BIBLIOGRAPHY

American Diabetes Association, 2001, Postprandial blood glucose, Diabetes. 24, 775.

Anderson, T.J., M.D. Gerhard, I.T. Meredith, F. Charbonneau, D. Delagrange, M.A. Creager, A.P. Selwyn and P. Ganz, 1995, Systemic nature of endothelial dysfunction in atherosclerosis, Am J Cardiol. 75, 71B.

Antiplatelet Trialists' Collaboration, 1994, Collaborative overview of randomized trials of antiplatelet therapy--: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients, BMJ. 308, 81.

Australian Diabetes Obesity and Lifestyle Study, 2001, Diabetes and associated disorders in Australia - 2000: the accelerating epidemic/ the Australian Diabetes, Obesity and Lifestyle Study (AUSDIAB). (International Diabetes Institute, Melbourne.).

Bastyr, E.J., M.M. Kadrofske and A.I. Vinik, 1987, Hyperaggregatory function of platelets in type I diabetic subjects (IDDM) occurs in receptor-specific first phase, Diabetes. 36, 208A.

Bastyr, E.J., C.A. Stuart, R.G. Brodows, S. Schwartz, C.J. Graf, A. Zagar and K.E. Robertson, 2000, Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c: IOEZ study group, Diabetes Care. 23, 1236.

Bode-Boger, S.M., R.H. Boger, S. Kienke, W. Junker and J.C. Frolich, 1996, Elevated l-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary l-arginine in hypercholesterolemic rabbits, Biochem Biophys Res Commun. 219, 598.

Bolli, R., 1990, Mechanisms of myocardial stunning, Circulation. 82, 723.

Bowditch, H., 1871, Uber die eigenthumlichkeiten der reizbarkeit, welche die Muskelfasern des herzens zeigen, Ber Sachs Ges Wiss. 23, 652.

Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains, Cell. 84, 757.

Brenman, J.E., D.S. Chao, H. Xia, K. Aldape and D.S. Bredt, 1995, Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy, Cell. 82, 743.

Ceriello, A., 2000, Oxidative stress and glycemic regulation, Metabolism. 49, 27.

Cheung, P.-Y., W. Wang and R. Schulz, 2000b, Glutathione protects against myocardial ischemia-reperfusion injury by detoxifying peroxynitrite, J Mol Cell Cardiol. 32, 1669.

Chirkov, Y.Y., L.P. Chirkova and J.D. Horowitz, 1996, Suppressed anti-aggregating and cGMP-elevating effects of sodium nitroprusside in platelets from patients with stable angina pectoris, Naunyn Schmiedebergs Arch Pharmacol. 354, 520.

concentrations of nitroglycerin in vitro in normal subjects, Am J Cardiol. 70, 802.

Chirkov, Y.Y., I.A. Tyshchuk and I.S. Sererina, 1990, Guanylate cyclase in human platelets with different aggregability, Experientia. 46, 697.

Cohen, R.A., 1993a, Dysfunction of vascular endothelium in diabetes mellitus, Circulation. 87(Suppl V), V.

Evidence for increased expression in hyperthyroidism, Eur J Endocrinol. 136, 649.

Dandona, P., K. Thusu, S. Cook, B. Snyder and T. Nicotera, 1994, Oxidative damage to deoxyribonucleic acid (DNA) in insulin-dependent diabetes mellitus, Diabetes. 43, 35A.

Modification by tumor necrosis factor-alpha and during acute myocardial infarction, J Am Coll Cardiol. 31, 800.

Downey, J.M. and D.M. Yellon, 1992, Do free radicals contribute to myocardial cell

Fleming, I., J. Bauersachs and R. Busse, 1997, Calcium-dependent and calcium-independent activation of the endothelial NO synthase, J Vasc Res. 34, 165.

Foo, K., J. Cooper, A. Deaner, C. Knight, A. Suliman, K. Ranjadayalan and A.D. Timmis, 2003, A single serum glucose measurement predicts adverse
outcomes across the whole range of acute coronary syndromes, Heart. 89, 512.

Forester, G.V. and G.W. Mainwood, 1974, Interval dependent inotropic effects in the rat myocardium and the effect of calcium, Pfluegers Arch. 352, 189.

Fort, S. and M.L. Lewis, 1991, Regulation of myocardial contractile performance by sodium nitroprusside in the isolated perfused heart of the ferret, Br J Pharmacol. 102, 351P.

Fox, J.E.B., 1985, Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes, J Biol Chem. 260, 11970.

Gallagher, K.P., A.J. Buda, D. Pace, R.A. Gerren and M. Shafler, 1986, Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion, Circulation. 73, 1065.

Gao, F., E. Gao, T.L. Yue, E.H. Ohlstein, B.L. Lopez, T.A. Christopher and X.L. Ma, 2002, Nitric oxide mediates the antiapoptotic effect of insulin in

Glusa, E., F. Markwardt and J. Strurzebecher, 1974, Effects of sodium nitroprusside and other pentacyanonitrosyl complexes on platelet aggregation, Haemostasis. 3, 249.

Gustafsson, I., C. Torp-Pedersen, L. Kober, F. Gustafsson and P. Hildebrandt, 1999, Effect of the angiotenin-converting enzyme inhibitor trandolapril on mortality...
and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. Trace study group, J Am Coll Cardiol. 34, 83.

Han, X., L. Kobzik, J.-L. Balligand, R.A. Kelly and T.W. Smith, 1996a, Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca sup 2+ current in adult rabbit atrioventricular nodal cells, Circ Res. 78, 998.

Han, X., S. Wiviott, J.L. Balligand, R.A. Kelly and T.W. Smith, 1996b, Nitric oxide regulation of L-type Ca sup + channel in rat ventricular myocytes is mediated by both cGMP-stimulated phosphodiesterase and cGMP-dependent protein kinase, Circulation. 94(Suppl 1), I.

Hare, J.M., E. Loh, M.A. Creager and W.S. Colucci, 1995, Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction, Circulation. 92, 2198.

Harrison, D., K.K. Griendling, U. Landmesser, B. Hornig and H. Drexler, 2003, Role of oxidative stress in atherosclerosis, Am J Cardiol. 91, 7A.

Heitzer, T., K. Krohn, S. Albers and T. Meinertz, 2000b, Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus, Diabetologia. 43, 1435.

conscious rabbits despite development of nitrate tolerance, Circulation. 104, 694.

Stalker, R. Scalia and D.J. Lefer, 2000, Myocardial ischaemia/reperfusion
injury in NADPH oxidase-deficient mice, Circ Res. 87, 812.
plethysmograph for direct measurement of limb blood flow, IEEE Trans
of the platelet ADP receptor targeted by antithrombotic drugs, Nature. 409,
202.
Balazs, 2002, Time course of plasma adhesion molecules in acute coronary
syndromes, Coron Artery Dis. 13, 215.
Kitabatake, 1988, Effects of long-acting superoxide dismutase (SMA-SOD)
on myocardial necrosis in coronary embolization in dogs, Circulation 78, II.
Horowitz, J.D., 2000, Ch. 22 Nitrovasodilators, in: Nitric oxide and the
cardiovascular system, eds. J. Loscalzo and J.A. Vita (Humana Press,
Totowa, New Jersey).
Horton, E.S., C. Clinkingbeard, M. Gatlin, J. Foley, S. Mallows and S. Shen, 2000,
Nateglinide alone and in combination with metformin improves glycemic
control by reducing mealtime glucose levels in type 2 diabetes, Diabetes
Care. 23, 1660.
and C. Nieuwenhuijzen Kruseman, 1996, Local 24-h hyperglycaemia does
not affect endothelium-dependent or -independent vasoreactivity in humans,

Ikai, K. and K. Ueda, 1983, Immunohistochemical demonstration of poly (adenosine diphosphate-ribose) synthetase in bovine tissues, J Histochem Cytochem. 31, 1261.

Jarrett, R.J., P. McCartney and H. Keen, 1982, The Bedford survey: ten year mortality rates in newly diagnosed diabetics, borderline diabetics and
normoglycaemia controls and risk indices for coronary heart disease, Diabetologia. 22, 79.

Jugdutt, B.I., B.L. Schwarz-Michorowski, W.J. Tymchak and J.R. Burton, 1997, Prompt improvement of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction, Cardiology. 88, 170.

Kannel, W.B. and D.L. McGee, 1979, Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study, Diabetes Care. 2, 120.

Karpen, C.W., S. Cataland, T.M. D'Orisio and R.V. Panganamala, 1985, Production of 12 HETE and vitamin E status in platelets from type 1 human diabetic subjects, Diabetes. 34, 526.

Kavanaugh, M.P., 1993, Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter, Biochemistry. 32, 5781.

Kennedy, R.H., K.K. Hicks, J.E. Brian jr and E. Seifen, 1994, Nitric oxide has no chronotropic effect in right atria isolated from rat heart, Eur J Pharmacol. 255, 149.

NO synthase gene: Analysis of the transcription factors involved, Hypertension. 31, 582.

Kojda, G. and K. Kottenberg, 1999, Regulation of basal myocardial function by NO, Cardiovasc Res. 41, 514.

toxicity by tetrahydrobiopterin, a cofactor for nitric oxide synthase, Neurosci Res. 43, 31.

Kriegstein, C.F. and D.N. Granger, 2001, Adhesion molecules and their role in vascular disease, Am J Hypertens. 14, 44S.

Kwaan, H.C., 1992, Changes in blood coagulation, platelet function and plasminogen-plasmin system in diabetes, Diabetes. 41, 32.

Laufs, U., K. Gertz, P. Huang, G. Nickenig, M. Bohn, U. Dirnagl and M. Endres, 2000, Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice, Stroke. 31, 2442.

Lefer, D.J., K. Nakanishi and J. Vinten-Johansen, 1993b, Endothelial and myocardial cell protection by a cysteine-containing nitric oxide donor after acute myocardial ischemia and reperfusion, J Cardiovasc Pharmacol. 22, S34.

dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases, Biochem J. 343, 209.

Li, H., T. Wallerath and U. Forstermann, 2002, Physiological mechanisms regulating the expression of endothelial-type NO synthase, Nitric Oxide. 7, 132.

Liu, B., B. Wohlfart and B.W. Johansson, 1990, Effects of low temperature on contraction in papillary muscles from rabbit, rat and hedgehog, Cryobiology. 27, 539.

Lopaschuk, G.D., 1998, Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism, Am J Cardiol. 82, 14K.

Loscalzo, J., 1985, N-acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin, J Clin Invest. 76, 703.

Loscalzo, J., 2000b, What we know and don't know about L-arginine and NO, Circulation. 101, 2126.

Luckhoff, A. and R. Busse, 1990, Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential, Pflugers Arch. 416, 305.

Lugnier, C. and N. Komas, 1993, Modulation of vascular cyclic nucleotide phosphodiesterases by cyclic GMP role in vasodilation, Eur Heart J. 14, 141.

Ma, X.L., G. Johnson and A.M. Lefer, 1992, Low doses of superoxide dismutase and a stable prostacyclin analogue protect in myocardial ischemia and reperfusion, J Am Coll Cardiol. 19, 197.

Evidence from nine prospective observational studies corrected for the regression dilution bias, Lancet. 335, 765.

Miyamoto, Y., Y. Saito, N. Kajiyama, M. Yoshimura, Y. Shimasaki, M. Nakayama and e. al., 1998, Endothelial NOS gene is positively associated with essential hypertension, Hypertension. 32, 3.

Mjos, O.D., 1971, Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs, J Clin Inv. 50, 1386.

Mohanty, P., W. Hamouda, R. Garg, A. Aljada, H. Ghanim and P. Dandona, 2000, Glucose challenge stimulates reactive oxygen species (ROS) generation by leukocytes, J Clin Endocrinol Metab. 85, 2970.

Murer, E.H., M.A. Gyda and N.J. Martinez, 1994, Insulin increases the aggregation response of human platelets to ADP, Throm Res. 73, 69.

Murohara, Y., Y. Yoshiki, R. Hattori and C. Kawai, 1991, Effects of superoxide dismutase on reperfusion arrhythmias and left ventricular function in patients
undergoing thrombolysis for anterior wall acute myocardial infarction, Am J Cardiol. 67, 765.

Najbauer, J., B.A. Johnson, A.L. Young and D.W. Aswad, 2000, Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognised by methyltransferase(s) modifying arginine in numerous proteins, J Biol Chem. 275, 7723.

Nathan, C. and Q.-W. Xie, 1994b, Nitric oxide synthases: roles, tolls and controls, Cell. 78, 915.

Oliver, M.F. and L.H. Opie, 1994, Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias, Lancet. 343, 155.

Osler, W., 1889, Rupture of the heart, Med News. 54, 129.

Pabla, R. and M.J. Curtis, 1995a, Effects of NO modulation on cardiac arrhythmias in the rat isolated heart, Circ Res. 77, 984.

Paiva, H., T. Lehtimaki, J. Laakso, I. Roukonen, V. Rantalaiho, O. Wirta, A. Pasternack and R. Laaksonen, 2003, Plasma concentrations of Asymmetric-Dimethyl-Arginine in Type 2 diabetes associate with glycaemic control and
glomerular filtration rate but not with risk factors of vasculopathy, Metabolism. 52, 303.

Panza, J.A., P.R. Casino, C.M. Kilcoyne and A.A. Quyyumi, 1994, Impaired endothelium-dependent vasodilation in patients with essential hypertension: evidence that the abnormality is not at the muscarinic receptor level, J Am Coll Cardiol. 23, 1610.

Paulus, W.J. and A.M. Shah, 1999, NO and cardiac diastolic function, Cardiovasc Res. 43, 595.

Pentecost, B.L., N.M. Mayne and P. Lamb, 1968, Controlled trial of intravenous glucose, potassium and insulin in acute myocardial infarction, Lancet. 1, 946.

Pieper, G.M. and L.A. Dondlinger, 1997c, Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production, J Pharmacol Exp Ther. 283, 684.

Pieper, G.M. and W. Siebeneich, 1997b, Use of a nitronyl nitroxide to discriminate
the contribution of nitric oxide radical in endothelium-dependent relaxation
of control and diabetic blood vessels, J Pharmacol Exp Ther 283, 138.
administration of L-arginine reverses defective endothelium-dependent
L-arginine of a dysfunctional arginine/nitric oxide pathway in the
endothelium of the genetic diabetic BB rat, Diabetologia. 40, 910.
Pieske, B., L.S. Maier and D.M. Bers, 1999, Ca^{2+} handling and sarcoplasmic
reticulum Ca^{2+} content in isolated failing and nonfailing human
myocardium., Circ Res 85, 38.
Pigazzi, A., A. Fabian, J. Johnson, G.R. Upchurch and J. Loscalzo, 1995,
Identification of nitric oxide synthases in human megakaryocytes and
platelets, Circulation. 92, I.
Pigazzi, A., S.J. Heydrick, F. Folli, S.E. Benoit, A.D. Michelson and J. Loscalzo,
1999, Nitric oxide inhibits thrombin receptor activating peptide-induced
phosphoinositide 3-kinase activity in human platelets, J Biol Chem. 274,
14368.
Pilcher, J., M. Etishamudin, P. Exon and J. Moore, 1967, Potassium, Glucose and
insulin in myocardial infarction, Lancet. 1, 1109.
Pinsky, D.J., S. Patton, S. Mesaros, V. Brovkovich, E. Kubaszewski, S. Grunfeld
and T. Malinski, 1997, Mechanical transduction of nitric oxide synthesis in
the beating heart, Circ Res. 81, 372.
Pogwizd, S.M., K. Schlotthauer, L. Li, W. Yuan and D.M. Bers, 2001,
Arrhythmogenesis and contractile dysfunction in heart failure: roles of
sodium-calcium exchange, inward rectifier potassium current and residual [beta]-adrenergic responsiveness, Circ Res. 88, 1159.

Prabhu, S.D., A. Azimi and T. Frosto, 1999, Nitric oxide effects on myocardial function and force-interval relations: regulation of twitch duration, J Mol Cell Cardiol. 31, 2077.

Que, L.G., S.E. George, T. Gotoh, M. Mori and Y. Huang, T., 2002, Effects of arginase isoforms on NO production by nNOS, Nitric Oxide. 6, 1.

Reddy, K.G., R.N. Nair, H.M. Sheehan and J.M. Hodgson, 1994, Evidence that selective endothelial dysfunction may occur in the absence of angiographic or
ultrasound atherosclerosis in patients with risk factors for atherosclerosis, J Am Coll Cardiol. 23, 833.

Richard, V.J., C.E. Murry, R.B. Jennings and K.A. Reimer, 1988, Therapy to reduce free radicals during early reperfusion does not limit the size of myocardial infarcts caused by 90 minutes of ischemia in dogs, Circulation. 78, 473.

Ridker, P.M., J.E. Buring, J. Shih, M. Matias and C.H. Hennekens, 1998a, Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women, Circulation. 98, 731.

function abnormalities in diabetic patients with microvascular disease, Metabolism. 49, 88.

Runnman, E.M. and J.N. Weiss, 1988, Exogenous glucose utilization is superior to glycogenolysis at preserving cardiac function during hypoxia, Circulation. 78(suppl II), II.

Saman, S., W.A. Coetzee and L.H. Opie, 1988, Inhibition by stimulated ischaemia or hypoxia of delayed after depolarizations provoked by cyclic AMP: significance for ischaemia and reperfusion arrhythmias, J Mol Cell Cardiol. 20, 91.

Sandirasegarane, L. and J. Diamond, 1999, The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation, J Mol Cell Cardiol. 31, 799.

Shaw, J. and e. al., 1999, Impaired fasting glucose or impaired glucose intolerance. What best predicts future diabetes in Mauritius., Diabetes Care 22, 399.

Shen, W., T.H. Hintze and M.S. Wolin, 1995, Nitric oxide: An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption, Circulation 92, 3505.

endothelial-type and inducible-type nitric oxide synthase in keratinocytes, J Dermatol. 24, 80.

Sievers, J., J. Lindh, B.W. Johansson and J. Karnell, 1966, Acute myocardial infarction treated by glucose-insulin-potassium (GIK) infusion, Cardiology. 49, 239.

Spessert, R., E. Layes, A. Schollmayer, S. Reuss and L. Vollrath, 1995, In the rat pineal gland, but not in the suprachiasmatic nucleus, the amount of constitutive neuronal nitric oxide synthase is regulated by environmental lighting conditions, Biochem Biophys Res Commun. 212, 70.

stable coronary artery disease: studies on myocardial carbohydrates, lipid and oxygen arterial-coronary sinus differences in patients with coronary artery disease, Am J Cardiol. 36, 929.

Sumii, K. and N. Sperelakis, 1995, cGMP-dependent protein kinase regulation of the L-type Ca$^{2+}$ current in rat ventricular myocytes, Circ Res. 77, 803.

Taylor, P.D., J.E. Graves and L. Poston, 1995, Selective impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated

Temelkova-Kurktschiev, T., C. Koehler, E. Henkel, W. Leonhardt, K. Fuecker and M. Hanefeld, 2000, Postchallenge plasma glucose and glycaemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1C level, Diabetes Care. 23, 1830.

The Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study Investigators, 1998b, Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction, N Eng J Med. 338, 1488.

Thiemermann, C., 1997, Nitric oxide and septic shock, Gen Pharmac. 29, 159.

Tsao, P.S., N. Aoki, D.J. Lefer, G. Johnson and A.M. Lefer, 1990b, Time course of endothelial dysfunction and myocardial injury during myocardial ischaemia and reperfusion in the cat, Circulation. 82, 1402.

Tymachak, W.J., B.L. Michorowski, J.R. Burton and B.I. Jugdutt, 1988, Preservation of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction, J Am Coll Cardiol. 11, 90A.
Creager and A.C. Yeung, 1997, Non-invasive assessment of endothelium-
dependent flow-mediated dilation of the brachial artery, Vasc Med. 2, 87.

UK Prospective Diabetes Study (UKPDS) Group, 1998, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), Lancet. 352, 837.

primary angioplasty for acute myocardial infarction: the glucose-insulin-
potassium study: a randomized trial, J Am Coll Cardiol. 42, 784.

Van Obberghen-Schilling, E. and J. Pouyssegur, 1993, Signaling pathways of the
thrombin receptor, Thromb Haemostat. 70, 163.

Platelet aggregation and release of ATP after incubation with soluble immune
complexes purified from the serum of diabetic patients, Diabetes. 30, 575.

and J.M. Hare, 2000, beta(3)-adrenoceptor deficiency blocks nitric oxide-
dependent inhibition of myocardial contractility, J Clin Invest. 106, 697.

Vasquez-Vivar, J., N. Hogg, K.A. Pritchard, P. Martasek and B. Kalyanaraman,
1997, Superoxide anion formation from lucigenin: an electron spin resonance
spin-trapping study, FEBS Lett. 403, 127.

Vasquez-Vivar, J., B. Kalyanaraman, P. Martasek, N. Hogg, B.S. Masters, H.
endothelial nitric oxide synthase: the influence of cofactors, Proc Natl Acad
Sci USA. 95, 9220.

transporter system for L-arginine in human platelets, Biochem Biophys Res
Commun. 206, 878.

Vaziri, N.D. and X.Q. Wang, 1999, cGMP-mediated negative-feedback regulation of
endothelial nitric oxide synthase expression by nitric oxide, Hypertension. 34,
1237.

Vehkavaara, S., S. Makimattila, A. Schlenzka, J. Vakkilainen, J. Westerbacka and H.
Yki-Jarvinen, 2000, Insulin therapy improves endothelial function in type 2
diabetes, Arterioscler Thromb Vasc Biol. 20, 545.

neutrophil granulocytes, megakaryocytes and platelets, Thromb Haemost. 77, 163.

Wallis, R.M., J.D. Corbin, S.H. Francis and P. Ellis, 1999, Tissue distribution of phosphodiesterase families and the effects of silenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro, Am J Cardiol. 3C.

evidence for a caspase-dependent, cyclic-GMP-independent mechanism, Biochem Pharmacol. 59, 305.

Westerbacka, J., A. Seppala-Lindroos and H. Yki-Jarvinen, 2001, Resistance to acute insulin induced decreases in large artery stiffness accompanies the insulin resistance syndrome, J Clin Endocrinol Metab. 86, 5262.

White, M.F. and H.N. Christensen, 1982, Cationic amino acid transport into cultured animal cells. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines, J Biol Chem. 258, 8028.

Pulse-wave analysis: clinical evaluation of a noninvasive, widely applicable method for assessing endothelial function, Arterioscler Thromb Vasc Biol. 22, 147.

Winocour, P.D., C. Watala and R.L. Kinlough-Rathbone, 1992b, Membrane fluidity is related to the extent of glycation of proteins, but not to alterations in the cholesterol to phospholipid molar ratio in isolated platelet membranes from diabetic and control subjects, Thromb Haemost. 67, 567.

Wollenberger, A., E.B. Babskii, E.G. Krause, S. Genz, D. Blohm and E.V. Bogdanova, 1973, Cyclic changes in levels of cyclic AMP and cyclic GMP in frog myocardium during the cardiac cycle., Biochem Biophys Res Commun. 55, 446.

Woodworth, R.S., 1902, Maximal contraction, 'staircase' contraction, refractory period, and compensatory pause, of the heart, Am J Physiol. 8, 213.

Wu, K.K., 1996b, Platelet activation mechanisms and markers in arterial thrombosis, J Intern Med. 239, 17.

Xie, Y.-W., P.M. Kaminski and M.S. Wolin, 1998, Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation, Circ Res. 79, 381.

Xie, Y.-W., W. Shen, G. Zhao, X. Xu, M.S. Wolin and T.H. Hintze, 1996, Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro, Cir Res. 82, 891.

Yasmin, W., K.D. Strynadka and R. Schulz, 1997, Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts, Cardiovasc Res. 33, 422.

Yoshimura, M., H. Yasue, M. Nakayama, Y. Shimasaki, H. Sumida, S. Sugiyama, K. Kugiyama, H. Ogawa, Y. Ogawa, Y. Saito, Y. Miyamoto and K. Nakao,

AMENDMENTS