Microencapsulation of Protein with EUDRAGIT S 100 Polymer

by

Dan Li

School of Chemical Engineering
The University of Adelaide

A thesis submitted for the degree of Master of Applied Science-Engineering
This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being
available for loan and photocopying.

Miss Dan Li: …..Dan Li…………………………

Date: …..15/12/2005…………………………
SUMMARY

Lactose intolerance is a common and inconvenient medical condition and can cause severe discomfort. People who experience lactose intolerance often take lactase enzyme supplements when they wish to consume dairy products. As a consequence, they normally consume dairy products that are rendered lactose free or else a lactase enzyme supplement is taken concurrently. Normally, these are pills or tablets that dissolve and release the enzyme in the stomach. However, the enzyme may be denatured in the low pH conditions of stomach. Hence, a higher dose is required to ensure that an effective concentration can survive and pass into the small intestine – the site of the enzyme’s physiological action. This problem is being addressed by microencapsulation methods: surrounding the enzyme with protective materials in the form of small particles. These protect the enzyme in the stomach and allow release in the small intestine.

The goal of this research was to investigate an appropriate microencapsulation method for this purpose. An oil-in-oil solvent evaporation method was used to produce microparticles containing BSA protein with a EUDRAGIT S 100 – methacrylic acid and methyl methacrylate copolymer. BSA was used as a cost-effective surrogate for lactase during the research. Sonification was employed during the emulsification step. The microparticles produced at different sonication amplitudes or power outputs were uniform with similar morphologies, typically spheres. Microparticle size decreased with sonicator energy output from 120 µm to 12 µm as the amplitude changed from 40% to 70%. The encapsulation efficiency at amplitude levels of 50%, 60% and 70% was between 70% and 80%. However, the encapsulation efficiency recorded at the 40% setting was much lower, around 40%. The release profiles of those microparticles were studied at different pH. There was a slight leakage from the microparticles at low pH. Above pH 7, total release was achieved within 2 hours. The results of this research confirm that the microparticles could encapsulate lactase as part of a treatment of lactose intolerance.
ACKNOWLEDGEMENTS

Many individuals and several organizations have contributed to this project. I would like to acknowledge my supervisors: Dr. Chris Colby, A/Prof. Brian O’Neill, A/Prof. Dzuy Nguyen and Dr. Yung Ngothai for their helpful guidance and kind encouragement. Their significant efforts in this project are highly appreciated and I will never forget their help. I am also grateful to the staff and students in the School of Chemical Engineering, The University of Adelaide. Their friendship, assistance and encouragement lightened the heavy load of postgraduate studies.

Moreover, I am grateful to my parents for their financial support during my postgraduate studies.
Table of Contents

SUMMARY ... iii
ACKNOWLEDGEMENTS .. iv
LIST OF FIGURES ... vii
LIST OF TABLES .. ix
1 INTRODUCTION .. 1
2 LITERATURE REVIEW ... 3
 2.1 Lactose Intolerance ... 3
 2.2 Treatments for LI ... 6
 2.3 The GI Tract .. 7
 2.4 Present Research about Microencapsulation of Lactase ... 8
 2.5 Selection of the EUDRAGIT Polymer Type ... 12
 2.6 Description of ES 100 ... 13
 2.7 Encapsulation of Lactase with ES 100 .. 14
 2.8 Other Published Studies of Microencapsulation with ES 100 16
 2.9 Sonication Application for Emulsification ... 19
 2.10 Protein Surrogates for Lactase .. 20
 2.11 Summary and Research Gaps ... 22
 2.12 Aims ... 22
3 MATERIALS AND METHODS .. 23
 3.1 Microparticle Formulation .. 23
 3.2 450 Digital Sonifier ... 25
 3.2.1 Introduction .. 25
 3.2.2 Measurement from Acoustic Power ... 26
 3.2.3 Output Measurement by Energy Dissipation ... 29
 3.3 Morphology and Size Analysis ... 30
 3.3.1 Visualization by SEM .. 30
 3.3.2 Size Analysis of SEM Images .. 31
 3.4 BSA Protein Quantification .. 31
 3.4.1 Description .. 31
 3.4.2 Validation Tests ... 32
 3.5 Encapsulation Efficiency .. 34
LIST OF FIGURES

Figure 2.1: Overall chemistry of lactose digestion... 4
Figure 2.2: Lactose intolerance among different ethnic origins in Australia: (a) children in Australia; (b) adults in Australia... 5
Figure 2.3: The gastrointestinal tract (GI tract). ... 7
Figure 2.4: Dissolution pH and residence time for food digestion............................... 8
Figure 2.5: Microcapsules and microspheres... 9
Figure 2.6: Structure of EUDRAGIT S 100. ... 13
Figure 2.7: ES 100 degradation. .. 14
Figure 2.8: Chemical structure of sucrose ester... 15
Figure 2.9: Solvent evaporation methods for ES 100 microparticles. 17
Figure 3.1: Process for producing particles. .. 25
Figure 3.2: 450 Digital Sonifier: (a) photograph; (b) schematic. 26
Figure 3.3: Setting for output power: (a) photograph, (b) schematic. 27
Figure 3.4: Setting for measurement: (a) photograph, (b) schematic 29
Figure 4.1: Pictures of sonication output produced at tip by Branson 450 Digital Sonifier at 70% amplitude in water: (a) observation of tip; (b) fluid motion. .. 38
Figure 4.2: Acoustic power produced at different amplitudes...................................... 39
Figure 4.3: Power produced at amplitudes as estimated by thermal energy dissipation. .. 41
Figure 4.4: SEM images of microparticles from different amplitudes: (a) 40% (Bar=200µm); (b) 50% (Bar=200µm); (c) 60% (Bar=20µm); (d) 70% (Bar=20µm). .. 42
Figure 4.5: SEM images of microparticle surface at 40% amplitude (Bar=50µm)... 43
Figure 4.6: SEM graphs of ES 100 particle morphology: (a) this research at 40% amplitude; (b) Alavi et al. (2002); (c)Rodriguez et al. (1998); (d)Amorim & Ferreira (2001); (e) Jani et al. (2005); and (f) Lee et al. (2000) (Bar = 50 µm)... 45
Figure 4.7: Frequency distributions of microparticles obtained at different sonicator amplitudes: (a) 40%, (b) 50%, (c) 60%, and (d) 70%. ... 46
Figure 4.8: Relation between the output power and median particle size. 48
Figure 4.9: BSA release from ES 100 microparticles at selected pH values. 54
Figure 4.10: BSA release versus ES 100 microparticles. 54
Figure 4.11: Release studies at PBS buffer (pH=6.6). 58
Figure 4.12: Release studies at PBS buffer (pH=6.8). 58
Figure 4.13: Release studies at PBS buffer (pH=7.1). 59
Figure 4.14: Release studies at PBS buffer (pH=7.4). 59
LIST OF TABLES

Table 2.1: Properties of ES 100 and EL 100. ... 13
Table 2.2: Some commonly used proteins... 21
Table 3.1: Parameters in microparticle preparation... 24
Table 3.2: Bio-Rad DC protein assay for statistical analysis. ... 33
Table 4.1: Median size of particles obtained from 40% to 70% amplitude..................... 46
Table 4.2: Data for Bio-Rad DC protein assay.. 50
Table 4.3: Analysis of variance for factors affecting absorbance................................. 50
Table 4.4: Encapsulation efficiency of microparticles made at different ratios of BSA and ES 100 (50% amplitude, n=2). ... 52