To my beautiful wife Alexandra and children

Thomas and Charlotte.
DECLARATION

This body of work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Dr. Matthew I. Worthley
Department of Medicine
University of Adelaide
Adelaide
South Australia 5000
AUSTRALIA
CHAPTER 1. INTRODUCTION

1.1. BACKGROUND

1.2. NITRIC OXIDE (PHYSIOLOGY)

1.2.1. SYNTHESIS

1.2.1.1. L-arginine

1.2.1.2. Nitric oxide synthases

1.2.1.2.1. nNOS

1.2.1.2.2. iNOS

1.2.1.2.3. eNOS

1.2.1.2.4. Location

1.2.2. SIGNALLING

1.2.2.1. Vasculature

1.2.2.2. Platelets

1.2.2.3. Myocardium

1.2.2.4. Cell-Cell Interactions

1.2.3. NITRIC OXIDE AND PLATELET PHYSIOLOGY

1.2.4. NITRIC OXIDE AND MYOCARDIAL PHYSIOLOGY

1.2.4.1. Inotropy

1.2.4.2. Chronotropy

1.2.4.3. Frank-Starling Response/Left Ventricular Relaxation

1.2.4.4. Force-Frequency Relationship

1.2.4.5. Energetics
1.3. NITRIC OXIDE (PATHOLOGY) ... 43

1.3.1. NITRIC OXIDE BIOAVAILABILITY .. 46
 1.3.1.1. Decreased Nitric Oxide Production 46
 1.3.1.2. Enhanced Nitric Oxide Degradation 50
 1.3.1.3. Decreased sensitivity towards Nitric Oxide 53

1.3.2. NITRIC OXIDE AND MYOCARDIAL PATHOLOGY 55
 1.3.2.1. Ischaemia-Reperfusion ... 55
 1.3.2.1.1. Ischaemia ... 56
 1.3.2.1.2. Reperfusion (influence of ROS) 56
 1.3.2.1.3. Peroxynitrite ... 60
 1.3.2.1.4. Implications: NO donor pharmacotherapy 63

1.3.3. NITRIC OXIDE AND DIABETES MELLITUS 66
 1.3.3.1. Impact on Nitric Oxide bioavailability 70
 1.3.3.2. Detrimental effects of Glucose ... 74
 1.3.3.3. Platelet Function .. 79

1.4. AIM OF THESIS .. 85

CHAPTER 2. METHODS ... 87

2.1. PLATELET STUDIES ... 88

2.1.1. SUBJECTS STUDIED AND BLOOD SAMPLING 88
2.1.2. CHEMICALS .. 88
2.1.3. IMPEDANCE AGGREGOMETRY .. 89
2.1.4. CHEMILUMINESCENCE ASSESSMENT OF SUPEROXIDE 90
2.1.5. PLATELET cGMP ASSAY .. 91
2.1.6. ADMA/SDMA/L-ARGININE ASSAY ... 92
2.1.7. CRP ASSAY ... 93
2.1.8. NEFA ASSAY ... 94
CHAPTER 3. DETERMINANTS OF PLATELET RESPONSIVENESS TO NITRIC OXIDE IN DIABETIC PATIENTS WITH ACUTE CORONARY SYNDROMES: EFFECTS OF GLYCAEMIC CONTROL

3. 1. INTRODUCTION...103

3. 2. METHODS...106

3. 3. RESULTS...107

3. 3. 1. PATIENT CHARACTERISTICS/ DIABETIC CONTROL...............107

3. 3. 2. UNIVARIATE RESULTS..110

3. 3. 2. 1. Primary Hypothesis..111

3. 3. 2. 2. Secondary Hypotheses..116

3. 3. 3. MULTIVARIATE ANALYSIS..125

3. 4. DISCUSSION..125

3. 4. 1. PRIMARY HYPOTHESIS..126

3. 4. 1. 1. Hyperglycaemic mediated oxidative stress......................126

3. 4. 1. 2. Mechanisms and source of superoxide generation...............127

3. 4. 2. SECONDARY HYPOTHESES...127

3. 4. 2. 1. ADP enhanced aggregation, platelet rich plasma studies, NEFA Levels........127

3. 4. 2. 2. Neutrophil count, CRP, CK, ADP enhanced superoxide generation........128
CHAPTER 4. ACUTE RESOLUTION OF HYPERGLYCAEMIA NORMALIZES PLATELET RESPONSIVENESS TO NITRIC OXIDE IN DIABETICS WITH ACUTE CORONARY SYNDROMES

4.1. INTRODUCTION

4.1.1. GLUCOSE-INSULIN-POTASSIUM THERAPY FOR AMI

4.1.2. DIGAMI STUDY

4.1.3. MECHANISTIC BENEFIT OF INSULIN INFUSIONS IN AMI

4.2. METHODS

4.2.1. INSULIN PROTOCOL

4.3. RESULTS

4.3.1. PATIENT CHARACTERISTICS

4.3.2. PRIMARY HYPOTHESIS

4.3.3. SECONDARY HYPOTHESES

4.4. DISCUSSION

4.4.1. PRIMARY HYPOTHESIS

4.4.1.1. Nitric Oxide mediated effects of Insulin

4.4.1.2. Hyperglycaemic effects on Platelet Function

4.4.2. SECONDARY HYPOTHESES

4.4.2.1. ADP induced aggregation, platelet rich plasma studies, ADP enhanced LDCL, NEFA levels and CRP values

4.4.2.2. ADMA and L-arginine levels

4.4.3. STUDY LIMITATIONS

4.5. CONCLUSION
CHAPTER 5. EFFECTS OF AN ORAL GLUCOSE LOAD ON PLATELET RESPONSIVENESS TO NITRIC OXIDE

5. 1. INTRODUCTION

5. 1. 1. POSTPRANDIAL HYPERGLYCAEMIC CARDIOVASCULAR IMPLICATIONS

5. 1. 2. POSTPRANDIAL HYPERGLYCAEMIC EFFECTS ON NITRIC OXIDE

5. 2. METHODS

5. 3. RESULTS

5. 3. 1. PATIENT CHARACTERISTICS

5. 3. 2. HEALTHY VOLUNTEERS

5. 3. 3. ‘HIGH-RISK’ PATIENTS

5. 4. DISCUSSION

5. 4. 1. cGMP GENERATING EFFECTS OF INSULIN

5. 4. 2. STUDY LIMITATIONS

5. 5. CONCLUSION

CHAPTER 6. LACK OF INOTROPIC EFFECT OF NITRIC OXIDE IN RAT PAPILLARY MUSCLE

6. 1. PART 1. ASSESSMENT OF STIMULATION FREQUENCY

6. 1. 1. INTRODUCTION

6. 1. 2. METHODS

6. 1. 3. RESULTS

6. 1. 4. DISCUSSION

6. 2. PART 2. INOTROPIC EFFECTS OF NITRIC OXIDE

6. 2. 1. INTRODUCTION

6. 2. 2. METHODS

6. 2. 3. RESULTS
ACKNOWLEDGEMENTS

I would firstly like to acknowledge the contribution my co-supervisors have made to my education and the production of this thesis. I thank Dr. Chris Zeitz for the expertise he provided to enable me to get the papillary muscle apparatus functional in our laboratory. This was by far the most troublesome and anxiety provoking part of my PhD. I also would like to thank Professor John Horowitz for his guidance and unwavering support through both the difficult and rewarding components of this thesis. His enthusiasm for research is contagious and his abilities as a clinician, scientist and a leader have had a major impact upon me professionally.

To my co-workers, without whose assistance many of the tasks that were required for this thesis would have been insurmountable, I give heart-felt thanks. In particular, I must thank from our platelet laboratory Dr. Andy Holmes, Dr. Yuliy Chirkov and Dr. Scott Willoughby. Dr. Holmes was the first to teach me how to perform platelet aggregometry and for this and his ongoing help with statistical analysis I thank him. The assistance of Dr. Chirkov particularly for his thoughtful constructive comments throughout my thesis as well as assistance with the cGMP assay was much appreciated. Dr. Willoughby on return from his post-doc has provided invaluable guidance and support particularly with Liz Kelly in the performance of the glucose load platelet studies. I see a strong academic association with Scott in the future. The assistance provided by Prof. Simon Stewart in the collection of long-term outcomes of diabetic patient was also greatly appreciated. Finally I would like to sincerely thank Tamila Heresztyn who established a functional ADMA assay in our laboratory. Her persistence in this task was a credit to her character and she now is sure to reap the rewards of her hard work.
I also wish to sincerely thank the Queen Elizabeth Hospital research foundation and the National Heart Foundation of Australia. Without their financial support the success of this research, culminating in presenting for the Samuel A Levine Young Clinical Investigator Award at the American Heart Association Meeting, would not have been possible.

To my parents, Janice and Lindsay Worthley, I am forever grateful for the love and support that has accompanied me throughout my life. My brothers Stephen and Daniel Worthley and their respective wives, Kirsten and Liza, have provided not only endless love and support throughout this time, but critical commentary on the quality of this research.

However I owe the most to my wife Alex. A study based on acute admissions with an associated 12 hr protocol meant many nights away from home. Associated with looking after a sleepless baby meant this research succeeded largely due to her tolerance, love and understanding.
THESIS RELATED PUBLICATIONS

ORIGINAL RESEARCH

SPECIFIC CONTRIBUTION BY CANDIDATE TO EACH MANUSCRIPT

In this paper blood samples were collected by Dr. M Worthley, with HPLC and manuscript written by Tamila Heresztyn. The other 2 thesis-related publications were being submitted at the time of thesis completion.

THESIS RELATED ABSTRACTS

8. Willoughby SR, **Worthley MI**, Kelly EA, Horowitz JD. Acute glucose loading in normal volunteers does not affect platelet function, nitric oxide responsiveness, superoxide content or arterial stiffness. CSANZ 2003 (accepted).

THESIS RELATED AWARDS

THESIS RELATED INVITED PRESENTATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute Coronary Syndrome</td>
</tr>
<tr>
<td>ADMA</td>
<td>Asymmetric Dimethylarginine</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced Glycation End products</td>
</tr>
<tr>
<td>AI(x)</td>
<td>Augmentation Index</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute Myocardial Infarction</td>
</tr>
<tr>
<td>AP</td>
<td>Activation Protein</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BAEC</td>
<td>Bovine Aortic Endothelial Cells</td>
</tr>
<tr>
<td>BH4</td>
<td>Tetrahydrobiopterin</td>
</tr>
<tr>
<td>BSL</td>
<td>Blood Sugar Levels</td>
</tr>
<tr>
<td>[Ca$^{2+}$]</td>
<td>Intracellular Calcium Concentration</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CAM</td>
<td>Cellular Adhesion Molecules</td>
</tr>
<tr>
<td>CAT</td>
<td>Cationic Arginine Transporters</td>
</tr>
<tr>
<td>CFR</td>
<td>Coronary Flow Reserve</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reactive Protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DDAH</td>
<td>Dimethylarginine Dimethylaminohydrolase</td>
</tr>
<tr>
<td>EDRF</td>
<td>Endothelium-derived relaxing factor</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine 3’5’ monophosphate</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine 3’5’ monophosphate</td>
</tr>
<tr>
<td>HRE</td>
<td>Hypoxia Responsive Element</td>
</tr>
<tr>
<td>HUEVC</td>
<td>Human Umbilical Endothelial Cells</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin Adenine Dinucleotide</td>
</tr>
<tr>
<td>FFR</td>
<td>Force Frequency Relationship</td>
</tr>
<tr>
<td>FMD</td>
<td>Flow Mediated Dilatation</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin Mononucleotide</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate Dehydrogenase</td>
</tr>
<tr>
<td>GAS</td>
<td>Gamma Activating Sequence</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IBMX</td>
<td>3-isobutyl-1-methylxanthine</td>
</tr>
<tr>
<td>IFG</td>
<td>Impaired Fasting Glucose</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IP₃</td>
<td>Inositol 1,4,5- triphosphate</td>
</tr>
<tr>
<td>LDCL</td>
<td>Lucigenin Derived Chemiluminescence</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated Protein Kinase</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NEFA</td>
<td>Non-esterified fatty acids</td>
</tr>
<tr>
<td>NO⁺</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric Oxide Synthase</td>
</tr>
<tr>
<td>ODQ</td>
<td>1 H-[1,2,4]oxadiazolo-[4,3–2]quinoxalin-1-one</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>Superoxide</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-Derived Growth Factor</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein Kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase C</td>
</tr>
<tr>
<td>PKG</td>
<td>Protein Kinase G</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PRMT</td>
<td>Protein arginine Methyltransferase</td>
</tr>
<tr>
<td>PRP</td>
<td>Platelet Rich Plasma</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>SDMA</td>
<td>Symmetric Dimethylarginine</td>
</tr>
<tr>
<td>SNAP</td>
<td>S-nitroso-N-acetylpenicillamine</td>
</tr>
<tr>
<td>SNP</td>
<td>Sodium Nitroprusside</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>SR</td>
<td>Sarcoplasmic Reticulum</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducers and activators of Transcription</td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming Growth Factor- beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor-alpha</td>
</tr>
<tr>
<td>TXA₂</td>
<td>Thromboxane A₂</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand Factor</td>
</tr>
</tbody>
</table>
THESIS SUMMARY

The nitric oxide molecule (NO\textdegree) is without doubt one of the most influential on the pathophysiology of the cardiovascular system. Its effects are broad ranging in this system influencing almost all of its components, particularly the vasculature, platelets and the myocardium. The beneficial effects of this molecule not only in inhibiting the development of cardiovascular disease (CVD) but in minimizing the risk of its acute thrombotic complications makes it an obvious target for therapies designed to enhance its effects. Assessing the tissue effects of NO\textdegree in platelets and the myocardium has been the main focus of this thesis.

Determinants of platelet responsiveness to nitric oxide in diabetic patients with acute coronary syndromes: Effects of glycaemic control

Background

We chose to perform our initial experiments in diabetic patients admitted with an acute coronary syndrome (ACS). This cohort offered us a unique opportunity to assess NO\textdegree bioavailability in a group with one of the highest cardiovascular morbidity and mortality rates. We assessed this via platelet NO\textdegree responsiveness, which has been shown from our laboratory to be impaired in ACS but to date had not been assessed specifically in a diabetic group. As hyperglycaemia is a known independent predictor of mortality in this group we chose in our first set of experiments to primarily assess the effects of glycaemic control (acute and chronic) on platelet NO\textdegree responsiveness.
Study

In diabetic patients admitted with an ACS the relationship between glycaemic control and the main determinants of platelet NO\(^{-}\) responsiveness, superoxide (O\(_2^{-}\)) generation and guanylate cyclase activity were assessed. Secondary hypotheses assessed the effects of acute glycaemic control on other potential modulators of NO\(^{-}\) responsiveness such as asymmetric dimethylarginine (ADMA), L-arginine, L-arginine/ADMA ratio, platelet activated O\(_2^{-}\) release and C-reactive protein (CRP). Other values assessed included CK rise, non-esterified fatty acid (NEFA) levels, ADP induced platelet aggregation and neutrophil count. We also assessed the determinants of both platelet SNP response and of O\(_2^{-}\) levels by a stepwise multivariate analysis; parameters assessed were age, sex, blood sugar level (BSL), statin therapy, insulin therapy, ACE-inhibitor therapy and CK elevation.

Conclusions

In diabetic patients admitted with an ACS:

- Admission BSL was inversely correlated with platelet SNP responsiveness and directly correlated with O\(_2^{-}\) generation, but not with guanylate cyclase activity.
- Admission BSL also correlated with CK rise, CRP, neutrophil count and ADP enhanced O\(_2^{-}\) generation. Admission BSL was inversely correlated with ADMA and L-arginine levels.
- On multivariate analysis, admission BSL was a significant determinant of O\(_2^{-}\) levels and an inverse determinant of SNP response; with increasing age also a significant inverse determinant of SNP response.
Acute Resolution of hyperglycaemia normalizes platelet responsiveness to nitric oxide in diabetics with acute coronary syndromes

Background

We then explored whether improving glycaemic control had any effect on platelet NO\(^{\cdot}\) responsiveness. This was performed by randomizing diabetics with ACS to either intravenous infusions or subcutaneous injections of insulin. This experiment was designed to determine possible mechanisms to explain the results of the DIGAMI study, which showed that tight glycaemic control decreased mortality in diabetics admitted with an acute myocardial infarction (AMI).

Study

Sixty diabetic patients admitted with an ACS were randomized to aggressive IV insulin therapy or standard subcutaneous insulin therapy over 12 hours. The primary objective of this study, was to assess the acute effects of tight glycaemic control on platelet NO\(^{\cdot}\) responsiveness, O\(_2\)\(^{\cdot}\) generation and guanylate cyclase activity. To explore all possible mechanisms of any observed effect δ ADMA,L- arginine and L-arginine/ADMA ratio, CRP, non esterified fatty acids (NEFA) and platelet aggregation were assessed.

Conclusions

In diabetic patients admitted with an ACS;

- Aggressive glycaemic control resulted in significantly enhanced platelet responsiveness to SNP, related to a reduction in O\(_2\)\(^{\cdot}\) generation. No effect on guanylate cyclase activity was seen.
• A significant reduction in ADMA and L-arginine levels were observed with intravenous compared to subcutaneous insulin therapy.

Effects of an oral glucose load on platelet responsiveness to nitric oxide

Background

Elevated BSLs are associated with adverse cardiovascular outcomes in ACS in both diabetic and non-diabetic subjects. Hyperglycaemia is no longer considered an ‘innocent bystander’ however, having detrimental mechanistic implications on a number of protective biological systems. Indeed, harmful effects of sudden glucose loads such as post-prandial hyperglycaemia on the cardiovascular system are becoming apparent. While our previous experiments had focused on the impact of hyperglycaemia and its subsequent correction, on NO’ bioavailability, our follow up experiments assessed the effect of an oral glucose load in normal subjects and patients with known cardiovascular disease. In light of the previous findings, we assessed the effects of an acute glucose load on platelet NO’ responsiveness and vascular reactivity as assessed by applanation tonometry.

Study

8 healthy and 10 ‘high-risk’ cardiovascular subjects were enrolled into this study. A 75 gm glucose load was administered and baseline and 2 hour data were assessed. Platelet SNP responsiveness and O$_2^-$ generation along with augmentation index (AIx) and ADP-induced platelet aggregation were assessed in all subjects. In the ‘high-risk’ cohort cGMP generation and insulin levels were also evaluated.
Conclusions

In the healthy volunteers;

- No significant change occurred in any of the variables assessed

In the ‘high-risk’ cohort

- 80% of patients had undiagnosed impaired glucose handling
- A significant increase in soluble guanylate cyclase activity was associated with an oral glucose load possibly related to an increase in insulin levels

Lack of inotropic effect of nitric oxide in rat papillary muscle.

Background

Our final set of experiments moved away from platelet studies to the assessment of myocardial contractility. Differing methodologies and animal models have resulted in variable results in the assessment of the inotropic effects of NO⁻. While the consensus is that NO⁻ donors have a positive inotropic effect in low doses and are negatively inotropic at high doses, this has been difficult to show in the papillary muscle of most animal models. We addressed this issue in the papillary muscle of the Sprague-Dawley rat.

Study

The experimental protocol involved the assessment of NO⁻ effects on contractility on the left ventricular muscle of the Sprague-Dawley rat. These studies initially involved assessing the most stable preparation, comparing a 10bpm with a 35bpm
protocol. The effect of the NO’ donor SNP was then assessed not only on the isolated LV papillary muscle but also in the presence of β-adrenoceptor stimulation and an ischaemic/reperfusion model (15 mins of anoxia/30 mins of reperfusion).

Conclusions

In the left ventricular papillary muscle of the Sprague-Dawley rat

- A stimulation frequency of 10 bpm resulted in a more stable preparation over a 60 minute protocol, compared to 35 bpm.
- The isolated rat papillary muscle had no measurable response to exogenous NO’ donors. The inotropic effects of β-adrenoceptor stimulation and ischaemia-reperfusion were NO’-independent in this model.

While the field of NO’ research is rapidly expanding, we forget that it is only just over 20 years since we were first aware of its existence. From Furchgott and Zawadski’s (Furchgott and Zawadzki, 1980) initial observation of an endothelium-derived relaxing factor (EDRF) to the subsequent studies by Palmer et al. (Palmer et al., 1987) and Ignarro et al. (Ignarro et al., 1987) showing that EDRF was indeed NO’, many questions remain unanswered in relation to the 1992 ‘molecule of the year’. This thesis contributes to our understanding of NO’ and its associated bioavailability in a number of tissues, particularly in relation to a high-risk cohort, the hyperglycaemic diabetic with an ACS.