Factors influencing food availability for the endangered south-eastern Red-tailed Black Cockatoo *Calyptorhynchus banksii graptogyne* in remnant stringybark woodland, and implications for management

(ELECTRONIC COPY: Please be advised that the maps in this document are of a lower quality than the original)

Paul Koch
BSc (Hons)

Department of Environmental Biology
University of Adelaide

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
Declaration

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university, and to the best of my knowledge and belief, it contains no material previously published or written by any other person except where due reference or acknowledgement is made.

I give my consent for the photocopying and loan of this thesis.

Paul Koch
Acknowledgements

My first acknowledgement should go to my principal supervisor, Dr. David Paton, who largely saved me from a floundering start to my career as a scientist, and reawakened in me a passion for the science of conservation. Thanks also to Dave for trusting his gut feeling and believing in me when others did not. My co-supervisor, Dr. Adrian Stokes, provided the ideal partner in crime for the research, because he helped me nut out the all-important logistics of the study, and lent me the extra support I needed when things were going pear-shaped in the field.

I gratefully acknowledge financial contributions towards the study from Birds Australia, administered through the Red-tailed Black Cockatoo Recovery Team, my supervisor Dr. David Paton, World Wide Fund for Nature and National Heritage Trust.

The study was essentially field based, and I was required to spend at least half of my time living for three week periods in Casterton, a small, rural town in south-western Victoria. This field schedule would have been very lonely at times had it not been for a certain bunch of hoodwinks in Casterton who made sure that I never spent a Saturday night sober. More importantly, we all connected instantly and became fast friends, and these friendships I expect to last a lifetime (a rare thing indeed). Not only did these fine country folk inspire in me the unshakable conviction that I would one day live in the country and enjoy “the good life”, but they managed to provide much guidance towards the methods used for my research in the field.

Richard Hill is an ornithologist of the highest calibre who moved to the country for the job of Project Officer for the Red-tailed Black Cockatoo Recovery Team, and he acted as my field work mentor. I had a naive tendency to go out and start measuring things without really knowing what the question was, and his experience and council taught me to ask: Is the question worth answering? By doing this, I gradually realised that field work was a lot more fun when it was in pursuit of something worthwhile.

Tim Burnard, who was the Extension Officer for the Recovery Team during most of my research, provided much of the technical know-how for the project. Apart from being fast with a joke and even faster with a light of your smoke, Tim was the madcap genius who took exactly 10 minutes to figure out the best way to tag branches of trees, 12 metres above the ground. The method is presented in this thesis, and may be used by generations of biologists to come.
Behind every great man is a great woman, and the delightful trio of Donna (Tim’s wife), Suzie (Richard’s wife) and Jas (Richard’s daughter) are no exception to that rule. The “girls”, as they are known, apart from being awesome cooks and the life of the party, were a continual source of fun and laughter. Hayzee, Ned and Toby (the dogs) and “the pig” (my motor bike of choice) also added much life and character to my times down on the farm.

A huge thankyou also to Mark Angus, who provided me with accommodation during my many expeditions to Edenhope. Mark was superb company and made doing field work in Edenhope something to look forward to.

I am extremely grateful to Ivan Mills and Noel Mills, father and son beekeeper team, who showed me how to distinguish between the two species of stringybark used by the cockatoos, and who provided me with invaluable local knowledge far beyond anything that can be read in books.

There are numerous others who helped me along the way, both in the field and at uni, who I mention here in no particular order: Barry Grigg, forestry officer for Forestry SA, for helping with plant identification and providing me with maps and other assistance; Dick Cooper, who provided much expertise on tracking the cockatoos and continual updates about their whereabouts; Peter Musgrove (a.k.a. Carps), for providing me with fire maps, local knowledge and initiating me into the world of barbeques, prescribed burn style; Ian McCallum for being a tolerant and generous landlord; Ted Post, for many weeks of slave labour, good companionship, awesome photographs, his advice on chopping down pine trees, and most of all, for teaching me how to be a birdwatcher; Kevin Barker, for saving me a 12 km walk in the dark when I got lost in the scrub; Keith Walker, for the many times he assisted me with statistical analyses; Tina Freeman of Tonkin Consulting, for her tutorship and assistance with mapping software; Damien Victorsen, Kiralee Blaylock and Brydie Hill for their volunteer assistance; Daniel Rogers, for his computer wizardry; Colin Bailey, for being a masterful apprentice; Mark Ziembicki, Nigel Willoughby, Emma Crossfield and Tina Bentz, who together with Brydie, Daniel and Colin, formed the friendly faces of the Paton lab postgrads, and were very understanding about my lack of social commitment during thesis writing; Grant Pelton, for helping me attempt to use the bomb calorimeter; Marilyn Saxon, Richard Norris, Phil Kempster, Roger Seymour, David Ladd for their technical support; and everyone from the morning tea crew for their energising conversation and laughter.

I am eternally grateful to my beloved wife Briony Jarmyn, for her friendship, beauty and joy, for single-handedly organising a round-the-world trip while I wrote my thesis, and for sharing my vision to move to the country and build a house somewhere in a choice bush setting.
Abstract

The problems associated with habitat loss and habitat fragmentation are largely responsible for a decline in biodiversity around the world, yet there are relatively few studies targeting declining populations to determine which aspects of resource availability actually limit population size.

The endangered south-eastern Red-tailed Black Cockatoo *Calyptorhynchus banksii* *graptogyne* is highly specialised, feeding almost entirely on seeds of the closely related stringybark eucalypts *Eucalyptus arenacea* and *Eucalyptus baxteri*. The primary objective of the present study was to assess the effects of prescribed burns on food availability to the cockatoos. The problem was approached by first, identifying the key components of food availability (capsule quantity, food value per capsule and tree characteristics) influencing the selection of trees and sites for foraging by the cockatoos, and second, by assessing the impact of prescribed burns on these components and levels of habitat use by the cockatoos. The issue of fire management was thus considered in the context of food availability for the cockatoo population, and in relation to other factors such as periodicities between seed crops and edge effects.

Phenology was monitored at six sites to assess patterns of seed production for the two species of stringybark, within and between years. Years of high seed production were followed by years of negligible seed production for both species, but the two species did not produce seed crops in the same year. *E. baxteri* fruited on an approximate two-to-four year cycle while *E. arenacea* fruited more consistently on a three year cycle. Sightings records for the south-eastern Red-tailed Black Cockatoo population indicated that the cockatoos moved from regions dominated by *E. arenacea* into those dominated by *E. baxteri* following the production of a new seed crop on the latter species. These results suggest that the cockatoos fed almost entirely on the species that had fruited most recently, presumably because new seed crops were depleted to a lesser extent than old seed crops.

Comparison of various resource characteristics between feed trees and other trees suggested that aspects of capsule quantity such as capsule density (capsules per branch), crop size (capsules per tree) and cluster size (capsules per pedicel) were more important than aspects of capsule profitability (food value per capsule) in determining food supply for the cockatoos. Foraging observations further demonstrated that cockatoos feeding on branches with high capsule density (>100 capsules per branch) processed 17% more capsules per unit time than those feeding on branches with low capsule density (<100 capsules per branch). These results confirmed that the cockatoos forage less efficiently when feeding on branches with low capsule density. Moreover, the percentage of the day spent foraging
increased as the seed crop aged from 52% for February 2001 to 73% for February 2002 and 88% for July 2002, suggesting that foraging efficiency declined as the seed crop aged and was depleted.

An extensive survey comparing aspects of capsule availability and levels of habitat use between sites varying in time since fire (3, 5, 6, 7, 9, 11 and >25 years since fire) was used to assess the effects of prescribed burns on food availability. The survey indicated that prescribed burns have a prolonged and substantial impact on all measures of capsule availability, with effects lasting approximately ten years. It was estimated that trees burnt in the last ten years produce approximately half as much seed as those in long unburnt areas. Correspondingly, the percentage of trees used by cockatoos was much lower in burnt areas than unburnt areas, increasing steadily as time since fire progressed.

An additional survey comparing measures of capsule availability between trees with different levels of canopy scorch (100%, 50%, 10-20% and unburnt groups) was used to determine the effect of fire intensity on subsequent capsule availability. The standing crop of trees (crop size) was approximately inversely proportional to the percentage of canopy scorched. This finding suggests that reducing canopy scorch by lowering the intensity of prescribed burns is an effective way to reduce the effects of prescribed burns on seed availability to the Red-tailed Black Cockatoo.

Comparisons of edge trees with interior trees showed that trees at edges produced approximately twice as many capsules per tree. However, the edge effect was restricted to the outermost fringes of remnants, and the cockatoos only used edge trees slightly more intensively than interior trees. Trees at edges would be likely to be more profitable for foraging cockatoos than interior trees, but the effect would provide little compensation for the extensive loss of feeding habitat previously incurred.

There was substantial evidence in the present study to suggest that food availability may be limiting the south-eastern Red-tailed Black Cockatoo population. This evidence was as follows: (1) the high percentage of time spent foraging when compared with other Black Cockatoo species, which increased as the seed crop aged and was depleted; (2) the high rates of habitat use (100% of unburnt sites were used by cockatoos; 64% of trees were used per site); (3) the use of nearly all burnt sites, despite their generally lower productivity; and (4) the observation that individual sites were re-visited by flocks of cockatoos several times over the course of the study. Therefore, it is essential that the habitat be managed to maximise seed availability. In particular, the study demonstrated that reducing the intensity of prescribed burns has the potential to significantly increase food supply to the cockatoos. Improvements to fire management, when combined with strategic revegetation programmes, have the
potential to secure and improve the conservation status of the endangered south-eastern Red-tailed Black Cockatoo.
TABLE OF CONTENTS

CHAPTER 1
General Introduction 1

1.1 Introduction 1
1.2 Study species 2
1.3 Potential factors limiting the south-eastern Red-tailed Black Cockatoo 6
1.3.1 Breeding success 6
1.3.2 Loss of feeding habitat 7
1.3.3 Effects of fire on food availability 8
1.4 Objectives of the study 9

CHAPTER 2
General Methods 11

2.1 Description of the study area and study sites 11
2.2 General approach to the study 11
2.3 Broad-scale habitat survey 14

CHAPTER 3
Reproductive biology and distributions of *E. baxteri* and *E. arenacea* within the range of the south-eastern Red-tailed Black Cockatoo 20

3.1 Introduction 20
3.2 Methods 21
3.2.1 Distinguishing between the two species of stringybark 21
3.2.2 Method used to monitor phenology 22
3.2.3 Timing of reproductive events 23
3.2.4 Flowering success 24
3.2.5 Synchrony of flowering 24
3.2.6 Flowering and fruiting intensity 25
3.2.7 Distributions of the two stringybark eucalypts 25
3.3 Results 27
3.3.1 Timing of reproductive events 27
3.3.2 Flowering success 29
3.3.3 Synchrony of flowering 30
3.3.4 Flowering and fruiting intensity 30
3.3.5 Distributions of the two stringybark eucalypts 33
3.3.6 Red-tailed Black Cockatoo sightings in relation to species distributions 36
3.4 Discussion 36
3.4.1 Patterns of seed production 36
3.4.2 Red-tailed Black Cockatoo sightings in relation to patterns of seed production 41
CHAPTER 4
Foraging ecology of the south-eastern Red-tailed Black Cockatoo

4.1 Introduction
4.2 Methods
4.2.1 Factors influencing the selection of foraging locations
4.2.2 Foraging observations
4.3 Results
4.3.1 Factors influencing the selection of foraging locations
4.3.2 Foraging observations
4.4 Discussion
4.4.1 Factors influencing the selection of foraging locations
4.4.2 Foraging behaviour

CHAPTER 5 The effect of prescribed burns on food availability

Part A: Recovery of seed availability after fire and patterns of habitat use by the south-eastern Red-tailed Black Cockatoo

5.1 Introduction
5.2 Methods
5.2.1 Statistical Analysis
5.3 Results
5.3.1 Recovery of seed availability after fire
5.3.2 Capsule volume
5.3.3 Patterns of habitat use by cockatoos after fire
5.4 Discussion
5.4.1 Influence of fire on seed availability to the south-eastern Red-tailed Black Cockatoo
5.4.2 Implications for the south-eastern Red-tailed Black Cockatoo

Part B: Recovery of seed availability for the south-eastern Red-tailed Black Cockatoo following burns at different intensities

5.5 Introduction
5.5.1 Study sites
5.6 Methods
5.6.1 Selection of trees and sites with different levels of canopy scorch
5.6.2 Reproductive performance of trees in different canopy scorch groups
5.6.3 The vegetative responses of trees to different levels of canopy scorch
5.6.4 Statistical analysis
5.7 Results
5.7.1 Reproductive performance of trees in different canopy scorch groups
5.7.2 The vegetative responses of trees to different levels of canopy scorch
5.8 Discussion

PART C: Implications for fire management
CHAPTER 6
The value of induced edges as feeding habitat for the south-eastern Red-tailed Black Cockatoo 123

6.1 Introduction 123
6.2 Methods 123
6.2.1 Comparison of edge trees and interior trees in capsule availability, tree characteristics and resource use by cockatoos 124
6.2.2 Patterns of resource use and capsule availability with increasing distance from edges 124
6.3 Results 125
6.3.1 Responses of trees to edge effects 125
6.3.2 Edge effects on patterns of resource consumption 128
6.4 Discussion 130

CHAPTER 7 General Discussion and Conclusions 132

APPENDIX 1 132

Literature Cited 138