Regolith-landform and mineralogical mapping of the White Dam Prospect, eastern Olary Domain, South Australia, using integrated remote sensing and spectral techniques.

Ian Christopher Lau

December 2004

Thesis submitted as fulfilment of the requirements for the degree of Doctorate of Philosophy

The University of Adelaide, Australia
Certificate of Originality

I hereby declare that this submission is of my own work and that, to the best of my knowledge and belief, contains no material previously published or written by another person, unless it has been acknowledged accordingly. I have endeavoured to perform the research encapsulated in this document from my own ideas and investigations. I give consent for this thesis to be loaned or photocopied. However, ask for acknowledgement when the original ideas, data or figures contained within this thesis are used.

Ian Christopher Lau, December 2004
Abstract

The research contained within this thesis was directed at examining the spectral properties of regolith-dominated terrains using airborne and proximal hyperspectral instruments. The focus of the investigation was to identify the mineralogy of the regolith and determine if surficial materials were indicative of the underlying bedrock in the regolith-dominated terrain of the eastern Olary Domain, South Australia. The research area was constrained to a 250 km2 area around the Cu-Au mineralisation of the White Dam Prospect.

Integrated remote sensing, using airborne hyperspectral datasets (HyMap), Landsat imagery and gamma-ray spectroscopy data, was performed to map regolith-landforms and extract information on surficial materials. Detailed calibration of the HyMap dataset, using a modified model-based/empirical line calibration technique, was required prior to information extraction.

The White Dam area was able to be divided into: alluvial regolith-dominated; in situ regolith-dominated; and bedrock-dominated terrains, based on mineralogical interpretations of the regolith, using the remotely sensed hyperspectral data. Alluvial regions were characterised by large abundances of vegetation and soils with a hematite-rich mineralogy. Highly weathered areas of in situ material were discriminated by the presence of goethite and kaolinite of various crystallinities, whereas the bedrock-dominated regions displayed white mica-/muscovite-rich mineralogy. Areas flanking bedrock exposures commonly consisted of shallow muscovite-rich soils containing regolith carbonate accumulations.

Traditional mineral mapping processes were performed on the HyMap data and were able to extract endmembers of regolith and other surficial materials. The Mixture Tuned Matched Filter un-mixing process was successful at classifying regolith materials and minerals. Spectral indices performed on masked data were effective at identifying the key regolith mineralogical features of the HyMap imagery and proved less time consuming than un-mixing processes. Processed HyMap imagery was able to identify weathering halos, highlighted in mineralogical changes, around bedrock exposures.

Proximal spectral measurements and XRD analyses of samples collected from the White Dam Prospect were used to create detailed mineralogical dispersion maps of the surface and costean sections. Regolith materials of the logged sections were found to correlate with the spectrally-derived mineral dispersion profiles. The HyLogger drill core scanning instrument was used to examine the mineralogy of the fresh bedrock, which contrasted with the weathering-derived near-surface regolith materials. The overall outcomes of the thesis showed that hyperspectral techniques were useful for charactering the mineralogy of surficial materials and mapping regolith-landforms.
Acknowledgements

Formally I would like to thank Professor Pat James for his help in getting this project started and providing a source of funding. Appreciation goes to The Adelaide University, the Department of Geology and Geophysics and CRC LEME, for putting up the cash for me to perform this work. I would also like to acknowledge the guidance and aid provided by Dr. Alan Mauger on the remote sensing and spectral side of the thesis. A big thank you must go to Dr. Graham Heinson who had the misfortune of having to read a larger proportion of the draft documents than anyone else. I have greatly appreciated Graham’s guidance on the academic issues and the provision of scientific ideas, from a geophysical point of view. Big thanks to Steve Hill who also inspired me and stimulated me in many ways (with regard to regolith science) and taught me how to map, no thanks for not picking us up when we were hitch-hiking on the Barrier Highway.

Along the way I have seeked aid from other academics and industry geologists who I would like to formally thank. This includes Megan Lewis, Bertram Ostendorf from Soil and Water, Martin Williams, Yvonne Bone, Karin Barovich and Vic Gostin from the Geology Department, Vicki Stamoulis, Andrew Shearer, Alistair Crooks, Steve Hore, Stuart Robinson, Colin Conor, Wolfgang Preiss, John Keeling, Andy Burtt, Fabs, Miles and Simmo from PIRSA. The use of facilities and equipment at PIRSA during the early stages of the project was greatly appreciated. Cheers Swanny for showing us FAB and introduced us to Olary. I am extremely grateful to the landowners of the Olary region, especially the Trelors, the Shearers for allowing me access to their property. A special thanks goes to Andy for his kind use of his quarters and homestead, as well as his excellent hospitality. I must say that you showed me another side of the countryside that I have grown to greatly appreciate.

I would like to thank the assistance I received from industry companies and organisations, MIMEX, Polymetals, EXCO Resources, Challenger Geological Services, with special thanks to Mark Raven, Ben and Rob Fitzpatrick of CSIRO Land and Water for letting me mess up their XRD lab. Of great help in times of need were the staff of CSIRO Exploration and Mining, which included Rob Hewson, Tom Cudahy, Cindy Ong, Peter Mason, Jon Huntington, Melissa Quigley, Keith Scott (for coming out to the costeans and having a look) and Phil Connor. I am greatly indebted to Tom for showing me his passion for remote sensing. Thank you Peter Hausknecht and Brigette Martini of HyVista.
Along the course of my travels to Perth I met many fantastic people at the ARRC building and would like to thank Ravi Anand, Dale Longman, Cajetan Phang, Erick Ramanaidou, and Helena Hink for their help and hospitality. Thank you to Brian Pashley and Colin Pain for the scanning of my regolith map, I will pay the bill soon. I would also like to acknowledge Angelo Varetarsi for his work on a poster presented at BHEI 2003 and the one that got lost at Heathrow on the way to IGARSS 03.

The Mawson Laboratories have become somewhat of a home during the past 4 years and I would like to acknowledge the people who give the place some character, and give some aid when required. Cheers to John Stanley, Maria Lekis, Carolyn Marshal, Yvonne Phillip, Sherry Proffers and Iain Florence for their assistance, and to all the other Alderman Tea-goers for their cake and chit-chat.

Along the journey I have seen many people come and go, some falling along the wayside. I would like to thank them all for their friendship and aid that they have been to myself and my family. Thanks Sheena, Amy and Charlotte; Aaron, Pip and Samuel, Karen and Aija, Linda, Hash, Brian, Robert, Beau and Anna; Rob, Phil, Lachlan, Chris, Ben, Greg, Kate, Tania, Freddy, Sean, Anna, Alana and other SIG/ RS people, Mark T, Brett T, Andrew, Peter, Bernd, Rolf, Amy, Pledgie, Huddles, Selina, Jo, Rebeka, Nick and Mel, Yvette, Scott & Kirsty. Thanks to the wonderful people of CARES SA.

The most gratitude must go to my poor long suffering family who have had to vicariously undertake a PhD. My humblest apologies to the love of my life, Tes, who during the last three years has turned me into a complete person, while at the same time duelling my mistress, that is Research, for the attention she deserves. I couldn’t have completed this long journey without your support and love.

As for the rest of my family, you deserve a pat on the back as well, for helping us financially, emotionally, nutritionally, and horticulturally. Thanks for the support and loving care that you have provided. Xanthe and Imogen, I thank you for being the little angels that making coming home so beautiful and worthwhile.

A special acknowledgement goes to the memory of my grandfather, who taught me so many values about life (especially money and mushrooms).

And to those I forgot (because you weren’t in my email address book), cheers, you’ve been rad. Thank-you again to Graham, Karen, Linda, Hash, Aaron and Graham, you will never have to read about HS-RS of RLUs using RGB TCCs again.
Table of Contents

Certificate of Originality ... i
Abstract ... iii
Acknowledgements .. iv
Table of Contents .. vi
List of Figures .. xi
List of Tables .. xxv
List of Appendices .. xxvii
Definition of Terms and Acronyms used: xxix

Chapter 1 Introduction .. 1
Significance and Aims of Research ... 1
Methods of Investigation ... 2
Outline of Thesis ... 3

Chapter 2 Background Basement Geology of the Study Area 4
Regional Setting .. 4
Basement Geology .. 8
THE WILLYAMA SUPERGROUP .. 10
Curnamona Group ... 10
Wiperaminga Subgroup of the Curnamona Group 10
Ethiudna Subgroup the Curnamona Group 10
Strathearn Group .. 11
Saltbush and Mount Howden Subgroups 12
IGNEOUS ROCKS ... 12
Basso Suite ... 12
The Lady Louise Suite ... 12
POST WILLYAMA LITHOLOGIES .. 13
The Poodla Igneous Suite .. 13
Bimbowie Suite .. 13
Pegmatites ... 13
ADELAIDEAN AND CAMBRIAN .. 14
Structure and Deformation ... 15
Shear Zones .. 16
Mineralisation .. 17
Examples of Mineralisation Under Cover: Portia and Kalkaroo 19
Epigenetic Ironstones: Wilkins, and Green and Gold 19
White Dam Local Geology ... 20
Lithostratigraphy of the White Dam Area 20
Structure of the White Dam Prospect .. 22
Exploration and Mineralisation of the White Dam Prospect 24

Chapter 3 Background Regolith Geology of the Study Area 25
Introduction .. 25
Regolith definition .. 25
The Weathering of Rocks and their Associated Mineralogy 26
Weathering in the White Dam Region ... 27
The Regolith Profile .. 27
Regolith Profiles of the Olary Domain ... 27
Post-Cambrian Regolith and Landscape-History of the Olary Domain ... 29
The Effect of European Settlement on the Landscape 31
Nomenclature and Description of Regolith Horizons in the Curnamona Province .. 31
Alluvial sediments ... 31
Aeolian sediments .. 32
Regolith Carbonate Accumulations .. 33
Colluvial sediments .. 34
Vegetation and its Use as a Surrogate for Regolith-Landforms 37
Geomorphology and Location of the Area of study 39
Detailed Overview of the Field Area .. 42
Chapter 4 Remote Sensing Background 49
Introduction .. 49
Part 1 Electromagnetic Radiation Theory and the Interaction with Materials .. 49
Background on Electromagnetic Radiation 49
Electronic and Molecular Processes: The Principles of Spectral Absorption ... 52
Electronic processes – Visible and Near Infrared (VNIR) Spectral Features (0.4 - 1.3 µm) ... 53
Vibrational Processes – Shortwave Infrared (SWIR) Spectral Features (1.3 - 2.5 µm) .. 55
Interaction of Electromagnetic Radiation with Surfaces 58
Depth of penetration of incident Electromagnetic Radiation 59
Microphytic Vegetation Crusts and Surface Coatings 60
Interaction of Electromagnetic Radiation with the Atmosphere 60
Interaction of Electromagnetic Radiation with Minerals 64
Silicates .. 64
Fe-/Mg-OH Minerals ... 65
Carbonates ... 67
Sulphates .. 69
Micas ... 70
White Micas ... 70
Smectite .. 72
Kaolin Minerals .. 72
Oxides and Hydroxides ... 74
Sulphides .. 76
Spectral Properties of Fresh and Weathered Rocks 76
Interaction of Electromagnetic Radiation with Vegetation 77
Spectral Properties of Vegetation in the Visible-Near Infrared Region ... 78
Spectral Properties of Vegetation in the Shortwave Infrared Region ... 78
Vegetation Spectral Libraries ... 79
Vegetation of the Olary Region .. 80
Table of Contents

- **Mineral Mixtures and their Spectral Response** ... 80
 - Spectral Properties of Soils and the Mixing of Materials 81

- **Part 2 Remote Sensing Instrumentation** .. 82

- **Remote Sensor Design Basics** ... 83

- **Multispectral Sensors** .. 86
 - Landsat ... 86
 - ASTER ... 90

- **Hyperspectral Sensors** .. 92
 - Early Hyperspectral Sensors ... 92
 - Airborne Imaging Spectrometer (AIS) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) ... 93
 - AMS and Hyperspectral Mapper (HyMap) .. 93
 - Hyperion Hyperspectral space borne imager ... 94
 - Operational Airborne Research Spectrometer (OARS) Line Profiler 95

- **Proximal Hyperspectral Spectrometers** .. 95
 - Portable Infrared Mineral Analyser (PIMA) ... 96
 - ASD FieldSpec Full Range Pro ... 97
 - The CSIRO HyLogger .. 98
 - Comparison of the Hyperspectral Sensors used in this Study 99

- **Part 3 Aerial Gamma-Ray Spectroscopy** .. 102

- **Introduction** .. 102

- **Gamma-ray Spectroscopy Theory** .. 102
 - Potassium ... 104
 - Thorium .. 104
 - Uranium ... 105
 - Potassium, Thorium and Uranium in the Regolith .. 106

- **Gamma-Ray Spectroscopy Survey Techniques** .. 107
 - Flight Height .. 107
 - Correction and Calibration of Gamma-Ray Data ... 109
 - Vegetation and Moisture .. 109
 - Cosmic Radiation .. 109

- **Chapter 5 Mineralogy of the regolith** .. 110

- **Part 1 Sampling of the White Dam Prospect** ... 110
 - Surface Samples .. 110
 - White Dam Prospect Costeans .. 110
 - Costean Descriptions ... 114
 - Costean Sample Collection .. 116
 - Part 2 Sample Preparation and Measurement ... 119

- **Part 3 Results and Data Analysis of Surface Samples** 120
 - ASD Spectral Analyses of Surface Samples .. 120
 - XRD Analysis of Surficial Materials .. 132

- **Part 4 Results and Data Analysis of Subsurface Samples** 142
 - Spectral Analysis of the Costean Samples .. 142
 - WDTR01 - Thick Transported Cover ... 142
 - WDTR02 ... 149
 - WDTR04 – Amphibolite Dominated Section ... 155
 - WDTR05 – Thick Profiles of Transported Cover ... 160
 - WDTR06 – Regolith Carbonate Dominated Shallow Section 164
 - Conclusions of the ASD Measurement of White Dam Prospect Costeans 169
List of Figures

XRD Analyses of the Costean Profiles .. 170

Part 5 Analysis of the Drill Core with the HyLogger 181
 Introduction .. 181
 Interpretation .. 182
 Shallow Holes ... 184
 Deep Holes ... 188
 Mineralogical Analyses of the Near-Surface Regolith and the Fresh Basement
 using the HyLogger and ASD Instruments ... 189

Part 6 Results and Data Analysis of HyMap Imagery 196
 HyMap Mineralogical Maps .. 196

Part 6 Integration of Mineralogical Results and Interpretations of the
 Regolith Mineralogy of the White Dam Prospect 202

Chapter 6 Remote Sensing of the Regolith .. 206
Landsat Dataset analysis ... 207
 Landsat Pre-processing .. 207
 Landsat Processing and Information Extraction 208
 Directed Principal Component Analysis (DPCA) 214
 Summary of Multispectral Imagery for Remote Sensing of the White Dam Area
 ... 216

Hyperspectral Image Processing ... 217
 Pre-processing ... 217
 Atmospheric Correction-Theory .. 218
 Spectral Subsetting .. 222
 Pre processing of the HyMap Imagery Part1-Atmospheric correction..... 222
 Comparison of HyMap data with ASD data 229
 Pre processing of the HyMap Imagery Part 2-Geocorrection and Image Cleanup
 ... 232
 Information Extraction and Spectral Un-mixing 234
 Mixture Tuned Match Filtering using Combined Endmembers 243
 Information Extraction of the HyMap Imagery using Spectral Indices ... 256

Analysis of Airborne Gamma-Ray Survey Sata over the White Dam
 Region .. 284
 Pre-processing ... 284
 Image Presentation and Information Extraction 284

Chapter 7 Mapping the Regolith ... 292
Introduction .. 292

Previous Regional Regolith Studies in the Curnamona Province 293
 Landscape and Climate ... 293
 Vegetation .. 294
 Land Use .. 294

Methods and Datasets ... 294
 Map production ... 295
 Ortho-Photography .. 296
 HyMap Imagery .. 301
 Landsat ... 303
 Radiometrics ... 304
 Digital Elevation Model ... 305
 Fieldwork and Ground Survey .. 306
Table of Contents

Regolith-Landform Mapping Results ...307
 Mapping scheme ...307
 Regolith-landform Unit Descriptions ...307
 The Spectral characteristics of RLU’s from the White Dam Regolith-landform
 Map..317

Summary of the Regolith-Landforms of the White Dam Area........320

Chapter 8 Conclusions..321

Regolith-Landform Mapping ..321
 Comparison to Previous Regolith studies in the Olary Domain321
 Regolith-Landform Map Creation Method ...322
 Regolith-Landform Maps in Mineral Exploration ..323
 Application of Regolith-Landform Mapping to other Landscapes323

Remote Sensing of the Regolith ...323
 Regolith Mapping using Radiometrics ..324
 Multispectral Remote Sensing ...324
 Hyperspectral Remote Sensing and Mineral Mapping of the Regolith324
 Interpretations of the Remotely Sensed Data ..325
 Surficial Mineralogy of the White Dam Prospect326
 Subsurface Predictions from the Remotely Sensed Data327
 Subsurface Mineralogy of the White Dam Prospect328

Final Conclusions of the Remotely Sensed Regolith-Landform
Mapping ...329

References ..330
List of Figures

Figure 2.1 Simplified map of the Curnamona Province showing the major groups of lithologies, topographic information and boundaries of domains and sub-regions. The Curnamona Province extends further to the north than shown on the map. The field area of the research is shown by the grey northeast orientated rectangle in the lower central portion of the map. The geology is overlayed on a true-colour Landsat TM image. 6

Figure 2.2 Regional geological map of the Olary Domain, showing the location of the major inliers. The extent of the area of investigation is shown by the grey northeast orientated rectangle in the central portion of the map. Homesteads, mineral occurrences and major landmarks are shown for reference. The approximate location of the boundary between the Olary and Broken Hill Domains is shown in blue................................ 7

Figure 2.3 Time-space table of the lithostratigraphy and major events of the Olary Domain, in the Palaeoproterozoic and Mesoproterozoic (based on Conor 2003). ... 9

Figure 2.4 Summary of the lithology and mineralogy of the White Dam Prospect area (summarised from Cordon 1998; Bargmann 1999; Chubb 1999; Busutill & Bargmann 2003)................................. 21

Figure 2.5 Structure and basement lithology of the (a) White Dam Prospect area and (b) in cross-section, interpreted from drill hole and geophysical data (from Busutill & Bargmann 2003)................................. 23

Figure 3.1 Comparison of the idealised Yilgarn regolith profile with field observations of regolith profiles from the OID (idealised regolith profile from Robertson & Butt 1997, soil horizon nomenclature from Chartres 1981). Photographic inserts of samples or regolith and fresh rock materials include samples from the White Dam Prospect. 28

Figure 3.2 Morphologies of RCAs in the Curnamona Province, demonstrate variations through the profile and laterally. This can be linked to the regolith materials and the landform setting, and such regolith-landforms can be used to predict the presence of RCAs (adapted from McQueen et al. 1999)... 34

Figure 3.3 An example of banded vegetation on an ortho-photograph of the White Dam alluvial plain. Sheetflow extends from the elevated region in the west, downslope to the east. Note the reduction of the clarity of the vegetation bands to the east of the fence line (a) due to greater herbivore grazing to the east............................... 35

Figure 3.4 Example of banded vegetation from the White Dam alluvial plain, in the OID; (a) vegetation band looking upslope. The total length is approximately 30 m long by up to 3 m wide.; (b) along the contour band, showing the accumulation of vegetation litter and the increased surface roughness within the groove. The microtopography is not evident from the photographs, demonstrating the subtleness of the landform when viewed from the ground. The groves at this location were dominated by Maireana pyramidata. 36

Figure 3.5 Generalised vegetation toposequence for the White Dam area. Vegetation species vary with differing regolith materials and position in the landscape. Once the vegetation associations of different regolith-landforms have been established, they can be used as surrogates in the regolith-landform mapping process (adapted from Hill 2000). ... 38

Figure 3.6 Map showing the main features of the region of investigation discussed in the text. The region can be subdivided in to two regions, the southern areas are bedrock-dominated with extensive outcrops of slightly weathered saprolite, while
the northern areas are regolith-dominated. In the northern regions the bedrock exposures are generally smaller and more intensely weathered. The central region of the study area is dominated by transported materials and alluvial landforms. ...40

Figure 3.7 Digital elevation model of the study area generated from data supplied by PIRSA. The original elevation data was derived photogrammetrically and used to ortho-rectify the aerial photography in the production of ortho-photographic images. The northwestern corner of the data was not covered by the original dataset and was filled with MIMEX geophysical survey elevation data of higher resolution. The mosaiced portion has a slightly higher overall elevation and produces a slight discontinuity where the overlap occurs. An association of topography can be seen with the broad classifications described in Figure 3.6, with the southern areas of higher topographic relief associated with slightly weathered bedrock, the flat central regions with plains of alluvial materials and the northern region with low hills of highly weathered saprolite. .. 41

Figure 3.8 Low lying area, and rise (background) that is dominated by colluvial-sheetflow processes (CHer). Abundant quartz material occurs on the surface of the erosional plain (CHep)-foreground and middle distance), which is dissected by recent channelling (Aed). Note (a) the vegetation banks have been planted by landowners in attempt to reduce erosion by limiting overland flow. In the foreground a shallow rill, containing less quartz lag, is starting to develop. Behind this feature is an erosional channel, which is down-cutting through the PSA (b) and underlying palaeosol................................. 44

Figure 3.9 View from a topographically elevated position across colluvial-dominated landscape. The material in the foreground consists of colluvial ‘float’, derived from underlying basement subcrop. The cobble-sized clasts occur on an erosional rise (Cer), which has a concave slope profile and in the middle distance, sheetwash material become the dominant surface material (CHer). In the far middle distance the landform has less relief, forming a depositional region (CHpd, which is flanked by a CHer in the far distance. Materials shedding off of the erosional rises are transported by sheet-wash processes downslope to the CHpd, where they accumulate. A drainage depression (Aed) parallel to slope originates on the rise (Cer) and terminates in the region of lowest relief (CHpd). A variety of vegetation types occur in the region and, although sparse, can aid the interpretation of the regolith-landforms. (a) A bluebush chenopod (Maireana sp.) occurs at the limit of the colluvial cobbles, whereas (b) Maireana sp. occurs on the lower portion of the slope. In the middle distance a saddle between the two low hills is mantled by quartzose sheetflow materials. In the foreground (c) cryptograms cover a larger portion of the exposed surface of the (a) colluvial cobbles (light green colouration). (d) The soil immediately adjacent to the bedrock exposures is dark-red, which contrasts with the yellow-brown material partially covering the downslope float and sheetwash. ... 45

Figure 3.10 A drainage depression (Aed) between two low hills that have exposures of saprolite at the crests (SSel). A regolith toposequence occurs downslope of colluvial material (Cel), which is flanked by sheetwash deposits on the lower slopes (CHer). Variations in the vegetation communities highlight the change in landforms and regolith materials. (a) Atriplex vesicaria occurs on the colluvial materials, whereas (b) Maireana sp. occurs on the lower portion of the slope. In the middle distance a saddle between the two low hills is mantled by quartzose sheetflow materials. In the foreground (c) cryptograms cover a larger portion of the exposed surface of the (a) colluvial cobbles (light green colouration). (d) The soil immediately adjacent to the bedrock exposures is dark-red, which contrasts with the yellow-brown material partially covering the downslope float and sheetwash. ... 46

Figure 3.11 View from a low rise of exposed Willyama Supergroup bedrock colonised by (a) Acacia aneura and (e) low grasses between the rocks, which are (d) coated
by a cryptogram cover (green lichen). The downslope materials consists of sheetflood sediments of red-brown quartzose sands and lithic gravels (CHer) colonised by (c) Atriplex vesicaria. The region further downslope is colonised by (b) Alectryon oleifolius (western rosewood), which typically occurs in regions containing near-surface regolith carbonate accumulations. In the far distance is an alluvial plain (Aap) in the lowest lying parts of the toposequence.

Figure 4.1 Propagation of EM energy as a wave. Wavelength is defined by the distance between the crests of the waves, the amplitude is the height of the waves and frequency is the number of oscillations through a point on the wave for a period of time (adapted from Avery & Berlin (1992)). Note that electric and magnetic fields are always orthogonal.

Figure 4.2 Electromagnetic spectrum of radiation. The visible region has been expanded to display the corresponding wavelengths of reflected colours seen by the human eye (Table 4.1) (Adapted from Nave 2003).

Figure 4.3 Interaction of electromagnetic energy with the surficial layers of a material occurs with the top 50 µm. (ii) Reflection occurs from grain surfaces. (iii) A transparent mineral may transmit EMR where it is reflected by the material below, (i) or the energy may reflect off of the bottom of the crystal structure. Each of these processes will influence the nature of the electromagnetic energy recorded by the sensor.

Figure 4.4 Electron shift between orbital shells created by the absorption of incident electromagnetic radiation. The subsequent excitation and emission of EMR is seen as crystal field absorptions (CFA), as shown in Figure 4.6.

Figure 4.5 Ligand charge transfer caused by an absorption of a photon of energy, resulting in the shift in paired electrons within the complex. The spectral effects of the transfer can be seen Figure 4.6.

Figure 4.6 Crystal field absorption (CFA) and charge transfer absorption (CTA) features of hematite and goethite for samples collected from the White Dam area. All spectra are displayed with the continuum removed and stacked for comparison. The lower spectra show the spectral variation that occurs with different iron-oxide mineralogy. The goethite measurements show a deeper CFA at longer wavelengths and shorter wavelengths for the CTA and charge transfer shoulder (CTS).

Figure 4.7 Vibrational energy level diagram (a) from Hunt (1991), showing the fundamental vibrations of water molecules and their associated overtone and combination frequencies. The lower portion of the figure (b) demonstrates the spectral features of the molecular processes (from Cudahy et al. 2002).

Figure 4.8 Scattering effects of EM radiation showing the effects of (a) rough and (b) smooth surfaces. (c) The process of diffuse scattering on a smooth surface (specular scattering) demonstrates the reflection of incident light in all directions. (d) Other processes involve refraction/transmission, absorption and emission of EM radiation.

Figure 4.9 Pathways of EM radiation emitted from the sun to the instrument. Satellite imagery has the greatest distance for EM radiation to travel whereas field spectrometers use solar radiation that only passes though the atmosphere once.

Figure 4.10 Absorption bands of atmospheric gases between 1.0 and 2.5 µm showing the gases in Table 4.2. The atmospheric gases have major effects on the EM wavelengths received from the sun, causing some areas to be almost opaque. (modified from Prata, F. 2004 (pers. comm.)).
List of Figures

Figure 4.11 Transmission spectrum of the narrow water absorption bands of atmospheric water, demonstrating the amount of EM radiation passing through the ‘atmospheric windows’ in the 0.9 to 3.0 µm region.

Figure 4.12 Hyperspectral Mapper (HyMap) uncorrected (radiance at sensor) spectra from the Olary Domain. The characteristic spectral shape is due to the interactions of the solar irradiance spectrum with aerosols in a semi-arid environment. Distinguishable absorptions due to gases in Table 4.3 are shown.

Figure 4.13 Spectral responses of feldspars and quartz, demonstrating the high reflectance and lack of strong features useful for the discrimination of these minerals (70 - 85 % for 0.8 – 2.5 µm wavelengths).

Figure 4.14 Spectral responses of common Fe- and Mg-bearing minerals. Fe-OH minerals are characterised by 2.25 µm absorption features, whereas Mg-OH minerals have features in the 2.3 µm region. The presence of ferric and ferrous ions are identified by the presence of absorption features in the 1.0 µm region and lower reflectance in the VNIR.

Figure 4.15 Spectral responses of common carbonate minerals. Carbonate ions are influenced by the bound cation. The wavelength of the broad asymmetric carbonate feature increases from Fe to Mg to Ca cations.

Figure 4.16 Spectral responses of common sulphur bearing minerals. Sulphates possess sharp characteristic absorptions in the NIR and short wavelengths of the SWIR due to their multiple hydroxyl and water bonds on the molecules.

Figure 4.17 Spectral responses of common alumino-silicate minerals. Aluminosilicate minerals are characterised by the presence of 2.2 µm Al-OH and 1.4 µm OH absorption.

Figure 4.18 Spectral responses of common kaolin minerals. Kaolins are also aluminosilicate minerals but display doublet absorptions at 1.4 µm and 2.16-2.2 µm. These features can be used to determine the crystallinity of the mineral kaolinite.

Figure 4.19 Kaolinite crystallinity parameters relating to the 2.16-2.18 µm features of the hull quotient spectrum. Crystallinity is calculated using the formula: (2.184/2.19 µm – ((2.16/2.177 µm) - (2.184/2.19 µm))) of hull quotient removed data. The spectra are from samples from the White Dam area, measured using an ASD FieldSpec Pro FR (figure adapted from Pontual et al. 1997).

Figure 4.20 Spectral responses of common Fe-bearing oxides and hydroxides, active in the VNIR wavelength regions. These minerals are characterised by CTS and CFA features, as shown in Figure 4.6.

Figure 4.21 Average vegetation spectra of dry and healthy grass. Dry grass has a similar spectrum as semi-arid chenopods in the SWIR regions. Spectra have been taken from the IGCP-264 Library and the unit of measurements are wavelength in micrometres and reflectance %. (adapted from Lewis 1999).

Figure 4.22 Comparison of whiskbroom, pushbroom and line profile sensors. Line profilers collect a swath of one pixel in a similar manner as geophysical sensors whereas imagers collect a swath as the platform travels in a forward direction. Whiskbroom scanners possess a fore optic, such as a mirror, that sweeps from side to side and collects information along the swath as the platform travels forward, whereas a pushbroom scanner possess an array of detectors that collect the whole swath without the need of a rotating mirror. The draw back is that each pixel that is being imaged requires a detector for each band of the EM spectrum being collected. This results in hyperspectral pushbroom sensors being complicated instruments, consisting of tens of thousands of detectors.

Figure 4.23 Comparison of a selection of the commonly used remote sensing sensors with particular emphasis on spectral sensor (adapted from Mauger 2003). A wide
range of the EM spectrum is used by different instruments, from short wavelength radiation by gamma-ray spectrometers to long wavelengths by radar. Some sensors cover a wide range of the EM spectrum, from the near UV to the TIR, but do so with large bandwidths and few bands. Satellite-borne systems typically have a lower spatial resolution and SNR than airborne systems. Not shown in this Figure are the new generation of high spatial resolution satellite-borne sensors with 1-2 m panchromatic and 4 m multispectral capabilities................................. 85

Figure 4.24 Landsat TM full-width half-maximum bandwidths in µm. Clay and Fe-oxide spectra from ASD measurements of a saprolite sample collected from a costean over the White Dam Prospect. USGS spectral library used for green vegetation spectra (Clark 1993).. 88

Figure 4.25 Band passes of the 14 ASTER channels, which include 3 VNIR, 6 SWIR and 5 TIR. Note the missing MIR region between 2.5 – 8 µm......................... 91

Figure 4.26 The PIMA instrument has the approximate dimensions of 0.30 m x 0.15 m x 0.15 m. The spectrometer is used world-wide in mining and mineral exploration applications. The instrument operates in the SWIR region only and takes approximately 45 seconds to record a quick spectrum, to over five minutes for measurement of dark samples... 96

Figure 4.27 ASD FieldSpec instrument with the high intensity contact probe, containing the fibre optic and halogen light source housed in the contact probe. The instrument is approximately 0.50 m x 0.45 m x 15 m. and requires a light source and reference plate. In this example soil samples are measured in a petri dish placed on the vertically mounted contact probe................................. 98

Figure 4.28 HyLogger instrument as of late 2003, showing the mounting frame for the sensor, x-y core tray table, conveyor belt and control unit (adapted from Syddell 2004). An updated table and mounting frame has been produced since this picture that includes side panels to reduce incident light from other sources and a temperature controlled compartment for the sensor to reduce drift....................... 99

Figure 4.29 Comparison of HyMap data with PIMA and ASD FieldSpec spectra of material from the kaolinised saprolite around the White Dam reservoir. The HyMap instrument is unable to delineate fine features with 128 bands but still has the overall spectral shape, whereas the results from PIMA instrument is compatible with the ASD but does not have coverage in the VNIR region (0.35 - 1.3 µm). The ASD FieldSpec is able to measure a greater number of samples per hour in the laboratory but requires an external light source and is three times the size of the PIMA, making it less portable. A spectrum of halloysite from the 189 band HyLogger is also shown as a comparison................................. 100

Figure 4.30 Typical gamma-ray energy spectrum showing the photopeaks of the radioisoctopes and daughter products used in radiometrics. Also shown are the four main count windows used to calculate the abundances of the radioelements (after Foote 1968).. 103

Figure 4.31 The variation of potassium signal with flight height (from Grasty et al. 1984). As the sensor altitude increases the signal received from the ground sources decreases. It is also important to note that atmospheric and cosmic sources may contribute a larger portion of the signal with increased altitude............................... 108

Figure 4.32 Demonstration of the size of the ground area examined by an airborne gamma-ray instrument. Decreased flying height will decrease the size of the ground area surveyed. The footprint of the survey of a gamma-ray spectrometer is relatively large and overlap can occur when surveys are conducted with close line spacing......................... 108
List of Figures

Figure 5.1 Sample localities across the White Dam area. The small transparent circles represent sites where a GPS measurement and site descriptions were recorded. The filled circles represent sites where photographs were taken and the large transparent circles represent sites where a sample was collected and spectral measurements were recorded. ...111

Figure 5.2 Sample points overlain on the White Dam Prospect 1:2 000 Regolith-Landform Map compiled by Brown & Hill (2003), displaying the costean locations (red font) with respect to the regolith-landform units. Arrow shows the orientation of Figure 5.4. Surface soil samples (black font) increase in numerical order from left to right and to the south. ...112

Figure 5.3 (a) Digital elevation model generated from points measured with a differential global positioning system (DGPS) over the White Dam Prospect. (b) A NW-SE topographic profile. (c) A three dimensional perspective image of the topography, looking towards the east. ...113

Figure 5.4 An oblique air photograph looking east-southeast over the White Dam Prospect area, taken July 2003, after recent rainfall. The six north-south orientated costeans can be seen in the middle distance. The northeast flowing creek occupies the foreground. Bright patches in the distance and left portion of the photograph are ponded water on the depositional landforms. 114

Figure 5.5 North orientated view of costean WDTR05, excavated over the White Dam Prospect in June 2003. The east-northeast trending alluvial channel occurs in the background. The bench level is approximately 2.5 m and the base of the costean is 6 m from the surface. The scale bar in the middle distance is 2 m in length.115

Figure 5.6 Sections of the five analysed costeans from the White Dam Prospect showing the regolith stratigraphy, regolith carbonate morphology, extent and style of the ferruginisation and the colour of the materials sampled. Vertical: Horizontal=1. ...117

Figure 5.7 Example of sample spacing from the costeans excavated over the White Dam Prospect. Samples were collected laterally every 10 m in profiles with 0.25 m vertical spacing. Infill sampling was performed at a lateral distance of 5 m if there was a significant change in the overlying transported materials or saprolith occurred. ...119

Figure 5.8 Spectral plots demonstrating the correction of the ASD FieldSpec measurements for variations between detector regions. The dashed spectra represent the corrected data using the ‘D-step’ ENVI plug-in developed by CSIRO MMTG. ...120

Figure 5.9 Collective ASD measurements of the soil-grid samples. Each group of ten spectra represent a west to east traverse. Samples were collected 50 m apart. WD01 represents the most northwestern sample and WD70 was collected in the southeastern corner of the grid. The lithic fragments found in the samples WD68 and WD70 are shown in (viii). ...122

Figure 5.10 Surface mineralogical distribution over the White Dam Prospect, interpolated from ASD measurements and analyses of soil samples. Saprolite is exposed in the SE corner of the area and displays high-interpreted abundances of hematite_{TSA}, as does the central portion of the area, which corresponds to the surface projected mineralisation outline (not shown). The area above mineralisation also displays a higher abundance (although, still small) of chlorite/epidote_{TSG} related spectral features. These highs are associated with the NE trending alluvial erosional depression and could be a collection of transported ferromagnesian minerals derived from the outcrop upslope to the south. 124

Figure 5.11 Comparison of Fe-oxide Intensity_{TSG} and Munsell colour measurements of the surface soil samples from the White Dam Prospect. The saprolite displayed
Yellowish red/reddish brown colouration, which corresponded to low Fe-oxide Intensities\textsubscript{TSG}, whereas the alluvial regions displayed higher intensities and were associated with dark red coloured samples. Yellowish red coloured samples roughly correlated with moderate value areas for the Fe-oxide Intensity Index\textsubscript{TSG}.

Figure 5.12 Surface mineralogical distribution over the White Dam Prospect, interpolated from ASD measurements and analysis of soil samples. Comparisons of Al-OH related wavelength features and minerals. Overall, the abundance maps display minor to high correlations................................. 126

Figure 5.13 Distribution of surface samples used in the quantitative XRD analysis. Circles represent surface-grid soil samples and boxes represent costean samples collected within 100 mm of the surface................................. 128

Figure 5.14 Spectra corresponding to XRD samples in Table 5.1 and Table 5.2. Spectra in plot (a) are surface samples collected from the 50 x 50 m grid. Plots (b) and (c) are from surface samples from costeans WDTR04 and WDTR06 respectively. The continuum removed plots all have very similar VNIR and SWIR features, with only small variations observable in the 1.9 μm spectral region due to differences in water abundances. 135

Figure 5.15 Surface distribution of minerals over the White Dam Prospect interpolated from quantitative XRD analysis for (i) mica/illite, (ii) orthoclase, (iii) kaolinite, (iv) smectite and (v) albite of soil samples. Abundances are in percent, with dark areas having a low abundance and light areas a high abundance. The blue dots indicate where samples were used in the gridding process. 137

Figure 5.16 Surface distribution of minerals over the White Dam Prospect interpolated from quantitative XRD analysis for (i) amphibole, (ii) calcite, (iii) quartz, and (iv) hematite soil samples. Abundances are in percent, with dark areas having a low abundance and light areas a high abundance. The blue dots indicate where samples were used in the gridding process. 138

Figure 5.17 WDTR01 gridded mineralogical abundances sections, calculated from spectral measurements collected from costean samples. The Fe-oxide mineralogy and related indices correlate with the transported and in situ materials. Similarly, the kaolin mineralogy and the features related to Al-OH are associated with different regolith materials. Sections denoted ‘ASD” are mineral abundances, whereas “TSG” denotes an index calculation based on absorption feature depths. Due to the gridding technique used, anomalous regions in the interpolated regions between the sampled profiles are more uncertain and should be treated classified accordingly. 145

Figure 5.18 Profile WDTR01 E (6449192 mN) showing the gypsiferous minerals occurring 1 m below the surface. ... 147

Figure 5.19 Photograph of profile WDTR01C (6449212 mN), showing the lithic gravels ~1.5 m below the surface. WDTR01 occurred in the northern region, away from the exposed bedrock and has a thicker succession of transported materials overlying saprolite and in situ pedolith materials, which occur ~4m below the surface (not shown). The YB unit displays the greatest variation of thickness when compared in all the costeans. ... 148

Figure 5.20 Weathering of the in situ materials to pedolith in the lower-northern end of WDTR02 (profile A). The shelf (at the top of the photograph) occurred 2.75 m below the surface and the floor of the costean (shown at the bottom of the photograph) occurred at 3.75 m below the surface. The green-yellow material in the lower portion of the costean contained high abundances of Fe$^{2+}$ goethite and nontronite and jarosite, interpreted from the spectral measurements................................. 150
List of Figures

Figure 5.21 WDTR02 ASD result. Mineralogical (ASD) and calculated parameters from The Spectral Geologist (TSG)..151

Figure 5.22 WDTR04 ASD result. Mineralogical (ASD) and calculated parameters from The Spectral Geologist (TSG)..157

Figure 5.23 Carbonate absorption features of observed in samples collected from indurated horizons in WDTR04. Sample E1 collected from the Red-Brown Pedal Layer and contains no traces of regolith carbonate, whereas E2 has a low reflectance in the 2.4 µm region related to the 2.5 µm calcite feature. E1 and E2 contain montmorillonite and display a large, broad absorption at 1.9 µm, due to water. E3 and E4 were collected from the indurated regolith carbonate hardpan and show slight absorption peaks at 2.28 µm, which could be related to carbonate. CD4 and A9 possessed very strong calcite absorptions, as well as a kaolinite doublet at 2.16 - 2.2 µm, with A9 featuring the 2.5 µm calcite feature. A sample of goethititic saprolite collected below the hardpan (A10) did not display calcite absorptions like A9, although the low reflectance in the NIR related to Fe$^{2+}$ is observed..159

Figure 5.24 WDTR05 ASD result. Mineralogical (ASD) and calculated parameters from The Spectral Geologist (TSG)..161

Figure 5.25 Albitic intrusion hosting Fe-tourmaline veins, in WDTR06, profile “E” (grid reference 6449082 mN). Photograph was taken of the costean eastern face..166

Figure 5.26 WDTR06 ASD result. Mineralogical (ASD) and calculated parameters from The Spectral Geologist (TSG)..167

Figure 5.27 Quantitative XRD results from selected profiles of costean WDTR06. The intervals of depth are not to scale..171

Figure 5.28 Quantitative XRD results from selected profiles of costean WDTR04. The intervals of depth are not to scale..176

Figure 5.29 Profiles of the quantitative XRD results from the costeans WDTR01, WDTR05 and WDTR02. The intervals of depth are not to scale.178

Figure 5.30 Location of the diamond drill holes analysed by the HyLogger core scanner (a). Perspective view (b) and 3D drill hole projections (c) of the White Dam Prospect..183

Figure 5.31 TSG scatter plot of depth versus SWIR mineralogy for the upper 10 m of WD16..186

Figure 5.32 HyLogger profile of (a) WD DD 19 and (b) WD DD 15193

Figure 5.33 ASD profiles from (a) quartzo-felspathic derived saprolite and (b) mafic derived saprolite. Samples were collected in 0.25 m intervals down the profile, through the topsoil, transported material and pedolith, into the saprolite. The thickness of the transported cover over the quartzo-felspathic derived saprolite is thicker than the mafic saprolite. An increase in kaolinite crystallinity can be seen down the profile (a) as the samples become less weathered. In the mafic profile (b) the abundance of kaolinite decreases with depth in the saprolite (green spectra) corresponding to the top of the saprolite/pedolith material being more weathered than the saprock..194

Figure 5.34 HyMap surface mineralogical maps of Fe-minerals (iii, iv, vii), carbonate and green vegetation (viii). (i) Shows the distribution of pixels used in the analysis and gridding process over a HyMap TCC and (v) displays the ortho-imagery with the surface sample collection points that were measured with the ASD FieldSpec, and the 1:2000 Regolith-Landform boundaries (courtesy of Brown & Hill 2003). The location of the north-south orientated costeans are shown in red. Ratios of spectral parameters (ii &vi) display a slight correlation to the colour of the surficial...
materials. ‘HyMap’ refers to the abundance of the mineral, whereas ‘TSG’ are calculated from TSA algorithms.

Figure 5.35 HyMap surface mineralogical maps of aluminium hydroxide minerals and associated parameters. The waste spoils from the diamond drill holes can be seen to display variations in mineralogy, from phengitic (ii) to having more chlorite/epidote (iii). ‘HyMap’ refers to the abundance of the mineral, whereas ‘TSG’ are calculated from TSA algorithms.

Figure 5.36 Profile summarising the spectral properties of the regolith materials collected from the costeans at the White Dam Prospect. (a, b, c) A HyMap spectra from a pixel in a PSA dominated region of the White Dam Prospect is shown at the top of the profile as a comparison. Characteristic features were identified for each of the different regolith horizons, allowing the mapping of saprolite, in situ pedolith and three types of transported materials. Differentiation of the in situ materials (g - p) was able to be performed. See text for a detailed explanation of the figure.

Figure 6.1 Comparison of raw and Log Residual (LR) corrected Landsat TM data over the White Dam area. A greater variation between bands can be seen in the LR image, which had a lower amount of correlation between bands than the raw data.

Figure 6.2 (i) High-oblique and (ii) low-angle images of the 60 m resolution thermal band of Landsat TM, draped over a DEM of the White Dam area. The white rectangle represents the area of the HyMap coverage. Image is presented without illumination effects and displays higher values on slopes with a northeastern aspect, reflecting the orientation of the sun at the time of acquisition (mid-morning). Densely vegetated regions display a lower thermal value then areas of exposed basement and lag dominated terrains. Note the sub-horizontal line striping in (i) from instrument noise.

Figure 6.3 Landsat TM RGB 741 false colour composite (FCC) of the southern portion of the White Dam area, showing the ability of a simple band combination to highlight different materials and features.

Figure 6.4 Landsat TM FCC of ratios TM5/TM4, TM4/TM3, TM5/TM7 (RGB) demonstrating the ability to differentiate in situ regolith (Fe-rich) from transported materials (vegetated and clayey regions). Saprolite is displayed as bright red-pink areas. Vegetation had a blue-green colour and areas of bare soil or clays, with minor vegetation cover, were dark blue.

Figure 6.5 Band ratio results of selected band ratios of Landsat TM imagery over the White Dam area.

Figure 6.6 Directed Principal Components Analysis and ratio composite image (RGB: DPCA2 TM5/TM4, TM7+TM1) of Landsat TM data, highlighting regolith materials. Red were clay-rich areas, bright greens were Willyama Supergroup-derived saprolite, blues correspond to the Adelaidean metasediments, the badlands/erosional region and areas containing abundant lithic and quartz gravel lags.

Figure 6.7 Flowchart of pre-processing steps.

Figure 6.8 Comparisons of (a) Raw HyMap and (b) scaled reflectance results for HyCorr-only processing kaolinititic material from a dam wall (dotted spectra) and a pixel of the canopy of an eucalyptus camaldulensis (black spectra). For reference ASD spectra of green vegetation (red spectra) and kaolinsed-goethitic saprolite (green) are shown. Notice large positive spikes in the 1.1 µm and 1.3 µm regions and noise in the NIR regions. A CO2 feature had not been corrected sufficiently at 2.05 µm. The lower spectrum is displayed with the continuum removed. (c)
List of Figures

HyCorr + EFFORT scaled reflectance spectrum of kaolinitic material from a dam wall. The lower spectrum is displayed with the continuum removed. The wavelengths of both spectra were in micrometres (µm). Notice the flat shape between 0.9 µm and 2.1 µm, the vegetation feature at 0.7 µm and the exaggerated kaolinite doublet at 2.2 µm................................. 223

Figure 6.9 Sample collection site of the dark-target material for empirical line calibration of the HyMap imagery...226

Figure 6.10 Comparison of co–registered pixels from adjacent HyMap swaths corrected by the HyCorr + ASD Gains method. The dashed spectrum is an ASD FieldSpec measurement of samples collected from the corresponding pixel area..............227

Figure 6.11 HyMap spectral responses and corresponding ASD measurements of samples collected from around the White Dam swaths, used to validate the atmospheric correction. The ASD spectra have been resampled to HyMap wavelengths (from 2151 to 128 bands)...230

Figure 6.12 HyMap spectral responses and corresponding ASD measurements of samples collected from around the White Dam swaths, used to validate the atmospheric correction. The ASD spectra have been resampled to HyMap wavelengths (from 2151 to 128 bands)...231

Figure 6.13 WD001 swath showing (upper) corrected and (lower) uncorrected cross-track data...233

Figure 6.14 Diagrammatic representation of the ‘hourglass’ processing technique of mineral map production, using un-mixing techniques. The term comes from the decrease in data, and corresponding file size, through the processing steps.234

Figure 6.15 Information extraction flowchart, detailing the un-mixing techniques used on the HyMap Imagery..235

Figure 6.16 Combined SWIR endmember spectra, extracted from the HyMap imagery. ...238

Figure 6.17 Combined SWIR endmember spectra, extracted from the HyMap imagery. ...239

Figure 6.18 Combined SWIR and VNIR endmember spectra, extracted from the HyMap imagery. ...240

Figure 6.19 Combined VNIR endmember spectra, extracted from the HyMap imagery. ...241

Figure 6.20 Northern White Dam HyMap MTMF results of the VNIR endmembers showing the dominant features consisting of materials identified as hematite and soil. Areas of dark outcrop were mapped under the road and shadow endmembers (green and brown pixels). Highly weathered saprolite corresponded to goethite. ...246

Figure 6.21 Southern White Dam HyMap MTMF results of the VNIR endmembers showing the dominant features, consisting of hematitic and soil materials. Areas of dark outcrop were mapped under the road and shadow endmembers (green and brown pixels). Highly weathered saprolite corresponded to goethite.247

Figure 6.22 Northern White Dam HyMap MTMF results of the vegetation endmembers of the VNIR and SWIR. The Highlighted with blue arrows are the direction of watercourses. The red classification represents areas identified to possess absorption features in the 2.25-2.40 µm region, possibly related to chlorite or carbonate minerals...248

Figure 6.23 Southern White Dam HyMap MTMF results of the vegetation endmembers of the VNIR and SWIR. The red classification represents areas identified to possess absorption features in the 2.25-2.40 µm region, possibly related to chlorite or carbonate minerals. The pixellated nature of the results reflects the mixed nature of the HyMap data...249
Figure 6.24 Northern White Dam HyMap MTMF results of the SWIR endmembers showing the dominant regolith materials. Highly weathered saprolite corresponded to high crystalline kaolinite (blue pixels). Regolith carbonate associated with weathered saprolite was classified by the cyan areas, while a second endmember displays a more restricted distribution for RCAs (red pixels). Soil areas reflect alluvial areas (brown), whereas muscovite-rich soils (apple green) classified sheetflow dominated areas with shallow soils. Dark, spectral outcrops were mapped as shadow (in dark green). 250

Figure 6.25 Southern White Dam HyMap MTMF results of the SWIR endmembers showing the materials in the MacDonald Ranges are less-weathered than the northern regolith-dominated area. RCAs (cyan) were associated with the Willyama Supergroup rocks, whereas the Adelaidean rocks were mapped as shadow (dark green). The shear zone in the Kalabity Shearzone Ranges region was mapped as possessing Fe-Al-OH absorption features. Badlands were mapped as soil (brown), whereas the soils mantling Willyama Supergroup rocks were mapped as muscovite-rich (apple green). 251

Figure 6.26 Northern White Dam HyMap MTMF results of the SWIR endmembers showing the dominant regolith materials. Highly weathered saprolite corresponded to the endmember identified as low crystalline kaolinite (orange pixels). The Kaolin endmember (purple) mapped channels draining from weathered bedrock areas, mapped as Muscovite-Phengite (brown pixels). Weathered materials around the muscovite-phengite outcrops were mapped as very low crystalline kaolinite (cyan). Soils around these regions were also identified (muscovite Fe-rich) as red areas ... 254

Figure 6.27 Southern White Dam HyMap MTMF results of the SWIR endmembers showing the bedrock mineralogy of the MacDonald Ranges, showing the less weathered saprolite (Muscovite-Phengite, brown areas) and low crystalline kaolinite (cyan pixels) of the more highly weathered areas. Channels containing lithic materials were mapped as muscovite-phengite (linear features trending north from the MacDonald Ranges). .. 255

Figure 6.28 Spectral Indices flowchart showing the sequence of processing required to extract mineral information from the HyMap data. ... 256

Figure 6.29 Results of the two vegetation indices showing the distribution of green, photosynthetic vegetation (green areas, corresponding to the Leaf/Surface Index) and areas of dominantly dry or woody tissue (brown areas, corresponding to the Cellulose Index, and representing arid vegetation and heavily grazed plants). Notice the north-northwest linear edges across the swaths representing fence lines. .. 258

Figure 6.30 Fe-oxide Abundance image (left) and HyMap TCC (bands 16 10 3 RGB-right) from an area near MacDonald Hill. Saprolite (i) and the dark areas adjacent to creeks (iv) in the Abundance image are masked-out vegetation. The areas flanking the saprolite exposures (ii) (iii) display the highest Fe-oxide Abundances. Erosional depressions draining from exposures and creeks display moderate abundances. .. 261

Figure 6.31 Fe-oxide Abundance and Mg-OH/RCA Abundance distributions from indices. Note the association of Fe-oxides with drainage features and alluvial regions, whereas the Mg-OH/RCA distribution is correlated with low rises and shallow soil areas flanking saprolite exposures. The Fe-oxide Abundance shows considerable differences ... 262

Figure 6.32 Fe-oxide Abundance image (left) and HyMap TCC (bands 16 10 3 RGB-right) from an area east of Bulloo Creek Homestead, in an alluvial dominated region. Dark areas (i) adjacent to creeks, which were masked out in the
List of Figures

Abundance image. Saprolite exposures (ii) and alluvial landforms display the moderate-high Fe-oxide Abundances. ...265

Figure 6.33 Hematite:Goethite Ratio of a sheetflow and subcropping basement area of calc-silicate derived saprolite, which is dissected by an alluvial channel. (ii) The clayey material adjacent to the channel displayed a higher hematite proportion than the areas where the (i) colluvial cover was thinnest and goethite was more prominent. ...266

Figure 6.34 Hematite:Goethite Ratio of the materials in the northern part of the White Dam alluvial plain, showing the higher proportion of goethite in the swampy regions and associated with the sheetflow-dominated slopes flanking basement subcrop in the left side of the image. The sediments of the alluvial plain displayed a higher proportion of hematite, shown in blue. ...267

Figure 6.35 Hematite:Goethite Ratio showing the contrasting difference in the mineralogy of (i) the badlands, (ii) the colluvial regions flanking the Adelaidean exposures and alluvial-dominated regions in the far left of the images, which have a intermediate mineralogy (green areas). ...268

Figure 6.36 Distribution map of Al-OH Abundance (apple green) with overlays of Kaolinite (dark green) and White Mica (blue and red). The White Micas are differentiated by their mineralogy, with Al-poor micas having a more phengitic mineralogy...270

Figure 6.37 Al-OH Abundance image from shallow soil areas to the north of the MacDonald Ranges. Isolated inliers high abundances relating to basement subcrop occur in the lower portion of the images are not flanked by erosional depressions as seen in the left and central areas of the images, which drain into the upper of the two channels...272

Figure 6.38 Al-OH Abundance image of an area to the west of the Wilkins Prospect (high area in the lower right part of the images), showing the masked vegetated areas and sheetflow-dominated areas that were colonised by chenopods (grey areas in TCC), which displayed low abundances. The basement exposures in the upper and right parts of the images, relating to shear zones, have high abundances.273

Figure 6.39 Al-OH Abundance of the alluvial dominated region on the southern area of the White Dam floodplain, showing the clayey areas having high abundances. (iii) Areas of shallow soils, vegetation and sheetflow-dominated landforms adjacent to the channel and alluvial regions display low abundances. The low abundances reflect the underlying lithology of this region and mantling PSA materials.275

Figure 6.40 Kaolinite Abundance demonstrating the high abundance haloes around bedrock exposures, related to weathering of the eroded materials.................276

Figure 6.41 Dispersion of high Kaolinite Abundances (iii) down slope and in (iv) erosional depressions draining from weathered Adelaidean bedrock exposures in the topographically elevated MacDonald Hill Region. ...276

Figure 6.42 Low Kaolinite Abundances in the channels eroding from the central portion of the Kalibity Inlier. Figure shows the low abundances at the central area of saprolite exposures and high abundances at the fringes of the dispersion of eroded materials. Vegetation masking has removed information from prominent regolith-landform features, such as (iv) and alluvial fan and (iii) a drainage depression adjacent to bedrock exposures...277

Figure 6.43 White Mica Abundance image showing the Al-poor characteristics of the channel and different exposures of saprolite.................................279

Figure 6.44 White Mica Abundance images of an area of shallow soil cover in the vicinity of a fence line, showing the effects of vegetation on the ratio. Note the (ii) dispersion of intermediate materials in the drainage feature. The area in the left
part of the image shows an intermediate to Al-poor mineralogy, whereas the more
vegetated area has abundances reflecting a more Al-rich mineralogy. 280

Figure 6.45 Mg-OH/RCA Abundance Index showing an interpreted distribution of
regolith carbonate in the MacDonald Ranges region. Ground truthing of the region
found abundant hardpan RCAs in the sheetflow dominated landforms that flanked
the basement exposures. .. 282

Figure 6.46 HyMap spectra of a regolith carbonate-rich soil from a rabbit Warren and a
calcite spectra from the USGS Reference Library, showing a slight absorption in the
2.34 µm region. This feature was used in the Mg-OH/Carbonate Index to map
the distribution of regolith-carbonate and mafic materials. ... 283

Figure 6.47 Supervised classification results performed on the ternary radiometric data,
displayed in colours corresponding to the RGB image. .. 286

Figure 6.48 Ternary K eTh eU RGB image of the combined radiometric dataset of the
White Dam area. The upper section of the image was from a MIM airborne survey
.. 288

Figure 6.49 Individual pseudocolour radiometric channels, hill-shaded and draped over
a DEM. K and eTh display similar distributions, whereas eU contains a higher
level of noise and is less coherent... 289

Figure 6.50 Oblique perspective view of a ternary K eTh eU (RGB) image of the White
Dam area draped over a DEM. Draped imagery was useful for showing the
relationship between regolith materials and units to landforms. Low hills and
erosional rises were found to be related to saprolite exposures or subcrop with
shallow soil mantles. .. 291

Figure 7.1 Comparison of the spatial resolution of various remote sensing datasets over
the White Dam Prospect. The group of black pixels on the western edge of the
area represents a group of trees in an alluvial channel. The trees are still visible in the
30 m Landsat and ASTER data, although it is difficult to distinguish RLU
boundaries at this scale. Note the mis-registration of the ASTER VNIR and SWIR
data. Ortho-photography data was resampled from the original (i) 1.25 m
resolution with (ii) 5 and (iii) 10 m, for comparison to (iv) 5 m HyMap imagery
and the low-resolution space-borne data (v-ix). The low-resolution data consist of
(v) panchromatic band of Landsat ETM+ (15 m), (vi) ASTER VNIR, (vii) Landsat
ETM+ TCC, (viii) ASTER SWIR (30 m) and (ix) ASTER TIR data. 297

Figure 7.2 A (a) raw and (b) contrast stretched ortho-photography of the Wilkins Cu-Au
Prospect. The topography of the area increases to the south, with the Willyama
Supergroup derived saprolite exposed on a low hill in the southern portion of the
images. The enhanced image allows for better discrimination of regolith features,
especially the change in vegetation communities with different landforms. 298

Figure 7.3 Differential vegetation abundances on neighbouring paddocks in ortho-
photography (1.25 m) (a) and Landsat ETM+ Panchromatic (15 m) data (b),
making the identification of unit boundaries across these regions difficult. The
ability of the datasets to resolve spatial features is similar at this scale. 300

Figure 7.4 Examples of linear vegetation banding from the ortho-photography of the
White Dam area. The distance between the bands increases downslope (a) and the
degree of cohesiveness of the banding decreases as flow vectors become less
constrained by the gradient. Grazing differences between paddocks (b) noticeable
in the image on the right has influenced the process of overland flow, causing
differences in the patterning either side of this feature. The central sheetwash fan
displayed a greater abundance of quartzose surface gravels than the fan
immediately to the northwest. The two fans are flanked by alluvial depressions that
carry shed material along the direction of decreasing slope (northeast) 300
List of Figures

Figure 7.5 Perspective view of a De-correlation stretched HyMap image of bands 2336.9 nm, 2167.9 nm and 868.2 nm RGB of the whole five swaths. Basement exposures and areas of shallowly buried bedrock are bright green, due to high Al-OH absorptions, whereas ferruginous and vegetated areas are blue.302

Figure 7.6 Regolith-landform mapping using MNF 123 RGB over the White Dam Prospect. ..302

Figure 7.7 Ortho-photography showing human influenced areas (Fm1) and alluvial swamps (Aaw1). The bright square areas in (a) are quarries used to construct surfaced roads. The parallel, dark northeast trending linear features are the Barrier Highway and railway. The areas adjacent to these features influence the regolith-landforms and break the continuity of units. The Aaw1 in (b) surrounds a large dam. The construction of the dam has changed the flow of minor channels in the region and created an ephemeral swamp. ..308

Figure 7.8 1:100 000 scale White Dam Regolith-landform map. ..309

Figure 7.9 Ortho-photographic representations of interpreted RLU in the White Dam area; (a) swampy depressions on a depositional plain; (b) bedrock-dominated regions with erosional depressions; (c) alluvial fan; (d) alluvial plain; (e) alluvial channel; (f) overbank deposits and weathered saprolite...312

Figure 7.10 Ortho-photography representations of interpreted Regolith-landform units for the White Dam area: (a) aeolian material represented by groupings of trees; and (b) sheetflow-dominated regions forming outwash fans.314

Figure 7.11 Averaged HyMap spectra of highly weathered saprolite areas. The spectra show minor vegetation features in the VNIR and short wavelengths of the SWIR regions ..317

Figure 7.12 Averaged HyMap spectra of alluvial regolith-landforms. These RLU are all influenced by vegetation features to various degrees, with Aaw and ACa units containing the highest abundances of green vegetation. The other alluvial RLU display SWIR features characteristic of soils from the OID ..318

Figure 7.13 Averaged HyMap spectra of aeolian, anthropogenic, sheetwash and colluvial RLU. Aeolian RLU are characterised by strands of trees colonising the well drained sandy soils, which results in a strong vegetation feature in the VNIR and short wavelengths of the SWIR. The spectra response of anthropogenic RLU are highly variable due to the wide variety of materials, such as vegetation, RCA, asphalt, kaolinitic saprolite and so on. The average spectrum displays a low albedo and strong vegetation features, with only minor soil, kaolinite and RCA spectral features. This was due to the large area of highway and railway features dominating the average spectra for this RLU. Sheetwash and colluvial areas were characterised by minimal vegetation, or if vegetation was colonising these RLU it was typically a woody chenopod with minimal spectral features in the VNIR. Hematite-goethite spectral features were observable in the VNIR and a strong 2.2 µm absorption related to muscovite and clay minerals. ..319

Figure VI.1 ASTER RGB TCC coverage of White Dam area. The data consists of a mosaic of three 60x60km scenes. The southwestern portion of the HyMap swath area is partly obscured by minor cloud coverage. ..xxxxvii

Figure VII.1 Example of contrast stretching of Landsat TM band 5, over the White Dam region. Top image is displayed with the full range of DNs, whereas the bottom image has the contrast stretched over the range of DN of 46 - 85. Bare soil areas and regions of quartz lag have a high reflectance whereas vegetated areas appear dark. ..xlv
List of Tables

Table 2.1 Comparisons of the geological features of the Willyama Inliers (summarised from Willis et al. 1983; Laing 1996; and Robertson et al. 1998). ..5
Table 2.2 Lithostratigraphic comparisons of the Willyama Supergroup from the OID and BHD from Conor (2000); Conor (in prep. 2004) with the informal lithostratigraphy of Clarke et al. (1986) and Carpentaria Exploration Company Pty Ltd et al. (1988). The informal units were often a description of the appearance of the rocks rather than a classification featuring units with similar genetic origins.8
Table 2.3 Timing of Neoproterozoic and Cambrian events affecting the OID post the Olarian Orogeny 17
Table 3.1 Timing of Phanerozoic events in the OID (after Stevens et al. 1986 and references therein). ... 30
Table 3.2 Summary of the common vegetation species of the Curnamona Province (after Hill 2000; Hill & Hill 2003). .. 38
Table 4.1 Characteristics of light observed by the human eye. Commonly, remote sensing instruments acquire EM radiation at 0.45 µm, 0.5 µm and 0.65 µm corresponding to blue-green-red colours and are integrated into combinations to produce other colours, such as cyan, magenta, yellow and white. .. 52
Table 4.2 Diagnostic absorptions of the water molecule from fundamental frequencies (from Hunt & Salisbury 1970). These fundamental wavelengths are not measured by most spectral instruments used in remote sensing. It is the overtone and combinations that are measured as shown in Figure 4.7. .. 58
Table 4.3 Atmospheric gases and their corresponding absorption bands in the NIR and SWIR .. 62
Table 4.4 Mineralogical information available from the various regions of the EM spectrum utilised by remote sensing instruments (after Gabell 1986). 64
Table 4.5 Common sulphide minerals that display spectral features in the VNIR-SWIR regions. .. 76
Table 4.6 Comparison of technical parameters of various remote-sensing platforms ... 87
Table 4.7 Information on the regolith composition found in the band regions of Landsat TM (adapted from Podwysocki et al. 1985 and Wilford & Creasey 2002). 89
Table 4.8 GERIS-63 specification characteristics of the November/December 1987 mission (after Lee et al. 1990). ... 93
Table 4.9 HyMap survey and instrument specifications and the spectral characteristics of the 4 detector arrays of the HyMap instrument (from Cocks et al. 1998) 94
Table 4.10 Hyperion and ALI specifications ... 95
Table 4.11 Specifications of the ASD FieldSpec FR instrument ... 97
Table 4.12 Comparison of the spectral instruments used in this project. 101
Table 4.13 Recommended windows for geophysical surveying as cited by the International Atomic Energy Agency (IAEA 1979; IAEA 1991; Grasty et al. 1991) .. 104
Table 4.14 Radioelement concentrations of various materials and minerals (Dickson & Scott 1992) ... 105
Table 5.1 Quantitative XRD results for samples collected from the surface around the location of 460230 mE 6449100 mN. ... 134
List of Tables

Table 5.2 Quantitative XRD results for samples collected from the surface around the location of 460180 mE 6449080 mN. Spectral plots of some of the samples corresponding to the XRD samples of Table 5.1 and Table 5.2 are shown in Figure 5.14. 134

Table 5.3 Diamond drill holes over the White Dam Prospect selected for HyLogger analysis. Location of the drill holes is shown in Figure 5.30......................... 183

Table 5.4 HyLogger Interpretation of Kaolinitic Saprolite Profile from WD19. 190

Table 5.5 HyLogger Interpretation of Mafic Saprolite Profile from WD15. 191

Table 5.6 ASD Interpretation of a Kaolinitic Saprolite Profile. 191

Table 5.7 ASD Interpretation of a Mafic Saprolite Profile. 192

Table 6.1 Summary of the individual band characteristics of Landsat TM Olary scene. .. 209

Table 6.2 Description of the results from selected Landsat TM band ratio combinations that were useful for highlighting features in imagery of White Dam area. 215

Table 6.3 Combined SWIR endmembers from the White Dam HyMap dataset. 242

Table 6.4 Combined VNIR endmembers from the White Dam HyMap dataset. 242

Table 6.5 Description of the Spectral Indices used in the extraction of information from the HyMap imagery. .. 257

Table 6.6 Vegetation indices trialled on the HyMap imagery for the creation of vegetation masks. ... 257

Table 6.7 Radiometric classification descriptions and class colours. 285

Table VI.1 Band ratio combinations used for information extraction in ASTER imagery. Ratios denoted with * are from Crowther (2002). xxxvi

Table VI.2 ASTER gains for SWIR bands extracted from the .HDF files of scenes covering the White Dam area. ... xxxix

Table VI.3 ASTER band ratios and the features that they attempt to highlight. xl
List of Appendices

Appendix I The Spectral Geologist (TSG) Scalars................... i
Appendix II Quantitative XRD Results- iii
 Part 1 Clay Fraction Analysis... iii
 Part 2 XRD Analysis on Bulk Samples............................ iv
Appendix III Diamond Drill Hole Spectral Logs............... vii
 Deep Holes.. vii
 WD029 (From 61 m to 201 m) vii
 WD31 (From 61 m to 185 m) vii
 WD61 (From 104 to 177 m) viii
 WD69 (From 69 - 147 m) viii
 WD71 (From 85 m to 157 m) viii
 WD111 (pre-collared at 150.233 m, bottom of hole at 464.909 m) ix
 WD176 (Depth of hole 115 - 278 m) ix
 WD191 (Depth of hole 144 - 198 m) x
 WD193 (136 - 191 m) .. x
 WD194 (149 - 198 m) .. x
 WD 195 (137 - 196 m) ... x
Appendix IV Munsell Soil Measurements of Selective Costean
 Samples.. xii
Appendix V TSG Costean ASD Spectral Profile Analyses
 Interpretations.. xv
 WDTR01A .. xv
 WDTR01B .. xvii
 WDTR01C .. xvi
 WDTR01D .. xix
 Summary... xx
 WDTR01E .. xx
 WDTR01F .. xxi
 WDTR05A .. xii
 WDTR05B .. xxiii
 WDTR05C .. xxiv
 WDTR04A .. xxv
 WDTR04B .. xxvi
 WDTR04BC ... xxvii
 WDTR04C .. xxviii
 WDTR04CD ... xxix
 WDTR04D .. xxx
 WDTR04E .. xxxi
 WDTR02A .. xxxii
Appendix VI ASTER Data Processing xxxiv
 Background Information on ASTER Processing xxxiv
 Multispectral Pre-Processing .. xxxiv
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band Ratios and Mathematical Combinations of ASTER Data</td>
<td>xxxv</td>
</tr>
<tr>
<td>ASTER Dataset analysis</td>
<td>xxxvi</td>
</tr>
<tr>
<td>Pre-processing</td>
<td>xxxvi</td>
</tr>
<tr>
<td>Georeferencing and Mosaicing</td>
<td>xxxvii</td>
</tr>
<tr>
<td>Atmospheric Correction</td>
<td>xxxviii</td>
</tr>
<tr>
<td>ASTER Processing</td>
<td>xxxix</td>
</tr>
<tr>
<td>De-correlation stretching</td>
<td>xxxix</td>
</tr>
<tr>
<td>Band Ratios of ASTER</td>
<td>xxxix</td>
</tr>
<tr>
<td>ASTER Unmixing</td>
<td>xl</td>
</tr>
<tr>
<td>Appendix VII Alternative Atmospheric Correction Methods</td>
<td>xli</td>
</tr>
<tr>
<td>Internal Average Relative Reflectance (IARR)</td>
<td>xlii</td>
</tr>
<tr>
<td>Log Residuals (LR)</td>
<td>xlii</td>
</tr>
<tr>
<td>Flat Field (FF) technique</td>
<td>xlii</td>
</tr>
<tr>
<td>Appendix VIII Image Enhancement and Information</td>
<td>xliii</td>
</tr>
<tr>
<td>Contrast Stretching</td>
<td>xliii</td>
</tr>
<tr>
<td>Band Ratios and Mathematical Combinations of Landsat Data</td>
<td>xlv</td>
</tr>
<tr>
<td>Principal Components Analysis (PCA)</td>
<td>xlv</td>
</tr>
<tr>
<td>Decorrelation stretching</td>
<td>xlv</td>
</tr>
<tr>
<td>Classification</td>
<td>xlv</td>
</tr>
<tr>
<td>Data Reduction: Minimum Noise Function</td>
<td>xlvii</td>
</tr>
<tr>
<td>Data Reduction: Pixel Purity Index</td>
<td>xlvii</td>
</tr>
<tr>
<td>Endmember Extraction: N-Dimensional Visualisation</td>
<td>xlviii</td>
</tr>
<tr>
<td>Spectral Unmixing and classification</td>
<td>xlviii</td>
</tr>
<tr>
<td>Continuum Removal (Hull-Quotient)</td>
<td>li</td>
</tr>
<tr>
<td>Appendix IX ENVI and ArcView Commands for Vector File Creation</td>
<td>li</td>
</tr>
<tr>
<td>Vector creation</td>
<td>li</td>
</tr>
<tr>
<td>Creating Raster Images From Vector Files</td>
<td>li</td>
</tr>
<tr>
<td>Exporting From Masks</td>
<td>li</td>
</tr>
<tr>
<td>ArcView Shapefile Creation</td>
<td>li</td>
</tr>
<tr>
<td>Exporting Polygon Shapefiles to ArcView From ENVI</td>
<td>li</td>
</tr>
<tr>
<td>Shapefile Mosaics</td>
<td>lii</td>
</tr>
<tr>
<td>Appendix X Regolith-landform units</td>
<td>liii</td>
</tr>
<tr>
<td>TRANSPORTED REGOLITH</td>
<td>liii</td>
</tr>
<tr>
<td>Alluvial sediments</td>
<td>liii</td>
</tr>
<tr>
<td>Channel deposits</td>
<td>liv</td>
</tr>
<tr>
<td>Overbank deposits</td>
<td>liv</td>
</tr>
<tr>
<td>Aeolian sediments</td>
<td>lv</td>
</tr>
<tr>
<td>Aeolian sand</td>
<td>lv</td>
</tr>
<tr>
<td>Colluvial sediments</td>
<td>lv</td>
</tr>
<tr>
<td>Sheetflow deposits</td>
<td>lv</td>
</tr>
<tr>
<td>IN SITU REGOLITH</td>
<td>lviii</td>
</tr>
<tr>
<td>Saprolith</td>
<td>lviii</td>
</tr>
<tr>
<td>Moderately weathered bedrock</td>
<td>lviii</td>
</tr>
<tr>
<td>Saprocks</td>
<td>lviii</td>
</tr>
<tr>
<td>Slightly weathered bedrock</td>
<td>lviii</td>
</tr>
<tr>
<td>Appendix XI 1:30 000 Olary series Regolith-Landform Map of White Dam</td>
<td>lix</td>
</tr>
</tbody>
</table>
Definition of Terms and Acronyms used:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>AGSO</td>
<td>Australian Geological Survey Organisation</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>AIS</td>
<td>Airborne Imaging Spectrometer</td>
</tr>
<tr>
<td>ALI</td>
<td>Advanced Land Imager</td>
</tr>
<tr>
<td>AMIRA</td>
<td>Australian Mineral Industries Research Association</td>
</tr>
<tr>
<td>ARS</td>
<td>Average reflectance spectrum</td>
</tr>
<tr>
<td>ASD</td>
<td>Analytical Spectral Devices</td>
</tr>
<tr>
<td>AST</td>
<td>Denotes an ASTER sensor band</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Space-borne Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>ATREM</td>
<td>ATmosphere REMoval</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>Airborne/Visible Infrared Imaging Spectrometer</td>
</tr>
<tr>
<td>BBR</td>
<td>Bad-band removal</td>
</tr>
<tr>
<td>BHEI</td>
<td>Broken Hill Exploration Initiative</td>
</tr>
<tr>
<td>BHD</td>
<td>Broken Hill Domain</td>
</tr>
<tr>
<td>BIF</td>
<td>Banded iron formation</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CASI</td>
<td>Compact Airborne Spectrographic Imager</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Couple Device</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code division multiple access</td>
</tr>
<tr>
<td>CEC</td>
<td>Carpentaria Exploration Company</td>
</tr>
<tr>
<td>CFA</td>
<td>Crystal field absorption</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CS</td>
<td>Calc-silicate suite</td>
</tr>
<tr>
<td>CTA</td>
<td>Charge transfer absorption</td>
</tr>
<tr>
<td>CTS</td>
<td>Charge transfer shoulder</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d'Etudes Spatiales</td>
</tr>
<tr>
<td>CRC LEME</td>
<td>Cooperative Research Centre Landscape Environment and Mineral Exploration (Formally known as Landscape Evolution and Mineral Exploration)</td>
</tr>
<tr>
<td>CRC</td>
<td>Colour ratio composite</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Science Investigative Research Organisation</td>
</tr>
<tr>
<td>DD</td>
<td>Delamerian Orogeny deformation event</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital elevation model</td>
</tr>
<tr>
<td>DGPS</td>
<td>Differential GPS</td>
</tr>
<tr>
<td>DN</td>
<td>Digital number</td>
</tr>
<tr>
<td>DPCA</td>
<td>Directed principal components analysis</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital terrain model</td>
</tr>
<tr>
<td>EFFORT</td>
<td>Empirical Flat Field Optimal Reflectance Transformation</td>
</tr>
<tr>
<td>EL</td>
<td>Empirical Line</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EMR</td>
<td>Electromagnetic radiation</td>
</tr>
<tr>
<td>ENVI</td>
<td>Environment for visualising images™</td>
</tr>
<tr>
<td>EOS-1</td>
<td>Earth Observation Satellite</td>
</tr>
<tr>
<td>ER Mapper</td>
<td>Earth Resource Mapper™</td>
</tr>
</tbody>
</table>
Definition of Terms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM+</td>
<td>Enhanced Thematic Mapper Plus</td>
</tr>
<tr>
<td>ERTS-1</td>
<td>Earth Resources and Technology Satellite</td>
</tr>
<tr>
<td>FCC</td>
<td>False colour composite</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>Fe^{2+}</td>
<td>Ferrous ion</td>
</tr>
<tr>
<td>Fe^{3+}</td>
<td>Ferric ion</td>
</tr>
<tr>
<td>FF</td>
<td>Flat field</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width half maximum</td>
</tr>
<tr>
<td>GA</td>
<td>Geoscience Australia</td>
</tr>
<tr>
<td>GCP</td>
<td>Ground control points</td>
</tr>
<tr>
<td>GER</td>
<td>Geophysical Environmental Research</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical information system</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>H_{2}O</td>
<td>Water</td>
</tr>
<tr>
<td>HyCorr</td>
<td>Hyperspectral Correction</td>
</tr>
<tr>
<td>HYDICE</td>
<td>Hyperspectral Digital Imagery Collection Experiment</td>
</tr>
<tr>
<td>HyLogger</td>
<td>Hyperspectral Core-Logger</td>
</tr>
<tr>
<td>HyMap</td>
<td>Hyperspectral Mapper</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IARR</td>
<td>Internal average relative reflectance</td>
</tr>
<tr>
<td>IFOV</td>
<td>Instantaneous FOV</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IRIS</td>
<td>Infrared Intelligent Spectroradiometer</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>LEME</td>
<td>Landscape Environment and Mineral Exploration</td>
</tr>
<tr>
<td></td>
<td>(Formally known as Landscape Evolution and Mineral Exploration)</td>
</tr>
<tr>
<td>LR</td>
<td>Log residuals</td>
</tr>
<tr>
<td>Ma</td>
<td>Millions of years before the present</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MIMEX</td>
<td>Mount Isa Mines Exploration Pty. Ltd</td>
</tr>
<tr>
<td>MIR</td>
<td>Mid infrared</td>
</tr>
<tr>
<td>MMTG</td>
<td>Mineral Mapping Technologies Group</td>
</tr>
<tr>
<td>MNF</td>
<td>Minimum Noise Fraction</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybendinite</td>
</tr>
<tr>
<td>MSS</td>
<td>Multispectral scanner</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalised difference vegetation index</td>
</tr>
<tr>
<td>NH_{4}</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared</td>
</tr>
<tr>
<td>N_{2}O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometres</td>
</tr>
<tr>
<td>OARS</td>
<td>Operational Airborne Research Spectrometer</td>
</tr>
<tr>
<td>OID</td>
<td>Olary Domain</td>
</tr>
<tr>
<td>OD</td>
<td>Olarian Orogeny related deformation event</td>
</tr>
<tr>
<td>O_{2}</td>
<td>Oxygen</td>
</tr>
<tr>
<td>O_{3}</td>
<td>Ozone</td>
</tr>
<tr>
<td>-OH</td>
<td>Hydroxyl group</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal components analysis</td>
</tr>
<tr>
<td>PIMA</td>
<td>Portable Infrared Mineral Analyser</td>
</tr>
<tr>
<td>PPI</td>
<td>Pixel purity index</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PSA</td>
<td>Post settlement alluvium</td>
</tr>
<tr>
<td>QFS</td>
<td>Quartzo-feldspathic gneiss suite</td>
</tr>
<tr>
<td>RB</td>
<td>Red-brown</td>
</tr>
<tr>
<td>RC</td>
<td>Reverse circulation</td>
</tr>
<tr>
<td>RCA</td>
<td>Regolith carbonate accumulation</td>
</tr>
<tr>
<td>REDOX</td>
<td>Reduction-Oxidation</td>
</tr>
<tr>
<td>RGB</td>
<td>Red-green-blue</td>
</tr>
<tr>
<td>RLU</td>
<td>Regolith-landform unit</td>
</tr>
<tr>
<td>RMN</td>
<td>Reflectance-Mean Normalisation</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RSI</td>
<td>Research Systems Incorporated</td>
</tr>
<tr>
<td>RT</td>
<td>Radiative Transfer</td>
</tr>
<tr>
<td>S.A.</td>
<td>South Australia</td>
</tr>
<tr>
<td>SEDEX</td>
<td>Sedimentary exhalative</td>
</tr>
<tr>
<td>SPOT</td>
<td>Systeme Probatoire d'Observation de la Terre</td>
</tr>
<tr>
<td>SWIR</td>
<td>Shortwave infrared</td>
</tr>
<tr>
<td>TC</td>
<td>Total count radiometric channel</td>
</tr>
<tr>
<td>TCC</td>
<td>True colour composite</td>
</tr>
<tr>
<td>TIR</td>
<td>Thermal infrared</td>
</tr>
<tr>
<td>TM</td>
<td>Thematic Mapper</td>
</tr>
<tr>
<td>TSA</td>
<td>The Spectral Assistant</td>
</tr>
<tr>
<td>TSG</td>
<td>The Spectral Geologist</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometers</td>
</tr>
<tr>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible</td>
</tr>
<tr>
<td>VNIR</td>
<td>Visible to near-infrared</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>YB</td>
<td>Yellow-brown</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>

Regolith-Landform codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alluvial material</td>
</tr>
<tr>
<td>AC</td>
<td>Alluvial channel</td>
</tr>
<tr>
<td>C</td>
<td>Colluvial material</td>
</tr>
<tr>
<td>CH</td>
<td>Sheet-flow material</td>
</tr>
<tr>
<td>IS</td>
<td>Aeolian sand</td>
</tr>
<tr>
<td>SM</td>
<td>Moderately weathered saprolite</td>
</tr>
<tr>
<td>SS</td>
<td>Slightly weathered saprolite</td>
</tr>
<tr>
<td>a</td>
<td>Alluvial landform</td>
</tr>
<tr>
<td>ap</td>
<td>Alluvial plain</td>
</tr>
<tr>
<td>aw</td>
<td>Alluvial swamp</td>
</tr>
<tr>
<td>el</td>
<td>Low erosional hill</td>
</tr>
<tr>
<td>ep</td>
<td>Erosional plain</td>
</tr>
<tr>
<td>er</td>
<td>Erosional rise</td>
</tr>
<tr>
<td>fa</td>
<td>Alluvial fan</td>
</tr>
<tr>
<td>fc</td>
<td>Colluvial/sheetflood fan</td>
</tr>
<tr>
<td>pd</td>
<td>Depositional plain</td>
</tr>
<tr>
<td>ps</td>
<td>Sand plain</td>
</tr>
</tbody>
</table>