries for which boundary

layer separation can be avoided. This class of problems is relevant

to optimal design of wings, aircraft and projectile noses, laminar

flow control methods and adaptive wing technology. One of the

findings of this work suggests that local modifications to parabolic

wing noses can yield up to 11% increase in the unseparated angle

of attack. Another result obtained here is the set of shortest

possible generalised elliptic noses of long symmetric bodies which

allow unseparated flow.

Methods adopted in this work are based on the combined use of

numerically solved Prandtl equations written in Görtler variables,

and inviscid solutions obtained semi-analytically by the conformal

mapping method. The resulting technique being reliable, fast and

computationally inexpensive, can complement or test the results

obtained using a comprehensive CFD approach.
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Introduction

Boundary-layer flows near leading edges of generally curved obstacles have

been studied for some time [36, 25, 33, 30]. Apart from having many practical

applications, the theory and approaches prevailing in this area stimulate

development of a variety of computational tools and form a ground for testing

them.

Computational Fluid Dynamics is now perceived by many as a separate

branch of applied mathematics. The idea to reduce solution of complex

fluid mechanics problems to operating solvers has created a new field of

specialisation. The resulting technology successfully employs the effort of

programmers and engineers at different stages of computation: from grid

and input data generation, and model description, to postprocessing and

visualisation. Flows thus computed and their parameters are subsequently

used in the design of actual aircrafts and vessels.

The comprehensive CFD approach, in which the full viscous flow is com-

puted for an exact, or very similar, aircraft/vessel geometry does not elim-

inate the need for approximate semi-analytic techniques, which, though al-

lowing us to consider only simplified geometries, can yield an alternative

solution and yet be less computationally demanding (e.g. see the review [2]

6



INTRODUCTION 7

where the set-up and grid generation costs for CFD routines are discussed).

Local behaviour of the stream near some elements of aircrafts and vessels

can often be approximated with a boundary layer flow past a leading edge.

Prandtl’s equations [24, 26, 23] have been used for description of laminar

boundary layers since 1905 [12]. In particular, they provided an explanation

for the phenomenon known as separation of flow from the surface of the

obstacle.

Being a cause of flow instability and strong drag, separation of boundary

layers is usually considered as something which should be avoided [9]. One

of the techniques used for avoiding boundary layer separation called laminar

flow control [13] is based on a steady suction (slot, porous and perforated

suction), thermal control and wave management [29].

Resulting savings in fuel consumption due to drag reduction (up to 14%

for some models [13]) can outweigh increased design costs associated with

the laminar flow control. In addition, the suction and thermal control re-

quirements can be reduced by using wing geometry considerations. The

corresponding technique is referred to as the hybrid laminar flow control .

Naturally, such a technique requires understanding of laminar boundary flow

behaviour and its dependence on the wing geometry. Our primary goal here

is to study laminar boundary layer flows near the leading edges of airfoils and

similar bodies and to explore geometries for which boundary layer separation

can be avoided. This class of problems is also of a direct relevance to the

adaptive wing technology [29].

The work is organised in three chapters, and each of them considers a

specific body geometry.

In Chapter 1 we study local laminar boundary layer flows past near-

Anna Dostovalova, The University of Adelaide



INTRODUCTION 8

parabolic noses of thin airfoils, modelling such noses by semi-infinite bodies.

We suggest nose modifications which delay separation of the boundary layer

to greater values of the angle of attack, thus permitting greater lift before

stall is reached. Here we also provide details of the numerical procedure

we use for computation of the laminar boundary layer. Our approach is

based on the technique developed by Werle and Davis [36]. This is one of a

family of methods for obtaining exact solutions of the full Prandtl boundary

layer equations using finite differences (see [37] and other papers referenced

in [37]). Alternative methods for the approximate calculation of boundary

layers which use momentum integral relations and a priori velocity profiles

[37, 11, 7, 8] may reduce computational cost, but are also likely to give

different results for separation characteristics due to strong sensitivity of the

solution to the shape of the boundary.

In Chapter 2 we consider finite-length general airfoils. We revisit here the

Theodorsen–Naiman method for computation of the potential flow about a

complete airfoil, incorporating it into a convenient graphical user interface,

which allows one to perform visual manipulations needed for improvement

of convergence of the iterative procedure. We also discuss the limits of the

method’s applicability to computation of laminar boundary layers for very

long thin airfoils. The resulting program thus allows solution for flows about

arbitrary user-defined airfoils. In that sense, it has similar objectives to pack-

ages such as XFOIL by M. Drela [8], MELFOIL by M. S. Garelik, PROFIL

by R. Eppler and other packages, noting that XFOIL [7, 8] also couples the

potential flow with an approximate boundary layer solution.

In Chapter 3 we show how the technique considered in Chapter 2 can be

modified to make it applicable to the study of boundary layers in flows past

Anna Dostovalova, The University of Adelaide



INTRODUCTION 9

long objects. We then consider a particular family of smoothly curving front

faces or noses of length L and width H attached to a semi-infinite plate of

finite width, and use the developed procedure to determine the front face

profile, allowing an unseparated flow, for which the aspect ratio L/H of the

nose is minimal.

Results of Chapters 1 and 2 have been previously published by the author

in papers and reports [6, 34, 28, 27].

Anna Dostovalova, The University of Adelaide



Chapter 1

Airfoil nose shapes delaying

leading-edge separation when

at angles of attack

1.1 Introduction

Smoothly-shaped leading edges, including features such as drooped noses,

have a long history of favourable use for improving lift generation in aerody-

namics, see e.g. [3]. In the present chapter, our aim is choose a nose shape

that postpones separation of the boundary layer on the upper surface of a

lifting airfoil to the highest possible angle of attack.

The simplest type of smooth leading edge is one that appears locally to

be exactly parabolic, with a radius of curvature r which is small compared

to the airfoil’s chord c. The upper (+) and lower (−) surfaces of such an

airfoil could then be written near to the nose x = 0 as

y ' ±
√

2rx. (1.1)

10



CHAPTER 1. AIRFOILS AT ANGLE OF ATTACK 11

For such noses, Ruban [25] and Tuck [33] have shown that the upper-surface

laminar boundary layer has everywhere-positive wall shear stress if the angle

of attack α (relative to the “ideal” value [1] if the airfoil is cambered) satisfies

α < α0, where α0 = 0.818
√
r/c. When α ≈ α0, the shear stress becomes

small and ultimately vanishes in a broad region well downstream of the actual

nose, though still within the leading-edge region at about x ≈ 9r.

The class of thin airfoils of interest in the present chapter is one possessing

a well-defined “apparent” leading-edge radius of curvature r, but nevertheless

having a non-simply curved leading-edge shape. That is, the airfoil nose still

appears parabolic and given by (1.1) when seen in an “intermediate” region

r � x � c which is many nose radii away from the leading edge but much

closer to the leading edge than the trailing edge. However, when examined

more finely near the leading edge with x = O(r), the nose reveals a non-

parabolic shape with equation

y = ±
√

2rx g±(x/r) (1.2)

where g±(X) are smooth positive functions for X > 0 satisfying g±(X) → 1

as X →∞.

We choose a family of nose-shape functions g±(X), and compute upper

surface boundary layers for a range of angles of attack α up to the separation

value α0, selecting members of that family which maximise α0. The resulting

“optimum” nose shapes tend to be slightly sharper than parabolas, and if

allowed to be unsymmetrical, are also slightly drooped.

An important feature of the boundary layer on these shaped noses is that

for α ≈ α0, there is a highly-localised separation crisis quite close to the

most forward point of the nose, where the shear stress almost vanishes. If

this crisis is avoided, the boundary layer remains unseparated until there is a

Anna Dostovalova, The University of Adelaide



CHAPTER 1. AIRFOILS AT ANGLE OF ATTACK 12

second broader crisis, located much further downstream, at a similar position

to that for the parabolic nose. The optimum noses are then those in which

these two crises are forced to occur at the same angle of attack.

There are applications (such as to control surfaces or masts of sailing

boats) where symmetry is required by the design, and our results show the

possibility of at least a 9% increase in the unseparated angle of attack for

such symmetrical airfoils, i.e. to α0 = 0.897
√
r/c, by sharpening the extreme

nose region.

If asymmetry is permitted, in principle an arbitrary amount of improve-

ment is possible by use of a large droop in the nose, but beyond a certain

point, this effectively reduces the over-all angle of attack of the airfoil and

hence the lift achieved. The whole problem must then be re-examined on a

chord-wise scale rather than just locally to the airfoil’s nose on the scale of

the nose radius of curvature. Meanwhile, however, we can show cases where

the droop is acceptably small, but nevertheless where we can achieve better

than an 11% increase in the unseparated angle of attack relative to that for

a parabolic nose, e.g. to α0 = 0.912
√
r/c.

1.2 Boundary Layer Equations

1.2.1 Prandtl’s Equations

Steady two-dimensional laminar flow of a viscous fluid near a curved surface

is governed by Prandtl’s boundary layer equations (e.g. [24, 26]):

∂ū

∂s̄
+
∂v̄

∂n̄
= 0 , (1.3)

ū
∂ū

∂s̄
+ v̄

∂ū

∂n̄
= Ue(s̄)

dUe
ds̄

+ ν
∂2ū

∂n̄2
, (1.4)

Anna Dostovalova, The University of Adelaide



CHAPTER 1. AIRFOILS AT ANGLE OF ATTACK 13

where

• s̄ and n̄ are coordinates measured along and normal to the surface,

• ū and v̄ are the respective velocities,

• Ue(s̄) is the inviscid flow velocity at the boundary and ν is the kinematic

viscosity.

Let U∞ denote the speed of the uniform flow far upstream and L be a

characteristic length. Equations (1.3)–(1.4) are usually written in the non-

dimensional variables

s̄n̄

Figure 1.1: The (s̄, n̄)-coordinate system

Anna Dostovalova, The University of Adelaide



CHAPTER 1. AIRFOILS AT ANGLE OF ATTACK 14

s = s̄/L, n =
√

Re n̄/L ,

u = ū/U∞, v =
√

Re v̄/U∞ ,

where Re is the Reynolds number defined as

Re = U∞L/ν . (1.5)

The non-dimensional form of (1.3)–(1.4) is

∂u

∂s
+
∂v

∂n
= 0 , (1.6)

u
∂u

∂s
+ v

∂u

∂n
= ue(s)

due
ds

+
∂2u

∂n2
, (1.7)

where ue(s) = Ue(sL)/U∞.

The boundary conditions for (1.6)–(1.7) are

u(s, 0) = v(s, 0) = 0, (1.8)

u(s) → ue(s) as n→∞. (1.9)

With the introduction of the Görtler variables (ξ, η) and (F, V ) defined

as

ξ =

∫ s

0

ue(s)ds, η =
ue√
2ξ
n , (1.10)

u = Fue, v =
ue
2ξ
V − ∂η

∂s

√
2ξF , (1.11)

this system is transformed into

2ξFξ + F + Vη = 0 , (1.12)

2ξFFξ + V Fη + σp(ξ)(F 2 − 1) = Fηη , (1.13)

Anna Dostovalova, The University of Adelaide



CHAPTER 1. AIRFOILS AT ANGLE OF ATTACK 15

where

σp(ξ) =
2ξu′e(s(ξ))

u2
e(s(ξ))

. (1.14)

The derivations are provided in Section 1.2.2.

The boundary conditions for F (ξ, η) and V (ξ, η) are

F (ξ, 0) = V (ξ, 0) = 0 and lim
η→∞

F (ξ, η) = 1 . (1.15)

Prandtl’s equations in this form are convenient for numerical study of

laminar boundary layer flows in the presence of a leading edge, in this case

the computation can be started from the stagnation point.

Werle and Davis [36] used equations (1.12)–(1.13) for computation of

boundary layer flows past parabolic noses.

1.2.2 Prandtl’s equations in Görtler’s variables

Here we verify the fact that the transformation of variables (1.10)–(1.11)

reduces (1.6)–(1.7) to (1.12)–(1.13).

If ue(s) is given, s and n are independent variables and

ξ(s, n) =

∫ s

0

ue(s)ds and η(s, n) =
ue(s)√

2ξ
n,

then

ξs = ue(s), ξn = 0, ηs =
∂

∂s

[
ue(s)√

2ξ

]
n, ηn =

ue(s)√
2ξ

. (1.16)

Furthermore,

us = uξξs + uηηs = uξue + uηηs ,

un = uξξn + uηηn = uηue/
√

2ξ ,

vn = vξξn + vηηn = vηue/
√

2ξ .

Anna Dostovalova, The University of Adelaide
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First obtain the continuity equation in terms of “old” unknowns and “new”

variables:

uξue + uηηs + vηue/
√

2ξ = 0 . (1.17)

Also write

(ue)ξ = u′e(s)s
′(ξ) = u′e/ue

(henceforth, u′e ≡ u′e(s)). Now rewrite (1.17) in terms of F and V defined by

u = Fue, v =
ue√
2ξ
V − ηs

√
2ξF .

We obtain after substitution into (1.17)

(Fue)ξue + (Fue)ηηs +

[
ue√
2ξ
V − ηs

√
2ξF

]
η

ue
2ξ

= 0.

Hence

Fξu
2
e + Fu′e + Fηueηs +

[
ue√
2ξ
Vη −

∂ηs
∂η

√
2ξF − ηs

√
2ξFη

]
ue√
2ξ

= 0

and

Fξu
2
e + Fu′e +

[
ue√
2ξ
Vη −

∂ηs
∂η

√
2ξF

]
ue√
2ξ

= 0 . (1.18)

Since η = η(s(ξ), n(ξ, η)) we haveηss
′(ξ) + ηnnξ = 0

ηs · 0 + ηnnη = 1 (⇒ ηn = 1/nη) ,

we obtain

ηs = −ηnnξ
s′(ξ)

= − nξ
nηs′(ξ)

= −ue
nξ
nη

= − u2
e√
2ξ

[√
2ξ

ue

]
ξ

η

= − u2
e√
2ξ

(
1√
2ξue

−
√

2ξ

u2
e

u′es
′(ξ)

)
η =

(
− 1

2ξ
ue +

u′e
ue

)
η

Anna Dostovalova, The University of Adelaide
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and

(ηs)η = −ue
2ξ

+
u′e
ue

.

Hence the equation (1.18) can be reduced to

Fξu
2
e + Fu′e +

(
u2
e

2ξ
Vη − F

[
u′e − u2

e/(2ξ)
])

= 0

⇒ 2ξFξ + F + Vη = 0,

as required.

Now turn to the momentum equation:

u
∂u

∂s
+ v

∂u

∂n
= ueu

′
e +

∂2u

∂n2

⇓

u(uξue + uηηs) + vuη
ue√
2ξ

= ueu
′
e + uηη

u2
e

2ξ
.

Rewrite this in terms of F and V

Fue
(
Fξu

2
e + Fu′e + Fηueηs

)
+

(
ueV√

2ξ
− ηs

√
2ξF

)
Fη

u2
e√
2ξ

= ueu
′
e + (ueF )ηη

u2
e

2ξ
.

Simplify to obtain

FξFu
3
e + F 2u′eue +

Fηu
3
eV

2ξ
= ueu

′
e +

u3
e

2ξ
Fηη .

Hence

2ξFFξ + V Fη +
2ξu′e
u2
e

[F 2 − 1] = Fηη,

as required.

Anna Dostovalova, The University of Adelaide
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1.3 Numerical Approach

The system (1.12)–(1.13) subject to (1.15) will be solved for various families

of surface shapes and results will be discussed in terms of the skin friction

factor

τ =
∂F

∂η

∣∣∣∣
η=0

.

The flow is unseparated if τ > 0 for all ξ. For some flows (in particular

for those of present interest at low angles of attack) τ remains positive for

all ξ, and the flow can be continued with increasing ξ indefinitely. In other

cases, (in particular, at high angles of attack) τ goes negative at some ξ > 0

and separation of the flow occurs. When separation is imminent, there is a

minimum in τ as a function of ξ, whose value reduces as the control parameter

β (i.e. angle of attack) is increased, until this minimum value becomes zero,

then goes negative. We cease computations when τ becomes zero.

Station ξi:
F k

i−1, V k
i−1 are known

F k
i , V k

i are to be found

ξi−1 ξi

ξ

ηj+1

ηj

ηj−1

η

∆η

∆η

∆η

∆ξ

Figure 1.2: Mesh for the numerical procedure

Anna Dostovalova, The University of Adelaide
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Our numerical procedure is quite straightforward, and the mesh is shown

in Figure 1.2. Using central differences for approximating derivatives in

(1.12)–(1.13), we rewrite (1.13) in the form of a tridiagonal system with

values of the function F across the boundary layer as unknowns, with coeffi-

cients dependent on the values of F , V and σp(ξ) at the previous station in

ξ, and on values of F and V which are yet to be determined.

More specifically, the finite difference equations at the beginning of the

iteration loop for station ξi are

2ξiF
j
i−1

(
F j
i − F j

i−1

∆ξ

)
+ V j

i−1

F j+1
i − F j−1

i

2∆η

+ σpi
(
(F j

i−1)
2 − 1

)
=
F j−1
i − 2F j

i + F j+1
i

(∆η)2
, (1.19)

F 0
i = 0; F J

i = 1 ,

where j = 1, . . . , J , and F j
i and V j

i denote F (ξi, ηj) and V (ξi, ηj) respectively.

Equations (1.19) can be written as a tridiagonal system:

AjF
j−1
i +BjF

j
i + CjF

j+1
i = Dj, (j = 1, . . . , J), (1.20)

where

Aj = −
V j
i−1

2∆η
− 1

(∆η)2
,

Bj =
2ξiF

j
i−1

∆ξ
+

2

(∆η)2
,

Cj =
V j
i−1

2∆η
− 1

(∆η)2
,

Dj =
(
F j
i−1

)2(2ξi
∆ξ

− σpi

)
+ σpi .

(1.21)

Anna Dostovalova, The University of Adelaide
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The matrix of the linear system (1.21) has the form

B1 C1 0 · · · · · · 0

A2 B2 C2
. . . · · · ...

0 A3
. . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 AJ−1 BJ−1 CJ−1

0 · · · · · · 0 AJ BJ


Equations (1.20) are solved using Gaussian elimination. Once F j

i have been

obtained we solve (1.12) discretized as

V j
i = V j−1

i −∆η

(
2ξi
∆ξ

(F j
i − F j

i−1) + F j
i

)
V 0
i = 0 .

(1.22)

The obtained values of F j
i and V j

i are used in (1.21) during the next loop,

instead of F j
i−1 and V j

i−1, to recalculate the coefficients Aj, Bj, Cj and Dj,

and the process of solving (1.20) and (1.22) is repeated. At each station ξi

we perform 20–25 iterations.

The initial step in the ξ direction is 0.005 but this is reduced to 0.0002

whenever the skin friction τ becomes as small as 0.03. When the step in ξ is

reduced, the number of iterations required for each value of ξ increases.

A potential weak point of this scheme is the impossibility of using a

variable step across the boundary layer, in the η direction. The “box method”

[14] allows such variations, but requires calculating (and storing) the Jacobi

matrix for (1.12)–(1.13), which in the case of double-precision calculations

can present large storage difficulties.

Anna Dostovalova, The University of Adelaide
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1.4 Summary of thin-airfoil theory

Elements of thin-airfoil theory summarized in this section are needed for

interpretation of computation results.

1.4.1 Thin-airfoil solution

Let the top and the bottom surfaces of the airfoil be described by

y = fC(x)± fT (x), 0 ≤ x ≤ c. (1.23)

where fT (0) = fT (c) = 0 and fC(x) is bounded together with its derivative.

First consider the case when fT (x) is of the form:

fT (x) = (2r)1/2(x1/2 +O(x3/2)). (1.24)

r

fT

fC

Figure 1.3: Camber and thickness functions

This form of fT (x) implies that the radius of curvature at the leading

edge is r and the shape of the airfoil’s nose can be represented in a small

neighbourhood by the parabola y2 = 2rx.

Anna Dostovalova, The University of Adelaide
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If we rotate the airfoil by an angle α as shown, the parametrization of

the airfoil’s surface becomes

x(ξ) + iy(ξ) = [ξ + i(fC(ξ)± fT (ξ))]e−iα

α

Figure 1.4: Rotating the airfoil

Or,

x(ξ) = ξ cosα+ (fC(ξ)± fT (ξ)) sinα,

y(ξ) = −ξ sinα+ (fC(ξ)± fT (ξ)) cosα
(1.25)

Suppose now that r in (1.24) is small and α, fC(ξ) and f ′C(ξ) have the order

of magnitude O(
√
r).

Linearize (1.25) with respect to these small values to give

x(ξ) = ξ, y(ξ) = −ξα+ fC(ξ)± fT (ξ).

Rewrite this as

y = −αx+ fC(x)± fT (x), 0 ≤ x ≤ c. (1.26)

Note that there is freedom in the possible choice of the initial orientation

of the airfoil. Turning the airfoil by a small angle of magnitude O(
√
r) will

keep the geometrical configuration in the class of thin airfoils but change
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fC(x). We use this freedom to choose the initial orientation for which the

value

α0 = α0[fC ] ≡ 1

π

∫ c

0

f ′C(s)

[s(c− s)]1/2
ds

is zero. To achieve having α0[fC ] = 0 in the thin-airfoil approximation, we

first take some orientation for which the camber function f̄C(x) may have

α0[f̄C ] 6= 0. Then we turn the airfoil by α0[f̄C ] clockwise to obtain

fC(x) = −α0[f̄C ]x+ f̄C(x) .

Since
1

π

∫ c

0

ds

[s(c− s)]1/2
= 1,

α0[kx] = k, the camber function fC(x) satisfies

α0[fC(x)] = −α0[f̄C ] + α0[f̄C ] = 0.

If f̄C(x) is such that

f̄C(0) = f̄C(c) = 0, (1.27)

then α0[f̄C ] coincides in the adopted approximation with the ideal angle of

attack [1, p. 70]

αi = αi[f̄C ] ≡=
1

2πc2

∫ c

0

f̄C(x)
1− (2x/c)

{(x/c)[1− (x/c)]}3/2
dx . (1.28)

The integral in (1.28) is divergent and can be written as a conventional

improper integral using formal integration by parts:

αi[f̄C ] =
1

2πc2

∫ c

0

f̄C(x)
1− (2x/c)

{(x/c)[1− (x/c)]}3/2
dx

=− 1

πc

∫ c

0

f̄C(x)
d

dx

1

{(x/c)[1− (x/c)]}1/2
dx
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= − f̄C(x)

πc{(x/c)[1− (x/c)]}1/2

∣∣∣∣c
0

+
1

π

∫ c

0

f̄ ′C(x)

[x(c− x)]1/2
dx

=
1

π

∫ c

0

f̄ ′C(x)

[x(c− x)]1/2
dx = α0[f̄C ] .

provided that (1.27) holds.

Consider now the flow ∇(Ux + φ) past this airfoil. The perturbation

potential φ(x, y) must satisfy the boundary conditions:

φy = (U + φx) y
′(x) on y = y(x), (1.29)

|∇φ(x, y)| → 0, as
√
x2 + y2 →∞, (1.30)

+ Kutta–Zhukovskii–Chaplygin condition (1.31)

The condition (1.31) is a requirement that the speed of the flow be finite

at the trailing edge but can be interpreted as another boundary condition

at infinity needed to specify the coefficient of the logarithmic term in the

expansion of the complex velocity potential.

If we use our assumptions about α, fC , fT and expand (1.29) near y = 0,

x ∈ (0, c), retaining only first order terms, we obtain the boundary condition:

φy = U(−α+ f ′C(x)± f ′T (x)), y = 0± . (1.32)

Combining (1.30), (1.31) and (1.32) with ∇2φ = 0 gives the “thin-airfoil”

problem. The complex velocity potential w(z = x + iy) for this problem is

well-known (e.g. [15]), its derivative is

dw

dz
= −U

πi

√
z − c

z

∫ c

0

√
s

c− s

(−α+ f ′C(s))

(s− z)
ds− U

π

∫ c

0

f ′T (s)

(s− z)
ds. (1.33)

Throughout, unless explicitly specified otherwise, we will use the following

convention for the branches of the square root:

√
z − b ≡ |z − b|1/2 exp(i arg(z − b)/2), arg(z − b) ∈ [0, 2π) . (1.34)
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R→∞
z

γ

O c Re s

Im s

Figure 1.5: Integration paths for formula (1.36)

Also, √
(z − b)/(z − a) =

√
(z − b)/

√
(z − a) .

Similarly,

(z − b)r = |z − b|r exp{ir arg(z − b)}, arg(z − b) ∈ [0, 2π). (1.35)

Solution (1.33) satisfies the Kutta-Zhukovskii-Chaplygin condition pro-

vided that

f ′T (x) → 0, as x→ c,

quickly enough. We can assume that

f ′T (x) ≤M · |c− x|λ, (M and λ constant and positive),

which will guarantee boundedness of (1.33) at z = c. If f ′T (c) 6= 0, the last

term has a logarithmic singularity at z = c. The first term in the right-hand
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side of (1.33) is finite at z = c, which can be seen from the result

2i

∫ c

0

√
s

c− s

1

s− z
ds = −

∫
γ

√
s√

s− c(s− z)
ds

= 2πi(1−
√
z/
√
z − c) . (1.36)

Formula (1.36) follows from the Cauchy theorem applied to the contour

shown in Figure 1.5.

The solution (1.33) fails in the neighbourhood of the leading edge giving

infinite velocities. It must be replaced there by a properly matched per-

turbation term from the inner solution describing a flow past parabola in a

uniform stream.

1.4.2 Inner solution

The complex velocity potential of the inner solution is

finner(z) = rU(Z +W (Z)) |Z≡X+iY=z/r, (1.37)

where W (Z) = (β − i)(2Z − 1)1/2. Note that, if y2 = 2rx, then

W (z/r) = (β − i)(y/r + i) = (1 + βy/r) + i(β − y/r)

and ImF (z) = rUβ = const, that is the parabola y2 = 2rx is a streamline.

Differentiation of (1.37) gives the complex velocity:

f ′inner(z) = U(1 +W ′(Z) |Z=z/r)

where W ′(Z) = (β− i)(2Z−1)−1/2. On the surface of the parabola y2 = 2rx,

the complex velocity is

f ′inner(z) = U(1 + (β − i)/(i+ y/r))

= U [1 + (β − i)/(i±
√

2x/r)] (1.38)
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1.4.3 Thin-airfoil solution on the airfoil surface

Consider now the solution (1.33) on the surface of the airfoil. The behaviour

of w′(z) as x→ 0+ is described on the airfoil’s surface by

dw

dz
= ±U

[
α
( c
x

)1/2

− i
( r

2x

)1/2
]

+ γ(x, r) , (1.39)

where

|γ(x, r)| ≤ const ·
√
r as x→ 0.

The following result is needed for derivation of formula (1.39).

Plemelj–Sokhotski formulae: If a real function f(s) is smooth on (a, b),

z = x+ iy and x ∈ (a, b), then

lim
y→±0

Re

∫ b

a

f(s)

s− z
ds = p. v.

∫ b

a

f(s)

s− x
ds (1.40)

lim
y→±0

Im

∫ b

a

f(s)

s− z
= ±πif(x) (1.41)

The derivation of (1.40) and (1.41) is straightforward, e.g. see [20].

Applying (1.40) and (1.41) to (1.33) we find that, when x ∈ (0, c) and

y → 0±,

φx =± U

π

√
c− x

x
p. v.

∫ c

0

√
s

c− s

(−α+ f ′C(s))

(x− s)
ds+

U

π
p. v.

∫ c

0

f ′T (s)

x− s
ds

φy =± U(±1)(−α+ f ′C(x))± f ′T (x) = U(−α+ f ′C(x)± f ′T (x)).

Here we used the fact that, if x ∈ (0, c),

lim
y→0±

√
z − c

z
= ±i

√
c− x

x
.
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The expression for φx can be further simplified if we take into account the

fact that

p. v.

∫ c

0

√
s

c− s

ds

(x− s)
= −1

2

(
−2πi lim

|z|→∞

[
i
√
z/(z − c)

])
= −1.

Then

φx = ±Uα
√
c− x

x
± U

π

√
c− x

x
p. v.

∫ c

0

√
s

c− s

f ′C(s)

x− s
ds

+
U

π
p. v.

∫ c

0

f ′T (s)

x− s
ds. (1.42)

Now consider the behaviour of φx as x → 0+. We need to obtain the

estimates of some standard integrals as x→ 0±.

In order to estimate the last term in (1.42) consider

L(x) = p. v.

∫ σ

0

ds√
s(s− x)

where σ > 0 is small but fixed. Evaluate L(x):

L(x) =
1√
x

ln

∣∣∣∣√σ +
√
x√

σ −
√
x

∣∣∣∣ = O(1), (1.43)

since

ln

∣∣∣∣√σ +
√
x√

σ −
√
x

∣∣∣∣ = ln(1 +O(
√
x)) = O(

√
x).

The result (1.43) allows us to conclude that the absolute value of the last

term in (1.42) is ≤ const ·
√
r.

Next consider

I(x) = p. v.

∫ c

0

xf ′C(s)√
s(c− s)(s− x)

ds

=x

∫ c

0

f ′C(s)− f ′C(x)√
s(c− s)(s− x)

ds︸ ︷︷ ︸
abs. value ≤const.

√
r

+xf ′C(x) p. v.

∫ c

0

1√
s(c− s)(s− x)

ds︸ ︷︷ ︸
=0

=O(x
√
r). (1.44)
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R→∞
ε→

0

CR

γε

0 c Re s

Im s

x

Figure 1.6: Integration paths for formula (1.45)

Here we used the result:

J(x, δ) ≡ p. v.

∫ c

0

ds

sδ(c− s)1−δ(s− x)
=

π cot(δπ)

xδ(c− x)1−δ , (1.45)

provided x ∈ (0, c) and δ ∈ (0, 1). Formula (1.45) can be obtained if we

consider

0 = lim
R→∞

∫
CR

ds

sδ(s− c)1−δ(s− x)
= lim

ε→0

∫
γε

ds

sδ(s− c)1−δ(s− x)

= J(x, δ)
(
eiδπ − e−iδπ

)
−
πi
(
eiδπ + e−iδπ

)
xδ(c− s)1−δ ,

where CR and γε are shown in Figure 1.6.

Formula (1.44) allows us to estimate the integral from the second term of

(1.42): ∫ c

0

√
s

c− s

f ′C(s)

x− s
ds = −

∫ c

0

f ′C(s)ds√
s(c− s)

− I(x)︸︷︷︸
=O(x

√
r)

.
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Thus, in view of α ∼
√
r,

Uα

√
c− x

x
= Uα

√
c

x
+O(

√
rx),

U

π

√
c− x

x
p. v.

∫ c

0

√
s

c− s

f ′C(s)

x− s
ds

=
U

π

(√
c

x
+O(

√
rx)

)(
−
∫ c

0

f ′C(s)ds√
s(c− s)︸ ︷︷ ︸

≡πα0[fC ]=0

+O(x
√
r)

)
= O(

√
xr) ,

U

π
p. v.

∫ c

0

f ′T (s)

x− s
ds = O(

√
r) ,

and formula (1.39) follows.

Matching

The solution near the parabolic leading edge is described by

f ′inner(z) = U(1 + (β − i)/(i±
√

2x/r)) . (1.46)

This solution replaces the thin-airfoil solution

f ′outer(z) = U ± U

[
α

√
c

x
− i

√
r

2x

]
+O(r1/2). (1.47)

at distances ∼ r from the leading edge.

To make the solutions match, we compare them in some intermediate

region, e.g. taking x ∼ r1−δ (0 < δ < 1), we find that the two solutions

match if

β = α(2c/r)1/2. (1.48)

Result (1.48) appeared in this explicit form in [33]; its equivalent form was

established earlier in [25].
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Note. We can use more general assumptions on the intermediate region. Let

x ∼ rσ(r) where

σ(r) →∞ as r → 0, (1.49)

and

rσ(r) → 0 as r → 0. (1.50)

Condition (1.49) guarantees that x� r, whereas condition (1.50) gives x� c

(c = O(1)). Verifying that the terms in the square brackets in (1.47) are

dominant over O(r1/2)

1√
r

[
α

√
c

x
− i

√
r

2x

]
=

1√
r

[
α

√
c

r

1√
σ(r)

− i
1√

2σ(r)

]
= [α

√
c/r − i/

√
2]︸ ︷︷ ︸

O(1)

1√
rσ(r)

→∞ as r → 0,

we obtain the same combination of principal terms and hence the same rela-

tionship between β and α.

1.5 Parabolic solution

Computation of a boundary-layer flow first requires the solution of the in-

viscid problem to be known, so providing the input ue(s) or σp(ξ). In the

case of a parabola, such a solution can be found immediately using conformal

mapping. As this is a well-known result, we describe it here only briefly.

Consider a body with a parabolic surface in a uniform stream of incom-

pressible fluid. As in Section 1.2 we use spatial variables scaled to the radius

of curvature of the leading edge. We map the flow region exterior to that
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−β X

Y Y = ±√2X

Re ζ−β

Im ζ = 1

Im ζ

Z =
1

2
(ζ2 + 1)

Z ζ

Figure 1.7: Sketch of a parabola at angle of attack.

parabola in the Z = X + iY plane onto the region Im ζ ≥ 1 of a ζ-plane by

Z =
1

2
(ζ2 + 1). (1.51)

It is easy to check that the horizontal line Im ζ = 1 maps to the parabola

Y = ±
√

2X.

The complex velocity potential f is now taken as

f =
1

2
(ζ + β − i)2, (1.52)

which gives a simple stagnation-point flow in the ζ-plane with the line Im ζ =

1 as a streamline and a stagnation point at ζ = −β+ i. In combination with

(1.51), the potential (1.52) behaves as a unit stream f → Z in the Z-plane at

infinity. Now |df/dZ| = |(df/dζ)/(dZ/dζ)| gives the required velocity input

ue to the boundary layer equations. The parameter β determines the position

of the stagnation point on the parabola, with symmetric flow for β = 0, but

with the stagnation point in Y < 0 if β > 0.
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The results of Werle and Davis [36] show that the laminar boundary layer

on the upper surface of the parabola remains unseparated for all

β < β0 ≈ 1.156.

We have confirmed this boundary-layer computation using our own program

as described in Section 1.3.

The derivative of the formula (1.52) is used to construct the complex

velocity near the leading edge in the z = x + iy plane, namely (restoring

dimensions)

f ′inner(z) = U(1 + (β − i)/
√

2(z/r)− 1). (1.53)

In particular, if y = ±
√

2rx, then

f ′inner(z) = U(1 + (β − i)/(i±
√

2x/r)) (1.54)

The parameter β must be chosen so that f ′inner(z) matches a thin-airfoil com-

plex velocity f ′outer(z) (see, for example, [33]), which describes the flow at

distances much greater than r from the leading edge.

The behaviour of this thin-airfoil velocity f ′outer(z) as x→ 0+, y → 0± on

the airfoil’s surface is given by

f ′outer(z) = U ± U

[
α

√
c

x
− i

√
r

2x

]
+O(r1/2). (1.55)

If we compare (1.54) and (1.55) in an intermediate region r � x � c, we

can see that the principal terms coincide if

β = α

√
2c

r
(1.56)

(see [25] and [33] for more details about this formula). If we add to f ′inner

given by (1.53) a function of Z = z/r that is analytic in the flow domain
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and decays faster than O(Z−1/2) when |Z| → ∞, matching gives the same

formula (1.56), because this function has no influence on the leading terms in

the intermediate region. Hence the relationship (1.56) between the parameter

β and α can be used for some non-parabolic noses.

Thus for parabolas the range of angle of attack for unseparated flow is

given by

α <

(
β0√
2

)√
r

c
(1.57)

or

α < 0.818

√
r

c
. (1.58)

Our aim now is to increase the number 0.818 in (1.58) by nose shape modi-

fication; that is, to increase the value of β0 above the parabola value 1.156.

1.6 Family of nose shapes

To generalise to non-parabolic shapes, suppose that we modify the relation

(1.51) between Z and ζ so that at infinity we still approach the parabola,

but near the nose achieve a distortion. Consider for example the following

5-parameter family of mappings

Z =
1

2
(ζ2 + 1) +

1

1− ihζ
· p+ iq

ζ − (a+ ib)
. (1.59)

where p, q, a, b, h are given real parameters. Note that we have introduced

singularities at ζ = a+ ib and ζ = −i/h; hence it is necessary that b < 1 and

h > −1 to keep this singularity out of the field of flow Im ζ ≥ 1. The same

complex velocity potential f given by (1.52) as a function of ζ can still be

used; in particular, note that the resulting complex velocity has the form of

(1.53) plus a suitable correction, as required.
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Figure 1.8: Examples of symmetrical shapes.

Firstly, let us consider the special case h = 0. We can distinguish between

(vertically) symmetric and non-symmetric noses. In particular, the body

shape can be written in parametric form (setting ζ = t+ i)
X =

1

2
t2 +

p(t− a) + q(1− b)

(t− a)2 + (1− b)2

Y = t+
q(t− a)− p(1− b)

(t− a)2 + (1− b)2
.

(1.60)

In effect, the parametric system (1.60) defines the nose shape functions

g±(x/r) of equation (1.2) introduced in Section 1. Letting a = p = 0 in

(1.60) we have 
X =

1

2
t2 +

q(1− b)

t2 + (1− b)2

Y = t+
qt

t2 + (1− b)2
.

(1.61)
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Figure 1.9: Examples of non-symmetrical shapes.

The relation (1.61) gives noses which are symmetric with respect to the X-

axis. For any point (X,Y ) corresponding to parameter value t, there is

also a point with coordinates (X,−Y ) corresponding to parameter value −t.

Figure 1.8 shows some examples of this type of symmetric nose. Note that

geometrically feasible shapes must have q < 0, and also q cannot be too

negative; the self-intersecting shape for q = −2 shown in Figure 1.8 is not

feasible.

If a or p are non-zero, (1.60) describes an unsymmetrical nose. In par-

ticular, if p is positive, the nose bends downward, i.e. is “drooped”. Fig-

ure 1.9 shows some examples of this type; again there are limits on p and q

for geometrically feasible shapes. Figure 1.9 includes an example of a self-

intersecting unsymmetrical shape.
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We now discuss results of searches for improved nose shapes, for rea-

sonably small distortions of the parabola. Note that some extreme shapes

shown in Figures 1.8 and 1.9 will not be acceptable from the boundary-layer

separation point of view, even though they are geometrically feasible.

1.7 Numerical results

-1

-0.5

0

0.5

1

1.5

2

σp(ξ)

-1 0 1 2 3 4 5 6 7 ξ

Figure 1.10: Examples of σp(ξ) for different sets of parameters a, b, p and q

compared with σpparab(ξ) (dotted line) for β = 1.156.

As we can see from (1.12)–(1.13), the only input that depends on the

geometry of the problem and, therefore, on the parameters a, b, p, q in (1.59),

is the pressure gradient function σp(ξ). It would be expedient to be able to

use this function alone for making decisions in favour of, or against, one or
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another combination of these parameters, without the necessity of solving

the boundary-layer equations every time. Comparison of the behaviour of

σp(ξ) with the corresponding behaviour of the boundary layer obtained in

numerical trials with different values of the parameters shows that the fol-

lowing mnemonic rule can be used for making a favorable decision. Taking

σp(ξ) for a parabola (= σpparab(ξ)) with maximum value of β (= 1.156) as a

reference we consider a set of values a, b, p and q to be a “good” choice if

(a) the plot of the resulting curve σp(ξ) for the same value of β lies above

σpparab(ξ) after the second intersection, and (b) the local minimum of σp(ξ)

is not lower than the local minimum of σpparab(ξ). Condition (b) is needed to

avoid an early crisis, whereas condition (a) indicates delayed boundary-layer

separation.

Figure 1.10 illustrates this rule. The plot of σpparab(ξ) is a dotted line.

Acceptable σp(ξ) is shown with a solid line. Dashed lines are examples of

σp(ξ) which do not satisfy either condition (a) or condition (b).

After a, b, p and q have been chosen, we carry out actual boundary-layer

computations, gradually increasing β until separation of the boundary layer

occurs. The resulting value of β is used for generating the pressure gradient

function σp(ξ) which is then used as a new reference for the subsequent step

of optimisation. Use of this rule allows us to reduce significantly the time

required for obtaining the optimal set of parameters.

Our boundary-layer computations showed that it was possible by careful

choice of a, b, p and q to increase the critical value β0 of the angle-of-attack

parameter β, thereby delaying laminar separation. Although there are non-

trivial optimal choices of some parameters, the increase in β0 depends to a

certain extent on how far the modified shape can be allowed to deviate from
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-4

-3

-2

-1

0

1

2

3

Y

-1 0 1 2 3 4 5 X

Line style a b p q h β0p p p p p p p p p p p 0 0 0 0 0 1.156

0 −0.6 0 −0.2 0.25 1.210

0 −0.8 0 −0.5 0.3 1.269

Figure 1.11: A sequence of symmetrical noses with increasing β0

the parabola.

If we wish to ease requirements on smallness of r, we should consider

shapes which approach the asymptotic parabola as quickly as possible down-

stream. In this sense with h = 0, the perturbation term in (1.59) is O(ζ−1)

and is not a particularly good choice, as the resulting shape becomes par-

abolic only at considerable distances from the nose. On the other hand, the

full expression (1.59) with h > 0 allows us to achieve a better control as we
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increase β0, with the shape changes remaining local to the nose, because for

h > 0, the perturbation to the parabola decays like ζ−2 as ζ → ∞. The

parameter h in the first factor of the perturbation term is used to vary the

shape, small real positive values of h being used in order to confine its effect

to the far field. The shapes with a = p = 0 are still symmetrical.

Figure 1.11 and Figure 1.12 show sequences of (respectively) symmetrical

-3

-2

-1

0

1

2

Y

-1 0 1 2 3 4 X

Line style a b p q h β0

0 0 0 0 0 1.156

−0.2 −0.4 0.27 −0.27 0.3 1.252

−0.2 −0.4 0.4 −0.29 0.25 1.270p p p p p p p p p p p −0.4 −0.4 0.6 −0.4 0.25 1.289

Figure 1.12: A sequence of non-symmetrical noses with increasing β0.
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and non-symmetrical noses with increasing β0. We can see that in the case

of non-symmetrical noses the larger β0 values are obtained by increasing the

distortions, especially on the upper surface.

1.8 Conclusion

Our analysis suggests airfoil nose shapes which delay separation of the lam-

inar boundary layer on the upper surface of the airfoil. Each optimisation

result is valid in a class of thin airfoils with the same apparent leading edge

curvature radius r, assumed to be small compared to the chord. Symmetric

modifications, essentially just by sharpening the nose, can improve the result

for a parabolic nose (α < 0.818
√
r/c) to at least α < 0.897

√
r/c. We also

showed that further improvement is possible for unsymmetrical noses, and

gave an example of a realistic “drooped” nose with α0 = 0.912
√
r/c.
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Chapter 2

Generally shaped finite-length

airfoils

2.1 Introduction

In Chapter 1 we were concerned with the boundary layer computation near

leading edges of thin airfoils. Assumptions of the thin-airfoil theory allowed

us to approximate the inviscid flow near the leading edge with a flow past

an apparent parabola. The resulting pressure coefficient σp(ξ) had a rela-

tively simple form, as we were able to use explicit formulae for the conformal

mapping to yield the potential flow solution. The computational procedure

in the case of general airfoils is less straightforward, even though the pro-

gram developed for the determination of the skin friction requires only minor

modifications.

The inviscid flow past a general airfoil can be obtained using conformal

mapping of the outer-airfoil region onto the exterior of a standard domain
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(usually a disc) for which an analytic form of the solution is known. There are

cases when this approach leads to exact solutions (flows past the Zhukovskii

profiles, Karman-Trefftz profiles or some simple polygonal airfoils) but com-

monly the solution is approximate in the sense that it describes an exact flow

past a shape approximating the airfoil. When, for example, the Schwarz-

Christoffel transformation is used [19] such a shape is a polygon to which the

wing section is reduced. If the ideal flow solution is needed for boundary-layer

computation, then, in addition to closely fitting the airfoil, the approximat-

ing shape must preserve its smoothness properties. This requirement stems

from the fact that the boundary-layer separation algorithms are sensitive to

singularities of the boundary, or, in physical terms, to fast changes in the

pressure gradient, and it is necessary to avoid false predictions of separation

from corners which are in fact numerical artefacts.

The Theodorsen-Naiman technique [31, 32, 21, 22, 1] allows us to explic-

itly construct a mapping that meets such a requirement for a wide class of

airfoils. We have developed and describe here a tool that implements this

procedure in Matlab. Simplicity of coding and flexibility in handling graph-

ics and mathematics make Matlab one of the most suitable environments

for such algorithms.

In Section 2.2 we provide a concise and self-contained theoretical back-

ground of the method. In Section 2.3, a summary and details of how we im-

plement the technique are given. We also discuss limitations of the method.

One of the limitations is the requirement that the near-circle obtained from

the airfoil by an auxiliary Zhukovskii mapping must be a star-shaped region.

Another limitation is connected with the restriction on the geometry of the

trailing edge, which must be a cusp of the first kind. Violation of this restric-
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tion may destroy a one-to-one correspondence between angular parameters

in the circle and the near-circle planes and result in an inability to satisfy

the Kutta-Zhukovskii condition. The trailing-edge geometry limitation is not

present if a preliminary Karman-Trefftz transformation is used for mapping

to a near-circle plane. Section 2.5 outlines features of the graphical user

interface.

2.2 Ideal flow past general airfoils

We will use a methodology developed and published in [31, 32, 21, 22, 1].

Specifics of our procedure require notational adjustments and the theoretical

material below is intended to provide this.

Suppose that an airfoil contour is given in the ζ-plane. One of our goals

will be to find a transformation z(ζ), or equivalently ζ(z), that satisfies

ζ(z) = zeiα1 +O(1) as |z| → ∞, (2.1)

for some α1 and conformally maps the exterior of the airfoil onto the exterior

of a circle |z| < R. The flow past such a circle is described by the complex

velocity potential

w(z;U∞, α0, R,Γ) = U∞

(
ze−iα0 +

R2eiα0

z

)
+
iΓ

2π
log

ze−iα0

R
. (2.2)

The condition (2.1) preserves uniformity of the stream at infinity, so the

complex velocity potential for the flow in the plane of the airfoil has the

form

f(ζ) = w(z(ζ)) ≡ w(z(ζ);U∞, α0, R,Γ) , (2.3)
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To determine appropriate values of the parameters U∞, α0 and Γ in (2.2),

consider the complex velocity

f ′(ζ) =
w′(z(ζ))

ζ ′(z)
= U∞e

−i(α1+α0) +
iΓ

2π
ζ−1 +O(ζ−2). (2.4)

If α is the uniform flow direction angle in the ζ-plane, then we must choose

α0 = α − α1. Parameter U∞ must be set to the magnitude of the uniform

flow at infinity. Similarly, formula (2.4) shows that the circulation Γ of the

flow in the z-plane coincides with the circulation of the flow in the physical

ζ-plane. Choice of this parameter’s value is decided by the Kutta-Zhukovskii

condition, and will be discussed later.

The required mapping z(ζ) can be obtained in three steps.

1) First the Zhukovskii transformation

ζ = z̃ +
a2

z̃
(2.5)

maps the flow domain onto a domain in an auxiliary z̃-plane.

TE

z̃ζ

ζ = z̃ + a2/z̃

Figure 2.1: Zhukovskii mapping
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As a result of this transformation, a cusped part of the boundary is

mapped onto a smooth segment, and the trailing edge singularity is

removed. Mapping (2.5) also turns an oblong shape that the airfoil

commonly has onto a rounded domain which is referred to as a near-

circle [1].

By changing to a new variable

z̄ = (z̃ − ε)e−iα1 , (2.6)

or, equivalently, translating and rotating the coordinate system, we

make its origin coincide with the “center” of the near-circle and its

positive real axis intersect the image of the trailing edge. This trans-

formation is needed for computational convenience.

2) The second step is to map near-circles to true circles, that is, to apply

the mapping

z̄ = z exp{ω(z)} , (2.7)

where ω(z) = ω(z;R) is analytic if |z| > R and ω(z) → 0 as |z|→∞.

This form of relation between z and z̄ and properties of mapping (2.5)

guarantee that the condition (2.1) is met.

3) Combining the first two steps we obtain the composite mapping ζ =

ζ(z̄(z)) and the ideal flow past the airfoil.

There is a certain degree of freedom in the choice of auxiliary parameters

a and ε and we use this freedom to improve convergence of the scheme. These

parameters cannot be chosen arbitrarily however.

Suppose the chord length of the airfoil is L and let a be a little less than

L/4. Position the airfoil so that the two conditions are satisfied:
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a) the trailing edge is at ζ = 2a,

b) the point ζ = −2a is inside the airfoil.

ae
ψ(θ)

θ TE

z̄

ae
λ

TE
φ

z

z̄ = zeω(z)

Figure 2.2: Correspondence between the boundary points

Let θ and φ be polar angles in the z̄- and z-planes respectively. The bound-

aries of the near-circle in the z̄ plane and its image in the z-plane can be

represented as

z̄ = aeψ(θ)+iθ and z = aeλ+iφ. (2.8)

Here ψ(θ) is a known function, which we determine from (2.5) and (2.6). If

ζ = ζ(t) is a given parametric form of the airfoil, then z̄(t) found from (2.5)

and (2.6) is a parametrization of the near-circle. Determine t(θ) from the

equation arg[z̄(t)] = θ and write

aeψ(θ) = |z̄(t(θ))| ⇒ ψ(θ) = log(|z̄(t(θ))|/a). (2.9)

Note that λ is a constant yet to be chosen, and R = aeλ.
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Correspondence under the mapping (2.7) between the boundary points of

the z̄ and z domains may be expressed in terms of the dependence θ = θ(φ),

for which we must have

aeψ(θ(φ))+iθ(φ) = aeλ+iφ+ω(aeλ+iφ) . (2.10)

It turns out that knowledge of θ(φ) allows us to determine ω(z). By (2.10)

we have

Reω(aeλ+iφ) = ψ(θ(φ))− λ , (2.11)

Imω(aeλ+iφ) = θ(φ)− φ . (2.12)

Use (2.11) and the Schwarz formula to obtain

Reω(z) =
1

2π

∫ 2π

0

Re

[
z + aeλ+iϕ

z − aeλ+iϕ

]
(ψ(θ(ϕ))− λ)dϕ .

Hence

ω(z) =
1

2π

∫ 2π

0

z + aeλ+iϕ

z − aeλ+iϕ
(ψ(θ(ϕ))− λ)dϕ+ iC , (2.13)

where C is a real constant. Since we wish to have ω(z) → 0 as |z| → ∞ we

have to set C = 0 and choose λ as

λ =
1

2π

∫ 2π

0

ψ(θ(ϕ))dϕ . (2.14)

In order to satisfy (2.12) we must have

θ(φ)− φ =
1

2π
p. v.

∫ 2π

0

eiφ + eiϕ

eiφ − eiϕ
(ψ(θ(ϕ))− λ)dϕ ,

or

θ(φ)− φ =
1

2π
p. v.

∫ 2π

0

cot

(
ϕ− φ

2

)
ψ(θ(ϕ))dϕ . (2.15)
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Thus, given ψ(θ), we cannot arbitrarily choose the dependence θ(φ) but must

use only the solution to (2.15). This leads to the procedure:

Airfoil

geometry

ψ(θ)

−→
Integral

equation (2.15)

θ(φ)

−→
Formulae

(2.13) and (2.14)
−→ λ, ω(z)

An alternative derivation of (2.15) [31, 32, 1] based on the Laurent series

expansion of ω(z) follows.

Since ω(z) is analytic in the domain external to the circle z = Reiφ =

aeλ+iφ and vanishes at infinity we can write

ω(z) =
∞∑
m=1

(am + ibm)(R/z)m . (2.16)

It follows from (2.10) that

ψ − λ+ i(θ − φ) =
∞∑
m=1

(am + ibm)(cosmφ− i sinmφ),

and so

ψ − λ =
∞∑
m=1

(am cosmφ+ bm sinmφ), (2.17)

θ − φ =
∞∑
m=1

(bm cosmφ− am sinmφ) . (2.18)

It follows from (2.17) that

λ = a0 ≡
1

2π

∫ 2π

0

ψ(θ(φ))dφ, (2.19)ambm
 =

1

π

∫ 2π

0

ψ(θ(ϕ))

cosmϕ

sinmϕ

 dϕ . (2.20)
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Substitute (2.20) into (2.18)

θ − φ =
∞∑
m=1

1

π

∫ 2π

0

ψ(θ(ϕ)) sin(m(ϕ− φ))dϕ

= lim
M→∞

1

π

∫ 2π

0

ψ(θ(ϕ))
M∑
m=1

sin(m(ϕ− φ))dϕ

= lim
M→∞

1

π

∫ 2π

0

ψ(θ(ϕ))
cos
(
(ϕ− φ)/2

)
− cos

(
(M + 1/2)(ϕ− φ)

)
2 sin

(
(ϕ− φ)/2

) dϕ .

Using a power series expansion of ψ(θ(ϕ)) at ϕ = φ and the Riemann-

Lebesgue lemma we obtain

lim
M→∞

p. v.

∫ 2π

0

ψ(θ(ϕ))
cos((M + 1/2)(ϕ− φ))

sin((ϕ− φ)/2)
dϕ = 0,

hence (2.15) follows.

The strategy for constructing ω(z) can now be represented as

Airfoil

geometry

ψ(θ)

−→
Integral

equation (2.15)

θ(φ)

−→
Formulae

(2.19) and (2.20)
−→ λ, ω(z)

There is a semi-inverse approach when either ψ or θ are specified in terms

of φ. Expansion into the Fourier series (2.17) or (2.18) gives the coefficients

{am, bm} and therefore λ and ω(z). However, when such an approach is

used, the shape of the airfoil cannot be considered as the problem input, but

must be recovered once ω(z) is found.

We start the next section by reviewing Naiman’s method for approximate

solution of (2.15). This method is based on the properties of finite trigono-

metric expansions and uses the series derivation of (2.15) as a prototype.
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2.3 Naiman’s method

Naiman’s method

Consider a function Ψ(φ) that represents a finite trigonometric series of the

form:

Ψ(φ) = A0 +
n∑

m=1

(Am cosmφ+Bm sinmφ) , (2.21)

where Bn is taken to be zero.

If Ψ(φ) is given by (2.21), then conditions

Ψ(kπ/n) = ψk k = 0, . . . , 2n− 1 (2.22)

are equivalent to

A0 =
1

2n

2n−1∑
k=0

ψk ,

Am =
1

(1 + δmn)n

2n−1∑
k=0

ψk cosm
kπ

n
(m = 1, . . . , n) ,

Bm =
1

n

2n−1∑
k=0

ψk sinm
kπ

n
(m = 1, . . . , n) .

(2.23)

Now introduce

ε(φ) ≡
n∑

m=1

(Am sinmφ−Bm cosmφ)

and consider this function at φ = k′π/n (k′ = 0, . . . , 2n−1). It can be shown

[22, 1] that

ε(φ = k′π/n) = − 1

n

2n−1∑
k=0

ψkσ(k − k′) , (2.24)

where σ(K) ≡

cot Kπ
2n
, K odd,

0 , K even.
.
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Now let φj ≡ jπ/n, j = 0, . . . , 2n − 1, and consider a finite sequence of

numbers {θk} (k = 0, . . . , 2n− 1) from [0, 2π) that satisfies

θj − φj =
1

n

2n−1∑
k=0

ψ(θk)σ(k − j), j = 0, . . . , 2n− 1. (2.25)

Let ψj = ψ(θj) and use (2.23) to define Am and Bm and hence

Ω(z) =
n∑

m=1

(Am + iBm)(aeA0/z)m .

The image of the circle z = aeA0+iφ (φ ∈ [0, 2π)) under such a transformation

can be parametrized as

z̄ = aeψ
?(θ)+iθ . (2.26)

The superscript ? was used here to indicate that in general ψ?(θ) and ψ(θ)

are different functions. Parameters φ and θ corresponding to the same point

on the circle are connected as

θ = θ?(φ) ≡ arg
[
z̄
(
z = aeA0+iφ

)]
Rewrite (2.26) as

z̄ = zeψ
?(θ)−A0+i(θ−φ) .

Using z̄ = z exp{Ω(z)} with z = aeA0+iφ we have

ψ?(θ?(φ)) = A0 +
n∑

m=1

(Am cosmφ+Bm sinmφ), (2.27)

θ?(φ)− φ =
n∑

m=1

(Bm cosmφ− Am sinmφ). (2.28)

It follows from (2.27) and the way the coefficients of this finite trigonometric

series have been formed that

ψ?(θ?(φj)) = ψj ≡ ψ(θj). (2.29)
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Furthermore, it follows from (2.24) that

θ?(φj)− φj ≡
n∑

m=1

(Bm cosmφ− Am sinmφ) =
1

n

2n−1∑
k=0

ψkσ(k − j).

Since θj satisfy

θj − φj =
1

n

2n−1∑
k=0

ψ(θk)σ(k − j) =
1

n

2n−1∑
k=0

ψkσ(k − j),

we obtain

θ?(φj)− φj = θj − φj ⇒ θ?(φj) = θj .

This along with (2.29) gives

ψ?(θj) = ψ(θj) (j = 0, . . . , 2n− 1).

Hence the shape z̄ = a exp(ψ?(θ)+ iθ) coincides with the required near-circle

z̄ = a exp(ψ(θ) + iθ) at θ = θj (j = 0, . . . , 2n− 1) thus approximating it. As

a result the approximate airfoil will coincide with the given airfoil at points

ζ(a exp(ψ(θj) + iθj)), where ζ(z̄) is defined by (2.5) and (2.6).

If the flow is uniform at infinity with magnitude U∞ and direction angle

α, then its complex velocity potential is

f(ζ) = w(z(ζ);U∞, α0 ≡ α− α1, ae
A0 ,Γ).

Circulation Γ is chosen so as to satisfy the Kutta-Zhukovskii condition (also

referred to as the Chaplygin condition [15, 16]):

for f ′(ζ) to be finite at the trailing edge, where ζ ′(z) = 0, the rear

stagnation point of the z-flow must correspond to the trailing edge

of the airfoil.
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Suppose that zT = aeA0+iφT is a point corresponding to the trailing edge

ζ = 2a. Then we must have:

U∞

(
e−iα0 − a2e2A0+iα0

a2e2A0+i2φT

)
+
iΓ

2π

1

aeA0+iφT
= 0,

or

Γ = 4πaeA0U∞ sin(α0 − φT ) = 4πaeA0U∞ sin(α− α1 − φT ). (2.30)

The angle φT in (2.30) is found from the equation:

φ+
n∑

m=1

(Bm cosmφ− Am sinmφ) = 0. (2.31)

Review of properties of finite trigonometric series

The following properties of Dirichlet’s kernels will be often used:

Sn =
n∑
k=1

cos kx = sin(n+1/2)x−sinx/2
2 sinx/2

; (2.32)

Dn =
n∑
k=1

sin kx = cosx/2−cos(n+1/2)x
2 sinx/2

. (2.33)

Given Bn = 0 consider

Ψ(φ) = A0 +
n∑

m=1

(Am cosmφ+Bm sinmφ) . (2.34)

If ψk = Ψ(kπ/n) (k = 0, . . . , 2n−1), then formulae (2.23) hold. Let us verify

this.

• Show for A0:

1
2n

2n−1∑
k=0

ψk = 1
2n

2n−1∑
k=0

(
A0 +

n∑
m=1

Am cosmkπ
n

+
n−1∑
m=1

Bm sinmkπ
n

)
= A0 +

n∑
m=1

Am
2n−1∑
k=0

cos kmπ
n︸ ︷︷ ︸

1 +
− sin(mπ/2n)−sin(mπ/2n)

2 sin(mπ/2n)

+
n−1∑
m=1

Bm

2n−1∑
k=0

sin kmπ
n︸ ︷︷ ︸

cos(mπ/2n)−cos(−mπ/2n)
2 sin(mπ/2n)

= A0 + 0 + 0 = A0.
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• Show for Am (m = 1, . . . , n− 1):

1
n

2n−1∑
k=0

ψk cos k kπ
n

= 1
n

2n−1∑
k=0

(
A0 cosmkπ

n
+

n∑
j=1

Aj cos j kπ
n

cosmkπ
n

+
n−1∑
j=1

Bj sin j kπ
n

cosmkπ
n

)
.

We have
2n−1∑
k=0

A0 cos kmπ
n

= 0 (shown above); (2.35)

and

2n−1∑
k=0

cos k jπ
n

cos kmπ
n

=1
2

2n−1∑
k=0

cos k (j−m)π
n

+ 1
2

2n−1∑
k=0

cos k (j+m)π
n

=

0, j 6= m

1
2
· 2n = n, j = m

(as j ±m is integer and |j +m| < 2n formula (2.32) can be applied if

j 6= m). Hence

1
n

2n−1∑
k=0

n∑
j=1

Aj cos j kπ
n

cosmkπ
n

= 1
n
Am

2n−1∑
k=0

cosmkπ
n

cosmkπ
n

= 1
n
Amn = Am. (2.36)

Evaluate the coefficient of Bj:

2n−1∑
k=0

sin k jπ
n

cos kmπ
n

=
2n−1∑
k=0

1
2

(
sin k (j+m)π

n
+sin k (j−m)π

n

)
= 0 (2.37)

since, if integer ` 6= 0 and |`| < 2n,

2n−1∑
k=0

sin k `π
n

=
cos `π

2n
−cos(− `π

2n)
2 sin `π

2n

= 0,

and, if ` = 0,
2n−1∑
k=0

sin k `π
n

= 0. Note again, that j±m is integer and its

absolute value does not exceed 2n− 2.
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Combine (2.35), (2.36) and (2.37) to give

Am = 1
n

2n−1∑
k=0

ψk cosmkπ
n

m = 1, . . . , n− 1.

• Show for Bm. If m = n then sin(mkπ/n) = 0 and

Bn = 0 = 1
n

2n−1∑
k=1

ψk sinmkπ
n

as required. Now consider m = 1, . . . , n− 1:

1
n

2n−1∑
k=0

ψk sinmkπ
n

= 1
n

2n−1∑
k=0

(
A0 sinmkπ

n
+

n∑
j=1

Aj cos j kπ
n

sinmkπ
n

+
n−1∑
j=1

Bj sin j kπ
n

sinmkπ
n

)
.

Now

2n−1∑
k=0

A0 sinmkπ
n

=0 (see above);

2n−1∑
k=0

cos k jπ
n

sin kmπ
n

=1
2

2n−1∑
k=0

(
sin k (j+m)π

n
+ sin k (m−j)π

n

)
= 0;

2n−1∑
k=0

sin k jπ
n

sin kmπ
n

=1
2

2n−1∑
k=0

(
cos k (j−m)π

n
− cos k (j+m)π

n

)

=

0, j 6= m,

n, j = m.

Hence we get

Bm = 1
n

2n−1∑
k=0

ψk sinmkπ
n

m = 1, . . . , n− 1,

as required.

• Show for An:

1
2n

2n−1∑
k=0

(−1)kψk =
2n−1∑
k=0

(−1)k

(
A0 +

n∑
j=1

Aj cos j kπ
n

+
n−1∑
j=1

Bj sin j kπ
n

)
.
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Now
2n−1∑
k=0

(−1)kA0 = 0 and (representing (−1)k = cos k n
n
π)

2n−1∑
k=0

cos k n
n
π cos j kπ

n
= 1

2

2n−1∑
k=0

(
cos k (n−j)π

n
+ cos k (n+j)π

n

)

=

0, if n 6= j ,

1
2
· 4n = 2n, if j = n ,

2n−1∑
k=0

cos k n
n

sin j kπ
n

= 1
2

2n−1∑
k=0

(
sin k (n−j)π

n
+ sin k (n+j)π

n

)
= 0.

Hence

An = 1
2n

2n−1∑
k=0

(−1)kψk

as required.

Similarly, it can be shown that function (2.34) with Am and Bm defined by

(2.23) satisfies

Ψ(kπ/n) = ψk (k = 0, . . . , 2n− 1).

Evaluation of ε(φ)

If ε(φ) ≡
n∑

m=1

(Am sinmφ−Bm cosmφ) with Am and Bm given by (2.23), then

ε(φ) = 1
n

n−1∑
m=1

(
sinmφ

2n−1∑
k=0

ψk cosmkπ
n
− cosmφ

2n−1∑
k=0

ψk sinmkπ
n

)
+ 1

2n

2n−1∑
k=0

(−1)kψk sinnφ

= 1
n

n−1∑
m=1

2n−1∑
k=0

ψk sinm
(
φ− kπ

n

)
+ 1

2n

2n−1∑
k=0

(−1)kψk sinnφ.

Interchanging the order of summation gives
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ε(φ) = 1
n

2n−1∑
k=0

ψk
n−1∑
m=1

sinm
(
φ− kπ

n

)
+ 1

2n

2n−1∑
k=0

(−1)kψk sinnφ. (2.38)

Consider ε(φ) at φ = k′π/n (k′ = 0, . . . , 2n− 1). Since sin(nk′π/n) = 0, the

last term in (2.38) is zero at these points. Introducing K ≡ k−k′ we rewrite

(2.38) as

ε(k′π/n) = 1
n

2n−1∑
k=0

ψk

(
−

n−1∑
m=1

sinmKπ
n

)
. (2.39)

Because

n−1∑
m=1

sinmKπ
n

=
cos Kπ

2n
−cos((n−1/2)Kπ

n )
2 sin Kπ

2n

=
cos Kπ

2n
−(−1)K cos Kπ

2n

2 sin Kπ
2n

= σ(K) ≡

cot Kπ
2n
, K odd,

0 , K even,
(2.40)

formula (2.39) can be written as

ε(φ = k′π/n) = − 1
n

2n−1∑
k=0

ψkσ(k − k′) . (2.41)

2.4 Implementation in MATLAB

The key step is to determine {θk} by solving the non-linear system (2.25)

with φj = jπ/n and ψ(θ) assumed to be known. Formula (2.9) shows how

ψ(θ) is determined in the case when the dependence t = t(θ) connecting

the airfoil’s boundary parameter with the polar angle in the z̄ plane can be

easily established. If the boundary of the airfoil is specified as a sequence of

coordinates we define ψ(θ) using cubic interpolation.
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We solve (2.25) using the iterative procedure:
θ

[`+1]
j = φj +

1

n

2n−1∑
k=0

ψ(θ
[`]
k )σ(k − j),

θ
[0]
j = φj

(2.42)

where, j = 1, . . . , 2n− 1 for each ` = 0, . . . .

Our numerical procedure requires an explicit form for the transformation

z̃ = z̃(ζ) defined by (2.5). This form is

z̃ =
1

2
(ζ +

√
ζ2 − 4a2), (2.43)

where the used branch of
√
ζ2 − 4a2 satisfies the following conditions:

(a)
√
ζ2 − 4a2 = ζ +O(ζ−1) as |ζ| → ∞;

(b) its Riemann surface is cut along a line which connects the branching

points ζ = ±2a and lies entirely inside the airfoil.

Transformation (2.6) has a twofold purpose. Firstly, as we noted earlier, it

enables us to center the origin of the new coordinate system on the image

of the airfoil, which helps to achieve a better convergence of the iterative

procedure. Secondly, this simple transformation can in some cases facilitate

the choice of the coordinate system for which the θ-parametrization of the

boundary in (2.8) becomes possible. If the image of the airfoil under (2.43)

is not a star-shaped region, another mapping must be used instead of (2.6).

Mapping (2.5) applied to a slender airfoil may result in a shape with a

protruding segment corresponding to the nose if the parameter a is taken

from the permissible interval indiscriminately. This can worsen convergence

or even make it impossible no matter what ε is chosen in (2.6). The same
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difficulty arises when the airfoil is not properly oriented with respect to the

axes of ζ. (Note however that the orientation of the airfoil with respect to

the flow is given and so may not be altered.)

Convergence of the process (2.42) thus strongly depends on the choice of

the characteristics: the value of a in (2.5), parameter ε and the orientation

of the airfoil in the ζ-plane. Search for a suitable combination of these

parameters can be carried out with a tool that uses them as an input and

instantly provides a visual feedback by displaying the resulting image of the

airfoil in the z̃-plane. We organise this search as follows.

Suppose that the chord of the airfoil is L. Let εnorm be a complex para-

meter. The mapping

ζnorm = z̃norm + 1/z̃norm

transforms the circle z̃norm = εnorm + |1 − εnorm|eit (t ∈ [0, 2π)), into a

Zhukovskii airfoil. We denote its chord by l(εnorm). Now taking

a = a(εnorm) = L/l(εnorm), ε = aεnorm

and considering the image of the circle z̃ = ε+ |a− ε|eiθ (θ ∈ [0, 2π)) under

the transformation (2.5) we obtain a Zhukovskii airfoil whose trailing edge is

at ζ = 2a and whose chord is al(εnorm) = L. Displaying this and the given

airfoil in the same axes with their trailing edges juxtaposed at ζ = 2a(εnorm)

we can observe the discrepancy between them and control it by changing

εnorm. The latter can be most conveniently done by making εnorm depend

on the position of a movable object on the same screen (see Figure 2.3).

The smaller the discrepancy between the noses of the airfoils is achieved the

better becomes the chance that the image of the given airfoil under mapping

(2.5) is an acceptable near-circle shape.
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Figure 2.3: Search for optimal mapping parameters using standard airfoils

A separate screen containing images of both airfoils in the z̃-plane pro-

vides an additional control over the described manipulations. Note that in

such a procedure the required value for ε is obtained automatically.

When the system (2.25) has been solved we use (2.23) to define Am and

Bm. The transformation ζ(z) now can be written as

ζ = ζ(z) = ε+ z̄(z)eiα1 +
a2

ε+ z̄(z)eiα1
, (2.44)

where

z̄(z) = z exp

{
n∑

m=1

(Am + iBm)
( z

aeA0

)−m}
.

The flow past the airfoil is given by formula (2.3) in which α0 = α− α1 and

Γ is defined by (2.30).
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We have already noted that the method is applicable if the boundary of

the near-circle admits parametrization in terms of the polar angle θ. It also

essential that the function

θ?(φ) = φ+
n∑

m=1

(Bm cosmφ− Am sinmφ)

is one-to-one. This property does not simply follow from θ(φ) being one-to-

one but also depends on the behaviour of ψ(θ). If the near-circle has salient

points, then θ?(φ) is likely to be oscillatory in their neighbourhood no matter

how large n is taken, a behavior akin to Gibbs’ phenomenon.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8
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−0.4
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0.2

0.4

0.6

0.8

φ

θ* (φ
)

Non−cusped trailing edge

Figure 2.4: Typical behaviour of θ∗(φ) for non-cusped geometry

Normally these considerations apply only to the point corresponding to

the trailing edge of the airfoil. If mapping (2.5) is used, then, in order for

the boundary of the near-circle to be smooth, the trailing edge must be

Anna Dostovalova, The University of Adelaide



CHAPTER 2. FINITE-LENGTH AIRFOILS 63

a cusp of the first kind. If the trailing edge represents a finite angle, the

Zhukovskii transformation results in a near-circle with a corner point, which

leads to oscillations of θ?(φ), as shown on Figure 2.4 and self-intersections

of the boundary of the approximating airfoil, on the computational level the

procedure failing at the stage of solving equation (2.31) needed to satisfy the

Kutta-Zhukovskii condition.

The Karman-Trefftz transformation is commonly used (as, for example in

[10, 4]) instead of the Zhukovskii mapping to generate a near-circle without

a corner point if the trailing edge angle is arbitrary.

2.5 Main states of the GUI

We implement the algorithm reviewed in Section 2.3 in the form of a single

Matlab m-function. In addition to the segment performing the iterative

procedure (2.42), the tool incorporates interfaces for on-screen design of air-

foils and choice of optimal mapping parameters needed for initial approxima-

tion. Post-processing options are provided including basic visualisation and

storing data in a specific format.

Computer-aided airfoil shape generation uses second-order Bezier curves.

Figure 2.5, representing the initial state of the GUI, shows such curves com-

bined in an airfoil. Their control points are active and can be moved on the

screen using the pointing device.

For the airfoil outline to remain smooth, the joint control points of the

adjacent Bezier curves are only allowed to move along the segments between

the respective middle control points, which as a result form vertices of a

circumscribed polygon. The joint control points are shown as solid disks.
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Clicking on any of them with the right button refines the partition of the

outline by adding to it a Bezier curve segment in the neighbourhood of the

disk.

Figure 2.5: On-screen shape generation

Figure 2.6: States of the shape generation mode
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The sides of the polygon and the control points of the Bezier curves can

be removed at any stage of the shape generation mode as shown in Figure 2.6.

Figure 2.7: Default orientation of the airfoil

Figure 2.7 exhibits the state that occurs after the airfoil outline has been

generated. The airfoil is oriented so that its longest chord is horizontal and

it is this orientation with respect to which we shall measure the direction of

the uniform flow.

The button “Load data” of the previous mode allows to access this state

directly if the wing geometry is provided as an m-function getwing. Below

we give an example of getwing for a non-symmetric Zhukovskii airfoil.
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function Zeta=getwing

epsilon=-0.1+0.1i;

a=1;

N=100;

Z=epsilon+(a-epsilon)*exp(i*[0:N-1]*2*pi/N);

Zeta=Z+a^2./Z;

Figure 2.8: Determination of mapping parameters

Now we have to specify the mapping parameters a, ε and α1. Buttons

“Templates” and “Map 1” allow to proceed to one of the two possible states

shown in Figures 2.3 and 2.8. The method of Figure 2.3 uses Zhukovskii’s
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airfoils and is described in Section 2.3. The state in Figure 2.8 uses a more

straightforward but less effective method, in which the values of a and ε

are decided on the basis of comparison of the image of the airfoil under the

Zhukovskii mapping with circles. Pressing on the button “Map 2” brings the

user to the control panel shown in Figure 2.9.

Figure 2.9: Setting up computation and post-processing parameters

Here one can set up such parameters as the number of iterations, or

the number of points the approximating airfoil is to share with the exact

airfoil. Visualisation and post-processing parameters can also be entered at

this stage.

Pressing the button “Proceed” starts the iterative procedure whose aim

is to determine {Am, Bm}. When these coefficients have been found, the
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program creates two standard figures as in Figure 2.10. One of them displays

the original and the approximating airfoils to allow their comparison.

Figure 2.10: Basic visualisation

Another figure shows a few streamlines of the computed flow that pass

near the airfoil. Visualisation provided within the tool is basic and was pri-

marily intended to facilitate detection of possible errors in the code or calcu-

lations by examining local behaviour of the flow near the body, in particular

near the stagnation point and the trailing edge.

Figure 2.11: Flow near the stagnation point and the trailing edge
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The obtained coefficients {Am, Bm} can be saved (using the pop-up menu

“Save V -data?”) in a mat-file for further interpretation, which could be some

form of a 3D flow as shown in Figure 2.12 or various types of pressure-loading

curves.

Figure 2.12: A variant of 3-D visualisation

Surface pressure distribution output can also be saved in the format de-

scribed in 3.3 for subsequent boundary-layer computation.

2.6 Skin friction computation

Details of the numerical approach we use for evaluation of the skin friction

and the required background are provided in Sections 1.2, 1.3 and 3.3.1, so

we discuss here only the results of computation.

Behaviour of the boundary layer strongly depends on the shape of the ob-

stacle and is very sensitive to its changes. The method of finite trigonometric

series allows us to compute an exact inviscid flow past a shape approximating

the original body, and we therefore have to examine how such an approxima-

tion affects parameters of the boundary layer, in particular the skin friction.

A readily available family of airfoils for which an exact inviscid solution

can be obtained is the family of the Zhukovskii airfoils. The complex velocity
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potential for flows past symmetric Zhukovskii airfoils is given by

f(ζ) = U∞

(
z(ζ) +

R2

z(ζ)

)
where ζ(z) = z+a2/z, R = |a−ε|, a > 0 and ε < 0. The parametric equation

of the corresponding profile is

ζ = (ε+Ret) + a2/(ε+Reit), t ∈ [0, 2π).

We can form the inviscid flow input using both the exact and approximate

solutions, and compare the resulting skin friction curves. Figure 2.13 shows

such curves for the following values of the parameters

a = 1, ε = −0.1, n = 40, Niter = 150.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Arclength

Sk
in

 F
ri

ct
io

n 
Fa

ct
or

 (
F

η)

Approximate

Exact

−0.1 0 0.1
1

1.1

1.2

−2 −1 0 1 2
−1

0

1

Figure 2.13: Approximate and exact skin friction plots for a Zhukovskii airfoil
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The plots in Figure 2.13 are in a fairly good agreement. However, a

straightforward application of the method of finite trigonometric series to

thin airfoils does not give satisfactory results due to increasing influence of

higher harmonics in the mapping Ω(z). For example, we were able to obtain

the plot on Figure 2.14, showing the skin friction factor distribution for a

Zhukovskii airfoil with a = 1 and ε = −0.034, only using the exact solution.
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Zhukovskii airfoil with a=1,  ε = −0.034
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Figure 2.14: Skin friction factor for a Zhukovskii airfoil

Now consider a family of the airfoils whose upper/lower surfaces are given

by

ζ = x± iµ(x), x ∈ [−F,B + T ], (2.45)
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where F , B and T are positive and

µ(x) =


H (1− x2m/F 2m)

1/2
, x ∈ [−F, 0)

H, x ∈ [0, B)

H

2

[
1− th

(
tan
(π
T

(x−B − 0.5T )
))]

, x ∈ [B,B + T ]
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Figure 2.15: Skin friction factor for an airfoil described by (2.45)

Here we also assume that m > 1 which is a sufficient condition for the

outline of the airfoil to be twice continuously differentiable at the point where

its front face meets the body. The rear part of the airfoil (2.45) smoothly

joins the body and the tail has a cusp.
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Figure 2.15 shows one of such airfoils and a computed skin friction factor.

In a practically interesting case of long airfoils, the ratios B/H and B/F

are large and the flow behaviour near the nose of the body mainly depends

on the geometry of the front face. Direct use of the Theodorsen–Naiman

method for potential flow computation in this case yields an inviscid flow

data resulting in an oscillatory skin-friction curve. We experienced a similar

problem in the case of thin Zhukovskii airfoils. In order to deal with the

problem when the airfoil is long, we replace it with a semi-infinite body which

has the same front face, and develop a technique allowing us to overcome such

difficulties. This is done in Chapter 3.
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Chapter 3

Boundary layer computation

for flows past long symmetric

objects

3.1 Introduction

Symmetrical objects with very long straight bodies are often encountered

in practice. Straightforward use of the Theodorsen–Naiman method as in

Chapter 2 for computation of an inviscid component of the flow past such

objects yields a solution with a noticeable presence of higher-order terms

in the corresponding finite trigonometric series. Even though the resulting

velocity potential can still be utilised for evaluation of the inviscid flow pa-

rameters, such as the pressure loading or the outer flow velocity magnitude,

because of the oscillations induced by the higher-order harmonics, its use for

the boundary layer computation becomes problematic.

If we assume that the body of the object is long enough so that the be-
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Figure 3.1: Flow configuration in the physical plane.

haviour of the flow in the frontal region depends only on the shape of the

front face and not on the body length, we can carry out the flow computa-

tion using the approximation by a semi-infinite obstacle. In this chapter we

modify the technique for computation of flows past finite airfoils considered

in Chapter 2 in order to apply it to the semi-infinite geometry. More specifi-

cally, we consider a symmetric semi-infinite obstacle with the front face of a

generalised elliptic shape extending from x = −L to x = 0, which smoothly

joins a horizontal plate of constant width 2H at x = 0.

3.2 Inviscid solution

Consider a flow past a semi-infinite symmetrical body as shown in Figure 3.1.

In the following, the corresponding plane of a complex variable w is re-

ferred to as a physical plane, or simply as a w-plane. The speed of the flow

at infinity is assumed to be (U∞, 0).

3.2.1 Mapping to an auxiliary plane

First, we reduce a semi-infinite obstacle in a physical plane to an effectively

finite body in an auxiliary ζ-plane by applying the Schwarz-Christoffel trans-
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formation of the form

w(ζ) =(ζ − b)1/2(ζ + b)1/2 − 2b log
(
(ζ − b)1/2 + (ζ + b)1/2

)
+ b log(2b) + bπi, (3.1)

where b = H/π and the branches of the square root and the logarithm have

been chosen as follows:

V 1/2 ≡
√
|V | exp {i arg(V )/2} , arg(V ) ∈ [0, 2π);

log V ≡ log |V |+ i arg(V ) , arg(V ) ∈ [0, 2π).

The corresponding inverse transformation ζ(w) maps a half-plane Im ζ > 0

onto the part of the w-plane “above” the step COBA. The arc SζBζ , the

ζ-image of the arc SB of the front face, is sketched in Figure 3.2.

−b b

Sζ BζβCζ Aζ

ζ

Figure 3.2: Image of the arc SB in the ζ-plane.

Since

w(−b) = 0 and w(b) = ibπ = iH,

the ζ-image of the point O is ζ = −b, and Bζ , the image of the point B, is at

ζ = b. The stagnation point S is mapped onto a point Sζ at ζ = −s0, where

s0 is a positive number satisfying the equation

− L = −
√
s2
0 − b2 − 2b log

(√
s0 + b+

√
s0 − b

)
+ b log 2b . (3.2)
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Note. The shape of the arc SζBζ can be computed as follows. If the arc SB

is specified in polar coordinates:

w(θ) = R(θ)eiθ, θ ∈ [π/2, π],

then, in order to obtain r(t) for the parametrization of SζBζ in polar coor-

dinates in the ζ-plane

ζ(t) = r(t)eit, t ∈ [0, π],

we must solve the equation∣∣w(reit)
∣∣−R

(
arg
(
w(reit)

))
= 0

with respect to r for each required t.

Similarly, if the arc SB is specified in Cartesian coordinates, e.g. in the

form G(Rew, Imw) = 0, then the equation for r(t) is

G
(
Rew(reit), Imw(reit)

)
= 0 .

Since w(ζ) is analytic at ζ = −s0 < −b, the angle between the arc SζBζ

and the segment SζCζ at Sζ is the same as the angle between their prototypes

in the w-plane.

In order to find β, or equivalently α = π − β, the angles between SζBζ

and CζAζ at Bζ , we have to consider how w(ζ) behaves near ζ = b.

First write

dw

dζ
=

(ζ − b)1/2

(ζ + b)1/2
, or

dw

dζ
= g(ζ)(ζ − b)1/2 . (3.3)

Note that g(ζ) = 1/(ζ + b)1/2 is analytic in the neighbourhood of ζ = b, so

we can write

dw

dζ
= (g(b) + c1(ζ − b) + · · ·+ cn(ζ − b)n + · · · ) (ζ − b)1/2
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where g(b) = 1/
√

2b 6= 0. Hence

w(ζ) = w(b) +
2

3
g(b)(ζ − b)3/2 +O

(
|ζ − b|5/2

)
,

or

w(ζ)− w(b) =
2

3
g(b)(ζ − b)3/2 (1 +O(|ζ − b|)) . (3.4)

Representing a segment of BζSζ in the neighbourhood of Bζ in the form

ζ = ζ(s) ≡ b+ seiα(s) (α(s) ∈ (0, π))

we obtain from (3.4)

w(ζ(t))− w(b) =
2

3
g(b)s3/2ei3α(s)/2(1 +O(s)) .

Dividing by s3/2 and letting s go to zero in the resulting expression we obtain:

lim
s→0

w(ζ(s))− w(b)

s3/2
=

2

3
g(b)ei3α(0)/2 .

Since the left-hand side of this relation is negative and g(b) > 0, we have

π =
3

2
α(0) ⇒ π − β ≡ α = α(0) =

2

3
π .

Thus β = π/3.

3.2.2 Formulation in the ζ-plane

Our aim is to construct a complex velocity potential f(w) which describes a

branching flow symmetrical with respect to the real axis of w and satisfies

the condition at infinity

f ′(w) → U∞, as |w| → ∞.
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In order to avoid dealing with an arbitrary constant in the solution we will

also require that f(w) = 0 at the stagnation point S. Hence f(w) must

satisfy the condition

Im f(w) = 0, (3.5)

on the boundary of the obstacle, since it coincides with the branching part

of the stagnating streamline.

Consider F (ζ) ≡ f(w(ζ)) where w(ζ) is given by (3.1). From the con-

ditions on f(w) and (3.1) we derive the conditions allowing us to uniquely

determine F (ζ).

Write f(w) = ϕ(w) + iψ(w) and denote the branching streamline by σ.

By (3.5) we have: ψ(w) = 0, if w ∈ σ. If w belongs to the upper branch

of σ, then its complex conjugate w̄ belongs to its lower branch, so, by the

reflection principle,

f(w) = f(w̄) = f(w̄). (3.6)

Let us turn to the mapping ζ(w) now. If w ∈ CS, then Im ζ(w) = 0.

Hence the analytic continuation of ζ(w) from the upper half-plane satisfies

the reflection principle

ζ(w) = ζ(w̄) ,

so it maps the front face BSD onto a symmetric wing-like profile. Since

Im ζ(w) = 0, if w ∈ BA, we have

ζ(w) = ζ(w̄), w ∈ BA ∪DE . (3.7)

This can also be seen directly from (3.1), as it shows that

w(ζ + i0) = w(ζ − i0) + 2Hi, if ζ ∈ [b,∞).
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Geometry of the obstacle in the ζ-plane is sketched in Figure 3.3.

Sζ Bζ

Dζ

Cζ Aζ

Eζ

ζ

Figure 3.3: Geometry of the obstacle in the ζ-plane

Combining (3.6) and (3.7) we find that

F (ζ − i0) = F (ζ + i0), if ζ ∈ [b,∞).

This means that F (ζ) is analytic in the exterior of the domain bounded by

BζSζDζ . Since w/ζ → 1 as |ζ| → ∞, the function F (ζ) can be expanded at

sufficiently large |ζ| into a Laurent series of the form:

F (ζ) = U∞ζ + a0 +
a1

ζ
+
a2

ζ2
+ · · · . (3.8)

We must also have F (−s0) = 0 and

ImF (ζ) = 0 if ζ ∈ CζSζ ∪BζSζDζ ∪BζAζ . (3.9)

Conditions (3.8) and (3.9) constitute a standard aerodynamic problem for a

circulation-free flow past a symmetric airfoil BζSζDζ . This problem is solved

by constructing a conformal mapping z(ζ) which transforms BζSζDζ onto a

circle |z| = R and satisfies the condition

ζ(z)/z → 1, as |z| → ∞ .
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The resulting F (ζ) has the form

F (ζ) = Φ(z(ζ)), where Φ(z) = U∞(z +R2/z) , (3.10)

and the flow in the physical plane is f(w) = Φ(z(ζ(w))).

We can look at this result from a different point of view. Each finite

symmetric wing BζSζDζ in the ζ-plane with the tail angle of 2π/3 generates

a flow past a semi-infinite body BSD in the w-plane. Below we consider

conditions on such wing-like profiles which guarantee that the transition of

the front face to the body in the w-plane is smooth. Non-smoothness of the

body surface is one of the factors leading to separation of the boundary layer.

Take the upper boundary of the tail. We have already found that its

parametrization

ζ = b+ seiα(s)

satisfies α(0) = 2π/3. We will assume that α(s) is a smooth function.

Suppose that

ζ = b+ seiα0(s) ≡ ζ0(s)

is the image of the line w = iH − t, t > 0, under the mapping ζ = ζ(w).

Introduce

δ(s) ≡ α(s)− α0(s).

The front face can be described in the complex plane of w = xw + iyw by the

parametric equations

xw = Rew(ζ(s)), (3.11)

yw = Imw(ζ(s)). (3.12)

Eliminating s, we reduce these parametric equations to the form yw = yw(xw).
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The following result is valid:

If δ(s) = O(sγ), as s→ 0, and γ > 0, then yw(xw)−H = O(x2γ/3+1
w ).

(3.13)

Let us prove this result. We have shown above that

w(ζ) = iH +G(ζ)(ζ − b)3/2

where G(ζ) is analytic in the neighbourhood of ζ = b, and

G(b) =
2

3

1√
2b
6= 0.

Hence (3.11) can be written as

xw(s) = Re
{
G(ζ(s))s3/2ei

2
3
α(s)
}

= Re
{
(G(b) +O(s)) s3/2

(
eiπ +O(sγ)

)}
=
(
−G(b) +O

(
smin(1,γ)

))
s3/2 . (3.14)

Similarly,

yw −H = Im
{
G(ζ(s))s3/2ei

2
3
α(s)
}

= Im
{
G
(
ζ0(s) +O(sγ+1)

)
s3/2

(
ei

2
3
α0(s) +O(sγ)

)}
=O

(
sγ+3/2

)
, (3.15)

since

Im
{
G(ζ0(s))s

3/2ei
2
3
α0(s)

}
= Im{w(ζ0(s))− iH} = 0.

Combining (3.14) and (3.15) we obtain that∣∣∣∣∣yw(xw)−H

x
2
3
γ+1

w

∣∣∣∣∣ =

∣∣∣∣∣ O(sγ+3/2)

(−G(b) +O (smin(1,γ)))
2
3
γ+1

sγ+3/2

∣∣∣∣∣ ≤ C

for some positive C and small s, which is the required result.
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Note. We can easily derive from this result a sufficient condition for continuity

of the derivatives of yw(xw) at xw = 0. If γ > 3
2
(N − 1), then

dkyw
dxkw

∣∣∣∣
xw=0−0

= 0 (k = 1, . . . , N),

and the function yw(xw) is continuously differentiable N times at xw = 0.

Formula (3.10) suggests that in the Laurent series for F (ζ) the coefficients

a0 and a1 satisfy

a0 = lim
|ζ|→∞

(z(ζ)− ζ) and a1 = R2.

Furthermore, by (3.9), Im a0 = 0.

Given z(ζ), let us determine, up to the terms of order O(w−1), the asymp-

totic behaviour of the complex velocity potential at large w. As |ζ| → ∞,

we have

w(ζ) = ζ − b log ζ + b log(b/2) + bπi+O(ζ−1) . (3.16)

Hence

w = ζ(1 + µ0(ζ)), where µ0 → 0 as |ζ| → ∞,

and so

ζ = w(1 + η0(w)), where η0 → 0 as |w| → ∞.

This formula and (3.16) give

ζ = w + b logw − b log(b/2)− bπi+ η1(w),

where η1 → 0 as |w| → ∞. Repeated substitution into (3.11) gives an

estimate for η1(w)

η1(w) = b2w−1 logw +O(|w|−1) .
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Therefore

f(w) ≡F (ζ(w)) = ζ(w) + a0 +O(|w|−1)

=w + b logw − b log(b/2)− bπi+ b2w−1 logw + a0 +O(|w|−1)

=w +
H

π
logw − H

π
log

H

2π
−Hi+

H2

π2w
logw + a0 +O(|w|−1) .

Note that, if w = −s, or w = ±iH + s, and s → +∞, then, as expected,

the principal part of this formula is real. The combination of terms on the

right which do not vanish at infinity describe a flow past a body known as a

semi-infinite Rankine ovoid. This profile will be used for testing purposes.

3.2.3 Mapping to the circle plane

We construct the mapping z(ζ), which conformally transforms the profile

BζSζDζ onto a circle, using the following steps

ζ ↔ z̃ ↔ z̄ ↔ z.

Karman-Trefftz transformation

The mapping ζ ↔ z̃ is the Karman-Trefftz transformation defined by(
ζ − ζ0
ζ − ζ1

)
=

(
z̃ − νζ0
z̃ − νζ1

)1/ν

(3.17)

where ν = π/(2π − 2β), ζ0 = b and ζ1 is some point on the real axis inside

domain bounded by BζSζDζ as shown in Figure 3.4.

Explicit forms of z̃(ζ) and ζ(z̃) can be derived from (3.17)

z̃ =ν
ζ0 − ζ1S(ζ; ζ0, ζ1)

1− S(ζ; ζ0, ζ1)
, (3.18)

ζ =
ζ0 − ζ1K(z̃; ζ0, ζ1)

1−K(z̃; ζ0, ζ1)
, (3.19)
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where

S(ζ; ζ0, ζ1) =

(
ζ − ζ0
ζ − ζ1

)ν
and K(z̃; ζ0, ζ1) =

(
z̃ − νζ0
z̃ − νζ1

)1/ν

.

ζ0

ζ1
2β

ζ
Re ζ

Figure 3.4: Parameters of the Karman–Trefftz transformation

The Karman-Trefftz transformation is used because of its “corner elimi-

nation” property: it transforms the wing-like profile sketched in Figure 3.4

into a rounded shape, which we will call following [1] a near-circle.

The fact that the corner is mapped onto a smooth segment can be verified

by using (3.17) and representing z̃(ζ) near ζ0 as

z̃ = z̃(ζ0) + σ(ζ)(ζ − ζ0)
ν , (3.20)

where σ(ζ) is analytic in the neighbourhood of ζ0 and σ(ζ0) = ν(ζ0 − ζ1)1−ν .

If ζ is on the upper (lower) arc of the profile near the corner point ζ0, s is

the distance from ζ to ζ0 and α1(s) (α2(s)) is the angle between ζ − ζ0 and

the real axis, then

ζ − ζ0 = seiα1(s)
(
ζ − ζ0 = seiα2(s)

)
,

and (3.20) gives

z̃ − z̃(ζ0) =σ(ζ0)s
νeiνα1(0) +O(sν+1) for the upper arc,

z̃ − z̃(ζ0) =σ(ζ0)s
νeiνα2(0) +O(sν+1) for the lower arc .
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Hence

lim
s→0+

z̃ − z̃(ζ0)

sν
=σ(ζ0)e

iνα1(0) , (upper arc),

lim
s→0+

z̃ − z̃(ζ0)

sν
=σ(ζ0)e

iνα2(0) , (lower arc) .

We can see now, that because

να1(0)− να2(0) = ν(2π − 2β) =
π(2π − 2β)

(2π − 2β)
= π,

the z̃-image of the profile BζSζDζ near z̃(ζ0) is smooth.

Formula (3.20) also shows that lim
|ζ|→∞

z̃(ζ)/ζ = 1. To verify this note that,

as |ζ| → ∞,

S(ζ) = 1− ν(ζ0 − ζ1)ζ
−1 +O(|ζ|−2),

which gives

z̃ =
ν(ζ0 − ζ1 +O(|ζ|−1))

ν(ζ0 − ζ1)ζ−1 +O(|ζ|−2)
= ζ(1 +O(|ζ|−1).

In our numerical procedure we will use the formula

dζ

dz̃
=

(ζ0 − ζ1)
2K(z̃; ζ0, ζ1)

(1−K(z̃; ζ0, ζ1))2(z̃ − νζ0)(z̃ − νζ1)
, (3.21)

which can be obtained from (3.19) by straightforward differentiation. Since

K ∼ (z̃ − νζ0)
1/ν and 1/ν > 1, this formula shows that lim

z̃→νζ0
ζ ′(z̃) = 0.

Mapping from the near-circle plane

The image of the stagnation point S in the z̃ plane is a point z̃S on the real

axis:

z̃ = z̃(ζ = −s0),
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where s0 and z̃(ζ) are defined by (3.2) and (3.18). Introducing a parameter

a as

a = 0.5(νb− z̃S)

we define the mapping z̃ ↔ z̄ as a simple shift along the real axis

z̄ = z̃ − z̃S − a, (3.22)

needed to center the contour at the origin.

The boundary of the near-circle can be parametrized as z̄ = aeψ(t)+it.

Introduce

Ω(z) =
n∑

m=1

(Am + iBm)
(
aeA0/z

)m
(3.23)

where

A0 =
1

2n

2n−1∑
k=0

ψk ,

Am =
1

(1 + δmn)n

2n−1∑
k=0

ψk cosm
kπ

n
(m = 1, . . . , n) ,

Bm =
1

n

2n−1∑
k=0

ψk sinm
kπ

n
(m = 1, . . . , n) ,

ψk = ψ(tk)

(3.24)

and tk are solutions of the nonlinear system:

tk − kπ/n =
1

n

2n−1∑
m=0

ψ(tm)σ(m− k), k = 0, . . . , 2n− 1 , (3.25)

σ(K) ≡

cot(Kπ/2n), K odd

0, K even.
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The mapping z̄ = zeΩ(z) transforms the set |z| ≥ aeA0 onto the exterior of

the domain bounded by the contour

z̄ = aeψ
?(t)+it

where ψ?(t) has the property

ψ?(tk) = ψ(tk) (k = 0, . . . , 2n− 1).

Hence the transformation w = w(ζ(z)) maps the circle |z| = aeA0 onto a

contour which shares with the original front face at least 2n common points.

The resulting solution describes an exact flow past such an approximate

profile.

Note. The algorithm that carries out the transformations described here and

computes the inviscid flow has been implemented in Matlab [18]. If the

coefficients Am and Bm (m = 1, . . . , n) are arranged in row-vectors

A =[A1, . . . , An],

B =[B1, . . . , Bn],

then the points zk stored as components of the complex row-vector

z = [z1, . . . , zN ]

are mapped under the transformation

z̄(z) = ze

nP

m=1
(Am+iBm)(R/z)m

(3.26)

into points [z̄1, . . . , z̄N ]. The corresponding complex row-vector can be eval-

uated using Matlab as

zB=z.*exp((A+i*B)*(ones(n,1)*(Rz./z)).^([1:n]’*ones(1,N)));
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(zB ∼ [z̄1, . . . , z̄N ]).

The values of the derivative

z̄ ′(z) =

(
1−

n∑
m=1

m(Am + iBm)(R/z)m

)
z̄/z (3.27)

at zk are found using

dzBdz=1-((A+i*B).*[1:n])*(ones(n,1)*(Rz./z)).^([1:n]’*ones(1,N));

dzBdz=dzBdz.*zB./z;

where

dzBdz ∼ [z̄ ′(z1), . . . , z̄
′(zN)] and zB ∼ [z̄1, . . . , z̄N ].

The inviscid flow solution provides us with the outer velocity which we

will use in the boundary layer computation. The complex velocity potential

of the outer flow is

f(w) = Φ(z(z̃(ζ(w))− z̃S − a︸ ︷︷ ︸
z̄

))

and the complex velocity is

f ′(w) = Φ′(z)z′(z̄)z̃ ′(ζ)ζ ′(w) = Φ′(z)
1

z̄ ′(z)

1

ζ ′(z̃)

1

w′(ζ)
. (3.28)

Since we have analytic expressions for z̄ ′(z) (formula (3.27)), ζ ′(z̃) (formula

(3.21)), w′(ζ) (formula (3.3)), w(ζ) (formula (3.1)), ζ(z̃) (formula (3.19)),

z̃(z̄) (formula (3.22)) and z̄(z) (formula (3.26)), computation of w and f ′(w)

for a given z is straightforward.

The inviscid flow computation can now be summarised as follows:

1. Specify the front face in the physical plane.

2. Find the image of the front face in the ζ plane.
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3. Map to the z̃ and then to the z̄ planes (a is obtained at this stage).

4. Find A0 and {Am, Bm} used in the mapping z̄ = zeΩ(z);

5. The approximating front face in the physical plane is the image of

z = aeA0+iφ, φ ∈ [0, 2π)

under the mapping z → z̄ → z̃ → w. Find the inviscid flow past

the semi-infinite body with this approximate front face. Because of

the symmetry, the images of the stagnation and the rearmost points

of the front face of the approximate profile coincide at each mapping

stage with the images of the stagnation and the rearmost points of the

original shape.

6. Generate data for the boundary layer computation.

3.3 Boundary Layer Computation

3.3.1 Summary of the method

Here we provide only a summary of the numerical method we use for the

boundary layer computation. Details and derivations can be found in Sec-

tions 1.2 and 1.3.

Steady two-dimensional laminar flow of a viscous fluid near a curved

surface is governed by Prandtl’s boundary layer equations (1.3)–(1.4) which

can be written in the non-dimensional form as

∂u

∂s
+
∂v

∂n
= 0 , (3.29)

u
∂u

∂s
+ v

∂u

∂n
= ue(s)

due
ds

+
∂2u

∂n2
, (3.30)
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where ue(s) = Ue(sLc)/U∞, Lc is a characteristic length. With the introduc-

tion of the Görtler variables (ξ, η) and (F, V ) defined as

ξ =

∫ s

0

ue(s)ds, η =
ue√
2ξ
n ,

u = Fue, v =
ue
2ξ
V − ∂η

∂s

√
2ξF ,

this system is transformed into

2ξFξ + F + Vη = 0 ,

2ξFFξ + V Fη + σp(ξ)(F 2 − 1) = Fηη ,
(3.31)

where σp(ξ) = 2ξu′e(s(ξ))/u
2
e(s(ξ)).

Equations (3.31) must be solved subject to the boundary conditions

F (ξ, 0) = V (ξ, 0) = 0 and lim
η→∞

F (ξ, η) = 1 . (3.32)

The numerical procedure used for solution of (3.31)–(3.32) is described in

Section 1.3.

We organized the corresponding solver in a separate program, which will

be referred to as a BLC-module. This module uses the arclength from the

stagnation point s̄ and the inviscid flow data ξ and σp as an input, its output

consists of the values of the skin friction factor

τ =
∂F

∂η

∣∣∣∣
η=0

and the corresponding values of the arc-length s̄.

We take a fine mesh of points covering a segment of the front face be-

tween the stagnation point and some point on its upper part, and generate
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sequences of values for

s̄, the arclength measured from the stagnation point,

ξ(s̄) =

∫ s̄

0

Ue(s̄)ds̄/(U∞L) ,

σp(s̄) =
2LU∞
U2
e (s̄)

ξ U ′e(s̄) .

needed for the boundary layer computation. The BLC-module employs the

same numerical technique as the program described in Chapter 1 written

specifically for near-parabolic shapes. The module has been built to be used

for computation of flows past generally shaped bodies as all required infor-

mation about the geometry of the obstacle is now contained in the input

data (3.33). Testing of the BLC module on a flow past a parabola gives the

same plots for the skin-friction factor as in [36].

Rankine half−body
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Figure 3.5: Limiting form of Rankine’s ovoid
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A classical example of a semi-infinite body for which an inviscid solution

can be obtained explicitly is a limiting form of Rankine’s ovoid shown in

Figure 3.5. The parametric equation of its boundary is

|w(θ)| = H

π

(π − θ)

sin θ
, θ ∈ (0, 2π) ,

and the corresponding complex velocity potential is given by

f(w) = w +
H

π
logw − iH

where, as before, logw ≡ log |w|+ i arg(w), and arg(w) ∈ [0, 2π).
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Figure 3.6: Skin friction factor for the Rankine semi-infinite body

The plot of the skin friction factor obtained for the Rankine semi-infinite

body is given in Figure 3.6. We can see from this plot that the skin friction
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factor τ(s̄) is always positive, and so boundary layer separation does not

occur.

If f(w) cannot be obtained in explicit form, it is more convenient to form

the mesh in the z-plane first:

z[k]
m = aeA0+iφ

[k]
m ,

where k = 0, . . . ,M − 1, M is sufficiently large, m = 1, 2, and

φ[k]
m =

π − kπ/M, if m = 1 ,

π − (k + 0.5)π/M, if m = 2 .

The derivatives w′(z) and f ′(w) are evaluated at z
[k]
m using (3.3), (3.21), (3.27)

and (3.28). These values are used to find (3.33) at z
[k]
m numerically. Cubic

interpolation is used to obtain σp at arbitrary ξ.

Formally σp is not defined at the stagnation point where Ue = 0, so we

set σp at s̄ = 0 to

σp(0+) ≡ lim
s̄→0+

σp(s̄) = 1. (3.33)

In order to verify (3.33) first assume that, as s̄→ 0 we have

Ue(s̄) = κs̄λ + o(s̄λ) (λ > 0) ,

and also

U ′e(s̄) =
λκ

s̄
(s̄λ + o(s̄λ)) ,∫ s̄

0

Ue(s̄)ds̄ =
κs̄λ+1

λ+ 1
+ o(s̄λ+1) .

Substitute this into (3.33) to obtain

lim
s̄→0

σp(s̄) =
2λ

λ+ 1
.
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To show that in our case λ = 1 note that

d

dz
f(w(z))

∣∣∣∣
z=−R+∆z

= U∞

(
1− R2

(−R + ∆z)2

)
' −2U∞

R
∆z .

Therefore, since w′(z) 6= 0 at z = −R, we obtain

Ue(s̄) =

∣∣∣∣ ddwf (w(−R + ∆z))

∣∣∣∣ ' 2U∞
R|w′(−R)|2

s̄ ,

as required.

3.3.2 Application remarks and results

The front face of a semi-infinite body can be characterized by the aspect

ratio L/H. We have seen that the Rankine half-body, whose aspect ratio is

infinity, yields an unseparated flow. In reality we have to deal with bodies

whose front face has a finite aspect ratio. Minimising L/H while keeping the

flow unseparated is a task of practical interest. We will pursue this task by

considering a particular family of front faces in a horizontal flow having unit

speed at infinity.

The following observation will allow us to generalise our results to the

case of non-unit flow speeds and scaled copies of the obstacle.

Consider an inviscid flow past a body B. Suppose that at infinity the flow

is uniform and its speed is (U, 0). If f(w) is its complex velocity potential,

then

f1(w) =
U1

U
f(w/k1)k1 (3.34)

describes a flow past a body B1 which can be obtained from B using a

similarity transformation with coefficient k1. The speed of the flow (3.34) at

infinity is U1. If w0 ∈ B, then w1 = k1w0 is its corresponding point on B1.
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Since
f ′1(w)

U1

∣∣∣∣
w=w1

=
f ′(w)

U

∣∣∣∣
w=w0

,

the values of the scaled velocity ue associated with the flows past B1 and B

taken at w1 and w0 respectively are the same. Furthermore, since the ratio of

the characteristic lengths for B1 and B is k1, the value of the scaled arclength

is the same for w1 and w0. This means that both flows yield the same ue(s)

and so the equations (3.29)–(3.30) are invariant with respect to changes of

the speed of the uniform flow and the scaling factor.

Computation of the inviscid speed uses the potential flow past an approx-

imating ζ-profile. We cannot guarantee that this profile meets the condition

(3.13) with sufficiently large γ. As a consequence, there will always be a sin-

gularity at the point where the approximate front face meets the upper/lower

faces of the body. To overcome the resulting difficulty during the boundary

layer computation we will be considering an extended front face

Gext(xw, yw) = 0, where Gext(xw, yw) ≡

G(xw + T, yw) = 0, if xw < −T

y2
w −H2, if xw ≥ −T

whereG(xw, yw) = 0 is the equation of the original front face and T > 0. Such

an extension is artificial, it does not change the geometry of the body and its

aspect ratio. However, by shifting the singular points downstream it removes

them from the segment of interest, on which boundary layer computation will

be carried out.

Now introduce the family of “generalised ellipse” faces having

|xw|p

Lp
+
y2
w

H2
= 1 . (3.35)

This is elliptic if p = 2, but has a smoother behaviour near xw = 0 if p > 2.
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We will require that p > 2, which is needed for the continuity of the second

derivative of the function describing the body profile.

For each fixed p, our aim is to find minimal L under which the boundary

layer is not yet separated, or, equivalently, the skin friction factor τ is strictly

positive.
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Figure 3.7: Determination of Lmin(4)
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Assume that H = π. A computational cycle for each fixed p consists in

generating skin friction factor distributions for a sequence of L. We start

with a sufficiently large L and decrease it with a small step until reaching

the value Lmin(p) below which an unseparated flow can no longer exist. This

is illustrated in Figure 3.7 for p = 4.

The resulting plot of Lmin(p) is shown in Figure 3.8.
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Figure 3.8: Plot of Lmin(p)/H

Table 3.1 contains the data used for generating the plot in Figure 3.8.
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p 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
Lmin/H 5.90 5.64 5.54 5.47 5.42 5.38 5.35 5.33

p 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7

Lmin/H 5.33 5.33 5.34 5.35 5.37 5.39 5.43 5.49

p 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

Lmin/H 5.55 5.62 5.67 5.75 5.81 5.88 5.95 6.03

Table 3.1: Results for the family (3.35)

Figure 3.9: Skin friction factor and geometry for (3.36) with (p, q) = (3, 3.5)

Figure 3.8 shows that the smallest ratio takes place at p ≈ 3. Small further

improvement, having the form of “diminishing returns”, is possible if we

Anna Dostovalova, The University of Adelaide



CHAPTER 3. FLOWS PAST LONG SYMMETRIC OBJECTS 100

consider the family of front faces satisfying

|xw|p

Lp
+
|yw|q

Hq
= 1 . (3.36)

For example, if p = 3 and q = 3.5, then Lmin/H is 5.0. The configuration

corresponding to these values of parameters is shown in Figure 3.9.

We can see from Table 3.1 or from Figure 3.8 with p = 4, that for bodies

with front faces satisfying
x4
w

L4
+
y2
w

H2
= 1 , (3.37)

a critical ratio L/H below which the flow can no longer be unseparated is

approximately 5.67.

Figure 3.10: Skin friction factor and geometry for (3.37) with L/H = 5.67
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Figure 3.10 shows the critical point in the physical plane where separation

is likely to occur if the ratio L/H were made smaller noting that this point lies

further ahead of the junction point x = 0 than for more-optimal configuration

such as that in Figure 3.9.
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Figure 3.11: Plots of τ for finite and semi-infinite objects with p = 4.

The body in Figure 2.15 has L/H = 5 < 5.67, which suggests that for finite

wings the critical aspect ratio is smaller. Figure 3.11 shows the plots of

computed skin friction factor for a finite and semi-infinite bodies having the
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same front face described by (3.37) with L/H = 5. We can see from this plot

that the flow for a finite wing is unseparated, whereas the skin friction factor

for the infinite object reaches zero, which is an indication of a separated flow.

For flow control purposes it might be interesting to know the location

of the critical point corresponding to the minimal value of the skin friction

factor. The plot in Figure 3.12 shows how the x-coordinate of such critical

points for optimal representatives of family (3.35) with H = π depends on p.
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Figure 3.12: Location of the critical point as a function of p for (3.35)

We can see that, as the parameter p approaches 2, the critical value

stabilizes near the point x = 0 where the front face joins the rest of the body.

Anna Dostovalova, The University of Adelaide



CHAPTER 3. FLOWS PAST LONG SYMMETRIC OBJECTS 103

We found that when p = 2 or when p was too close to this value, it was

impossible to obtain unseparated flows by changing the L/H ratio, which we

attribute to surface curvature discontinuity at the junction point (x = 0) for

purely elliptic noses.

The paper [5] considered the case of purely elliptic noses. In our opinion,

such results can be only approximate, since the boundary layer will separate

at the junction irrespective of the aspect ratio and we believe that a smoother

matching (p > 2) is needed to eliminate this type of separation.
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Conclusion

In conclusion, we summarise the outcomes achieved in this work.

In Chapter 1 we considered a number of families of asymptotically par-

abolic nose shapes and suggested geometries which delay laminar boundary

layer separation to larger angles of attack. Approximately, a 9% improvement

compared to a purely parabolic nose case has been achieved for symmetric

noses, and an 11% improvement for “drooped” noses.

In Chapter 2 we examined how the considerations used for the leading-

edge region of thin airfoils apply to finite wings of arbitrary shape. We used

the Theodorsen-Naiman method for inviscid flow computation. The corre-

sponding methodology, implemented in the form of a graphical user interface

in Matlab, allows one to design a wing, set up computation parameters and

control the convergence of the iterative procedure. For relatively short wings

the laminar flow separation results have been shown to depend not only on

the leading edge geometry but also on the geometry of the rest of the wing.

We found that for longer wings the adopted method of computing inviscid

flow fails because the role of higher harmonics in finite trigonometric series

becomes dominating at the stage of solution of Prandtl’s equations.

In Chapter 3 we addressed this problem by appropriately modifying the
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procedure for inviscid flow computation, and making it suitable for long

symmetric bodies. The resulting techniques have been applied to a particular

family of front faces of length L and width H, to find the profile with minimal

L/H ratio allowing an unseparated flow.

All applications and programs used in this work have been coded in

C/C++ and Matlab.
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