
Architectures for Floating-Point Division

Hooman Nikmehr

B.Sc. University of Tehran

M.Eng.Sc. University of Tehran

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

in the

School of Electrical and Electronic Engineering

The University of Adelaide

Australia

Supervisors: Dr. Cheng-Chew Lim and Dr. Braden Phillips

August, 2005



Copyright c©2005

Hooman Nikmehr

All Rights Reserved

ii



CONTENTS

Contents

Abstract xv

Statement of Originality xvii

Acknowledgments xix

Publications xxi

List of Principal Symbols xxiii

List of Abbreviations xxvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Importance of FP Division . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Division Algorithm Taxonomy . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Division Algorithms 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Functional Division Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Goldschmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Newton-Raphson versus Goldschmidt . . . . . . . . . . . . . . . . 14

2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



CONTENTS

2.3 Digit Recurrence Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Restoring Division . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Non-Restoring Division . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Redundant Digit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Radix-2 SRT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.7 High-Radix SRT Algorithm . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Digit Recurrence versus Functional . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 SRT Division Algorithm Implementation 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 QDS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 PD Plot Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Selection Constants Method . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Division Radix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Redundancy Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 PR Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Quotient Conversion Method . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Overlapping Iteration Components . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Overlapped QDS Function . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2 Overlapped PR Formation . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.3 Overlapped QDS Function and PR Formation . . . . . . . . . . . 50

3.7.4 Hybrid Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Number Representation in the IEEE 754 Standard . . . . . . . . . . . . . 51

3.9 FP Division Using the SRT Algorithm . . . . . . . . . . . . . . . . . . . . 52

3.9.1 Rounding and Post-Normalising . . . . . . . . . . . . . . . . . . . 53

3.9.2 Assumptions to Match SRT Division with the IEEE 754 Standard 56

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Comparison Multiples, a Different Approach to Quotient Digit Selection 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



CONTENTS

4.1.1 Retimed Low Power Implementation . . . . . . . . . . . . . . . . 61

4.1.2 Implementation Used in the ARM FP Macrocell . . . . . . . . . . 63

4.1.3 Retimed Implementation of ARM Divider . . . . . . . . . . . . . 65

4.2 Comparison Multiples Based FP Division . . . . . . . . . . . . . . . . . . 65

4.2.1 PR Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Comparison Multiples Based QDS Function . . . . . . . . . . . . 67

4.2.3 QDS Function Structure . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.4 QDS Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.5 FP Division Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.6 FP Division Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 FP Division Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 QDS Function Optimisation . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Optimised QDS Function Evaluation . . . . . . . . . . . . . . . . 77

4.3.3 Recurrence Optimisation . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Optimised Recurrence Evaluation . . . . . . . . . . . . . . . . . . 78

4.4 QDS Function Operands Precisions . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 e′ and c′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 e′′ and c′′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Radix-4 FP Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Precisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3 QDS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.4 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.5 Convert, Round and Normalise Unit . . . . . . . . . . . . . . . . . 102

5.3 Radix-16 FP Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Dataflow Through Overlapped Stages . . . . . . . . . . . . . . . . 103

5.3.2 Digit Set and Iterations . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Precisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.4 QDS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.5 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

v



CONTENTS

5.3.6 Convert, Round and Normalise Unit . . . . . . . . . . . . . . . . . 109

5.4 CRN Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Evaluation of the Proposed Rounding Algorithm . . . . . . . . . 117

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Decimal Signed-Digit Arithmetic, A New Approach 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 DSD Number Representation . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 DSD Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 DSD Carry-Free Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5.1 DCFA with DSD Augend and Addend . . . . . . . . . . . . . . . 125

6.5.2 DCFA with DSD Augend and BCD Addend . . . . . . . . . . . . 132

6.5.3 DCFA with BCD Augend and Addend . . . . . . . . . . . . . . . 136

6.6 DSD Carry-Free Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.1 DSD Minuend and Subtrahend . . . . . . . . . . . . . . . . . . . . 137

6.6.2 DSD Minuend and BCD Subtrahend . . . . . . . . . . . . . . . . . 138

6.6.3 BCD Minuend and Subtrahend . . . . . . . . . . . . . . . . . . . . 139

6.7 DSD to BCD Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7.1 Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . 140

6.7.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7.4 DSD Sign Detection Using DSD2BCD Algorithm . . . . . . . . . . 145

6.7.5 Combined BCD Adder/Subtractor . . . . . . . . . . . . . . . . . . 145

6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Comparison Multiples Based Decimal Floating-Point Divider 149

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Digit Recurrence Based Decimal Division History . . . . . . . . . . . . . 150

7.3 DFP Representation in IEEE 754R Standard . . . . . . . . . . . . . . . . . 151

7.4 DFP Division Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

vi



CONTENTS

7.5 Precision and Rounding Modes . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.5.2 Rounding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 DFP Division Through SRT Algorithm . . . . . . . . . . . . . . . . . . . . 155

7.6.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.6.2 DFP Division Formulation . . . . . . . . . . . . . . . . . . . . . . . 156

7.6.3 Convert and Round . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.6.4 Dealing with Exact Results . . . . . . . . . . . . . . . . . . . . . . 158

7.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.7.1 DFP versus Previously Proposed Binary Divider . . . . . . . . . . 160

7.7.2 Determining the QDS Function Operands Precisions . . . . . . . 161

7.7.3 QDS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.7.4 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Timing Evaluation of the Floating-Point Dividers 181

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1.1 Functional Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1.2 Timing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.2 Logical Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3 Radix-4 FP Divider Timing Evaluation . . . . . . . . . . . . . . . . . . . . 187

8.3.1 Full-Adders Implemented for Speed . . . . . . . . . . . . . . . . . 188

8.3.2 Binary Carry Generators Implemented for Speed . . . . . . . . . 189

8.3.3 Recurrence Critical Path . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.4 Logical Effort Calculation . . . . . . . . . . . . . . . . . . . . . . . 195

8.3.5 Division Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4 Radix-16 FP Divider Timing Evaluation . . . . . . . . . . . . . . . . . . . 199

8.4.1 Recurrence Critical Path . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4.2 Logical Effort Calculation . . . . . . . . . . . . . . . . . . . . . . . 199

8.4.3 Division Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5 DFP Divider Timing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5.1 DSD Borrow Generators Implemented for Speed . . . . . . . . . . 201

8.5.2 Recurrence Critical Path Choices . . . . . . . . . . . . . . . . . . . 203

vii



CONTENTS

8.5.3 Logical Effort Calculation . . . . . . . . . . . . . . . . . . . . . . . 207

8.5.4 Division Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6.1 Radix-4 FP Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6.2 Radix-16 FP Divider . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.6.3 DFP Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9 Conclusions and Future Works 213

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.1.1 Comparison Multiples Approach . . . . . . . . . . . . . . . . . . . 214

9.1.2 Comparison Multiples Based Radix-4 and Radix-16 FP Divider . 215

9.1.3 Comparison Multiples Based DFP Divider . . . . . . . . . . . . . 215

9.1.4 Timing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A Radix-4 and Radix-16 CRN Units Tables 217

B VHDL Code of the Radix-4 Divider 221

B.1 adjust.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.2 compsd.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.3 comparator.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B.4 critical.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.5 divider.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.6 ff.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.7 m1m2invert.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.8 multiplegen.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.9 mux1muxs.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.10 prformation.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

B.11 prsd.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

B.12 qds.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography 241

viii



LIST OF FIGURES

List of Figures

1.1 Microprocessor stall time distribution. . . . . . . . . . . . . . . . . . . . . 5

1.2 Consumers of FP division results. . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Taxonomy of division algorithms. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Components of an iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Robertson diagram for restoring division when r = 2. . . . . . . . . . . . 19

2.3 Robertson diagram of non-restoring division with r = 2. . . . . . . . . . 20

2.4 Robertson diagram for the radix-2 SRT division. . . . . . . . . . . . . . . 22

2.5 Robertson diagram for the radix-2 SRT division with d ∈
[

1
2 , 1
)
. . . . . . 23

2.6 Allowable region for selecting qj+1 in high-radix SRT division. . . . . . . 24

2.7 Robertson diagram of high-radix SRT division. . . . . . . . . . . . . . . 25

2.8 A maximally redundant QDS function operating based on the separat-

ing points sk(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The PD plot for qj+1 = k and qj+1 = k + 1. . . . . . . . . . . . . . . . . . . . 32

3.2 Implementation of the QDS function through the PD plot method. . . . 35

3.3 The PD plot for r = 4 and ρ = 1. . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 The selection constants for the interval [di, di+1). . . . . . . . . . . . . . . 39

3.5 The QDS function implemented through the selection constants method. 41

3.6 Critical path of the SRT division, indicated in red. . . . . . . . . . . . . . 42

3.7 A CFA used in the recurrence of high-radix SRT division. . . . . . . . . 45

3.8 Implementation of the QDS function with a redundant PR. . . . . . . . . 45

3.9 Overlapping the iteration components. . . . . . . . . . . . . . . . . . . . 47

3.10 The design with no overlap among the components. . . . . . . . . . . . 47

3.11 Overlapping the QDS function. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 Overlapping the PR formation. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Overlapping the QDS function and the PR formation. . . . . . . . . . . . 50

ix



LIST OF FIGURES

3.14 Hybrid overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.15 The IEEE 754 standard formats for representing FP numbers. . . . . . . 53

3.16 Structure of FP divider complying the IEEE 754 standard. . . . . . . . . 54

4.1 Implementation of high-radix SRT division. . . . . . . . . . . . . . . . . 62

4.2 Removing buffers from the critical path. . . . . . . . . . . . . . . . . . . . 63

4.3 Implementation of the QDS function using the comparators. . . . . . . . 64

4.4 Retimed version of the QDS function. . . . . . . . . . . . . . . . . . . . . 66

4.5 Implementing the QDS function using the comparison multiples method.

BSDA indicates the BSD adders. . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 The proposed FP divider based on the comparison multiples approach.

The block named Adj represents the adjust unit. . . . . . . . . . . . . . . 72

4.7 The two paths run in parallel in the proposed FP divider structure. . . . 72

4.8 Optimised implementing the comparison multiples based QDS function. 76

4.9 The optimised implementation of FP division based on the redefined

QDS function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 The three paths run in parallel in the optimised FP divider structure. . . 80

5.1 The general structure of the radix-4 QDS function. . . . . . . . . . . . . . 87

5.2 General structure of the comparison multiple generator used in the

proposed radix-4 FP divider. . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 An implementation of a BSD adder with a BSD augend and a 2’s com-

plement addend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 General structure of the comparator used in the radix-4 FP divider,

where k = 1, 2 and {M2}5 ≡
{
M′

2

}
5
. . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 An architecture for n-digit BSD sign detectors using carry generators.

For the sign detectors used in the proposed radix-4 QDS function n = 7. 95

5.6 Implementation of the coder used in the proposed radix-4 FP divider. . 96

5.7 Implementation of the proposed recurrence of the radix-4 FP division. . 98

5.8 Factor generator used in the implementation of the radix-4 FP division. 99

5.9 Implementation of the PR formation, where w′0 is shown as 0xx.xx · · · x00. 100

5.10 Implementation of the adjust unit. . . . . . . . . . . . . . . . . . . . . . . 101

5.11 Implementation of the proposed radix-16 FP division recurrence. . . . . 104

5.12 Scheme for implementing the RTNE using on-the-fly rounding algorithm.111

5.13 Implementation of the radix-4 CRN. . . . . . . . . . . . . . . . . . . . . . 116

x



LIST OF FIGURES

5.14 Realisation of the radix-16 CRN unit. . . . . . . . . . . . . . . . . . . . . 117

6.1 The general structure of a 1-digit DD-DCFA. . . . . . . . . . . . . . . . . 127

6.2 An n-digit DD-DCFA implemented using 1-digit DD-DCFA blocks. . . 128

6.3 The implementation for the FRFU used in DD-DCFA. . . . . . . . . . . . 128

6.4 An implementation of a 4-bit (4:2)-compressor. . . . . . . . . . . . . . . . 129

6.5 The implementation of the adjust circuit used in FRFU. . . . . . . . . . . 130

6.6 The implementation of the TDSU used in DD-DCFA. . . . . . . . . . . . 131

6.7 The implementation of the FRSU employed in DD-DCFA. . . . . . . . . 132

6.8 The general structure of a 1-digit DB-DCFA. . . . . . . . . . . . . . . . . 134

6.9 An n-digit DB-DCFA implemented using 1-digit DB-DCFA blocks. . . . 134

6.10 The implementation of FRFU employed in DB-DCFA. . . . . . . . . . . 135

6.11 The implementation of the TBSU used in DB-DCFA. . . . . . . . . . . . 136

6.12 The implementation of FRSU employed in DB-DCFA. . . . . . . . . . . 136

6.13 An n-digit BB-DCFA implemented using 1-digit BB-DCFA building blocks.137

6.14 A DSD adder/subtractor with DSD input operands using an n-digit

DD-DCFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.15 A DSD adder/subtractor with one DSD and one BCD input using an

n-digit DB-DCFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.16 A DSD adder/subtractor with BCD inputs using an n-digit BB-DCFA. . 140

6.17 An implementation for the proposed DSD2BCD converter. . . . . . . . . 144

6.18 An implementation of a combined decimal adder/subtractor. . . . . . . 146

7.1 The implementation of the proposed decimal QDS function. . . . . . . . 164

7.2 The circuit mapping BCD digit z = z3z2z1z0 to the corresponding 9’s

complement value zC = zC
3 zC

2 zC
1 zC

0 . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 The implementation of the comparison multiple generator, for k =

2, 3, · · · , 8, 9. The final results are in the BCD format. . . . . . . . . . . . 166

7.4 The implementation of the comparators used in the proposed decimal

QDS function, for k = 1, 2, · · · , 8, 9. . . . . . . . . . . . . . . . . . . . . . . 167

7.5 An implementation for 1-digit DB-DCFA′, an alternative to DB-DCFA. . 168

7.6 The architecture used for implementing the comparison sign detectors

and the PR employed in the proposed DFP divider. . . . . . . . . . . . . 169

7.7 Structure of the recurrence of the proposed DFP division. . . . . . . . . 172

7.8 The implementations of MUX 11:1 and MUX 10:1. . . . . . . . . . . . . . 173

xi



LIST OF FIGURES

7.9 The implementation of the PR Formation used in the DFP divider. . . . 175

7.10 The implementation of CIRCUIT1 used in the decimal PR formation. . . 176

7.11 An implementation for DB-DCFA′′ used in the decimal PR formation. . 177

7.12 An implementation for the adjust unit used in the decimal PR formation. 179

8.1 A piece of VHDL code used for functional evaluation. . . . . . . . . . . 184

8.2 Implementations for 1-bit full-adder. . . . . . . . . . . . . . . . . . . . . 188

8.3 Realisations for the modified 1-digit BSD adder used in the comparators. 189

8.4 Delay estimations on Kogge-Stone and Han-Carlson based adders with

different operand widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.5 The comparison sign detector implemented using Kogge-Stone approach.193

8.6 A comparison sign detector realised using the MRC approach. . . . . . 194

8.7 Suggested critical paths for the proposed radix-4 FP divider using the

comparator given in Figure 8.3(a). . . . . . . . . . . . . . . . . . . . . . . 195

8.8 Suggested critical paths for the proposed radix-4 FP divider using the

comparator given in Figure 8.3(b). . . . . . . . . . . . . . . . . . . . . . 196

8.9 Critical path of the proposed radix-16 FP divider. . . . . . . . . . . . . . 200

8.10 The design producing pi and gi for every Pk = zi, where k = 1, 2, · · · , 8, 9. 202

8.11 An implementation for circuit producing pi and gi using Kogge-Stone

based borrow generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.12 An implementation for circuit producing pi and gi using an MRC based

borrow generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.13 An implementation for the network producing Pi: j and Gi: j from pi and

gi using the Kogge-Stone approach. . . . . . . . . . . . . . . . . . . . . . 204

8.14 An implementation for the network producing Pi: j and Gi: j from pi and

gi using the MRC approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.15 Suggested critical paths for the proposed DFP divider using the pi/gi

generator shown in Figure 8.11. . . . . . . . . . . . . . . . . . . . . . . . 205

8.16 Suggested critical paths for the proposed DFP divider using the pi/gi

generator shown in Figure 8.12. . . . . . . . . . . . . . . . . . . . . . . . 206

xii



LIST OF TABLES

List of Tables

1.1 Performance of the FPUs of the recent microprocessors with double

precision operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Decimal number 23 represented in a decimal SD set with a = 7. . . . . . 21

2.2 Possible SD sets for radices 2, 4 and 8. . . . . . . . . . . . . . . . . . . . . 21

3.1 Cases to be investigated before using the upper bounds. . . . . . . . . . 34

3.2 The selection intervals and mk(i) for r = 4 and ρ = 1. . . . . . . . . . . . . 41

3.3 Delay per iteration versus the radix in high-radix SRT division. . . . . . 42

3.4 An example of the rounding errors for the RTNE scheme. . . . . . . . . 54

4.1 The alternative expression for the QDS function. . . . . . . . . . . . . . . 68

5.1 The most convenient for generating values for M1 and M2. . . . . . . . . 88

5.2 Carry generating rule for digitwise constant-time addition a+i − a−i + bi =

2s+i+1 − s−i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Values of qj+1 constructed by Mag(qj+1) and Sign(qj+1). . . . . . . . . . . . 96

5.4 Reformatting process carried out by the adjust unit, for k ∈ {0, 1, 2}. . . . 101

5.5 The rules used by the radix-4 CRN unit to represent the unnormalised

and unrounded quotient in the IEEE 754 standard format. . . . . . . . . 116

5.6 The rules used by the radix-16 CRN unit to represent the unnormalised

and unrounded quotient in the IEEE 754 standard format. . . . . . . . . 118

6.1 Relationship among tout, tin, p and the final result digit. . . . . . . . . . . 126

6.2 Transfer digit tout versus (1 ± p) signs. . . . . . . . . . . . . . . . . . . . . 131

6.3 Relationship between tout, tin, p and the final result digit. . . . . . . . . . 133

7.1 The DFP representing specifications defined by the IEEE 754R standard. 152

7.2 Values of p corresponding to the representation format. . . . . . . . . . . 156

xiii



7.3 The rules used by the decimal CR units to represent the unrounded

quotient in the IEEE 754R standard format. . . . . . . . . . . . . . . . . . 159

7.4 The ranges, which Mk are defined. . . . . . . . . . . . . . . . . . . . . . . 165

7.5 Alternative rules for performing 1-digit DB-DCFA. . . . . . . . . . . . . 168

7.6 Values of qj+1 constructed by Mag(qj+1) = q3q2q1q0 and Sign(qj+1). . . . . 170

8.1 Logical efforts and parasitic delays of the components used in this chapter.197

8.2 Logical effort calculations on the critical paths in Figures 8.7 and 8.8. . . 198

8.3 Logical effort calculations on the critical path shown in Figure 8.9. . . . 200

8.4 Logical effort calculations on the critical paths in Figures 8.15 and 8.16. . 207

8.5 Critical path delays and the execution times of Dividers A, B, C, D and E.210

A.1 The truth table of the signals generated by the radix-4 CRN unit. The

last quotient digit q28 is represented as Sign(q28)Mag(q28). . . . . . . . . . 217

A.2 The truth table of the signals generated by the radix-16 CRN unit. . . . 218

xiv



Abstract

Almost all recent microprocessors and DSP chips perform addition, subtraction, mul-

tiplication and division in hardware. However, studying their performance reveals

that division is not carried out as fast as the other three operations. One investigation

shows that while floating-point division, with about 3% of the dynamic floating-point

instruction count, seems to be a relatively unimportant instruction, it may cause about

40% degradation to the overall system performance.

Several mathematical algorithms have been developed over the past 50 years to

perform division quickly, with high precision. However, only a few are suitable for im-

plementation in VLSI. Among them, digit recurrence algorithms are the most widely

accepted methods of performing floating-point division in the latest processors. A

survey shows that out of 13 recent processors, 11 use SRT division1 for performing

floating-point division. Investigations show that SRT division gives the best trade-

off between delay and area. Selecting SRT division for implementing floating-point

division is a reasonable choice because, unlike the other class of division algorithms,

i.e. functional, it produces a correctly rounded quotient conforming to the IEEE 754

standard.

There are techniques for improving the performance of SRT division. Of these,

increasing the speed of quotient digit selection (QDS), making the best balance between

the radix and the redundancy factor, representing the partial remainder in a redundant

form, converting the quotient from redundant to conventional form the on-the-fly and

overlapping the division recurrence components are the most important.

In this thesis a different method of implementing the QDS function is proposed. This

approach, which is described mathematically and architecturally, is based on the new

comparison multiples idea. Unlike the traditional implementation of the QDS function,

which searches for the quotient digit in a lookup table, the proposed method calculates

1SRT division is a type of non-restoring digit recurrence division.

xv



the quotient digit directly in sign and magnitude format. This approach almost halves

the fan out of some critical path components, which therefore operate faster. Having

received the truncated partial remainder, the QDS function compares it with truncated

multiples of the divisor to find the range in which the partial remainder belongs. The

results of the comparisons are converted to the magnitude of the quotient digit using

simple logic called the coder. Concurrently, another circuit checks the truncated partial

remainder to determine whether the quotient digit is negative. This circuit operates

off the critical path since the comparison multiples based QDS function calculates the

sign and magnitude of the quotient digit separately. Having applied these changes, a

faster QDS function and consequently, a shorter critical path delay for the floating-point

divider is obtained. Implementations of radix-4 and radix-16 floating-point dividers

are investigated and optimised to further decrease the cycle time.

The idea of comparison multiples is extended to radix 10 to implement a decimal

floating-point divider complying with the IEEE 754R standard. To achieve this goal,

decimal signed-digit arithmetic along with implementations of carry-free addition and

subtraction are proposed. The original comparison multiples based implementation of

high-radix SRT division is modified to suit radix 10.

The binary and decimal implementations of comparison multiples based division are

evaluated for delay. Using the method of logical effort, the radix-4, radix-16 and decimal

floating-point dividers are found to be faster than corresponding circuits reported in

the public literature.

xvi



Statement of Originality

I hereby declare that this work contains no material which has been accepted for the

award of any other degree or diploma in any university or other tertiary institution

and to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,

being available for loan and photocopying.

Hooman Nikmehr

15 August 2005

xvii



xviii



Acknowledgments

I would like to thank my supervisors, Dr. Cheng-Chew Lim and Dr. Braden Philips,

who have technically and mentally supported me during my PhD research. Dr. Lim

taught me how to successfully pass academic milestones by hardwork and punctuality

and Dr. Philips opened my eyes to different perspectives of the design for digital

arithmetic.

I would also like to express my sincere thanks to Mr. Ron Seidel, who is one of the

best friends I have ever had. I have benefited from his priceless advice to cope with the

problems, fears and confusion I have had during my residency in Australia.

I must express my gratitude to my mother who took care of the bureaucracy related

to my scholarship in Iran.

Finally, without the endless love, intense passion and inexpressible patience that my

wife, Mehrnaz, has offered me, even dreaming of finishing this thesis was a dream.

xix



xx



Publications

1. H. Nikmehr and C. C. Lim. A New On-the-fly Summation Algorithm. In Pro-

ceedings of 8th Asia-Pacific Computer Systems Architecture Conference ACSAC 2003,

volume 2823 of Lecture Notes in Computer Science, pages 258267, Aizu-Wakamatsu,

Japan, 2326 September 2003.

2. H. Nikmehr and B. Phillips and C.C. Lim. A Decimal Carry-Free Adder. In

Proceeding of SPIE conference on Smart Materials, Nano-, and Micro-Smart Systems

2004, pages 786-797, Sydney, Australia, 13-15 December 2004.

xxi



xxii



List of Principal Symbols

1. f significand or mantissa (IEEE 754 standard)

a largest digit in a SD set

b borrow

Bi group borrow

β representation radix (IEEE 754 standard)

βP number of integer bits of the shifted PR (PD plot)

Cini gate i input capacitance (logical effort)

Couti load capacitance driven by the gate i (logical effort)

c′ number of fractional digits of the shifted PR used in the comparisons

c′′ number of fractional digits of the shifted PR used in the PR sign detection

d divisor significand or coefficient

D d (PD plot)

D divisor

D̂ minimum path delay (logical effort)

E exponent (IEEE 754 standard)

e′ number of shifted PR integer digits used in the comparisons

e′′ number of shifted PR integer digits used in the PR sign detection

εD precision at which D is examined (PD plot)

εP precision at which P is examined (PD plot)

εq error of q with respect to an infinite precision quotient x
d

εq[ j + 1] error of q after ( j + 1)-th iteration

eD divisor exponent

eQ quotient exponent

eX dividend exponent

fi stage effort (logical effort)

f̂ minimum stage effort (logical effort)

xxiii



F path effort (logical effort)

f a dimension related to the fan out (parallel-prefix taxonomy)

gi stage logical effort (logical effort)

G path logical effort (logical effort)

g generate

G guard bit (rounding)

hi stage electrical effort (logical effort)

ĥi minimum stage electrical effort (logical effort)

H path electrical effort (logical effort)

k kill

l dimension related to number of logic levels (parallel-prefix taxonomy)

LEi total logical effort born by a component

L last bit (rounding)

Lk continuity condition lower bound

Mag(k) magnitude of SD number k

m.n number represented in m integer and n fractional digits/bits

mk selection constant

Mk comparison multiple

N̂ best number of stages (logical effort)

ND total number of bits of D, which are examined (PD plot)

NP total number of bits of P, which are examined (PD plot)

O proportional to

Pi: j group propagate

p propagate

P PR (PD plot)

p precision (DFP)

pi stage parasitic delay (logical effort)

P path parasitic delay (logical effort)

q quotient significand or coefficient

Q quotient

q[ j + 1] q after ( j + 1)-th iteration

QDS∗ QDS function without the PR sign detector

qHj+1 the most significant part of a radix-16 quotient digit

qj+1 ( j + 1)-th quotient digit

xxiv



Qj+1 q in the 2’s complement representation, after qj+1 is selected

qLj+1 least significant part of a radix-16 quotient digit

r radix

R round bit (rounding)

rem remainder

ρ redundancy factor

S sign (IEEE 754 standard)

S sticky bit (rounding)

sD dividend sign

Sign(k) sign of SD number k

sk separating point

Sk sign of SD number k

sQ quotient sign

Srw[ j] shifted PR sign

sX dividend sign

t dimension related to number of wiring tracks (parallel-prefix taxonomy)

τ inverter delay with an identical inverter as the load

tin transfer digit from the adjacent addition position in the right

tout transfer digit sent to the adjacent addition position in the left

Uk continuity condition upper bound

ulp unit of last position

w[ j + 1] ( j + 1)-th PR

wINT intermediate PR (radix-16 division)

x dividend significand or coefficient

X dividend

<y> y-th digit/bit

�y� the largest integer smaller than or equal to y

�y	 the smallest integer larger than or equal to y

¬y inverted y (y is a bit vector)

y −y (y is a digit)

zC 9’s complemented z

ls f digits involved in the least significant formation (radix-16 division)

{z}x number z truncated to x fractional digits/bits

xxv



xxvi



List of Abbreviations

BB-DCFA A DCFA with BCD addend and augend

BS Borrow Save

BSD Binary SD

BUF Buffer

CAD Computer Aided Design

CFA Carry-Free Adder

CLA Carry Look Ahead

CMOS Complementary Metal Oxide Semiconductor

CR Convert and Round

CRN Convert, Round and Normalise

CS Carry-Save

DB-DCFA A DCFA with DSD addend and BCD augend

DCFA Decimal Carry-Free Adder

DD-DCFA A DCFA with DSD addend and augend

DFP Decimal Floating-Point

DSD Decimal Signed-Digit

DSD2BCD DSD to BCD

DSP Digital Signal Processor

EDA Electronic Design Automation

FP Floating-Point

FPU FP Unit

FRFU Final Result Formation Unit

FRSU Final Result Selection Unit

IEEE Institute of Electrical and Electronics Engineers

MRC Multilevel Reverse-Carry

MUX Multiplexer

xxvii



PLA Programmable Logic Array

PR Partial Remainder

QDS Quotient Digit Selection

RHE Round-Half-Even

RTL Register Transfer Language

RTNE Round To Nearest Even

SD Signed-Digit

SRT Type of non-restoring digit recurrence division named after

D. Sweeney, J. E. Robertson and T. D. Tocher

TBSU Transfer Bit Selection Unit

TDSU Transfer Digit Selection Unit

VLSI Very Large Scale Integration

xxviii



Chapter 1

Introduction

This chapter begins by outlining the author’s motivation to work on the floating-point

division. It provides a broad overview of division, and explains its role in the fields of

computer arithmetic and floating-point computation. The major contributions of this

research are characterised and the organisation of thesis is presented.

1



Chapter 1. Introduction

1.1 Motivation

To achieve high performance in carrying out massive mathematical computations,

almost all recent microprocessors and digital signal processors (DSP), perform in hard-

ware all four fundamental arithmetic operations, namely addition, subtraction, multi-

plication and division [OF97b]. Studying the processors’ architectures and implemen-

tations reveals that of the four operations, division is not performed as fast as addition,

subtraction and multiplication [SL96].

Reasons for the difference come from the nature of division. Since division is not

closed over integers and has a result consisting of two components, namely quotient and

remainder, and as it needs rather sophisticated operations to be carried out, division is

believed to be the most time consuming of the four fundamental arithmetic operations.

Researchers have not paid adequate attention to its design because division has been

rated as an infrequent operation in computation. It is now recognised that inefficient

implementation of dividers can significantly affect the system performance in many

applications [Sco85, MMH93]. Incorrect implementation can lead to massive financial

damage to processor producers. In 1994, Intel lost US$475 Million due to an error in the

division part of the Pentium microprocessor’s floating-point unit (FPU) [Bry96, Mol95].

This fiasco highlights that the algorithms, architectures and realisations proposed for

division are still immature, requiring more investigation and attention, especially when

designing modern high performance processors. It seems that division requires more

robust algorithms, which decrease the chance of error when being implemented. The

algorithms should be developed in such a way that more parallelism among the op-

erating components is achievable. Meanwhile, the components are expected to be

implemented more efficiently, demonstrating faster response time. Developing novel

division algorithms, which employ more efficient processes with higher concurrency

among them, may lead to more efficient implementations of division.

1.2 Overview

Division is used in a wide range of scientific, industrial and commercial computer ap-

plications. In early days, it was carried out only through software emulation. However,

more recent processors complying with the IEEE 754 standard [IEE85] are equipped

with FPUs performing floating-point (FP) addition, subtraction and multiplication, as

2



1.2. Overview

well as division, in VLSI.

1.2.1 Importance of FP Division

FP division has been regarded as an infrequent and low priority operation. This is a

misconception. It comes about probably because a rule of thumb states that a divider is

fast enough if it operates at one third of the speed of the multiplier [BPPT87]. A survey

performed on FPUs reveals that while the majority of the microprocessors surveyed

carry out both FP addition and multiplication in 2 or 3 machine cycles, FP division

latency spreads between 8 and 60 machine cycles [SL96]. The survey results in Table

1.1 also show that throughput performance is biased in support of FP addition and

multiplication. Most of the FPUs surveyed are pipelined in such a way that repeat

rates of 1 or 2 cycles are obtained for FP addition and multiplication. However, almost

no pipelined FP division unit is found among the rows of Table 1.1. The survey

shows that most emphasis of the designers has been placed on developing faster FP

adders and multipliers. On the other hand, as this negligence intentionally widens the

performance gap by downplaying FP division, software developers take advantage

of FP algorithms redefined to avoid this complex operation. However, studying the

applications rewritten based on division free algorithms [FL94] shows that they mostly

display poor behaviour like numerical instability or a tendency to overflow [SL96].

Piso et al. [PPB03] carry out simulations to show the importance of efficient FP units

in superscalar processors. Their study shows that changes in the density of division and

square root operations below 1% lead to changes in processor performance of around

20%. Another investigation performed by Oberman [Obe97] reveals the relationship

between the latency of FP division and system performance. Instead of using synthetic

benchmarks such as Whetstone [Wei89] or kernel benchmarks like Linpack [Don90],

which are representative of typical FP workloads, Oberman employs more realistic and

meaningful benchmarks such as SPECfp92 [Dix92]. In answering the question “Does

a high-latency division/square root operation cause enough system degradation to

justify dedicated hardware support?”, Oberman discovers that while FP division with

about 3% of the dynamic FP instruction count seems to be a relatively unimportant

instruction, it can be the source of 40% of the overall system performance degradation

(see Figure 1.1). Moreover, studying Figure 1.2, which expresses an answer to the

question “What operations most frequently consume division results?”, reveals that

3



Chapter 1. Introduction

Table 1.1: Performance of the FPUs of the recent microprocessors with double precision

operands (adapted from [SL96]).

Cycle
Latency [cycles]

Throughput [cycles]

Design Time [ns] a ± b a × b a ÷ b

DEC 21164 Alpha AXP 03.33 ns 4
1

4
1

22−60
22−60

Hal Sparc64 06.49 ns 4
1

4
1

8−9
7−8

HP PA7200 07.14 ns 2
1

2
1

15
15

HP PA8000 05.00 ns 3
1

3
1

31
31

IBM RS/6000 POWER2 13.99 ns 2
1

2
1

16−19
16−19

Intel Pentium 06.02 ns 3
1

3
2

39
39

Intel Pentium Pro 07.52 ns 3
1

5
2

30
30

MIPS R8000 13.33 ns 4
1

4
1

20
17

MIPS R10000 03.64 ns 2
1

2
1

18
18

PowerPC 604 10.00 ns 3
1

3
1

31
31

PowerPC 620 07.50 ns 3
1

3
1

18
18

Sun SuperSPARC 16.67 ns 3
1

3
1

9
7

Sun UltraSPARC 04.00 ns 3
1

3
1

22
22

FP adders and multipliers are the consumers for 27% and 18% of FP divider results,

respectively. This means that if an inefficient FP divider is used in the FPU, the processor

interlock period generally increases due to a longer time for which the FP divider

result consumers have to wait. Therefore, insufficient effort put to design an efficient

FP divider may nullify attempts to implement outstanding FP adders and multipliers.

Dealing with FP division more seriously and better balancing performance among FP

units is more reasonable than compromising the overall performance of the whole

processor.

1.2.2 Division Algorithm Taxonomy

A simple definition of division is the reciprocal of multiplication. In order to carry out

division in a high precision and fast way, mathematical algorithms have been proposed

over the past five decades [Toc58, Mac61, Met62, Gol64]. According to the major

fundamental operations involved, division algorithms are categorised into two major

groups [SL96]: digit recurrence algorithms based on subtractive iterations, and functional

methods taking advantage of multiplication. Figure 1.3 shows a taxonomy of the

4



1.2. Overview

0

10

20

30

40

50

FP addition FP multiplication FP division

FP
 e

xc
es

s 
cy

cl
e 

pe
r 

in
st

ru
ct

io
n 

(%
) 

Figure 1.1: Microprocessor stall time distribution (adopted from [Obe97]).

0

10

20

30

FP addition FP multiplication FP division FP subtraction

Pe
ce

nt
ag

e 
of

 F
P 

di
vi

si
on

Figure 1.2: Consumers of FP division results (adopted from [Obe97]).

5



Chapter 1. Introduction

Newton Raphson

Division Operation Algorithms

Digit Recurrence Functional

Restoring Non-Restoring Goldschmidt

SRT

Figure 1.3: Taxonomy of division algorithms.

algorithms.

Oberman and Flynn [OF97b] categorise division algorithms differently as digit re-

currence, functional, very high-radix, lookup table and variable latency. These five

classes give a more precise description, however, since in practice, variable latency

and lookup table methods are rarely applicable, and since very high-radix algorithms

are classified under digit recurrence techniques, current researchers tend not to use

Oberman and Flynn’s arrangement.

1.3 Research Objectives

Division is an important operation for several applications such as computer graphics,

scientific computing, DSP and multimedia. Although division is less common than

the other basic arithmetic operations, the poor performance of many processors when

dividing makes it execution time comparable to the time spent performing addition

and multiplication. The objectives of this thesis are as follows.

1. To devise a new radix-r FP division algorithm, which when being implemented,

is able to generate the quotient quicker than the conventional methods.

2. In this new approach, the components affecting the FP division response time are

revisited. As an objective of this thesis, it is tried to decrease the delay of the

quotient digit selection by developing new selection methods. In addition, the

division recurrence is deeply studied in order to develop implementations with

shorter critical paths.

3. Since radix-4 and radix-16 FP dividers are very popular for commercial and

academic implementations, the new general radix algorithm is examined for

6



1.4. Research Contributions

these two radices. One of the objective of this research is to investigate whether

for these specific radices the new FP division algorithm could achieve even less

execution time.

4. The other goal of this research is to improve the on-the-fly rounding method in

order to provide quotients complying with the IEEE 754 standard.

5. After introducing decimal arithmetic as a new standard for commercial and bank-

ing applications in the new millennium, designers have tended to develop arith-

metic units handling decimal operands. As a challenging goal of the present

work, the possibility of using the proposed radix-r FP division algorithm for

implementing decimal FP division is investigated.

6. Another objective of this thesis is to make sure that speed of the proposed radix-

4, radix-16 and decimal dividers are comparable with the available designs. To

fulfill that, a time estimation using one of the recent method of logical effort is

carried out.

1.4 Research Contributions

The major contributions to the body of knowledge made in this thesis are listed as

follows.

1. Analysing different approaches for implementing division in detail. It is un-

derstood that the SRT algorithm is the most suitable for implementation of FP

division.

2. Introducing a new methodology for selecting the quotient digit using the com-

parison multiple idea. The key features of the proposed selection function can be

stated as follows.

• Unlike other approaches, in which the selection constants play the main

role in determining the quotient digits, the proposed algorithm performs the

digit selection function using limited precision multiples of the divisor.

• The divisor multiples are calculated once at the beginning of division while

the selection constants are kept in a lookup table.

7



Chapter 1. Introduction

• The circuit selecting the quotient digit is partitioned into two independent

sub-circuits. One determines the absolute value of the quotient digit and the

other determines its sign. These two operate in parallel.

3. Developing an algorithm for FP division based on the new quotient digit selection

(QDS) function. This algorithm is valid for dividends and divisors represented in

the IEEE 754 standard. The quotient digits can be generated in any radix r = 2m,

where m is a positive integer. The quotient is finally rounded according to the

IEEE rounding schemes and represented in the IEEE 754 standard.

4. Providing a robust mathematical framework for the new algorithm. Functionality

of the algorithm is explained through mathematical statements. It is proved that

the quotient obtained complies to the requirements of the IEEE 754 standard.

For a given radix, the mathematical statements provide the precise information

needed for designing an architecture for a FP divider.

5. Proposing a new approach to on-the-fly rounding. This technique, unlike the

traditional method [EL89], needs no post-normalisation step.

6. Implementing radix-4 and radix-16 FP dividers using the proposed techniques.

The architecture introduced for radix-16 FP divider is obtained by overlapping 2

consecutive radix-4 dividers.

7. Studying the timing behaviour of the two dividers. The results obtained from

the timing evaluations expose that the new dividers are faster than their known

counterparts.

8. Extending the new division algorithm, developed originally for radices of power

of 2, to radix 10. This is carried out by redefining the comparison multiples idea to

suit decimal FP division. Recently, decimal FP arithmetic [CSSW01, Cow03b] has

attracted attention in financial applications [TO91]. Recent regulations [Eur99]

require decimal digits for currency calculations. Developing decimal units is

therefore a new concern in computer arithmetic and VLSI areas.

9. Proposing an implementation for decimal FP division. The design timing is

evaluated and compared with the similar implementations.

8



1.5. Thesis Organisation

1.5 Thesis Organisation

Following is a chapter-by-chapter outline of the thesis that provides a general overview

of the structure and the content of this thesis.

In Chapter 2 background information on division algorithms is presented. A short

introduction to functional algorithms is presented. The major part of this chapter covers

digit recurrence algorithms especially radix-2 and high-radix SRT division.

Chapter 3 describes division implementation using high-radix SRT division. Trade-

offs between parameters of the algorithm and divider performance are explained in

detail. Chapter 3 gives an introduction to the IEEE 754 standard, concentrating on

division related subjects such as number representation and rounding schemes.

Chapter 4 introduces the new comparison multiples idea for selecting the quotient

digit. The approach is supported by a mathematical discussion. Chapter 4 compares

the new method with the previous approaches. An implementation for radix-r FP

division based on the comparison multiples idea is proposed in this chapter, and the

structure of the components used in the implementation is explained.

Chapter 5 presents implementations for radix-4 and radix-16 FP dividers. The

circuits are developed using the approach introduced in Chapter 4. The radix-16 FP

divider is realised using two overlapped copies of the radix-4 FP divider.

Chapter 6 introduces a new type of decimal signed-digit arithmetic. The discussion

is followed by implementations of mathematical units performing decimal signed-digit

addition and subtraction.

Chapter 7 redefines the new comparison multiples idea to make it applicable for

implementing a decimal FP divider. The divider uses decimal signed-digit arithmetic

introduced in Chapter 6 to carry out the division recurrence. The chapter ends with an

implementation of the divider.

Chapter 8 shows the results of the critical path timing analysis of all of the previously

introduced designs. Division latency for the radix-4 FP, the radix-16 FP and the DFP

dividers are determined and compared with those of available designs. The timing

evaluations are performed using the method of logical effort [SSH99].

Chapter 9 concludes the thesis and discusses some avenues for future research.

9



Chapter 1. Introduction

10



Chapter 2

Division Algorithms

In this chapter, specifications of the two classes of division algorithms, digit recurrence

and functional, are presented. Advantages and disadvantages of the two types of algo-

rithms are discussed. Finally, one of the algorithms is chosen for the implementation

of FP division presented in subsequent chapters.

11



Chapter 2. Division Algorithms

2.1 Introduction

Digit recurrence and functional, as shown in Figure 1.3, are two major approaches for

developing algorithms for division. The functional class of algorithms uses multipli-

cation as the central operation, while the digit recurrence group takes advantage of

addition (subtraction). Digit recurrence algorithms are very similar to the traditional

paper-and-pencil division method, which students learn in elementary schools. Some-

times in the literature, digit recurrence algorithms are called subtractive algorithms and

functional algorithms are referred to as multiplicative methods [Par00].

This chapter goes through the taxonomy of the division algorithms shown in Fig-

ure 1.3 and describes how functional and digit recurrence algorithms derive the quo-

tient. Two major functional methods, Newton-Raphson and Goldschmidt, are ex-

plained. It is followed by a discussion on their advantages and disadvantages. Restor-

ing division, as the basic division method is described and then, non-restoring, radix-2

SRT and high-radix SRT division algorithms are introduced. At the end of Chapter 2, an

argument is given to justify the selection of SRT division as the most suitable algorithm

for implementing FP division.

2.2 Functional Division Algorithms

Functional division algorithms use function-solving techniques such as Newton-Raphson

[OF97b, HP90] and Goldschmidt [Sco85, Gol64] to approach the quotient. In this sec-

tion, the specifications of these two methods are briefly studied.

2.2.1 Newton-Raphson

Considering q, x and d as the quotient, the dividend and the divisor, respectively, the

conventional division

q =
x
d

(2.1)

is rearranged by the Newton-Raphson algorithm as

q =
1
d

x . (2.2)

12



2.2. Functional Algorithms

Therefore, instead of finding the quotient directly, the reciprocal of d is calculated and

multiplied by x. For this purpose, the algorithm defines

f (y) =
1
y
− d (2.3)

and then, determines the zero of the function by means of the famous Newton iteration

yi+1 = yi − f (yi)
f ′(yi)

= yi −
1
yi
− d

− 1
y2

i

= yi(2 − dyi) for i = 0, 1, · · · ,n (2.4)

with initial value y0 = 1. Substituting (2.4) into itself results in

yi = (1 − (d − 1))
(
1 + (d + 1)2

) (
1 + (d − 1)4

)
· · ·
(
1 + (d − 1)2i

)
, (2.5)

which converges to 1
d if 1

2 ≤ d < 1, since

lim
i→∞

yi =
1

1 + (d − 1)

=
1
d
. (2.6)

After obtaining the desired precision for yi, the algorithm multiplies yi by x to find q.

2.2.2 Goldschmidt

The Goldschmidt algorithm is based on the idea that since

q =
x
d

=
m x
m d
, (2.7)

if m is calculated in such a way that md tends to value 1, then mx will move towards

the quotient. To carry out division, the algorithm proceeds as follows.

• Scale d so that 1
2 ≤ d < 1.

• Set x(0) = x and d(0) = d.

• Iterate the following loop until x(i) is close enough to q (i.e. the desired precision

for q is obtained).

13



Chapter 2. Division Algorithms

loop i=0,1,2,...

m(i) = 2 - d(i) -- m(i) is the 2’s complement of d(i)

x(i+1) = m(i)x(i)

d(i+1) = m(i)d(i)

end loop

2.2.3 Newton-Raphson versus Goldschmidt

Although the type and the number of mathematical operations involved in one iteration

of the Newton-Raphson and the Goldschmidth algorithms are the same, the latter does

not require the final multiplication needed by the former. However, the prescaling

stage at the beginning of the Goldschmidth algorithm takes almost the same amount of

time as an iteration. Studying Subsections 2.2.1 and 2.2.2 reveals that the two methods

have the same number of operations. However, in the Goldschmidt algorithm, the two

multiplications required for calculating x(i+ 1) and d(i+ 1) are independent, providing

significantly more efficient utilisation of pipelined multiplier units than the Newton-

Raphson method, where each step depends on the result of the previous one [SL96].

2.2.4 Features

The common features of functional algorithms are listed as follows.

• The main operations of every iteration in functional algorithms are two multipli-

cations and one subtraction.

• Functional algorithms do not calculate the quotient directly, but refine an approx-

imation to the desired result in every iteration.

• The convergence rate of functional algorithms toward the quotient is typically

quadratic (i.e. the number of correct digits of the results doubles every iteration).

• Functional algorithms do not give the final remainder. However, for the cost of

one additional subtraction, it can be obtained as rem = x − d q.

• Multipliers are part of the critical paths of dividers built based on functional

algorithms. Therefore, fast multipliers are necessary to successfully implement

these algorithms.

14



2.3. Digit Recurrence Algorithms

• Functional algorithms are not capable of producing directly the truncated quotient

required for rounding.

2.3 Digit Recurrence Algorithms

As shown in Figure 1.3, digit recurrence algorithms are categorised as restoring or

non-restoring. Most commercial and academic implementations of division are based

on digit recurrence algorithms.

2.3.1 Definitions and Notations

Division is defined by the expressions

x = q d + rem (2.8)

with

|rem| < |d| ulp and Sign(rem) = Sign(x) , (2.9)

In (2.8) and (2.9), x is the dividend, d is the divisor, q is the quotient and rem is the final

remainder [EL94]. The granularity of the quotient is determined using the unit of last

position (ulp) and the following criteria.

• If ulp = 1, then the quotient is integer.

• If ulp = r−n, where n is the number of quotient digits and r is the representation

radix of all the input operands and the results, then the quotient is a fractional.

In order to follow theme of the research, which is FP division, all the input operands

and the results are assumed to be represented according to the IEEE 754 standard with

normalised fractional significands. The IEEE 754 standard for FP values is covered

in detail in Section 3.8. As another simplifying assumption, only magnitudes of the

inputs take part in division. This makes all the input operands positive, causing positive

results to be generated. Handling the other cases, which one or both input operands

are negative, is not very complicated.

15



Chapter 2. Division Algorithms

2.3.2 Recurrence

Performing division using digit recurrence algorithms takes n iterations, where one

radix-r quotient digit is produced per iteration, most significant digit first [EL94]. The

quotient after the ( j + 1)-th iteration, q[ j + 1], is formed as

q[ j] =
j∑

i=0

qir−i . (2.10)

So, after n iterations, when division finishes, the final n-digit quotient is

q = q[n] =
n∑

i=0

qir−i . (2.11)

According to the definition of division, the error of an n-digit quotient q with respect

to an infinite precision quotient x
d , should be less than one ulp. This error is shown as

0 ≤ εq =
x
d
− q < r−n . (2.12)

The quotient error should be bounded not only when division ends, but also after the

( j + 1)-th iteration. Indicating the error as εq[ j + 1], the bound is

εq[ j + 1] =
∣∣∣∣xd − q[ j + 1]

∣∣∣∣ < r−( j+1) . (2.13)

Although (2.13) guarantees that |εq| < r−n after n iterations, if εq is negative, then

an additional correction step is required. This is discussed at the end of the current

subsection. Having multiplied (2.13) by d and introducing new value

w[ j + 1] = rj+1(x − dq[ j + 1]) (2.14)

as the residual or the partial remainder (PR), the recurrence is obtained as

w[ j + 1] = rw[ j] − dqj+1 , where w[0] = x . (2.15)

Equation (2.15) is the fundamental recurrence on which digit recurrence algorithms are

based [EL94]. Now, the error bound (2.13) can be rearranged into a bound on the PR as

−d ≤ w[ j + 1] < d . (2.16)

The convergence condition (2.16) implies that the quotient digit qj+1 in the recurrence

(2.15) should be selected such that w[ j + 1] is always bounded, and also that

x < d , (2.17)

16



2.3. Digit Recurrence Algorithms

Arithmetic Shift Left

Quotient Digit Selection

Divisor Multiple Generation

Subtraction

w[j]

w[j+1]

rw[j]

dqj+1

dqj+1

Figure 2.1: Components of an iteration [EL94].

since w[0] = x. The process of selecting a value for qj+1 is called quotient digit selection

(QDS). It is shown later in Chapter 3 that the QDS function plays a very important

role in digit recurrence based division algorithm. The computations involved in every

iteration and their relationship are shown in Figure 2.1.

The final remainder is obtained as follows:

rem =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w[n]r−n , if w[n] ≥ 0 ;

(w[n] + d)r−n , if w[n] < 0
(2.18)

As shown in (2.18), when w[n] < 0, to obtain a nonnegative remainder (to satisfy (2.13))

a restoring step consisting of adding the divisor to w[n] is performed. Moreover, in this

case, the quotient is corrected by subtracting one ulp = r−n.

2.3.3 Restoring Division

The main specification of restoring division is that the quotient digits are selected from

a nonnegative digit set {0, 1, 2, · · · , r − 1}. Keeping qj+1 nonnegative further restricts

bound (2.16) to

0 ≤ w[ j + 1] < d (2.19)

because all PRs should be kept nonnegative too. Therefore, the QDS function for

restoring division must be defined as

qj+1 = k , if dk ≤ rw[ j] < d(k + 1) , where k ∈ {0, 1, 2, · · · , r − 1} . (2.20)

17



Chapter 2. Division Algorithms

This function operates as follows.

for k = 0,1,...,(r - 1)

w̃[j+1] = rw[j] - kd

if w̃[j+1] < 0 then -- incorrect choice for qj+1

qj+1 = k - 1

w[j+1] = w̃[j+1] + d -- restoring step

break for

end if

end for.

The algorithm requires comparisons of rw[ j] with multiples of d. There are two

approaches for implementing the QDS function of the restoring division. While one

uses parallel comparators the other employs serial comparators. Performing the com-

parisons in parallel seems to achieve higher performance, however, massive hardware

is required making the implementation almost impractical for high radices. To avoid

the need of several comparators, its is possible to subtract the divisor repetitively until

the tentative PR w̃[ j + 1] becomes negative. Then, the restoring step adds d to w̃[ j + 1]

and stores it into w[ j+1] as the correct PR. If the radix increases to 4, 8 or even 16, all the

required testing and backtracking become relatively time-consuming and expensive

to implement. Therefore, implementing restoring division for radices higher than 2 is

impractical [SL96, OF95a]. The QDS function of restoring division when r = 2 is shown

as

qj+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if 2w[ j] < d ;

1 , if d ≤ 2w[ j] < 2d ,
(2.21)

however, due to the inefficient restoring stage involved in the algorithm, also because

r = 2 is not an optimum choice for implementing a FP divider [Obe97], designers prefer

not to use restoring division in any practical implementation.

The QDS function (2.21) can be expressed differently as demonstrated in Figure 2.2.

This diagram, which is called a Robertson diagram [Rob58], is used to calculate the

next PR as a function of the shifted old PR in radix-2 restoring division.

For an n-bit dividend and divisor, n subtraction/shift and an average of n
2 restore op-

erations are required to calculate the results. The restore operation can be implemented

either by adding d or by keeping a copy of previous remainder. The latter avoids the

time penalty involved in the restore operations [EL94].

18



2.3. Digit Recurrence Algorithms

2w[j]
2dd

qj+1=1

d

w[j+1]

qj+1=0

Figure 2.2: Robertson diagram for restoring division when r = 2.

2.3.4 Non-Restoring Division

To speed up restoring division, if the value picked by the QDS function for qj+1 gives

w[ j + 1] a negative value, the wrong selection can be postponed to the next iteration

without restoring in the current step. However, like restoring, non-restoring division

is practical only for r = 2 [EL94].

The improvement is achieved only if instead of {0, 1}, the digit set for the quotient is

defined as
{
1, 1
}
, where m = −m. Therefore, if qj+1 is incorrectly set to 1 and consequently

a negative PR w[ j + 1] results, the algorithm keeps the negative w[ j + 1] and so, the

restoring step is avoided. Then, in the next iteration, non-restoring division sets qj+2 = 1,

shifts w[ j+ 1] one bit to left and corrects its mistake in the previous iteration by adding

−qj+2d = d. Consequently, a correct value for w[ j + 2] is obtained. In other words,

instead of obtaining qj+1qj+2 = 01 by means of restoring division, non-restoring division

calculates qj+1qj+2 = 11, which is equal to 01. According to this scheme, the QDS

function for non-restoring division with r = 2 can be defined as

qj+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , if 2w[ j] < 0 ;

1 , if 2w[ j] ≥ 0 .
(2.22)

Figure 2.3 displays the Robertson diagram for non-restoring division with r = 2. It is

equivalent to (2.22). This selection rule is simpler than the QDS function for restoring

division since it demands the comparison of 2w[ j] to 0 rather than d. A simpler QDS

function leads to a faster implementation.

For given n-bit input operands, the non-restoring method needs exactly n add/subtract

and shift operations to produce the quotient and the remainder. Its advantage is a sim-

pler QDS function [EL94].

19



Chapter 2. Division Algorithms

2w[j]
2dd

qj+1=1qj+1=1

-2d -d

d

-d

w[j+1]

Figure 2.3: Robertson diagram of non-restoring division with r = 2 (adapted from

[Par00]).

2.3.5 Redundant Digit Sets

Digit recurrence division algorithms may select the quotient digits from different digit

sets. Choosing the appropriate digit set is a very important issue when implementing

a division algorithm [Obe97]. For example, in Subsection 2.3.3, the digit set used by

restoring division comprises digits 0 and 1 while, non-restoring division introduced

in Subsection 2.3.4, utilises the digit set
{
1, 1
}
, causing division performance to be

improved.

For a given radix r, more than one digit set can be defined. The traditional digit set

{0, 1, 2, · · · , r − 1}, which has r nonnegative values is called non-redundant. On the other

hand, a digit set with more than r digits in the set, including 0, is called redundant [Par00].

While a number has only one non-redundant representation, it can be represented in

different forms when being represented in a redundant format. Avizienis [Avi61]

introduces a special type of redundant digit set, called signed-digit (SD), as

{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, where m = −m and

⌈ r
2

⌉
≤ a ≤ r − 1 . (2.23)

The degree of redundancy is measured by redundancy factor ρ as

1
2
< ρ =

a
r − 1

≤ 1 . (2.24)

Table 2.1 lists different SD representations of a single value.

By definition, a SD set with a =
⌈

r
2

⌉
is known as minimally redundant, while one with

a = r− 1 is called maximally redundant. Although number a is usually selected to satisfy

20



2.3. Digit Recurrence Algorithms

Table 2.1: Decimal number 23 represented in a decimal SD set with a = 7.

Representation Calculation Value

23 2 × 10 + 3 × 1 23

37 3 × 10 + (−7) × 1 23

177 1 × 100 + (−7) × 10 + (−7) × 1 23

Table 2.2: Possible SD sets for radices 2, 4 and 8.

r a SD set ρ Type

2 1
{
1, 0, 1

}
1 Maximally and Minimally redundant

4 2
{
2, 1, 0, 1, 2

}
2
3 Minimally redundant

4 3
{
3, 2, 1, 0, 1, 2, 3

}
1 Maximally redundant

4 4
{
4, 3, 2, 1, 0, 1, 2, 3, 4

}
4
3 Over redundant

8 3
{
3, 2, 1, 0, 1, 2, 3

}
3
7 Non-redundant

8 4
{
4, 3, 2, 1, 0, 1, 2, 3, 4

}
4
7 Minimally redundant

8 7
{
7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7

}
1 Maximally redundant

the condition in (2.23), if a > r−1, then the SD set is called over redundant, and if a <
⌈

r
2

⌉
,

then it is called non-redundant. Table 2.2 shows several SD sets for the given radices.

2.3.6 Radix-2 SRT Algorithm

The SRT division algorithm is named after D. Sweeney [CS57], J. E. Robertson [Rob58]

and T. D. Tocher [Toc58]. They independently discovered a new way of doing non-

restoring radix-2 division at about the same time. Furthermore, a similar algorithm is

also discussed by Nadler [Nad56]. Some improvements to the original SRT method are

discussed in [Mac61, WL61, Met62, CM91, MC93, Man90] and its theory and imple-

mentation are developed for the first time by Atkins [Atk67]. The motivation behind

SRT division was to speed up non-restoring radix-2 division. The algorithm introduces

0 as an additional choice for the quotient digit and consequently, the QDS function

(2.22) is changed to

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 , if 2w[ j] < −d

0 , if −d ≤ 2w[ j] < d

1 , if 2w[ j] ≥ d .

(2.25)

21



Chapter 2. Division Algorithms

2w[j]
2dd

qj+1=1

qj+1=1

-2d -d

d

-d

w[j+1]

qj+1=0

Figure 2.4: Robertson diagram for the radix-2 SRT division (adapted from [Par00]).

The next PR, w[ j + 1], is still calculated using (2.15). However, in an asynchronous

design, some iteration can be reduced to just shifting, resulting in less average latency.

The Robertson diagram for the new QDS function is shown in Figure 2.4.

The problem with implementing (2.25) is the same as the problem with implementing

non-restoring division; full comparison of 2w[ j] with d and −d. However, recalling

Subsection 2.3.1, where d is assumed a normalised fraction value in
[

1
2 , 1
)
, introduces

new comparison points −1
2 and 1

2 in place of −d and d because,

−d ≤ −1
2
≤ 2w[ j] <

1
2
≤ d . (2.26)

Function (2.25) changes to

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 , if 2w[ j] < − 1

2

0 , if − 1
2 ≤ 2w[ j] < 1

2

1 , if 2w[ j] ≥ 1
2

(2.27)

and Figure 2.4 is modified as shown in Figure 2.5.

In the first iteration, where w[0] = x, the dividend x has to be shifted to the right by

one bit to satisfy (2.9). To compensate for this initial adjustment, one more iteration is

performed followed by 1-bit left shifting the quotient and the final remainder.

As shown in Figure 2.5, the PR is bounded to
[
−1

2 ,
1
2

)
. This brings another responsi-

bility to the algorithm. Every time a PR is calculated, the radix-2 SRT division has to

normalise 2w[ j] in such a way that it is represented in 2’s complement form of

2w[ j] = u0.u−1u−2 · · · u−(n+1) , (2.28)

22



2.3. Digit Recurrence Algorithms

2w[j]
10.5

qj+1=1qj+1=1

-1

0.5

-0.5

w[j+1]

qj+1=0

-0.5

*

*

Figure 2.5: Robertson diagram for the radix-2 SRT division with d ∈
[

1
2 , 1
)
. The line

tagged with ‘*’ in the right (left) slides up (down) or down (up) when the value of d

changes.

where u0 is the sign bit required for 2’s complement representation. Therefore, to find

the appropriate value for qj+1 among the 3 possible values, the QDS function needs to

check only the 2 most significant bits of the shifted PR. The reason is that

if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2w[ j] ≥ 1

2 = (0.1)2’s complement

2w[ j] < − 1
2 = (1.1)2’s complement

, then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2w[ j] = (0.1u−2u−3 · · · u−n−1)2’s complement

2w[ j] = (1.0u−2u−3 · · · u−n−1)2’s complement.
(2.29)

This means that the comparisons in the QDS function (2.27) can be implemented using

two 2-input AND and two inverters through u0 and u−1 [Par00].

2.3.7 High-Radix SRT Algorithm

The digit recurrence division algorithms that have been presented generate only one

quotient bit per iteration. This is a result of the radix in which the QDS functions

operate (i.e. r = 2). Increasing the radix of SRT division to r = 2m allows the generation

of m quotient bits every step [Kor01]. In this manner, the number of required iterations

reduces to
⌈

n
m

⌉
, where n is the width of the input operands in bits. This raises the

possibility of designing high-radix dividers based on SRT division that are faster than

the binary (r = 2) version.

High-radix SRT division is first introduced by Robertson [Rob58]. Extension of the

original radix-2 SRT method to higher radices as well as the use of redundant digit sets

for representation of the quotient can be found in [Wad66, Atk68, Atk70, AK74, Kal75,

Tan78]. In this algorithm, the quotient digit qj+1 is selected from the SD set (2.23). Since

23



Chapter 2. Division Algorithms

r w[j]
d r-d r

d r

-d r

w[j+1]

Figure 2.6: Allowable region for selecting qj+1 in high-radix SRT division.

the largest (smallest) allowed value for qj+1 is a (−a), (2.16) is not able to keep high-radix

SRT division converging for the quotient. Therefore, it is rewritten as

−ρd ≤ w[ j + 1] < ρd . (2.30)

Now, using this new convergence condition and recurrence (2.15), high-radix SRT

division approaches to the output results.

Due to the larger number of choices available for qj+1, the QDS function of high-radix

SRT division is more complex than its binary predecessor. Figure 2.6 exhibits a diagram

showing the permitted region, where a valid SD can be selected as a value of qj+1. This

diagram is provided using (2.30) and is going to be used to introduce the new QDS

function. Substituting (2.15) in (2.30) and adding dqj+1 results in

d(qj+1 − ρ) ≤ rw[ j] < d(qj+1 + ρ) . (2.31)

Since any of the (2a + 1) members of
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
can be the value,

say k, selected for qj+1, the vertical axis of the diagram shown in Figure 2.6, where

−rρd ≤ rw[ j] < rρd, is sliced into (2a + 1) intervals as

d(k − ρ) ≤ rw[ j] < d(k + ρ) , where k = ±a,±(a − 1), · · · ,±1, 0 . (2.32)

In (2.32), each interval is associated with one value in the SD set. So, to find an

appropriate value for qj+1, it is sufficient to check in which interval rw[ j] lies. This

means that the QDS function of high-radix SRT division can be expressed as

qj+1 = k ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, if d(k − ρ) ≤ rw[ j] < d(k + ρ) . (2.33)

The result of applying this partitioning to Figure 2.6 is shown in Figure 2.7.

24



2.3. Digit Recurrence Algorithms

r w[j]
r d-r d

dr

-dr

w[j+1]

. . .. . . . . .. . .
1

1
=

+jq

a

q j
=

+1
k

q j
=

+1
1

1
=

+jq

k

q j
=

+1
a

q j
=

+1
0

1
=

+jq

Figure 2.7: Robertson diagram of high-radix SRT division.

The intervals shown in (2.33) always have some overlaps as there are 2a+ 1 of them,

each of length 2ρd. Having introduced boundaries

Lk = d(k − ρ) and Uk = d(k + ρ) , (2.34)

the overlap is given by

Uk−1 − Lk = (2ρ − 1)d , (2.35)

which is positive since ρ > 1
2 and d > 0. The condition

Uk−1 ≥ Lk (2.36)

is known as the continuity condition. The width of the overlapped region depends on the

redundancy factor and on the divisor. This overlap gives a choice of selecting values for

the quotient digit. In the interval [Lk,Uk−1) either qj+1 = k or qj+1 = k− 1 can be selected.

Therefore, in order to assign a correct value to the quotient digit, it is not necessary to

know the exact value of rw[ j]. In other words, the QDS function (2.33) does not need

to perform comparisons d(k − ρ) ≤ rw[ j] and rw[ j] < d(k + ρ) in full precision. When

determining the quotient digit, the precision required for the comparisons, depends on

the overlap. The greater the value of d and ρ, the less bits of rw[ j] have to be examined

[Jen98]. However, having the divisor bounded to
[

1
2 , 1
)
, makes the overlap size only

sensitive to the SD set.

Still one more issue in defining a QDS function for high-radix SRT division has to be

addressed. As mentioned earlier, in the overlap region [Lk,Uk−1), there are two choices

for the quotient digits, k and k − 1. That is, the same value of rw[ j] and d may result

two different values of qj+1. This means that the QDS function (2.33) is not one-to-one

and cannot be automated through hardware implementation [Jen98]. However, due

25



Chapter 2. Division Algorithms

r w[j]
r dr

dr

-dr

w[j+1]

qj+1=k+1qj+1=kqj+1=k-1

Lk Uk

Lk-1 Uk-1=Lk+1 Uk+1

sk sk+1

Figure 2.8: A maximally redundant QDS function operating based on the separating

points sk(d) [Jen98].

to existence of the overlap regions between every two consecutive intervals [Lk,Uk)

and [Lk−1,Uk−1), there is a possibility to determine a set of separating points inside the

overlap regions [Lk,Uk−1), where k ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, as a function of

the SD set and the divisor [Kor01]. For a given r and a, the set can be expressed as a

function of d only such that

sk(d) ∈ [Lk,Uk−1] . (2.37)

Now, a one-to-one QDS function can be defined as

qj+1 = k ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, if sk(d) ≤ rw[ j] < sk+1(d) . (2.38)

However, if sa ≤ rw[ j] (rw[ j] < s−a+1) is satisfied, the QDS function can select a ( a ) as

the quotient digit without performing the comparison rw[ j] < sa+1 (s−a ≤ rw[ j]). This

is because, a ( a ) is the largest (smallest) possible choice for qj+1 that is able to keep the

convergence condition (2.30) true. In other words, there is no other choice beyond a

(a). Using the separating points, a Robertson diagram for a maximally redundant set

is shown in Figure 2.8.

The overlap regions give the chance of limited precision comparison of rw[ j] with

sk(d) and sk+1(d) because, the separating points can be selected in such a way that they

require as few digits as possible [Kor01]. Chapter 3 discusses methods of implementing

QDS function (2.38).

26



2.5. Summary

2.4 Digit Recurrence versus Functional

A short discussion on choosing an appropriate algorithm for implementing FP division

is presented. Years of research have produced more and more efficient variants of

digit recurrence division algorithms, making them popular methods of performing FP

division in the latest processors. To demonstrate this popularity, it may be enough to

mention that 11 out of 13 processors shown in Table 1.1 use digit recurrence algorithms

for performing division [SL96].

Investigations by Oberman and Flynn [OF97b] show that digit recurrence algorithms

achieve a competitive tradeoff between delay and area. Even if these two criteria are not

of concern, the results provided by functional algorithms themselves are not accurate

enough to satisfy the IEEE 754 standard because, the inaccuracy in the least significant

bits of the quotient [HP90] causes the rounding operation be unapplicable. In fact, while

the IEEE 754 standard needs correctly rounded results, functional algorithms deliver

quotients that are close to the correctly rounded answer. Extra correction operations

need to be taken into account to fix the problem, however, the additional calculation

usually reduces the division speed [Kor01].

The other disadvantage of functional algorithms, as already mentioned in Subsec-

tion 2.2.4, is that they do not provide the remainder. This can be troublesome especially

if FP division hardware is being used for integer division or modulo operations.

Finally, it should be noted that although the number of iterations in functional

algorithms is logarithmically proportional to the width of the input operands, each

individual iteration is more complex to implement.

2.5 Summary

Division algorithms were discussed in detail in Chapter 2. The discussion can be

summarised as follows.

• The Goldschmidt and Newton-Raphson methods are classified under the mul-

tiplicative division algorithms. The quadratically approach the quotient and

therefore they appear to be very fast. However, the delay of every cycle is large.

Multiplicative division algorithms suffers from the weaknesses such as inaccu-

racy in the quotient’s lest significant bit, which make them inappropriate for

implementing the FP divider.

27



Chapter 2. Division Algorithms

• Restoring division, which is categorised under the digit recurrence algorithm, is

very simple and easy to implement. However, when restoring (correcting), the

time penalty is too much.

• Non-restoring division fixes the problem with its predecessor, restoring division.

It introduces digit 1 and therefore, postpones the correction step to the next

iteration.

• Radix-2 SRT division is more practical than non-restoring division because of its

simpler and therefore, quicker QDS function. In radix-2 SRT division, the quotient

digits are selected from the BSD set
{
1, 0, 1

}
with overlap among the selecting areas.

This lets an approximate comparison made on a few most significant bits of the

PR that results in a faster QDS function.

• It is mathematically proven that the radix of the SRT division can be increased

from 2 to higher numbers. This results in the high-radix SRT division algorithm

with a shorter execution time and more complex QDS function.

28



Chapter 3

SRT Division Algorithm

Implementation

This chapter describes how the division operation based high-radix SRT division is

implemented. Tradeoffs between parameters of the algorithm and performance of

the divider are covered in detail. The chapter gives an introduction to the IEEE 754

standard, and in particular number representation, rounding schemes and those other

subjects related to FP division.

29



Chapter 3. SRT Division Algorithm Implementation

3.1 Introduction

This chapter addresses the following issues relating to the implementation of high-radix

SRT division.

• The QDS function.

• The division radix.

• The redundancy factor.

• The PR representation.

• The quotient conversion method.

• Overlapping the iteration components.

In addition, this chapter briefly introduces the IEEE 754 standard [IEE85]. This standard

is used widely by almost all manufacturers and researchers to represent FP numbers

and FP operations. The introduction is followed by a discussion of how a FP division

can be performed using SRT division.

3.2 QDS Function

3.2.1 Introduction

The QDS function plays a key role in SRT division. It is generally part of the divider

critical path and therefore, any change in its performance may affect the division exe-

cution time. This section introduces the fundamentals of designing the high-radix QDS

function by discussing the current methods of implementing the QDS function. The

discission is delivered using mathematical expressions and is supported by examples

of implementing the QDS function for conventional radices.

SRT division uses SD sets when generating the quotient digits. The overlap regions

provided by such digit sets simplify the QDS function and give the designer different

choices in implementing the function.

For a given r and ρ, it is necessary to determine the set of separating points sk(d)

corresponding to the divisor. To do that, due to the existence of the overlap regions,

only a few of the most significant bits of d are required [Par00]. In addition, as stated

30



3.2. QDS Function

in SubSection 2.3.7, separating point sk(d) can be selected in such a way that the com-

parisons rw[ j] < sk+1(d) and sk(d) ≤ rw[ j] do not need to be performed to full precision.

Determining the number of bits of rw[ j] and d that must be examined is the most chal-

lenging and difficult step when developing a divider using high-radix SRT division.

It can be done graphically, numerically, analytically or through a combination of the

techniques [Kor01].

3.2.2 PD Plot Method

The PD plot is an early technique to graphically determine the required precision of

rw[ j] and d involved in the QDS function [Atk68, Fre61]. Another use of the PD plot

is to indicate the regions, where the value k ∈
{
a, a − 1, · · · , 1̄, 0, 1, · · · , a − 1, a

}
can be

selected for qj+1.

In the PD plot notation, rw[ j] is called P and d is denoted as D. Using this notation,

the recurrence (2.15) is rewritten as

P = w[ j + 1] + qj+1D , (3.1)

implying a straight line in the PD plot. However, the value of w[ j+1] should be known

in order to sketch the line. Having substituted D in the convergence condition (2.30), it

is obtained that

−ρD ≤ w[ j + 1] < ρD . (3.2)

Therefore, for a given value qj+1 = k, P is limited between two lines

Pmax = (ρ + k)D (3.3)

and

Pmin = (−ρ + k)D . (3.4)

They are represented in Figure 3.1. As the complete PD plot is symmetrical about both

P and D axes, only one quadrant is usually demonstrated. However, in the case of FP

calculations, since 1
2 ≤ D < 1, there is no point to consider the quadrants, where the

divisor is negative.

As shown in Figure 3.1, due to the redundancy in representing the quotient digits,

every two consecutive areas corresponding to two successive digits k and k+1, share an

31



Chapter 3. SRT Division Algorithm Implementation

D
(

+k+
1)

D

P

2
1 1

(
+k)D

(-+k+1)D

(-+k)D
qj+1=k

qj+1=k+1

overlap

Dm -1 Dm

X∆ Y∆

Figure 3.1: The PD plot for qj+1 = k and qj+1 = k + 1.

overlap region. The values of P should be determined inside the overlap regions in such

that selection regions belonging to every SD digit in
{
a, a − 1, · · · , 1̄, 0, 1, · · · , a − 1, a

}
are

separated. When determining the separating point sk+1, one of the following different

results may be obtained.

• A straight line may be found that horizontally passes through the overlap region,

making sk+1 a constant independent of D.

• No single constant value can be found representing the separating point sk+1.

Instead, a piecewise constant must be used. Having partitioned the range
[

1
2 , 1
)

into several equal length intervals, sk+1 is defined as a multi-conditional function

with a stairstep looking graph.

From the two possible results, a constant sk+1 = c can be obtained if and only if c satisfies

(−ρ + k + 1) ≤ c ≤ 1
2

(ρ + k) . (3.5)

Otherwise, the range
[

1
2 , 1
)

must be divided into n = 2hk−1 intervals of 2−hk length. To

do this, a small hk is guessed and a search for piecewise constants through the intervals

is undertaken. If the search is not successful, then hk is increased and the search is

32



3.2. QDS Function

repeated until sk+1 is determined as

sk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck+1
1 , if 1

2 ≤ D < 1
2 +

1
2hk

ck+1
2 , if 1

2 +
1

2hk
≤ D < 1

2 +
2

2hk

...
...

ck+1
m , if 1

2 +
m−1
2hk
≤ D < 1

2 +
m

2hk

...
...

ck+1
n , if 1

2 +
n−1
2hk
≤ D < 1 .

(3.6)

The minimum of {∀ k ∈ [−a, a] | hk} denoted as εD represents the precision at which D

has to be examined.

The PD plot is also used for finding the granularity of P. Let the minimum height of

the steps found inside the overlap region shown in Figure 3.1 be 2−vk . The minimum vk,

where k ∈
{
a, a − 1, · · · , 1̄, 0, 1, · · · , a − 1, a

}
, is denoted as εP. This indicates the precision

at which the shifted PR has to be examined. In other words, while the number of steps

is used to indicate the number of bits required to represent D, the height of the steps

indicates the precision at which rw[ j] is involved in the comparisons (2.38).

Although the procedures to find εD and εP appear straightforward, since k can take

many values, it is required to find the bounds on these values. Let Dm−1 and Dm be

two successive stepping points on the D axis as shown in Figure 3.1. The horizontal

distance between them is calculated as

∆X = Dm −Dm−1 =
P

−ρ + k + 1
− P
ρ + k

=
2ρ − 1

k(k + 1) + ρ(1 − ρ)
P , (3.7)

which is minimised if the denominator is maximal and the numerator is minimised. So,

k = a − 1 and P must be evaluated when Dm−1 is in the neighborhood of 1
2 . Eventually,

∆Xmin =
1
2

(ρ + a − 1)
2ρ − 1

a(a − 1) + ρ(1 − ρ)

=
2ρ − 1

2(a − ρ)
. (3.8)

On the other hand, the step height, which is expressed as

∆Y = (ρ + k)D − (−ρ + k + 1)D

= (2ρ − 1)D , (3.9)

33



Chapter 3. SRT Division Algorithm Implementation

Table 3.1: Cases to be investigated before using the upper bounds [Par01].

Case εD εP

1
⌈
− log2 ∆Xmin

⌉ ⌈
− log2 ∆Ymin

⌉
2

⌈
− log2 ∆Xmin

⌉
+ 1

⌈
− log2 ∆Ymin

⌉
3

⌈
− log2 ∆Xmin

⌉ ⌈
− log2 ∆Ymin

⌉
+ 1

4
⌈
− log2 ∆Xmin

⌉
+ 2

⌈
− log2 ∆Ymin

⌉

is minimal if D = 1
2 . Therefore,

∆Ymin =
(2ρ − 1)

2
. (3.10)

Now, ∆Xmin and ∆Ymin can help the process of finding εD and εP, as they serve as upper

bounds for determining the precisions 2−εD and 2−εP at which the divisor and the shifted

PR should be examined. Since 2−εD and 2−εP cannot exceed the minimal horizontal and

vertical distances ∆X and ∆Y, respectively, they must satisfy

εD ≥
⌈
− log2 ∆Xmin

⌉
(3.11)

and

εP ≥
⌈
− log2 ∆Ymin

⌉
. (3.12)

Inequalities (3.11) and (3.12) provide only the upper bounds on εd and εP and the exact

values can be obtained by investigating the corresponding PD plot. However, using the

upper bounds and the determining theorem proposed by Parhami [Par01], the search

can not only be limited but also be automated. According to the theorem, only the four

cases shown in Table 3.1 have to be investigated. If none of them is found feasible, then

selecting the upper bounds

εD =
⌈
− log2 ∆Xmin

⌉
+ 1 (3.13)

and

εP =
⌈
− log2 ∆Ymin

⌉
+ 1 (3.14)

is the answer.

At this stage everything required for building the QDS function is known, however,

still there is a minor piece of information needed. It is called βP, the number of integer

34



3.2. QDS Function

���
�

1

0.1=}{
−D

D
xxxD

ε
ε

Lookup
Table

qj+1

���

�

���

�

PP

P
xxx.xxx=P

εβ

ε}{

Figure 3.2: Implementation of the QDS function through the PD plot method.

bits of the shifted PR. Since d < 1, the convergence condition (2.30) can be rewritten as

−ρ < −ρd ≤ w[ j] < ρd < ρ , (3.15)

which is equivalent to

−rρ < P < rρ (3.16)

or

−rρ + ulp ≤ P ≤ rρ − ulp , (3.17)

because P = rw[ j]. Therefore, βP can be defined as the number of bits representing the

integer part of rρ − ulp in 2’s complement format, plus 1. The additional one bit comes

from the sign bit required for representing negative values of P. On the other hand,

since D is a normalised value, the first bit at the right of the binary point is always 1

and it is not necessary that it be considered by the QDS function.

Conclusively, NP = εP + βP and ND = εD − 1 are the number of bits of P and D that

have to be checked to determine the correct value of qj+1. Now, to calculate the quotient

digit qj+1, it is sufficient to employ a lookup table for implementing the PD plot. The

table, which is shown in Figure 3.2, has NP +ND input bits. It is normally implemented

through a PLA (Programmable Logic Array) or combinational logic. Results of more

investigations on the PD plot method can be found in [Kor03]. Implementation of the

QDS function is explained through an example as follows.

An Example of the PD Plot Method

The assumptions for the PD plot shown in Figure 3.3(a) are r = 4 and a = 3, and

consequently, ρ = 1. Three overlap regions, namely O1/0, O2/1 and O3/2, are indicated

35



Chapter 3. SRT Division Algorithm Implementation

O1/0

O2/1

O3/2

P=4D

P=2D

P=D

P=0

P

P=3D

D0

4

1

2

1

(a) Before determining the separation points.

P=4D

P=2D

P=D

P=0

P

P=3D

D

qj+1=2

qj+1=1

qj+1=0
000.0

000.1

001.0

001.1

010.0

010.1

011.0

011.1

0.10 0.11 1.00

qj+1=3

100.0

(b) A successful attempt to determine sk+1 with

εD = 2 and εP = 1.

Figure 3.3: The PD plot for r = 4 and ρ = 1.

36



3.2. QDS Function

in the figure. They are placed between the lines P0
max and P1

min, P1
max and P2

min, and P2
max

and P3
min, respectively. The lines are mathematically defined as

P0
max = D and P0

min = −D ,

P1
max = 2D and P1

min = 0 ,

P2
max = 3D and P2

min = D ,

P3
max = 4D and P3

min = 2D ,

(3.18)

and are displayed in the figure. However, due to symmetrical representation of the

PD plot, only the lines in the positive quadrant are shown. Now the task is to find

the separating points s1, s2 and s3 inside the corresponding overlap regions O1/0, O2/1

and O3/2. To find out whether s1, s2 and s3 can be represented as constants, ρ = 1 and

k = 0, 1, 2 are substituted in (3.5). The result are as follows.

• Because there is a constant number c1 such that 0 ≤ c1 ≤ 1
2 , the separating point s1

is set as s1 =
1
2 .

• Because there is a constant number c2 such that 1 ≤ c2 ≤ 1, the separating point s2

is set as s2 = 1.

• Because there is no constant number c3 satisfying 2 ≤ c3 ≤ 3
2 , s3 cannot be repre-

sented using a single constant number.

Therefore, the next step is to determine the multi-conditional function that expresses

s3. Substituting r = 4 and a = 3 into (3.8) and (3.10) results in

εD ≥ log2
1

∆Xmin
= log2 4 = 2 (3.19)

and

εP ≥ log2
1
∆Ymin

= log2 2 = 1 . (3.20)

Using εD = 2 and εP = 1 as the starting points, precise examination the overlap area

O3/2 in the PD plot reveals that s3 can be represented by the broken line shown in

Figure 3.3(b). Mathematically, using (3.6), s3 is expressed as

s3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
2 , if 1

2 ≤ D < 3
4 ;

2 , if 3
4 ≤ D < 1 .

(3.21)

37



Chapter 3. SRT Division Algorithm Implementation

The last parameter to be calculated is βP. Since ρ = 1, (3.17) yields

( 1

all zero︷�������︸︸�������︷
00.00 · · · 00 1 )2’s complement ≤ P ≤ ( 0

all one︷��������︸︸��������︷
11.11 · · · 111 )2’s complement . (3.22)

This means that when selecting a value for the quotient digit, in addition to 1 fractional

bit, the 3 bits to the left of the binary point should be taken into account. So, NP = 4 and

ND = 1. A table with 25 = 32 rows of three bits is able to implement the QDS function for

this specific example. Let {X}z indicate a binary number X = X2X1X0.X−1X−2 · · ·Xn−2Xn−1

truncated to z fractional bits. Using the QDS function (2.38), the QDS function for this

example can be defined as

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3̄ , if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
D−2 = 0 AND

{
4w[ j]

}
1 = 110.1)

OR

D−2 = 1 AND
{
4w[ j]

}
1 = 101.1

2̄ , if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
4w[ j]

}
1 = 110.1

or

D−2 = 1 AND
{
4w[ j]

}
1 = 110.0

1̄ , if
{
4w[ j]

}
1 = 111.0

0 , if
{
4w[ j]

}
1 = 111.1 OR 000.0

1 , if
{
4w[ j]

}
1 = 000.1

2 , if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
4w[ j]

}
1 = 001.0

or

D−2 = 1 AND
{
4w[ j]

}
1 = 001.1

3 , if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
D−2 = 0 AND

{
4w[ j]

}
1 = 001.1

OR

D−2 = 1 AND
{
4w[ j]

}
1 = 010.0 .

(3.23)

3.2.3 Selection Constants Method

To specify the QDS function, a recent analytical method using selection constants can

be utilised [EL94]. This is one of the most practical and commonly used methods for

implementing the QDS function [SL96]. In the selection constants method, the range

38



3.2. QDS Function

d

Uk

4w[j]

2
1 1

Lk+1

Uk-1

Lk

Region for Selecting mk+1(i)
qj+1=k+1

di di+1

min(Uk(di),Uk(di+1))
max(Lk+1(di),Lk+1(di+1))

Region for Selecting mk(i)
qj+1=k

Figure 3.4: The selection constants for the interval [di, di+1).

d ∈
[

1
2 , 1
)

is partitioned into intervals as

[di, di+1) , where d1 =
1
2

and di+1 = di + 2−δ . (3.24)

Therefore, the first δ fractional bits to the right of the binary point represent the precision

to which the divisor has to be examined. Since d is fixed during the operation, the QDS

function finds the appropriate interval by checking the truncated d and consequently,

the search for the quotient digit qj+1 becomes limited to that interval. In this method,

the QDS function is defined through a set of the selection constants mk(i) as

for d ∈ [di, di+1) , qj+1 = k if mk(i) ≤ rw[ j] < mk+1(i) . (3.25)

Unlike the PD plot method, in which separating points sk(d) lie inside the overlap

regions, the selection constants are defined as

max (Lk(di),Lk(di+1)) ≤ mk(i) ≤ min (Uk−1(di),Uk−1(di+1)) . (3.26)

The function is depicted in Figure 3.4. Again, like the PD plot method, it is desired to

perform the comparisons mk(i) ≤ rw[ j] < mk+1(i) in limited precision. This implies that

the granularity of the selection constants is equal to the number of fractional bits of the

shifted PR involved in the QDS function.

39



Chapter 3. SRT Division Algorithm Implementation

For every k ∈
{
a, a − 1, · · · , 1̄, 0, 1, · · · , a − 1, a

}
, the selection constant is defined as

mk(i) =
Ak(i)

2c , where Ak(i) is an integer. (3.27)

From (3.24), (3.26) and (3.27), the QDS function should satisfy

Lk(di + 2δ) ≤ Ak(i)
2c ≤ Uk−1(di) , if rw[ j] ≥ 0 ; (3.28a)

Lk(di) ≤ Ak(i)
2c ≤ Uk+1(di + 2δ) , if rw[ j] < 0 . (3.28b)

However, since any increase (decrease) in δ causes a decrease (increase) in c, there is no

analytical solution to determine the exact values of c and δ. Therefore, the mission of

minimising δ and c, individually, changes to minimising δ+ c. This minimises the total

number of bits to be applied to the input of the QDS function. This number is is equal

to δ + c − 1 plus the number of bits required to represent the integer part of rw[ j].

Considering the continuity condition (2.36), δ should be chosen in such a way that at

least one value can be selected for every mk(i). In other words, to always satisfy (3.28),

it is required that

Uk−1(di) ≥ Lk(di + 2δ) , when k ≥ 0

Uk−1(di + 2δ) ≥ Lk(di) , when k < 0 .
(3.29)

Substituting the continuity condition boundaries (2.34) into (3.29) produces

(2ρ − 1)di ≥ (k − ρ)2−δ , when k ≥ 0

(2ρ − 1)di ≥ (1 − k − ρ)2−δ , when k < 0 .
(3.30)

Since the worst case occurs when di =
1
2 and k = a, the lower bound on δ is

δ ≥ log2

2(a − ρ)
2ρ − 1

. (3.31)

Now, starting from the lower bound (3.31), it is possible to choose the best value for

c that minimises the sum δ + c and simplifies the implementation. The minimisation

process may need to iterate (3.28) a few times, every time for all k and i. After the

required parameters are calculated, 2a selection constants are determined for every i.

Now, the QDS function can be implemented through the design shown in Figure 3.5.

An Example of the Selection Constants Method

The assumptions for this example are the same as those introduced in the example for

the PD plot method. The first objective is to find the minimal value of δ+c. Substituting

40



3.3. Division Radix

���
�

1

0.1=}{
−δ

δ xxxd

���

�

���

�

c

c xxx.xxx=jrw

β

]}[{
Lookup
Table

qj+1

Figure 3.5: The QDS function implemented through the selection constants method.

Table 3.2: The selection intervals and mk(i) for r = 4 and ρ = 1.

[di, di+1)

Lk(di+1) ≤ mk(i) ≤ Uk−1(di)
[
d1 =

1
2 , d2 =

3
4

) [
d2 =

3
4 , d3 = 1

)
L3(di+1) ≤ m3(i) ≤ U2(di) 3

2 ≤ m3(1) ≤ 3
2 2 ≤ m3(2) ≤ 9

4

L2(di+1) ≤ m2(i) ≤ U1(di) 3
4 ≤ m2(1) ≤ 1 1 ≤ m2(2) ≤ 3

2

L1(di+1) ≤ m1(i) ≤ U0(di) 0 ≤ m1(1) ≤ 1
2 0 ≤ m1(2) ≤ 3

4

L0(di+1) ≤ m0(i) ≤ U−1(di) − 3
4 ≤ m0(1) ≤ 0 −1 ≤ m0(2) ≤ 0

a = 3 and ρ = 1 in (3.31) gives the lower bound on δ as

δ ≥ 2 . (3.32)

In the first attempt, considering δ = 2, the minimum value of c may be obtained by

investigating (3.28) for i = 1, 2 and k = 2, 1, 0, 1, 2, 3. However, due to the symmetry

between positive and negative selection constants [EL94], the search can be limited to

the positive ones. The results are listed in Table 3.2. The table shows there are several

choices for the other selection constants except for m3(1). However, to make c as small

as possible, the ones which have the least fractional bits in their representations are

selected. One possible set for mk(i) is

m3(1) = A3(1)
2c =

3
2 , m3(2) = A3(2)

2c = 2 = 4
2 ,

m2(1) = A2(1)
2c = 1 = 2

2 , m2(2) = A2(2)
2c = 1 = 2

2 ,

m1(1) = A1(1)
2c =

1
2 , m1(2) = A1(2)

2c =
1
2 ,

m0(1) = A0(1)
2c = −1

2 , m0(2) = A0(2)
2c = −1

2 ,

(3.33)

which implies c = 1. Using (3.22), the number of integer bits of 4w[ j], which are used

in the process of selecting the quotient digit, is found to be β = 3.

41



Chapter 3. SRT Division Algorithm Implementation

qj+1 w[j+1]

QDS

rw[j]

MUX

. . .-ad ad

Adder

Figure 3.6: Critical path of the SRT division, indicated in red.

Table 3.3: Delay per iteration versus the radix in high-radix SRT division.

r lookup delay
iteration (arbitrary) bits retired

4 1 2

8 1.5 3

16 2 4

32 practically 3.5 ∼ 4.7 5

3.3 Division Radix

SRT division can be developed for any radix r = 2m, where m ≥ 1. The radix of

the algorithm is considered as the number of bits obtained in every iteration. This

means that the larger the division radix, the more bits of the quotient are produced

per iteration and therefore, the less number of iterations are required. However, this

reduction in the latency does not come for free. As the radix increases, the intricacy

of the QDS function increases too. On the other hand, as shown in Figure 3.6, the

QDS function is on the critical path of the SRT division. Therefore, any increase in

the QDS function latency adds to the division cycle time. Oberman [Obe97] gives a

measure, which is summarised in Table 3.3, for selecting the radix when implementing

the division operation through the lookup table method. The table shows that while

at the beginning (for small r)

lookup delay ∝ log2 r , (3.34)

as r increases, the delay does not follow (3.34) but grows faster. Using the proportion

division latency ∝ length of the input operands
bits retired

× lookup delay
iteration

, (3.35)

42



3.5. PR Representation

and Table 3.3, it is found that for n-bit dividend and divisor,

division latency ∝ n
2
× 1 =

n
2

, when r = 4 , (3.36)

division latency ∝ n
3
× 1.5 =

n
2

, when r = 8 . (3.37)

Therefore, it is found that no delay reduction is achieved when r ≥ 8. Furthermore,

another investigation [BW95] states that while

lookup delay = log2(6 log2 r) , (3.38)

the tradeoff between the number of iterations and the complexity of the table is opti-

mised, when r = 8. On the other hand, large radices make the hardware providing the

multiples of d more complex. All the possible values for the term dqj+1 subtracted from

rw[ j] in (2.15) are generated by a circuit called the factor generator. When qj+1 cannot be

represented as a power of 2, calculating dqj+1 requires full length addition/subtraction,

which increases the latency of the division operation. In fact, the growth rate of the QDS

function delay and the difficulty in generating the factors limits the practical choices of

the division radix to 2 and 4 [Obe97].

3.4 Redundancy Factor

For a given radix r ≥ 4, more than one SD set can be defined satisfying the SD condition

(2.23). So, for high-radix SRT division, there are choices of the SD set from which the

quotient digit can be chosen. Using the overlap region described in (2.35), it is found

that the higher the redundancy factor ρ is, the wider the overlap regions between the

selection intervals are and therefore, the fewer the number of bits of the shifted PR and

the divisor are involved in the QDS function. This effect leads to a simpler and faster

QDS function, ensuring reduction in the division operation latency. However, a higher

value of a results in more complex and slower factor generator. The SD sets with a > 2

and r ≥ 4 include digits that are not powers of 2 and therefore, the corresponding dqj+1

cannot be generated only by left shifting but requires at least one addition/subtraction.

The implementation of high-radix SRT division can be optimised if a balance between r

and ρ is achieved. However, due to the challenging nature of the optimisation process,

designers prefer to stick to radix 2 or minimally redundant radix 4 [SL96].

43



Chapter 3. SRT Division Algorithm Implementation

3.5 PR Representation

Studying the recurrence (2.15) reveals that high-radix SRT division can be viewed as

a multi-addend addition/subtraction. Meanwhile, studying Figure 3.6 shows that the

adder is on the critical path. It follows that speeding up the division operation can be

accomplished using the following two different approaches [Par00].

1. Minimising the number of addends.

2. Speeding up the core addition/subtraction.

The first approach is thoroughly covered in Sections 3.3 and 3.4 and the second leads

to the use of advanced adders.

Studying SRT division reveals that the iteration cycle time is dominated by the PR

formation delay [Kor01]. This is because in basic SRT division, the PR is represented in

non-redundant 2’s complement form and consequently, the core addition/subtraction

is implemented using a traditional carry-propagating adder. The worst case delay

of this adder, due to propagating a carry (borrow) from the least (most) to the most

(least) significant bit, is nτ, where τ denotes the delay of the single bit full adder

[Hwa79], and n indicates the operand width. Unfortunately, this delay is so large that

it nullifies all other efforts to improve the divider performance. Therefore, some recent

implementations of high-radix SRT division calculate the PR in one of the redundant

forms of carry-save (CS) or binary SD (BSD)1 instead [Omo94]. This allows the divider

to use carry-free adders (CFA) [Par88, Tho97, Kor02] to perform (2.15).

A CFA limits carry propagation to a limited number of digit positions to the left. So,

it adds all digits in parallel. This reduces the division cycle time massively. The use

of CFA in calculating the next PR is functionally shown in Figure 3.7. However, since

representing a number in any of the redundant formats needs twice as many bits as

their traditional counterpart requires, the QDS function becomes more complex and a

little slower. This is due to the circuit required to assimilate the bits representing the

truncated PR in redundant format. This circuit is located before the lookup table, as

shown in Figure 3.8. The converter is usually implemented through binary adders.

Several adjustments to make the original QDS function capable of handling the

redundant PR are given in [EL94, MC92, EL90, MC94]. However, the QDS functions

presented in [BH01, ALMN02, Nan99] seem to be more suitable for implementations

1In some literature, the BSD format is called borrow-save (BS).

44



3.6. Quotient Conversion Method

w[j+1]

n+1 n+1

-dqj+1n n n
Factor Generator

Carry-Free Adder

rw[j]

Figure 3.7: A CFA used in the recurrence of high-radix SRT division.

Lookup
Table

qj+1

truncated rw[j]
(redundant)

truncated d

CPA or
CLA

truncated rw[j]
(2's complement)

Figure 3.8: Implementation of the QDS function with a redundant PR.

using the selection constants method. These implementations are discussed later in

Sections 4.1.1, 4.1.2 and 4.1.3.

3.6 Quotient Conversion Method

Although redundant representation of the quotient digits helps improve recurrence

cycle time, since the result is used by the other parts of the system like memory or

running applications, the SD quotient needs to be converted into 2’s complement

format at the final stage. In the traditional method, the conversion [Par97, Bla98] is

implemented using a binary carry propagating adder. Even though fast parallel-prefix

adders [Zim98, Kno99] are employed, the conversion delay remains proportional to

log2 n, where n is the addend’s width. This means that an extra cycle is required

increasing the latency of the division operation. However, it is possible to carry out

the conversion as the quotient digits are produced by the QDS function. The on-the-

fly conversion method can be used to prevent the extra addition cycle [EL87]. This

technique applies to any digit recurrence operation like SRT division, where the result

appears in digit-by-digit at the output, most significant digit first [Par00, EL94]. In the

on-the-fly conversion algorithm, throughout the iterations, the values Qj+1 and Qj+1−ulp

45



Chapter 3. SRT Division Algorithm Implementation

are simultaneously formed and kept in two separate registers, namely A[ j + 1] and

B[ j+ 1], respectively. Symbol Qj+1 denotes the value of the quotient, in 2’s complement

representation, after qj+1 is selected by the QDS function. Registers A and B are refreshed

using the recurrence

A[ j + 1] =

⎧⎪⎪⎨⎪⎪⎩ (A[ j], qj+1) ,

(B[ j], (r − |qj+1|)) ,
if qj+1 ≥ 0 ;

if qj+1 < 0

B[ j + 1] =

⎧⎪⎪⎨⎪⎪⎩ (A[ j], (qj+1 − 1)) ,

(B[ j], (r − |qj+1| − 1)) ,

if qj+1 > 0 ;

if qj+1 ≤ 0

and A[0] = B[0] = 0 , (3.39)

where notation (a, b) indicates a concatenation. No mathematical operation is involved

in (3.39) other than concatenation. So, no carry/borrow propagates. After the registers

are updated using the final quotient digit delivered to the the on-the-fly conversion

unit, the quotient in 2’s complement form can be fetched from the A register.

3.7 Overlapping Iteration Components

Although SRT division was initially introduced for radix 2, as shown in Subsection 3.3,

increasing the radix from 2 to a higher number may improve the division cycle time. As

an alternative, the components of the iteration can be overlapped in order to reduce the

division latency. This is usually realised by overlapping 2 or more stages with lower

radices [EL94, Tay85, Fan89, Fan87] as shown in Figure 3.9.

None of the components of the two iterations are overlapped in the method depicted

in Figure 3.9(a). As shown in Figure 3.10, only a simple low-radix divider is replicated

more than once to form a high-radix divider. This method improves the cycle time

only because no intermediate registers are required to keep the new PR between the

two stages. However, if the iteration critical path is mainly dominated by the adder

performing (2.15) or the QDS function, then the overlapping scheme follows Figures

3.9(b) or 3.9(c), respectively.

3.7.1 Overlapped QDS Function

Taylor [Tay85] introduces a radix-16 divider constructed with 2 radix-4 SRT division

stages, overlapped over the QDS function. The idea of overlapping the QDS function is

summarised in Figure 3.11. In this scheme, the QDS function of stage j+1 is overlapped

46



3.7. Overlapping Iteration Components

QDS FG PRF
QDS FG PRF

(a) No overlap (Standard approach).

QDS FG PRF
QDS FG PRF

(b) The critical path is dominated by the PRF.

FG
QDS FG PRF

QDS PRF

(c) The critical path is dominated by the QDS function.

Figure 3.9: Overlapping the iteration components. QDS denotes the QDS function, FG

represents the factor generator and PRF is the symbol of the PR formation [OF95a].

qj+1 MUX

. . .-ad ad

rw[j]

qj+2 MUX

. . .-ad ad

w[j+2]

CFA

CFA

QDS

QDS

BUF

BUF rw[j+1]

Figure 3.10: The design with no overlap among the components.

47



Chapter 3. SRT Division Algorithm Implementation

QDSCFA

rw[j]
. . .

CFA

. . .-ad ad

qj+1MUX

. . . . . .

. . . . . .

qj+1

qj+2

MUX

CFA. . .-ad ad

rw[j+1]

w[j+2]

. . .-ad adQDS

BUF

QDS QDS

CFA

MUX

Figure 3.11: Overlapping the QDS function.

with the QDS function of the next stage, j + 2. This is possible only by calculating an

estimate of w[ j + 1] and qj+2 in parallel, for all the possible 2a + 1 values of qj+1. Once

the actual value of qj+1 becomes available, it is used to select the correct value of qj+2.

While the scheme shown with no overlap in Figure 3.10 has

critical path delay = 2 (tQDS + tBUF + tMUX + tCFA) , (3.40)

the overlapped design depicted in Figure 3.11 has

critical path delay = 2 tCFA + tQDS + 2 tMUX + tBUF . (3.41)

Hence, the overlapping results in the improvement of

∆critical path delay = tQDS + tBUF (3.42)

in the iteration cycle time. It seems that the number of overlapped stages can be

extended to any desired value. However, for every stage of overlap, the number of

circuits producing the speculative values of the quotient digit increases by a factor

of 2a + 1. Therefore, the k-th stage requires (2a + 1)k copies of the QDS function and

the limited range CFAs. Due to the exponential growth in the required hardware, the

number of overlapped stages is typically limited to 2 or at most 3 stages [SL96].

Classic implementations of the overlapping technique can be found in [Fan87, Fan89,

CC99, ELM91]. An extensive discussion is also presented by Harris et al. [HOH97]

48



3.7. Overlapping Iteration Components

qj+2

CFA . . . CFA. . .

-ad ad

MUX

rw[j+1]

w[j+2]

qj+1

CFA . . . CFA. . .

-ad ad

MUX

rw[j]

QDS

QDS

BUF

BUF

Figure 3.12: Overlapping the PR formation.

and a more recent example with 2 overlapped radix-2 stages is introduced by Rice and

Hughey [RH03].

3.7.2 Overlapped PR Formation

Further optimisation in the division cycle time can be achieved if the PR formation

is overlapped [HOH97, OF95a]. In this overlapping scheme, which is depicted in

Figure 3.12, all the possible 2a + 1 values for w[ j + 1] are formed in parallel with

the calculation of qj+1. Then, the appropriate value is selected once the actual qj+1 is

available. Therefore, the critical path delay is reduced to

critical path delay = 2
(
tQDS + tMUX + tBUF

)
(3.43)

with the improvement of 2tCFA. Two famous instances of such approach are reported

by Quach and Flynn [QF92], and Oberman et al. [OQF94]. In both architectures, a two-

bank radix-4 SRT division is employed. While one bank determines w[ j+ 1] = rw[ j]± d

and w[ j + 1] = rw[ j] (i.e. the cases qj+1 = ±1 and qj+1 = 0), the other performs the same

task for qj+1 = ±2. The QDS function is designed such that it generates 2 bits, q1 and

then q2, with a short delay. Once q1 is available, the choice of 0 or ±1 is made using a

multiplexer and similarly, q2 selects the correct next PR from the results of the 0 or ±1

49



Chapter 3. SRT Division Algorithm Implementation

. . . . . .

qj+1

qj+2

CFA

rw[j]

. . . CFA. . .

-ad ad

QDS

CFA . . . CFA. . .

-adad

MUX

rw[j+1]

w[j+2]

CFA . . . CFA. . .

-ad ad

MUX

MUX

QDS

BUF

QDS QDS

BUF

qj+1

Figure 3.13: Overlapping the QDS function and the PR formation.

bank, or the ±2 bank. This is possible if the quotient digits are encoded as

qj+1 = 2 = S q2

qj+1 = 1 = S q2 q1

qj+1 = 0 = q2 q1 (3.44)

qj+1 = 1 = S q1 q2

qj+1 = 2 = S q2 ,

where S represents the sign of w[ j] transferred from the previous iteration. The critical

path delay is almost halved at the expense of duplicating the PR formation hardware.

3.7.3 Overlapped QDS Function and PR Formation

A divider with 3 overlapped radix-2 stages is used in the Sun UltraSPARC [PZ95]. In

this design, the two previous schemes are combined such that both the QDS function

and the PR formation are overlapped. The general structure of the design, with two

overlapped stages, is displayed in Figure 3.13. The figure shows that unlike the previous

overlapping approaches, the design has two almost identical critical such that

critical path delay = tQDS + 2 tMUX + tCFA + tBUF . (3.45)

50



3.8. Number Representation in the IEEE 754 Standard

. . . . . .

qj+1

qj+2

CFA

rw[j]

. . . CFA. . .

-ad ad

QDS

CFA . . . CFA. . .

-adad rw[j+1]

w[j+2]MSB

CFA . . . CFA. . .

-ad ad

MUX

MUX

QDS

QDS QDS

qj+1

MUX

CFA. . .-ad ad

CFA

w[j+2]LSB

. . .-ad ad

B
U

F
B

U
F MUXMUX

Figure 3.14: Hybrid overlapping.

3.7.4 Hybrid Overlap

Further investigation of SRT division reveals that the critical path passes through only

a few most significant bits of the next PR [EL94]. This fact leads to the implementation,

where only the PR formation of the critical high-order bits is overlapped. This means

that the hybrid overlap method saves area, however, it can improve the critical path

delay as well.

Unlike the preceding methods, in which wide multiplexors are on the critical path,

only multiplexors with narrow inputs are found on critical path of the hybrid overlap

approach and the rest of the PR formation, with wide multiplexors, is moved off the

critical path. Therefore, the buffers required for selecting the wide multiplexors are

eliminated and the critical path delay is decreased to

critical path delay = tQDS + 2 tMUX + tCFA . (3.46)

This technique with 2 hybrid overlapped stages is shown in Figure 3.14.

3.8 Number Representation in the IEEE 754 Standard

It is impossible to represent all real number with a finite representation. This means that

except for a small range of real values, the rest must be approximated. For this purpose,

51



Chapter 3. SRT Division Algorithm Implementation

different number representation formats such as fixed-point, rational, floating-point and

logarithmic can be used [Par00]. Among them, only floating-point representation is

able to provide a dynamic range of real numbers without having to scale the operands

[Kor01]. The FP number F is represented as

F = (−1)S × 1. f × βE , (3.47)

where S is the sign, 1. f is the significand (or the mantissa), E is the exponent and β

is the exponent base. Although β can be any number represented as a power of 2,

modern systems use β = 2 since it maximises the precision while the significands are

kept normalised [Par00]. The sign is represented by a separate sign bit. This means

that FP number magnitude is represented in the conventional sign-magnitude format.

However, the exponent’s sign is embedded in the exponent itself, which is biased by

a number. Using biased format for exponent representation facilitates FP arithmetic,

especially with the zero detection and the magnitude comparison operations.

In the past, different computer vendors had different formats for FP representation.

Therefore, numerical programs were not completely portable2. In 1985 the IEEE or-

ganisation defined the IEEE 754 standard for representation of FP numbers and FP

operations. The two representation formats in the IEEE 754 standard are depicted in

Figure 3.15. As shown in the figure, the significand is a binary fractional number in

the range [1, 2). Since the significand is normalised, the starting 1 is removed from the

representation, however, it still contributes to the precision. Negative and positive FP

numbers are recognised by a sign bit equal to 1 or 0, respectively.

In addition to the number 0, which is shown by a unique representation equal to

all-0s with positive or negative sign, unconventional values such as ±∞ and 0
0 are

represented by special codes. More information on the standard can be found in

[IEE85, Gol91].

3.9 FP Division Using the SRT Algorithm

Based on the definition proposed by the IEEE 754 standard, binary FP division is

performed by dividing the significands and subtracting the exponents as

(−1)Sdividend × 1. fdividend × 2Edividend

(−1)Sdivisor × 1. fdivisor × 2Edivisor
= (−1)Squotient × 1. fdividend

1. fdivisor
× 2Edividend−Edivisor , (3.48)

2Different results were produced when running on different machines.

52



3.9. FP Division Using the SRT Algorithm

S E + bias f

32 bits: 1 bit     8 bits, bias=127           23+1 bits, single-precision

64 bits: 1 bit   11 bits, bias=1023 52+1 bits, double-precision

Sign    Biased exponent      Significand=1.f (the 1 is hidden)

Figure 3.15: The IEEE 754 standard formats for representing FP numbers.

However, the ratio 1. fdividend
1. fdivisor

may have to be normalised. In fact, since the significands

are both in [1, 2), the ratio is in the range
(

1
2 , 2
)
. This means that a 1-bit left shift and

consequently, an exponent adjustment may be required. In FP division, the quotient

exponent equal to Edividend − Edivisor should be biased anyway and another events such

as overflow and underflow should be handled properly. Cases such as overflow,

underflow or division by zero may happen after post-normalisation, when Edividend and

Edivisor have different polarities or if the divisor is 0.

A complete structure of a binary FP divider is shown in Figure 3.16. In the first

stage, the two FP operands are unpacked. The unpacking process involves separating

the sign, exponent and significand, restoring the hidden bit 1, and testing the operands

to recognise possible exceptions. Meanwhile, the quotient sign is determined as

Squotient = Sdividend XOR Sdivisor . (3.49)

Also, the intermediate exponent is obtained by subtracting the biased exponents and

adding the bias again to the result. The significand divider is implemented using, for

example, high-radix SRT division. Once the result is normalised, it is rounded. The

rounding may result in an unnormalised representation of the quotient, which is fixed

by an additional right shift. Both normalisations may require exponent adjustment.

Finally, the result is packed and represented in the appropriate format for output.

Among the processes required for carrying out FP division, dividing the significands

and rounding are the most important because, as shown Figure 3.16, they are on the

critical path. In the rest of this work, only these two operations are discussed.

3.9.1 Rounding and Post-Normalising

When the result is obtained from a FP operation, it may not be possible to represent

exactly in the IEEE 754 standard. Therefore, rounding is needed before the result is

53



Chapter 3. SRT Division Algorithm Implementation

XOR

Unpack

Divide
Significands

Normalize

Round

Normalize

Subtract
Exponents

Adjust
Exponent

Adjust
Exponent

x d

Pack

q

Figure 3.16: Structure of the FP divider complying the IEEE 754 standard [Par00]. The

normalising block close to the end performs post-normalisation.

Table 3.4: An example of the rounding errors for the RTNE scheme [Kor01].

Case Number Rounded Error Case Number Rounded Error

1 X0.00 X0. 0 5 X1.00 X1. 0

2 X0.01 X0. − 1
4 6 X1.01 X1. − 1

4

3 X0.10 X0. − 1
2 7 X1.10 X1. + 1. + 1

2

4 X0.11 X1. + 1
4 8 X1.11 X1. + 1. + 1

4

stored in the memory or registers, and/or sent to the output. Rounding converts

higher-precision values, to lower-precision representations defined by the standard.

Although several rounding schemes, namely round toward zero, round toward −∞,

round toward +∞ and round to nearest even (RTNE) are defined by the IEEE 754 standard,

FP dividers use the RTNE approach [SL96, Obe97] since it is introduced as the default

(or mandatory) scheme [Par00]. The other 3 can be performed using the hardware

carrying out RTNE. If bias is defined as the average rounding error, the RTNE scheme

rounds with the bias equal to 0, assuming the results occur with equal probability. This

rounding method is summarised in Table 3.4 using an example.

Although the RTNE scheme exhibits a good numerical performance, it suffers full

length carry propagating addition required in cases 7 and 8 of Table 3.4. The techniques

54



3.9. FP Division Using the SRT Algorithm

used for removing the addition step are discussed later in Section 5.4.

From the definition of the RTNE scheme [IEE85] and the example shown in Table 3.4,

it is found that making the decision whether one ulp should be added to the truncated

result is made only by one bit before and one bit after the rounding point in addition to

the information whether the rest of the truncated bits are 0. However, since the results

of FP operations may need to be normalised, a few more extra bits are required. If the

result before post-normalising and rounding processes is shown as

z = z1z0.z−1z−2 · · · z−l+1LGRS , (3.50)

the bits L, G, R and S can be defined as follows.

• L (last bit) is the least significant bit of the truncated result after post-normalisation.

• G (guard bit) holds the bit that is shifted out in case of 1-bit right shift alignment.

• R (round bit) is used when 1-bit left shift alignment is carried out. It determines

whether to round up or down.

• S (sticky bit) is the representative of the rest of discarded bits. S = 0 if they are all

0, otherwise S = 1.

The effect of a 1-bit post-normalisation on the L, G, R and S bits is as follows [Par00].

Before post-normalisation (z) · · · z−l+1 L | G R S

After 1-bit right shift · · · z−l+2 z−l+1 | L G R OR S

After 1-bit left shift · · · L G | R S 0

After post-normalisation (Z) · · · Z−l+1 Z−l | Z−l−1 Z−l−2 Z−l−3 ,

where Z denotes the final result after required right/left shifts are performed. Now, to

round Z based on the RTNE scheme, it is enough to discard the last three bits3 and

do nothing , if Z−l−1 = 0 OR Z−l = Z−l−2 = Z−l−3 = 0 ; (3.51a)

add ulp = 2−l to Z , otherwise. (3.51b)

The description given in this subsection is applicable to any FP operation, however,

there is a difference between FP division and the other operations when implementing

the rounding unit. In high-radix SRT division, the final remainder contributes to

3Z−l−1, Z−l−2 and Z−l−3.

55



Chapter 3. SRT Division Algorithm Implementation

deriving the value of S. Bit S is 0 if and only if the final remainder and the extra bits to

the right of R (before post-normalisation) are all 0 [Par02].

Another important issue is post-normalising. As mentioned earlier, the final result

of the FP division is in the range
(

1
2 , 2
)
. Therefore, to represent the quotient in the

IEEE 754 standard, if the integer bit is 0, then a 1-bit left shift is needed; otherwise

no action should be taken. When implementing a FP divider, in order to shorten the

division cycle time, post-normalising and rounding processes are combined together

[Par00, OF97b]. However, while the implementations of these two appears simple

on its own, the combination is rather complex. A discussion on implementing the

rounding-normalising operation is presented in Section 5.4.

3.9.2 Assumptions to Match SRT Division with the IEEE 754 Standard

The dividend and the divisor are assumed to be two 53-bit normalised fractions in the

range
[

1
2 , 1
)

4. This exactly conforms to the definition of the significand part of a double

precision number introduced in the IEEE 754 standard. Based on the realisation of the

FP divider introduced in [EL94], in the first iteration, where j = 0,

q[0] = 0 , (3.52)

and since no PR is already available, the dividend x is used to form w[0]. However,

since the convergence condition (2.30) should always be satisfied, w[0] is initialised as

w[0] = 0.00

x (53 bits)︷�����������︸︸�����������︷
1x1x2 · · · x51x52 = r−2x ≤ ρd . (3.53)

This means that the change

original d = 0.

53 bits︷�����������︸︸�����������︷
1d1d2 · · · d51d52 −→ new d = 0.

55 bits︷���������������︸︸���������������︷
1d1d2 · · · d51d5200 (3.54)

has to be carried out on the original d. Due to the extended lengths of the divisor and PR,

the divider needs one more iteration to finalise the division operation. However, since

the recurrence (2.15) is carried out using CFA, the critical path delay of the iteration is

not affected by the extension. Moreover, it is shown later that in order to round the

56-bit result and also to represent it in the double precision format, one more iteration is

required. Therefore, for instance, radix-4 FP division finishes in a total of 29 iterations.
4Since in the IEEE 754 standard numbers are normalised in [1, 2), the two input operands are shifted

one bit to right. It does not change their lengths.

56



3.10. Summary

3.10 Summary

In Chapter 3 some major issues involved in the implementation of high-radix SRT

division and their effects on the division response time were addressed. From the

discussions given in this chapter, the following results were obtained.

• The QDS function is conventionally implemented using either the PD plot or the

selection constants methods.

• The radix of SRT division can be increased to 4 or 8. This decreases the number

of cycles required for completion of SRT division at the expense of greater cycle

time.

• The higher the redundancy factor is, the simpler and therefore the faster the QDS

function may be. However, any increase in ρ may result in a more complex and

consequently a slower factor generator. Therefore, r and ρmust be kept balanced

when optimising high-radix SRT division.

• To eliminate the time consuming binary adder performing the recurrence (2.15),

the PR can be calculated in the redundant form. Therefore, the recurrence can be

carried out using a CFA.

• Using the on-the-fly conversion techniques decreases the division execution time

because, instead of spending one cycle for converting the quotient from SD to

binary, the conversion is performed digit-by-digit every cycle.

• Another approach to decrease the latency is to overlap the components of the

division such as the QDS function and the PR formation.

In addition, Chapter 3 presented an account on how high-radix SRT division can be

modified to be used for implementing FP division defined by the IEEE 754 standard.

57



Chapter 3. SRT Division Algorithm Implementation

58



Chapter 4

Comparison Multiples, a Different

Approach to Quotient Digit Selection

Chapter 4 introduces the new comparison multiples approach for selecting the quotient

digit. The idea is supported by a mathematical discussion. The new method is com-

pared to previous approaches. An implementation of a radix-r FP division based on

the comparison multiples idea is proposed and the structure of the components used

in the implementation is explained.

59



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

4.1 Introduction

After the well-publicised Pentium FDIV bug in 1994, a considerable effort has been

put to analysing the QDS function lookup table [BW95], studying its implementa-

tion [OF95b] and verification [Bry96, RSS96]. In addition, developing alternative ap-

proaches to implementing high-radix SRT division has been another agenda [EL04].

Although the latest techniques of implementing the QDS function, and increasing

the speed of high-radix SRT division are well studied in the literature, still the compar-

ison multiples method [EL94] is not seriously considered by designers. For example,

Ercegovac and Lang [EL94] claim:

Since the resulting implementation is still complicated because of the need for the

multiples (of the divisor) and the comparisons, we develop the following alternative,

which has more flexibility and results in a simpler implementation.

A similar discussion on the comparison multiples method is given by Antelo et al.

[ALMN02]:

An alternative implementation is based on comparisons of the residual estimate with

truncated multiples of the divisor, however, this implementation is rarely used in

practice because it requires assimilation of the truncated redundant residual and

comparison, so no advantage is obtained with respect to the implementation with

selection constants.

Despite these quotes, there are reports of radix-2 [Kan96] and radix-8 [Kan97] SRT

division based on comparison multiples that show relatively improved response time.

Moreover, Jensen [Jen98] reports that although a highly optimised divider implemented

using the conventional approach is just slightly faster than its un-optimised counterpart

implemented using comparison multiples, optimising the components of the critical

path of the latter design may result in a faster circuit. Jensen also recounts other

advantages of the comparison multiples approach such as simpler implementation,

which allows the designer to produce the divider in less time and with less risk.

This chapter establishes an approach for implementing high-radix SRT division

based on the comparison multiples method. It is proven that at least for conventional

binary radices, the use of multiples of the divisors neither limits the flexibility of the

QDS function, nor results in a complex implementation. In addition, it is shown that the

60



4.1. Introduction

comparison multiples method not only does not require assimilation of the truncated re-

dundant residual, but also displays such advantages that make it more attractive than the

conventional approaches, for implementing high-radix SRT division. So, this method

can be a competitive substitution for existing methods, especially in term of the latency.

The discussion starts by revisiting the QDS function from a different viewpoint. The

key elements involved in the implementation are then mathematically expressed. The

explanation is accompanied by an implementation architecture. This chapter addresses

methods for optimising the recurrence critical path in the general radix r = 2m. Further

optimisation techniques are developed when Chapter 5 introduces the implementations

for radix-4 and radix-16 FP dividers based on the proposed method.

To support the discussion, three recent implementations of radix-4 SRT division

based on the conventional approaches for implementing the QDS function are selected.

Their advantages and disadvantages in terms of timing and architecture are discussed.

4.1.1 Retimed Low Power Implementation

Nannarelli [Nan99] develops a new implementation method for high-radix SRT divi-

sion. Although the method is introduced to reduce the power consumption of the

divider, as a secondary result, the critical path delay becomes smaller than that of the

standard approach [EL94]. Here, only this latter feature is explained.

In this design, the PR is represented in the CS format. The QDS function is defined

through the selection constant method and implemented based on the scheme shown

in Figure 3.8. None of the circuit components are overlapped.

The key change to make the critical path shorter is retiming the recurrence. A se-

quential circuit becomes retimed when its registers are repositioned without modifying

its functionality [HW02, MDG93]. The retiming is done on the traditional implemen-

tation by transferring the QDS function from the beginning of the current iteration to

the end of the previous iteration. The process is shown in Figure 4.1. As depicted in

the figure, a new register is introduced to keep the quotient digit.

As shown in Figure 4.1(a), a 2:1 multiplexer is involved in the iteration. The role

of the multiplexer is to allow the dividend enter the recurrence as w[0] = x
4 . This role

is completed at the end of the first iteration, however, the multiplexer delay has to be

added to recurrence cycle time since in such sequential designs all cycles have to be

equal. In the retimed approach shown in Figure 4.1(b), the input x of the multiplexer is

61



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

d

qj+1

Fu
ll 

R
an

ge

x

 Factor Gen.

Registers wj+1

QDS

CFA

MUX

(a) Traditional implementation.

d

Fu
ll 

R
an

ge

Registers wj+1
Reg. qj

Factor Gen.

CFA

MSBs

MSBs LSBs

LSBs

x

MUX

QDS

(b) Retimed implementation.

Figure 4.1: Implementation of high-radix SRT division [Nan99].

selected by the sequence controller in the first iteration and in the rest of division the

input d is selected. Therefore, since x and d are available in registers before division

starts, and the output of the multiplexer is changed only once during the whole division,

the multiplexer delay can be compensated using an early selection. This is performed

through a skewed select signal at the end of the first iteration. Now, the critical path

delay is even shorter as the multiplexer is removed from the recurrence.

Moreover, as a result of the retiming, the critical path is limited to a few most

significant bits of the PR and therefore, buffers are eliminated from the few most

significant bits in the critical path, as presented in Figure 4.2.

Nannarelli reports an overall 5% improvement in recurrence cycle time compared

to the critical path delay of the non-retimed implementation. However, the divider

62



4.1. Introduction

Reg. qj

. . .

MUX

. . .

MUX

. . .

MUX
. . .

. . . . . .
. . .

MUX
. . .

Factor Generator

B
U

F

(a) Before buffer removal.

Reg. qj

. . .

MUX

. . .

MUX

. . .

MUX
. . .

. . . . . .
. . .

MUX
. . .

MSBs LSBs Factor Generator

B
U

F

(b) After buffer removal.

Figure 4.2: Removing buffers from the critical path [Nan99].

requires an extra cycle because in the first iteration nothing happens except recurrence

initialisation. This almost nullifies the improvement achieved in the iteration critical

path delay because

division cycle time improvement = 100 × 29 − (30 × 0.95)
29

= 1.72% . (4.1)

Also, the design still suffers the complexity of the lookup table and the faults that may

happen when designing the chip.

4.1.2 Implementation Used in the ARM FP Macrocell

Another step to optimising the realisation of high-radix SRT division is to remove the

lookup table, either totaly or partly. This method still uses the selection constants,

however, it implements the QDS function using comparators.

One recent implementation of radix-4 SRT division in a commercial processor is

disclosed by Burgess and Hinds [BH01]. They explain the main features of the di-

vide/square root unit used in a vector processing chip called ARM VFPJ. The divider is

implemented based on the traditional design shown in Figure 3.6. However, the QDS

function, which is characterised using the selection constants method, is implemented

in a different way.

63



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

. . .

CFA 2a-1 . . .

Sign Detector . . .

qj+1

CFA 1

Sign Detector

CFA 0

Sign Setector

         Coder

δ -1 in - 2a (+c) out ROM or PLA
m-a+1 ma-1 ma

. . .

���

�

���

�

c

c xxxxxxjrw .]}[{

β

=
���

�

1

1.0}{
−

=
δ

δ xxxd

. . .

Figure 4.3: Implementation of the QDS function using the comparators.

In the traditional implementations shown in Figures 3.5 and 3.8, the truncated rw[ j]

and d fetch a value for the quotient digit directly by addressing a specific location inside

a lookup table. However, in the new approach, all the selection constants are kept in

a smaller lookup table and the appropriate set of mk(i) is selected using {d}δ and then,{
rw[ j]

}
c and mk(i) take part in subtractions in the form

{
rw[ j]

}
c −mk(i) , for k = a − 1, · · · , 1, 0, 1, · · · , a − 1, a (4.2)

followed by sign detections. Finally, the signs are manipulated by a coder to obtain the

correct value for qj+1. In the implementation described in Figure 4.3, the sign detection

operations are performed by the carry generating networks.

Burgess and Hinds report 37.5% improvement in the logic level depth compared to

the standard lookup table implementation. However, the gate-counting method does

not seem to provide exact enough results for timing evaluation of electronic circuits.

This is why another more accurate assessment reported in [ALMN02] shows a delay

reduction of about 5% with respect to former implementations. Although the approach

removes the lookup table from the recurrence critical path, mistakes may still happen

when programming the PLA/ROM.

64



4.2. Comparison Multiples Based FP Division

4.1.3 Retimed Implementation of ARM Divider

Further optimisation of the recurrence critical path delay using the approach presented

in [BH01] is reported by Antelo et al. [ALMN02]. The original radix-4 FP divider is

decomposed and meanwhile the recurrence is retimed in order that one half of the CFA

involved in the QDS function is taken off the critical path. The modification is briefly

explained as follows.

Since the recurrence is retimed, (4.2) can be represented as

{
rw[ j]

}
c −mk(i) =

{
r2w[ j − 1] − rdqj

}
c
−mk(i) . (4.3)

Consequently, because a redundant representation is employed, using one additional

fractional digit, (4.3) can be rewritten as

{
rw[ j]

}
c −mk(i) =

{{
r2w[ j − 1]

}
c+1
+
{
−rdqj

}
c+1

}
c
−mk(i) . (4.4)

Now, since mk(i) has c fractional bits, (4.4) is represented as

{
rw[ j]

}
c −mk(i) =

{{
r2w[ j − 1]

}
c+1
−mk(i) +

{
−rdqj

}
c+1

}
c
. (4.5)

Therefore, since
{
r2w[ j − 1]

}
c+1 is already determined in the previous iteration and mk(i)

is selected just once at the beginning of division,
{
r2w[ j − 1]

}
c+1 −mk(i), the first part of

(4.5), can be calculated out of the critical path. Fig 4.4 shows how the modified method

implements the QDS function.

In addition to the retiming technique, the cycle times of different paths are balanced

by careful location of the registers storing the state between cycles. This balance

minimises recurrence cycle time by maximising the concurrency. A speedup of about

30% with respect to the design described in [BH01] is reported. However, the overall

speedup to FP division cycle time is about

division cycle time improvement = 100 × 29 − (30 × 0.70)
29

= 27.6% , (4.6)

since the retimed design finishes division in 30 iterations, rather than 29.

4.2 Comparison Multiples Based FP Division

This section discusses the basic hypothesis as well as the mathematical framework of

the proposed approach. Then, the essentials for implementing the QDS function based

on the new method are revealed. All the discussion is given in the general radix r = 2m.

65



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

. . .

. . .

CFA 2a-1 . . .

Sign Detector . . .

qj+1

CFA 1

Sign Detector

CFA 0

Sign Detector

         Coder

ROM or PLA
m-a+1 ma-1 ma

. . .

1
2 ]}1[{ +− cjwrδ}{d

. . .

CFA 2a-1 CFA 1 CFA 0

Factor
Generator

dqj

Figure 4.4: Retimed version of the QDS function implemented in [BH01].

4.2.1 PR Representation

The PR can be generated in any of the redundant number representations such as the CS

or the BSD form. Using a CFA, a redundant PR is calculated in a fixed time, regardless

of the length of the operands. CS adders are more widely used since historically, BSD

adders are thought very complicated to implement, while CS adders are considered to

be fast and easy to implement. While the latter is true, the former is a misconception.

There are quite sufficient studies proving that the both types of adders have the same

logical complexity [CNI95, Kor02]. Therefore, they have similar delay and occupy the

same VLSI implementation area. Besides, for some applications, the BSD representation

has some attractive features as follows [VVDJ90, WH86].

• A BSD number is negated in zero time, just by swapping the bits representing

each digit.

• Due to the symmetric nature of BSD numbers, truncation error is uniformly

distributed. Therefore, in most cases, rw[ j] is approximated with fewer bits.

• Using generalised BSD numbers systems [Par90], high-radix SRT division can be

extended to radices that are not powers of 2.

66



4.2. Comparison Multiples Based FP Division

In the proposed implementation of a FP divider based on high-radix SRT division,

the PR is represented in the BSD format. A BSD z is represented using 2 bits as (z+, z−),

where z = z+ − z−. So, a BSD can take only one of the values 1, 0 and 1 represented as

1 = (1, 0) , 0 = (0, 0) or (1, 1) , 1 = (0, 1) . (4.7)

In the BSD notation, the n-digit number Z = zn−1 · · · z1z0 is represented as (Z+,Z−),

where Z+ = z+n−1 · · · z+1 z+0 and Z− = z−n−1 · · · z−1 z−0 are two unsigned n-bit arrays. The value

of Z is determined as

Z = Z+ − Z−

= z+n−1 · · · z+1 z+0 − z−n−1 · · · z−1 z−0 . (4.8)

Number Z is negated simply as

−Z = (Z−,Z+) (4.9)

or equivalently as

−Z = (¬Z+,¬Z−) , (4.10)

where ‘¬’ is a 1’s complement (invert) function.

4.2.2 Comparison Multiples Based QDS Function

Considering the initialising condition (3.53), the convergence condition (2.30) can be

rewritten as

−ρd ≤ w[ j + 1] ≤ ρd . (4.11)

This change is possible because starting from w[0] = r−1x, the case w[ j + 1] = ρd never

happens. The new convergence condition (4.11) causes (2.31) to become

d(qj+1 − ρ) ≤ rw[ j] ≤ d(qj+1 + ρ) . (4.12)

Now, considering (4.11), since qj+1 = k can take any of the 2a+1 values in
{
a, a − 1, · · · , 1, 0,

1, · · · , a − 1, a}, the range (4.12) can be sliced into 2a + 1 intervals in the general form of

d(k − ρ) ≤ rw[ j] ≤ d(k + ρ) , (4.13)

67



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

Table 4.1: The alternative expression for the QDS function.

qj+1 Condition

a rw[ j] ≤ −d(a − ρ)

a − 1 −d(a − 1 + ρ) ≤ rw[ j] ≤ −d(a − 1 − ρ)
...

...

1 −d(1 + ρ) ≤ rw[ j] ≤ −d(1 − ρ)

0 −dρ ≤ rw[ j] ≤ dρ

1 d(1 − ρ) ≤ rw[ j] ≤ d(1 + ρ)
...

...

a − 1 d(a − 1 − ρ) ≤ rw[ j] ≤ d(a − 1 + ρ)

a d(a − ρ) ≤ rw[ j]

where each interval is associated with a member of the SD set. Therefore, to find an

appropriate value for qj+1, it is sufficient to investigate which interval contains rw[ j].

This means that, the QDS function can be expressed alternatively as

qj+1 = k ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, if d(k − ρ) ≤ rw[ j] ≤ d(k + ρ) . (4.14)

Table 4.1 shows the QDS function (4.14) in an expanded form. Since (4.11) must be

always satisfied and also because there is no possible choice for qj+1 larger (smaller)

than a (a), interval d(a − ρ) ≤ rw[ j] ≤ d(a + ρ) is replaced by d(a − ρ) ≤ rw[ j] and

d(−a − ρ) ≤ rw[ j] ≤ d(−a + ρ) by rw[ j] ≤ d(−a + ρ) in the table.

4.2.3 QDS Function Structure

Investigation reveals that the intervals in Table 4.1 always have some overlaps, where

there are 2 choices for qj+1. Therefore, to make the QDS function one-to-one, every two

overlapped intervals are detached using separating points, namely the comparison

multiples. The comparison multiple Mk is defined as

d(k − ρ) ≤Mk ≤ d(k − 1 + ρ) , where k ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
. (4.15)

In addition, Mk is represented as

Mk = Akd , where Ak is a rational number. (4.16)

68



4.2. Comparison Multiples Based FP Division

Now, the QDS function shown in Table 4.1 can be expressed as

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a , if rw[ j] <M−a+1

a − 1 , if M−a+1 ≤ rw[ j] <M−a+2

...

0 , if M0 ≤ rw[ j] <M1

...

a − 1 , if Ma−1 ≤ rw[ j] <Ma

a , if Ma ≤ rw[ j] .

(4.17)

Studying the new definition reveals that the main operations involved in implemen-

tation of the proposed QDS function based on (4.17) are the 2a concurrent full-length

subtractions

rw[ j] −Mk , where k = a − 1, · · · , 1, 0, 1, · · · , a − 1, a (4.18)

followed by 2a parallel full-length sign detections based on the function

Sign(Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if Z ≥ 0 ;

1 , if Z < 0 ,
(4.19)

where Z is a real number. Therefore, using the signs obtained from (4.19), the coder

forms a one-hot value for the quotient digit qj+1.

Fortunately, existence of the overlaps means that there are sometimes more than

one possible value for qj+1. This allows the QDS function to compare just the most

significant c′ fractional digits of rw[ j] with the comparison multiples truncated to c′

fractional bits. Therefore, (4.17) can be rewritten in the truncated form

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a , if
{
rw[ j]

}
c′ < {M−a+1}c′

a − 1 , if {M−a+1}c′ ≤ {rw[ j]
}

c′ < {M−a+2}c′
...

0 , if {M0}c′ ≤ {rw[ j]
}

c′ < {M1}c′
...

a − 1 , if {Ma−1}c′ ≤ {rw[ j]
}

c′ < {Ma}c′
a , if {Ma}c′ ≤ {rw[ j]

}
c′ .

(4.20)

69



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

. . .

BSDA 2a-1 . . .

Sign Detector . . .

BSDA 1

Sign Detector

BSDA 0

Sign Detector

Comparison Multiple Generator
{M-a+1}c'                              {Ma-1}c'                      {Ma}c'. . .

���

�

���

�

c

c xxxxxxjrw

′′

′ = .]}[{

β
���

�

δ

δ

′

′ = xxxd 1.0}{

. . .

. . .         Coder

qj+1

Figure 4.5: Implementing the QDS function using the comparison multiples method.

BSDA indicates the BSD adders.

Now, considering Figure 4.5, which shows the basic structure of the proposed QDS

function, the elements required for carrying out (4.20) are as follows.

Comparison Multiple Generator

Unlike the selection constants, which are kept in a lookup table and retrieved using a

few of the most significant bits of d, the comparison multiples have to be calculated

by the comparison multiple generator, just once at the beginning of division. Since

d is kept in 2’s complement format, {Mk}c′ has to be generated using binary adders.

However, since (4.21) uses only truncated values, only a few most significant bits of d

are involved in calculating {Mk}c′ .

Parallel Limited-Range BSD Adders

Each of the 2a BSD adders perform

{
rw[ j]

}
c′ − {Mk}c′ , where k ∈

{
a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
. (4.21)

Each adder is (β′ + c′) digits wide since the fractional parts of
{
rw[ j]

}
c′ and {Mk}c′ , and

the integer parts of the two addends, with length β′, are involved in (4.21).

70



4.2. Comparison Multiples Based FP Division

Parallel Limited-Range Sign Detectors

Unlike 2’s complement representation, in which the leftmost bit represents the sign

of the number, the sign of a BSD number is equal to the sign of the most significant

nonzero digit. Each of the 2a sign detectors is constructed using carry generating

network causing a sign detection delay proportional to log2 of the operand length

[EL94, Zim98, BL03]. The sign detectors are as wide as either β′ + 1 + c′ or β′ +

c′ digits since adding two numbers, when at least one is in the BSD format, may

result a BSD number at most one digit wider. This is called a representation overflow

[SPM97, PS95, CCT00, Bur91] and means increasing the result width without a change

in the value by generating a nonzero BSD to the most significant digit. Representation

overflow is handled by the Adjust unit, which is discussed later.

Coder

The signs of all 2a results obtained from (4.21) are delivered to the coder, a logic circuit

that converts the one-hot representation of qj+1 to a weighted representation.

4.2.4 QDS Function Evaluation

Comparing the specifications of the proposed method and the selection constants ap-

proach1 reveals no substantial reason to favour the selection constant method. In fact,

• The delay incurred by the {Mk}c′ generator is not larger than the lookup table used

in the selection constant method. This is because the size and the latency of both

the fast binary adders [Zim98] and the lookup table grow in O
(
log2 n

)
, where n

indicated the operands width.

• Clearly, no assimilation of the truncated PR is required when using the BSD

adders. The circuits performing (4.20) and (4.2) are the same.

• The QDS function may not select wrong quotient digits since an implementa-

tion with no lookup table is no longer at the risk of being programmed with

miscalculated values.

1Such as the example discussed in Section 4.1.2.

71



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

d x

qj+1

Factor Generator MUX

. . .

-adad

. . .

. . .

BSDABSDA

d

. . .

. . .

q

Convert
Round

Normalize

w[j+1]- Register

MUX (2a+1):1

Adj.

QDS

Adj. Adj.

w[j+1]+ Register

Figure 4.6: The proposed FP divider based on the comparison multiples approach. The

block named Adj represents the adjust unit.

QDS

BSDA

BSDA
MUX (2a+1):1      Registerwj+1MUX

CoderSign Detector

Adj.

Figure 4.7: The two paths run in parallel in the proposed FP divider structure.

4.2.5 FP Division Structure

Using the newly defined QDS function, a FP divider based on high-radix SRT division

is designed and sketched in Figure 4.6. Two distinct paths can be found in the figure.

While the one indicated in red is considered to be the critical path, the other with

shorter delay runs in parallel. The paths are shown in Figure 4.7.

4.2.6 FP Division Evaluation

Using the information obtained from Figures 4.6 and 4.7, the proposed FP divider can

be evaluated as follows.

72



4.3. FP Division Optimisation

Different QDS Function Implementation

As mentioned earlier, the QDS function of the proposed FP divider is implemented

using the comparison multiples method.

Different PR Formation

In dividers like the one discussed in Section 4.1.2, a factor generator precalculates kd

for all k = 0,±1, · · · ,±(a − 1),±a and the quotient digit qj+1 = k determined by the QDS

function selects the appropriate value using a MUX (2a + 1) : 1. This value is applied

to the CFA in order to perform (2.15). In the proposed design, the PR formation does

not wait for the quotient digit. While the QDS function is operating, the PR formation

precalculates all possible values for the next PR and then adjusts them. Therefore more

overlap between the QDS function and the PR formation is obtained.

Same Iteration Cycle Time

Although counting the logic levels in Figures 4.6 demonstrates a shorter critical path,

timing analysis shows that because the proposed QDS function has twice the fan out

of the QDS function in the traditional designs, the overall iteration cycle time does not

change considerably. In fact, while two identical MUX (2a + 1) : 1s operate in parallel

in the proposed FP divider in order to select one of the SD inputs, only one multiplexer

with binary 2’s complement inputs is needed in the traditional designs.

4.3 FP Division Optimisation

As stated Section 4.2, the proposed FP divider does not seem to display a recurrence

cycle time shorter than the traditional approach. This section proposes techniques

for minimising the recurrence critical path delay. More improvement is reported in

Chapter 5, when implementing radix-4 and radix-16 FP dividers.

4.3.1 QDS Function Optimisation

The two major ideas to speed up recurrence cycle time are as follows.

1. Breaking the critical path into two or more concurrent but shorter paths.

73



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

2. Decreasing the fan out of the circuits delivering
{
rw[ j]

}
c′ to the QDS function.

A close look at Table 4.1 exposes a symmetry among the margins. This symmetry

allows the QDS function (4.20) to be redefined as

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a , if rw[ j] < 0 and
{
rw[ j]

}
c′ < − {Ma}c′

...

k , if rw[ j] < 0 and − {Mk+1}c′ ≤ {rw[ j]
}

c′ < − {Mk}c′
...

1 , if rw[ j] < 0 and − {M2}c′ ≤ {rw[ j]
}

c′ < − {M1}c′
0 , if rw[ j] < 0 and − {M1}c′ ≤ {rw[ j]

}
c′

0 , if rw[ j] ≥ 0 and
{
rw[ j]

}
c′ < {M1}c′

1 , if rw[ j] ≥ 0 and {M1}c′ ≤ {rw[ j]
}

c′ < {M2}c′
...

k , if rw[ j] ≥ 0 and {Mk}c′ ≤ {rw[ j]
}

c′ < {Mk+1}c′
...

a , if rw[ j] ≥ 0 and {Ma}c′ ≤ {rw[ j]
}

c′

(4.22)

since

{M−k+1}c′ = {−Mk}c′ = − {Mk}c′ , where k ∈ {1, · · · , a − 1, a} . (4.23)

The number of comparisons in (4.22) decreases to a. However, (4.22) cannot be fulfilled

unless the sign of the shifted PR is determined. Determining the polarity of rw[ j], while

represented in the BSD format, requires a full-length time consuming carry generation.

This causes an impractical response time proportional to log2 of the width of the FP

division operands. It is shown later in this section that existence of the overlaps helps

to convert the full-length sign detection to a limited-range. In other words, to make

the decision whether {Mk}c′ or − {Mk}c′ should participate in the comparisons, it is not

necessary to know the exact sign of rw[ j], but the approximate sign Srw[ j], obtained from

74



4.3. FP Division Optimisation

the shifted PR truncated to c′′ fractional digits. So, (4.22) changes to

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a , if
{
rw[ j]

}
c′′ < 0 and

{
rw[ j]

}
c′ < − {Ma}c′

...

k , if
{
rw[ j]

}
c′′ < 0 and − {Mk+1}c′ ≤ {rw[ j]

}
c′ < − {Mk}c′

...

1 , if
{
rw[ j]

}
c′′ < 0 and − {M2}c′ ≤ {rw[ j]

}
c′ < − {M1}c′

0 , if
{
rw[ j]

}
c′′ < 0 and − {M1}c′ ≤ {rw[ j]

}
c′

0 , if
{
rw[ j]

}
c′′ ≥ 0 and

{
rw[ j]

}
c′ < {M1}c′

1 , if
{
rw[ j]

}
c′′ ≥ 0 and {M1}c′ ≤ {rw[ j]

}
c′ < {M2}c′

...

k , if
{
rw[ j]

}
c′′ ≥ 0 and {Mk}c′ ≤ {rw[ j]

}
c′ < {Mk+1}c′

...

a , if
{
rw[ j]

}
c′′ ≥ 0 and {Ma}c′ ≤ {rw[ j]

}
c′ .

(4.24)

Due to the changes applied to the definition of the proposed QDS function, its

structure changes as well. The new components of the newly proposed QDS function

are shown in Figure 4.8. These components are defined as follows.

Comparison Multiple Generator

Unlike the comparison multiple generator used previously, in the revised QDS function,

only a positive multiples (i.e. {Mk}c′ , for k = 1, 2, · · · , a − 1, a) are generated.

Parallel Limited-Range Comparators

As a part of the comparator shown in Figure 4.8, there is a BSD adder with (β′+ c′)-digit

input operands performing{
rw[ j]

}
c′ − {Mk}c′ , if

{
rw[ j]

}
c′′ ≥ 0 ; (4.25a){

rw[ j]
}

c′ + {Mk}c′ , if
{
rw[ j]

}
c′′ < 0 (4.25b)

or equivalently{
rw[ j]

}
c′ + ¬ {Mk}c′ + ¬Srw[ j] , if

{
rw[ j]

}
c′′ ≥ 0 (≡ Srw[ j] = 0) ; (4.26a){

rw[ j]
}

c′ + {Mk}c′ + ¬Srw[ j] , if
{
rw[ j]

}
c′′ < 0 (≡ Srw[ j] = 1) , (4.26b)

75



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

. . .

. . .

Comp. Sign Det. . . . Comp. Sign Det. Comp. Sign Det.

Comparison Multiples Generator
{M1}c'                      {Ma-1}c'            {Ma}c'. . .

. . .

Srw[j]

. . .

PR Sign Det.

Srw[j+1]

. . .

BSDA a-1 BSDA 1 BSDA 0

Mag(qj+1)

         Coder

���

�

���

�

c

c xxxxxxjrw

′′′′

′′ =+ .]}1[{

β
���

�

���

�

c

c xxxxxxjrw

′′

′ = .]}[{

β
���

�

δ

δ

′

′ = xxd 1.0}{

Comparator

Figure 4.8: Optimised implementing the comparison multiples based QDS function.

where k ∈ {1, · · · , a − 1, a}. Subtraction (4.25a) is changed to (4.26a) using the rule

A − B = A + ¬B + 1 , (4.27)

where ‘¬’ is 1’s complement (invert).

In order to carry out (4.26), either − {Mk} or {Mk} should be preselected before being

applied to the BSD adders. As indicated in Figure 4.8, the appropriate value is selected

based on the sign of
{
rw[ j]

}
c′′ as

{Mk}c′ is selected , if Srw[ j] = 1 ;

¬ {Mk}c′ is selected , if Srw[ j] = 0 .
(4.28)

Parallel Limited-Range Comparison Sign Detectors (for a Units)

Similar to the previous method, a units of sign detectors, which are not wider than

β′ + 1 + c′ digits, are used to determine the signs of the results obtained from (4.26).

Limited-Range PR Sign Detector

The comparisons (4.26) cannot be accomplished unless the sign of
{
rw[ j]

}
c′′ is already

known. Therefore, to prevent any additional delay to the iteration response time, the

QDS function should be implemented in such a way that the sign of
{
rw[ j]

}
c′′ becomes

76



4.3. FP Division Optimisation

available before (4.26) starts. Recalling (3.53), since x > 0, it is found that the sign of

{rw[0]}c′′ is already known before the first iteration begins. Therefore, selecting a value

for q1 using (4.26) is independent of the sign detection operation. This observation can

be extended to the j-th iteration to make a carry generator serve as a sign detector to

find the polarity of
{
rw[ j + 1]

}
c′′ , where

{
rw[ j + 1]

}
c′′ is represented by e′′ integer and c′′

fractional digits. The PR sign detection uses the function

Srw[ j+1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if

{
rw[ j + 1]

}
c′′ ≥ 0

1 , if
{
rw[ j + 1]

}
c′′ < 0

(4.29)

to determine the approximate sign of rw[ j+ 1]. This operation is performed in parallel

to the rest of the QDS function and therefore, does not affect the iteration delay.

Coder

As in the previous design, the results of the comparison sign detectors are applied

the coder, which outputs the quotient digit in an eligible format. However, since the

implementation of the QDS function is changed, the value for qj+1 is formed differently,

this time using Sign(qj+1) and Mag(qj+1). In this representation,

Sign(qj+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Srw[ j] , if qj+1 ∈ {±1, · · · ,±(a − 1),±a} ;

don’t care , if qj+1 = 0
(4.30)

determines the sign and Mag(qj+1) indicates the magnitude (absolute) of the value

selected for qj+1. In other words,

Mag(−qj+1) =Mag(qj+1) , where qj+1 ∈ {0,±1, · · · ,±(a − 1),±a} . (4.31)

4.3.2 Optimised QDS Function Evaluation

The results of the optimisation on the proposed QDS function are as follows.

• The number of comparators and comparison sign detectors used in the QDS

function is halved. This makes the recurrence operate faster by decreasing the

fan out of the circuits delivering input signals to the QDS function.

• The new coder contributes less delay to FP division because it produces Mag(k)

based on a+1 inputs rather than 2a. Also, compared to the previous coder, Mag(k)

is represented in fewer bits.

77



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

• In the new design, the PR sign detector, which determines Sign(qj+1), operates in

parallel to the rest of the QDS function. Therefore, the concurrency exposed by

the redefined implementation reduces the critical path delay of the FP division.

4.3.3 Recurrence Optimisation

Using the new features provided by the redefined QDS function, the previous imple-

mentation of the proposed FP divider is optimised to minimise the recurrence critical

path delay. The structure of the new implementation is presented in Figure 4.9. The

changes applied to the original proposed FP divider are listed as follows.

New Registers

A new register, namely Mag(qj+1), is introduced to store the magnitude of qj+1. In

addition, registers tagged S0 to Sa and w0 to wa are used to keep all the a possible values

calculated for Srw[ j+1] and w[ j + 1], respectively.

Different Multiplexing Structure

The MUX (2a + 1) : 1 employed in the previous implementation is replaced by a MUX

(a + 2) : 1 and a MUX 2 : 1. For simplicity, the latter is implemented using a set of

XNOR gates. Two instances of MUX (a + 2) : 1 are employed. The one with narrow

inputs operates on the critical path. The other with wide inputs is off the critical path.

In addition, the MUX 2 : 1, which in Figure 4.6 serves as the selector between the PR

and x, is embedded in the MUX (a + 2) : 1 in the optimised FP divider.

Isolated Critical Components from Noncritical Components

As indicated in Figure 4.9, MUX2(a+ 2) : 1, the PR sign detectors, the PR formation, the

factor generator and the adjust units are isolated from the critical path using buffers.

4.3.4 Optimised Recurrence Evaluation

As a result of the optimisation, the FP divider is appraised as follows.

• Duplicating MUX1(a + 2) : 1 minimises the fan out of the Mag(qj+1) register. This

technique not only balances the load by distributing it over the Mag(qj+1) and

78



4.3. FP Division Optimisation

. . .
. . .

. . .

M
U

X
1  (a+2):1

. . .

. . .

M
U

X
 (a+1):1

d
. . .

. . .

Q
D

S*

Factor
G

enerator

S
rw

[j]

B
SD

A

. . .
A

dj.
A

dj.
PR

 Sign D
et.

PR
 Sign D

et.
PR

 Sign D
et.

w
0

R
eg

M
ag(q

j+
1 )R

eg
w

1
R

eg
S

0
R

eg
S

1
R

eg
S

a
R

eg
x

B
SD

A

A
dj.

w
a

R
eg

M
U

X
2  (a+2):1

M
ag(q

j+
1 )

add
{rw

[j]}
c'

rw
[j]

. . .

PR
 Form

ation

Figure 4.9: The optimised implementation of FP division based on the redefined QDS

function. QDS∗ refers to the QDS function without the PR sign detector.

79



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

wk Reg

QDS*

Mag(qj+1) RegCoderComp. Sign Det.MUX (a+1):1

XNOR Sk RegPR Sign Det.MUX (a+1):1

MUX2 (a+2):1 Adjust
BSDA

XNOR

MUX1 (a+2):1
BSDA

Figure 4.10: The three paths run in parallel in the optimised FP divider structure.

Sk registers, but also divides the critical path into 2 concurrent shorter paths.

Therefore, recurrence cycle time is reduced.

• Combining the multiplexer selecting between the PR and x into MUX (a + 2) : 1

decreases the critical path delay, since one multiplexer arm is retired. However,

this change requires the Mag(qj+1) register be initialised in such a way that in the

first iteration, the input corresponding to x is selected.

• Having the noncritical components detached from the rest of the design using

buffers improves recurrence cycle time since the critical circuit bears less load.

• In the new FP divider, the critical path is constructed differently. It is shown

schematically in Figure 4.10.

4.4 QDS Function Operands Precisions

4.4.1 e′ and c′

In this subsection, the lower bounds on e′ and c′ are analytically determined. Since the

width of the comparison sign detectors directly affects the QDS function response time,

the smaller e′ and c′ are, the faster the QDS function is.

Number of Fractional Bits/Digits

To determine c′, which denotes the number of fractional digits of rw[ j] (as well as

the number of fractional bits of Mk) involved in the BSD additions, the comparison

80



4.4. QDS Function Operands Precisions

intervals shown in (4.24) are studied. For simplicity, only the general interval shown

as {Mk}c′ ≤ {rw[ j]
}

c′ < {Mk+1}c′ is investigated. However, the other cases can be derived

in the same way. The interval is divided into

{Mk}c′ ≤ {rw[ j]
}

c′ (4.32a){
rw[ j]

}
c′ < {Mk+1}c′ . (4.32b)

It is known that if a 2’s complement number X is truncated to t bits of precision right

of the binary point, then

{X}t ≤ X < {X}t + 2−t. (4.33)

However, for a BSD number Y the same truncation results in

{Y}t − 2−t < Y < {Y}t + 2−t. (4.34)

Using (4.33) and (4.34), (4.32a) changes to

Mk − 2−c′ < {Mk}c′ ≤ {rw[ j]
}

c′ < rw[ j] + 2−c′ (4.35)

or simply

Mk − 2−c′+1 < rw[ j] . (4.36)

Since qj+1 = k, adding −kd to (4.36) and using (2.15) results in

Mk − 2−c′+1 − kd < w[ j + 1] . (4.37)

Moreover, to maintain the convergence condition (2.30), the inequality

−ρd ≤Mk − 2−c′+1 − kd (4.38)

or equivalently

d(k − ρ) + 2−c′+1 ≤Mk , (4.39)

must be complied with. For interval (4.32b), a similar derivation can be used to obtain

Mk+1 ≤ d(k + ρ) − 2−c′ . (4.40)

Replacing k + 1 with k in (4.40) and then combining it with (4.39) gives

d(k − ρ) + 2−c′+1 ≤Mk ≤ d(k − 1 + ρ) − 2−c′ . (4.41)

81



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

This inequality gives tighter ranges than condition (4.15). This is because rather than

full-range, truncated comparison multiples are used in the comparisons. To make sure

that finding a value for Mk using (4.41) is always possible, the inequality

d(k − ρ) + 2−c′+1 < d(k − 1 + ρ) − 2−c′ , (4.42)

should be always maintained. This leads to

2c′ >
3

d(2ρ − 1)
. (4.43)

Since d ≥ 1
2 , it follows that

2c′ >
6

2ρ − 1
. (4.44)

Inequality (4.44) gives the lower bound on c′ based on the redundancy factor ρ.

Number of Integer Bits/Digits

In addition to c′, it is required to determine the width of the integer section of the

operands involved in the BSD additions (4.25). Since 0 < Mk < rρd, 1
2 ≤ ρ < 1 and

1
2 ≤ d < 1, then Mk is a binary number with at most log2 r integer bits. If w[ j] already

has i integer digits, then rw[ j] never has more than log2 r + i integer digits. As a result,

e′ = log2 r + i , (4.45)

which indicates that the inputs to the BSD adders in Figure 4.8 have no more than

log2 r + i integer bits/digits.

4.4.2 e′′ and c′′

There is a sign detector in the implementation of the new QDS function. It finds the

polarity of
{
rw[ j + 1]

}
c′′ represented as a (e′′ + c′′)-digit BSD number. Since the more

digits the PR sign detector checks, the larger its response time is, it is tried to derive the

lower bounds on e′′ and c′′.

Number of Fractional Bits/Digits

Considering (4.24), if
{
rw[ j]

}
c′′ ≥ 0, then the proposed method accepts rw[ j] as a nonneg-

ative value. This means that to carry out the QDS function, the exact sign of the shifted

82



4.5. Summary

PR is not really needed. In other words, if rw[ j] is found to be a small negative number,

it can still be treated as a nonnegative number. This impression can be tolerated to that

extent that it does not violate the conditions of high-radix SRT division.

From (4.34), it can be derived that

0 ≤ {rw[ j]
}

c′′ < rw[ j] + 2−c′′ (4.46)

or equivalently

−2−c′′ < rw[ j] . (4.47)

To make (4.47) comply with the convergence condition (2.30) in the neighborhood of 0

with qj+1 = 0, the inequality

2−c′′ ≤ ρd (4.48)

must be satisfied. Since d ≥ 1
2 , inequality (4.48) can be changed to a tighter condition

independent to d as

2c′′ ≥ 2
ρ
. (4.49)

Using (4.49), the lower bound on c′′ is obtained for a given redundancy factor ρ.

Number of Integer Bits/Digits

Unlike 2’s complement numbers, a BSD number has various representations. Therefore,

w[ j+1] may be represented differently when it appears in different paths of the iteration.

However, they all have a unique value. Having considered i′ as the number of integer

digits of w[ j + 1] when it is applied to the PR sign detectors, using the same approach

employed to determine e′, the minimum value of e′′ can be expressed as

e′′ = log2 r + i′ . (4.50)

4.5 Summary

Chapter 4 proposed an alternative for implementing the QDS function based on the

new comparison multiples approach. The topics discussed in Chapter 4 are as follows.

83



Chapter 4. Comparison Multiples, a Different Approach to Quotient Digit Selection

• In the comparison multiples method, instead of searching for the quotient digit in

a lookup table, the quotient digit is directly calculated. In fact, the QDS function

compares the truncated PR with truncated multiples of D rather than constants

retrieved from a lookup table.

• The sign and the magnitude of the quotient digit are determined separately by

the QDS function. This feature allows the circuit calculating the quotient’s sign

to be moved out of the critical path. Therefore, using the new representation for

the quotient digits, the fan out of some components on the critical path is almost

halved, making them operate faster.

• The divider constructed using the comparison multiples idea can be optimised

to minimise the critical path delay. Having evaluated the divider against the FP

dividers available in the literature, the proposed implementation can be found

potentially faster than its counterparts.

84



Chapter 5

Comparison Multiples Based Radix-4

and Radix-16 Floating-Point Dividers

Chapter 5 presents implementations of a radix-4 and a radix-16 FP divider. The circuits

are developed based on the comparison multiples approach introduced in Chapter 4.

The radix-16 FP divider is realised using two overlapped copies of the radix-4 FP

divider. An on-the-fly rounding scheme requiring no post-normalisation is suggested.

85



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

5.1 Introduction

Two examples of comparison multiples based FP division are presented in Chapter 5.

It is shown in this chapter that although the radix-r divider proposed in Chapter 4 is

optimised for speed, further improvements in the critical path delay can be obtained

when using conventional small radices.

The first example is a comparison multiples based radix-4 FP divider. The original

implementation of the division is given followed by a faster variant. As the second

example, a comparison multiples based radix-16 FP divider is constructed using two

copies of the radix-4 design. In addition, changes to the primary radix-16 implementa-

tion that may improve division execution time are addressed.

5.2 Radix-4 FP Divider

5.2.1 Assumption

Having selected r = 4, to facilitate producing qj+1d in the factor generator, a is set to 2.

This is equivalent to having the redundancy factor selected as

ρ =
2
3
. (5.1)

5.2.2 Precisions

Having substituted (5.1) in inequality (4.44) in which determines the lower bound on

c′, and in inequality (4.49), which gives the lower bound on c′′,

c′ ≥ 5 and c′′ ≥ 2 . (5.2)

Therefore, the first choices can be

c′ = 5 (5.3)

and

c′′ = 2 . (5.4)

Investigating the structure of the proposed FP divider and the QDS function shown in

Figures 4.9 and 4.8 indicates

i = 0 and i′ = 3 . (5.5)

86



5.2. Radix-4 FP Divider

S4w[j]

S4w[j+1] Mag(qj+1)

{d}6 {4w[j]}5{4w[j+1]}2

Comp. Sign Det. Comp. Sign Det.

{M1}5               {M'2}5

PR Sign Det.

BSDA BSDA

2.5 2.55.2 5.2

2.5 or 3.5 2.5 or 3.5 2.5 or 3.5 2.5 or 3.5

2.5 2.5

1 Coder

q1 q0

Comparator

Comp. Mult.
Gen.

Figure 5.1: The general structure of the radix-4 QDS function. Notation m.n shows

that the BSD (2’complement) number is represented in m integer and n fractional digits

(bits).

Consequently, by substituting the corresponding values from (5.5) into (4.45) and (4.50),

e′ = 2 (5.6)

and

e′′ = 5 . (5.7)

5.2.3 QDS Function

The QDS function for the radix-4 FP divider is depicted in Figure 5.1. Implementation

of the comparison multiple generator, comparators, sign detectors and the coder are

discussed as follows.

Comparison Multiple Generator

Using (5.1), (5.3) and inequality (4.41), the ranges, where M1 and M2 are defined, can

be determined. The ranges along with the values selected for the two comparison

multiples are listed in Table 5.1. While {M1}5 =
{

1
2 d
}

5
is easily calculated just by

87



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Table 5.1: The most convenient for generating values for M1 and M2.

k Range Selected Ak Mk

1 1
3 d + 1

16 ≤M1 ≤ 2
3 d − 1

32
1
2

1
2 d

2 4
3 d + 1

16 ≤M2 ≤ 5
3 d − 1

32
3
2

3
2 d

shifting d one bit to the right and then keeping only the 5 most significant fractional

bits, generating {M2}5 =
{

3
2 d
}

5
requires more operations. Mathematically, there are

an infinite number of approaches to calculate {M2}5 =
{

3
2 d
}

5
. However, investigation

shows that only two of them use operands that are already available. Value {M2}5 can

be formed by calculating either

3
2

d = d +
1
2

d (5.8)

or

3
2

d = 2d − 1
2

d , (5.9)

and then keeping the 5 most significant fractional bits of the result. Since 3
2 d should

be represented in the traditional binary format, both methods involve full length carry

propagating additions. However, since addition takes a relatively long time, the divider

is not allowed to start the first iteration until
{

3
2 d
}

5
is generated. In other words, the

comparison multiple generating process can take as long as one division iteration. This

forces the FP divider to take one more cycle to complete.

An effective way to reduce the delay of the comparison multiple generator is to

perform the truncation prior to (5.8) and (5.9). This results in a limited length binary

addition with truncated addends. This introduces a new substitute for M2, say M′
2, as

{
M′

2
}

5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{d}5 +
{1

2
d
}

5
(5.10a)

or

{2d}5 −
{1

2
d
}

5
. (5.10b)

88



5.2. Radix-4 FP Divider

In either case, the QDS function (4.24) is rewritten for the current implementation as

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 , if
{
4w[ j]

}
2 < 0 and

{
4w[ j]

}
5 < −

{
M′

2

}
5

1 , if
{
4w[ j]

}
2 < 0 and −

{
M′

2

}
5
≤ {4w[ j]

}
5 < − {M1}5

0 , if
{
4w[ j]

}
2 < 0 and − {M1}5 ≤ {4w[ j]

}
5

0 , if
{
4w[ j]

}
2 ≥ 0 and

{
4w[ j]

}
5 < {M1}5

1 , if
{
4w[ j]

}
2 ≥ 0 and {M1}5 ≤ {4w[ j]

}
5 <
{
M′

2

}
5

2 , if
{
4w[ j]

}
2 ≥ 0 and

{
M′

2

}
5
≤ {4w[ j]

}
5 .

(5.11)

However, if
{
M′

2

}
5

is to be an appropriate replacement for
{

3
2d
}

5
in (5.11), the conver-

gence condition (2.30) must be satisfied in the neighborhood of
{
M′

2

}
5
. Considering this

condition, the correct substitution is found by inspection. For simplicity, the investiga-

tion is limited to the positive quotient digits, however, inspecting the negative region

gives identical results. Recalling the 2’s complement truncation condition (4.33) and

the SD truncation condition (4.34), the preliminaries are obtained as

2d − 2−5 < {2d}5 ≤ 2d (5.12)

d − 2−5 < {d}5 ≤ d (5.13)

1
2

d − 2−5 <
{1

2
d
}

5
≤ 1

2
d (5.14)

4w[ j] − 2−5 <
{
4w[ j]

}
5 < 4w[ j] + 2−5 . (5.15)

Now, considering (5.12) to (5.15), the cases (5.10a) and (5.10b) are studied as follows.

• Case
{
M′

2

}
5
= {d}5 +

{
1
2

d
}

5

In the left neighbourhood of
{
M′

2

}
5
, where qj+1 = 1 and

{
4w[ j]

}
5 <
{
M′

2

}
5
, from

(5.12) to (5.15) it can be derived that

4w[ j] − 2−5 <
{
4w[ j]

}
5 <
{
M′

2
}

5 ≤ d +
1
2

d , (5.16)

or

w[ j + 1] = 4w[ j] − d <
3
2

d − d + 2−5 =
1
2

d + 2−5 , (5.17)

89



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

which always satisfies the convergence condition (2.30), because d ≥ 1
2 . Using

(5.12) to (5.15), in the right neighbourhood of
{
M′

2

}
5
, where

{
M′

2

}
5
≤ {4w[ j]

}
5 and

qj+1 = 2, it is derived that

d +
1
2

d − 2−4 <
{
M′

2
}

5 ≤
{
4w[ j]

}
5 < 4w[ j] + 2−5 (5.18)

or

−1
2

d − 2−4 − 2−5 =
3
2

d − 2d − 2−4 − 2−5 < 4w[ j] − 2d = w[ j + 1] . (5.19)

Having assumed that (5.19) meets the convergence condition (2.30), (5.19) yields

−2
3

d ≤ −1
2

d − 2−4 − 2−5 (5.20)

or equivalently

d ≥ 9
16
. (5.21)

Since d ≥ 1
2 , (5.21) is not always correct and therefore,

{
M′

2

}
5
= {d}5 +

{
1
2 d
}

5
cannot

always serve as an appropriate replacement for the truncated M2.

• Case
{
M′

2

}
5
= {2d}5 −

{
1
2

d
}

5

Like the previous case, using (5.12) to (5.15),
{
4w[ j]

}
5 <
{
M′

2

}
5

is expressed as

4w[ j] − 2−5 <
{
4w[ j]

}
5 <
{
M′

2
}

5 < 2d − 1
2

d + 2−5 (5.22)

or equivalently

w[ j + 1] = 4w[ j] − d <
3
2

d − d + 2−4 =
1
2

d + 2−4 . (5.23)

To satisfy the convergence condition (2.30), (5.23) becomes

1
2

d + 2−4 ≤ 2
3

d (5.24)

or correspondingly

d ≥ 3
8
, (5.25)

which is always correct, since d ≥ 1
2 . Repeating the inspection in the right neigh-

borhood of
{
M′

2

}
5
, where qj+1 = 2, and

{
M′

2

}
5
≤ {4w[ j]

}
5 gives the same result. This

means that
{
M′

2

}
5
= {2d}5 −

{
1
2 d
}

5
is a correct replacement for {M2}5 =

{
3
2d
}

5
.

90



5.2. Radix-4 FP Divider

{2d}5=1.xxxxx { d}5=0.01xxx
2

1

        6-bit Binary Adder c0

{M'2}5

{ d}5=0.01xxx
2

1

{M1}5

'1'

Figure 5.2: General structure of the comparison multiple generator used in the proposed

radix-4 FP divider.

Figure 5.2 shows the comparison multiple generator. It should be noted that the

binary adder used in the structure can be implemented in different ways. This is

discussed in Chapter 8. As shown in the figure, the comparison multiple generator

performs (5.10b) using the subtraction rule (4.27). As the final note, the adder in

Figure 5.2 generates the result in 6 bits rather than 7 because,
{
M′

2

}
5

is a positive binary

number in the range

0.11000(binary) ≤ {2d}5 −
{1

2
d
}

5
≤ 1.10000(binary) . (5.26)

Comparators

In the literature, carry-free addition is sometimes called constant-time addition. This

is because the execution time is not dependent on the length of the addends. As

mentioned in Section 3.5, this type of addition is possible only if the result is represented

in a redundant form. Taking into account the fact that the PR is a BSD number,

implementation of BSD addition is briefly explained as follows.

Consider two binary operands

X =
n−1∑
i=0

xi × 2i and Y =
n−1∑
i=0

yi × 2i (5.27)

as the addends, and

Z = X + Y =
n−1∑
i=0

zi × 2i (5.28)

91



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Table 5.2: Carry generating rule for digitwise constant-time addition a+i − a−i + bi =

2s+i+1 − s−i .

ai = a+i − a−i

bi 1 0 1

0 (s+i+1, s
−
i ) = (0, 1) (s+i+1, s

−
i ) = (0, 0) (s+i+1, s

−
i ) = (1, 1)

1 (s+i+1, s
−
i ) = (0, 0) (s+i+1, s

−
i ) = (1, 1) (s+i+1, s

−
i ) = (1, 0)

as the result. The bitwise addition in the carry relationship can be shown as

2ci + zi = xi + yi + ci−1 , where ci−1, ci ∈ {0, 1} . (5.29)

In (5.29), ci−1 is the carry transferred into position i and ci is the carry sent out from

position i. Still (5.29) looks different from an addition with BSD addend a = (a+i , a
−
i ) and

binary augend bi. Performing replacements as

a+i → xi , −a−i → yi , −s−i → zi , s+i+1 → ci and bi → ci−1 , (5.30)

changes (5.29) into

a+i − a−i + bi = 2s+i+1 − s−i . (5.31)

To make addition (5.31) a BSD addition, the value of s+i+1 should be determined using

only the inputs in position i. Although several rules are developed for the carry

generation [PGK99, EL97, Kor94, NK97, Kor99, PK99], the one shown in Table 5.2 is the

most commonly used.

Studying (5.29) reveals that the equation exactly expresses the function of the tra-

ditional single bit full-adder [Kor02, NM96, PK94, VVDJ90]. However, as shown in

Figure 5.3, in order that a full-adder becomes capable of performing the BSD addition

(5.31), two inverters must be employed to negate input b and output s.

Figure 5.4 shows two BSD adders dedicated to perform comparisons (4.26). They

follow the XNOR gates delivering either the set {M1}5 and
{
M′

2

}
5
, or the set ¬ {M1}5

and ¬
{
M′

2

}
5
, to the adders. Each BSD adder is a 7-digit array of 1-digit BSD adders.

As shown in the figure, the result provided by comparators, Pk, are two 8-digit BSD

numbers. However, in the following, it is shown that Pk could be represented in 7 digits

instead. This makes the size of the comparison sign detectors smaller.

It can be shown that no representation overflow happens when calculating Pk. Ac-

cording to the BSD addition rule given in Table 5.2, the following results are derived.

92



5.2. Radix-4 FP Divider

. . .

a        b
co FA0 ci

          s
. . .

a        b
co FA1 ci

          s

a        b
co FA6 ci

          s

. . .. . .

. . .
<n-1> <n-1> <1> <1> <0> <0>

s-s+

. . .. . .

FAn-1

<n-1><n-1> <n-1> <1> <1> <1> <0> <0> <0>

a+ ba-

cin

cout

Figure 5.3: An implementation of a BSD adder with a BSD augend and a 2’s complement

addend. Notation <n> represents n-th bit of the corresponding bit array. The units

tagged as FA represent 1-bit full adders.

{4w[j]}5
+ {4w[j]}5

- {Mk}5 S4w[j]

Pk
-Pk

+

<6:0><6:0>

   a + a - b
cout cin

s+ s-

7-digit BSDA

<7>

<7:0><7:0>

<7>

Figure 5.4: General structure of the comparator used in the radix-4 FP divider, where

k = 1, 2 and {M2}5 ≡
{
M′

2

}
5
.

93



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

• If bi = 1 and either ai = 0 or ai = 1, a carry is definitely propagated, i.e. s+i+1 = 1.

• If bi = 0 and either ai = 0 or ai = 1, no carry is propagated, i.e. s+i+1 = 0.

On the other hand, observation reveals the following results.

• If
{
4w[ j]

}
5 − {Mk}5 is performed by the comparators, it is primarily assumed that

– 4w[ j] is a nonnegative BSD number (see (4.25a)). Therefore, its most signifi-

cant digit is either 0 or 1.

– In addition, the most significant bit of − {Mk}5 is 1.

• If
{
4w[ j]

}
5 + {Mk}5 is performed by the comparators, it is primarily assumed that

– 4w[ j] is a negative BSD number (see (4.25b)). Therefore, its most significant

digit is either 0 or 1.

– Also, the most significant bit of {Mk}5 is 0.

This means that when performing comparisons (4.25), either of the followings happens.

• If P+k<7>= ¬S4w[ j] = 1, then determinately P−k<7>= s+i+1 = 1.

• If P+k<7>= ¬S4w[ j] = 0, then determinately P−k<7>= s+i+1 = 0.

This implies that the most significant digit of Pk, Pk<7>, is always 0 and can be ignored.

Comparison and PR Sign Detectors

According to the architecture in Figure 5.1, three circuits determine the polarities of

three 7-digit BSD operands. The straightforward approach to determining the sign is

to convert the BSD number to 2’s complement format and check the most significant

bit (sign bit).

The identity between BSD to binary (2’s complement) conversion and binary addition

is now clearly understood [UKY84, VVDJ90, SP92, Par97]. Consider binary subtraction

Z = X − Y, where X = xn−1xn−2 · · · x1x0 and Y = yn−1yn−2 · · · y1y0 represent two n-bit 2’s

complement numbers. Using the BSD representation definition, the composite number

(X − Y) can be interpreted as a BSD number, where each BSD digit
(
xi, yi
)

has a value(
xi − yi

)
. This means that any algorithm developed for the binary subtraction can be

directly used for the BSD to binary conversion. However, since the exact value of the

94



5.2. Radix-4 FP Divider

Carry
Generator

nn

'1'

X Y

Sign(X-Y)

c0cn

Figure 5.5: An architecture for n-digit BSD sign detectors using carry generators. For

the sign detectors used in the proposed radix-4 QDS function n = 7.

number is not important, employing methods that find the sign bit directly may result

in a more efficient implementation for the sign detectors.

Figure 5.5 represents an architecture for such sign detectors. The architecture is

derived from the fundamental definition of the binary subtraction [Hwa79]. According

to this definition, when performing n-bit subtraction Z = X − Y as in (4.27), the n-th

carry sent out from the subtractor can be recognised as the inverse of the sign of Z. This

sign is equal to the polarity of the BSD number (X,Y).

The carry generator is defined as a part of parallel-prefix addition algorithms with

overall delay of O
(
log2 n

)
[Zim98, WH04]. In parallel-prefix adders, a carry processing

network precomputes all the carry-in signals required for the final calculation of the sum

bits. However, in the three carry generators operating in the proposed FP divider, those

parts of the circuit that generate c1 to c6 are ignored. This makes the implementation of

the sign detectors simpler, smaller and probably faster.

Recently, the algorithm multilevel reverse-carry (MRC) has been reported to quickly

calculate the most significant carry of a binary addition [BL03]. Therefore, it could be

used as an alternative implementation of the sign detectors. It also shows an overall

delay proportional to log2 n as well. In Chapter 8, the available options are evaluated

to determine the best implementation in terms of response time.

Coder

Based on the value of
{
4w[ j]

}
5, the comparison sign detectors produce two bits, namely

SM1 and SM2 , which construct Mag(qj+1). The values represented by SM1 and SM2 as well

95



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Table 5.3: Values of qj+1 constructed by Mag(qj+1) and Sign(qj+1).

SM1 SM2 Sign(qj+1) Mag(qj+1) = q1q0 qj+1

1 1 1 11 2

1 0 1 10 1

0 0 1 00 0

1 1 0 00 0

0 1 0 10 1

0 0 0 11 2

q1 q0

1MS
2MS

Sign(qj+1)

Figure 5.6: Implementation of the coder used in the proposed radix-4 FP divider.

as their relationship with the exact value of qj+1 are shown in Table 5.3. Investigating

the table reveals that using the simple circuit depicted in Figure 5.6, Mag(qj+1) can be

generated using SM1 , SM2 and Sign(qj+1).

Buffers

As indicated in the FP division data flow, which is shown in Figure 4.10, the compara-

tors, the comparison sign detectors and the coder are on the FP divider critical path. On

the other hand, as discussed in Subsection 4.3.1, minimising the fan out of the circuit

supplying the comparators used in the QDS function with
{
4w[ j]

}
5 and {Mk}5 may lead

to a shorter critical path delay. Therefore, as shown in Figure 5.1, buffers are inserted

in order to limit the load by isolating the circuits producing q1 from the counterpart

circuits generating q0. However, this means that q0 is delivered to the Mag(qj+1) register

earlier than q1. This can be fixed by clock skewing the q1 register by as much as one

buffer propagation delay. More discussion on compensation of the delay caused by

asynchronously producing the Mag(qj+1) components is given later.

96



5.2. Radix-4 FP Divider

5.2.4 Recurrence

The components for building the proposed QDS function are in place, and it is time to

construct the whole recurrence of the comparison multiples based radix-4 FP divider.

The recurrence is shown in Figure 5.7. It follows the general structure of the radix-r

recurrence displayed in Figure 4.9. In this subsection, the focus is on the structure of the

parts involved in the radix-4 recurrence. Detailed discussion of the implementation of

these parts is given in Chapter 8, where the radix-4 FP divider is evaluated for timing.

MUX 4:1

Two instances of MUX 4:1 can be found in the recurrence shown in Figure 5.7, MUX1

and MUX2. However, as shown in the figure, each is divided into two multiplexors

with binary inputs. While the BSD inputs to MUX1 are 7 digits wide, MUX2 deals

with 55-digit BSD numbers. Internally, the MUX 4:1s used in the proposed design are

constructed with 2 stages of MUX 2:1, as displayed in Figure 5.7. To comply with the

PR initialisation (3.53), registers storing q1 and q0 are set to

q1[0] = 0 and q0[0] = 1 . (5.32)

This makes MUX 4:1+ select x and MUX 4:1− select 0 in the first iteration. Therefore,

4w[0]+ = x and 4w[0]− = 0 . (5.33)

According to Table 5.3, combination

Mag(qj+1) = 01 (5.34)

used for initialising is an invalid code, which is never generated during division.

MUX 3:1

As shown in Figure 5.7, the correct sign of the current shifted PR, S4w[ j] is selected by

a MUX 3:1. Again, like the MUX 4:1, the MUX 3:1 is implemented through 2 levels of

MUX 2:1. Nevertheless, a small difference can be found between them.

The q1 register is initialised to 0 and since 4w[0] = x is a positive number, the MUX

3:1 should apply value 0 to signal S4w[0]. This means that in the first iteration, value 0

should be stored in S0 register as

S0[0] = 0 . (5.35)

97



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

d
Factor

G
enerator

w
2

+R
eg

q0
R

eg

x
w

0
+R

eg

2dd

{4w
[j]}

5 +
4w

[j]
-

q1
R

eg

w
1

+R
eg

M
U

X
2

1
                   0

M
U

X
3

1
                   0

M
U

X
1

1
                   0

w
2

-R
eg

w
0

-R
eg

{4w
[j]}

5 -

w
1

-R
egM

U
X

2
1

                   0

M
U

X
1

1
                   0

M
U

X
2

0
                   1

S
0

R
eg

S
1

R
eg

S
2

R
eg

Sign(q
j+

1 )

M
U

X
2

1                0

M
U

X
1

1                0
M

U
X

1
0

                   1

4w
[j]

+

q0
R

eg
q1

R
eg

q1
q0

Q
D

S*

M
U

X
2

1                0

M
U

X
3

1                0

M
U

X
1

1                0

M
U

X
 3:1

M
U

X
2  4:1

+
M

U
X

2  4:1
-

M
U

X
1  4:1

+
M

U
X

1  4:1
-

Sign D
et.

w
2

+R
eg

w
0

+R
eg

w
1

+R
eg

w
2

-R
eg

w
0

-R
eg

w
1

-R
eg

S
0

R
eg

S
1

R
eg

S
2

R
eg

A
dj.

Sign D
et.

A
dj.

Sign D
et.

A
dj.

B
SD

A
B

SD
A

PR
 Form

ation

Convert Round Normaliseq
R

eg

Figure 5.7: Implementation of the proposed recurrence of the radix-4 FP division.

98



5.2. Radix-4 FP Divider

�����

�

bits55

001.0 xxxd =

�������
�

bits57

001.00 xxxd =
�� ��� ��

�

bits57

000.012 xxxxd =

Figure 5.8: Factor generator used in the implementation of the radix-4 FP division.

Factor Generator

The factor generator, as shown in Figure 5.7, is a unit delivering d and 2d to the PR

formation. As depicted in Figure 5.8, the factor generator contains no logic gates but

only wires.

PR Formation

There are three candidates for the next PR, namely w′0, w′1 and w′2. While generating

w′0 = 4w[ j] (5.36)

needs no hardware, producing

w′1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4w[ j] + d , if S4w[ j] = 1 ;

4w[ j] − d , if S4w[ j] = 0
and w′2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4w[ j] + 2d , if S4w[ j] = 1 ;

4w[ j] − 2d , if S4w[ j] = 0
(5.37)

requires two full length BSD additions as shown in Figure 5.9.

PR Sign Detector

Since three possible values for the next PR are generated by the PR formation, three

PR sign detectors are required so that all the possible polarities of the next PR are

determined in advance. Although the PR sign detector is originally part of the QDS

function, due to the new structure of the radix-4 recurrence, it is moved out of the QDS

function to operate off the critical path. Also, because of the new topology, the PR sign

detector is duplicated in three copies dealing with the three candidates of the next PR.

Adjust Unit

As shown in Figure 5.7, three instances of the adjust unit operate in parallel to fix

representation overflow of the three candidates of the next PR, w′0, w′1 and w′2. Since

99



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

S4w[j]

<56:0><56:0>

   a + a - b
cout cin

s+ s-

57-digit BSDA

<57>

<57:0><57:0>

<57>

4w[j]+ 4w[j]- d / 2d

w'0
-w'0

+ w'1
-/ w'2

-w'1
+/ w'2

+

Figure 5.9: Implementation of the PR formation, where w′0 is shown as 0

4w[ j]︷��������︸︸��������︷
xx.xx · · · x00.

1
2 ≤ d < 1 and ρ = 2

3 , (2.30) implies

0.101010 · · · = −2
3
< w′k <

2
3
= 0.101010 · · · , where k = 0, 1, 2 . (5.38)

This means that it is always possible to reformat the widened w′k into 55-digit arrays with

no integer digit. Having named the adjusted values as w0, w1 and w2, Table 5.4 shows

the reformat process. While the left column indicates all the possible combinations,

which may appear in the 5 most significant digits of w′0, w′1 and w′2,1 the right column

shows the adjusted values, which have no nonzero digit in their integer part. The

reformatting process can be summarised as

xy =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
XY , if C = 0

(−Y)(−Y) , if C � 0 AND X = 0 AND Y � 0

(−X)Y , if C � 0 AND X � 0 AND Y � 0 .

(5.39)

Using (5.39), a simple implementation for the adjust unit is developed and shown in

Figure 5.10. As shown in the figure, the original and the adjusted digit arrays share the

BSD digits numbered <52 : 0> and only three digits are involved in the reformatting

process. This means that after digits wk<53 : 54> are generated by the adjust unit, they

are concatenated to the rest of the digits, which are remained unchanged.

1Other combinations of digits never happen in the integer parts of w′0, w′1 and w′2 otherwise, condition

(5.38) is not fulfilled.

100



5.2. Radix-4 FP Divider

Table 5.4: Reformatting process carried out by the adjust unit, for k ∈ {0, 1, 2}.
w′k<57:53>= ABC.XY wk<54:53>= .xy

000.XY .XY

001.01 .11

001.1X .1X

001.01 .11

001.1X .1X

011.01 .11

011.1X .1X

011.01 .11

011.1X .1X

111.01 .11

111.1X .1X

111.01 .11

111.1X .1X

MUX1                0 MUX1                0 MUX1                0 MUX1                0

w'k<57:0 >

<
5

5
>

+

<
5

5
>

-

<
5

4
>

+

<
5

4
>

-

<
5

4
>

-

<
5

3
>

-

<
5

4
>

+

<
5

3
>

+

<
5

4
>

+

<
5

4
>

-

<
5

3
>

+

<
5

3
>

-

<
5

3
>

-

<
5

3
>

+

<
5

3
>

+

<
5

3
>

-

MUX1                0 MUX1                0 MUX1                0 MUX1                0

< 54 >+ < 54 >- < 53 >+ < 53 >-

<
52

:0
>

wk<54:0 >

Figure 5.10: Implementation of the adjust unit based on function 5.39, where w′k<55 :

53>= C.XY and wk<54:53>= .xy, and k = 0, 1, 2.

101



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Registers

The registers used to store w+k , w−k , Sk, q0 and q1 can be implemented through any clock

edge triggered memory devices. However, the Sk, q0 and q1 registers need to have

asynchronous set and reset inputs in order to be initialised.

5.2.5 Convert, Round and Normalise Unit

After the last quotient digit is determined, the control unit transfers division from the

recurrence to the convert, round and normalise (CRN) unit. This unit converts the

quotient q from SD to 2’s complement representation, rounds the result based on the

RTNE scheme and normalises the final quotient so that the result fulfills the IEEE 754

standard. All the three operations are performed on-the-fly, in one iteration. Due to

the complexity of the functions carried out by the CRN unit, its implementation is

discussed latter in Section 5.4.

5.3 Radix-16 FP Divider

Increasing the radix is one way to reduce the execution time of a FP divider. As

discussed in Section 3.3, for radices greater than 8, implementing the factor genera-

tors becomes almost impractical and also no delay improvement is obtained. This is

why high-radix dividers reported in the literature are structured from two or more

overlapped low-radix stages in a single iteration.

Investigations show that radix-4 SRT division is almost twice as fast as the radix-2

SRT division [Obe97]. Furthermore, the radix-4 QDS function is a cost-effective building

block to build high-radix multiple stage dividers with higher radices [Tay85]. In this

section, the implementation of a radix-16 FP division with the recurrence

w[ j + 1] = 16w[ j] − dqj+1 , (5.40)

where w[0] is set based on the initialisation (3.53), is proposed. Two consecutive but

overlapped minimally redundant radix-4 stages are employed to calculate (5.40). The

radix-4 stages are constructed based on the comparison multiples method developed

in the previous chapters. Therefore, the subunits used in the implementation are all

adopted from the radix-4 FP division implementation of Section 5.2. However, there

are a few minor differences, which are discussed in the following.

102



5.3. Radix-16 FP Divider

5.3.1 Dataflow Through Overlapped Stages

The radix-4 stages are connected using the hybrid overlap method (see Subsection 3.7.4).

The general structure of the radix-16 FP divider is shown in Figure 5.11. For SRT

division, the two major operations are selection of the quotient digit and formation of

the PR. In the following, an overview of the data flow through these two operations is

briefly discussed.

Quotient Digit Selection

For the radix-16 FP divider, the quotient digit is split as

qj+1 = 4qHj+1 + qLj+1 , (5.41)

where qHj+1 and qLj+1 are the radix-4 quotient digits determined by the radix-4 QDS

functions, as shown in Figure 5.11. The recurrence components are arranged such that,

as soon as qHj+1 is selected, it is used to choose the correct qLj+1 from all the possible

values, which are already calculated. As displayed in Figure 5.11, each of qHj+1 and

qLj+1 is represented in two separate parts of Sign and Mag. This representation allows

the distributed radix-16 QDS function to determine the digit’s parts asynchronously.

In other words, the QDS function is able to overlap circuits calculating Mag(qHj+1),

Mag(qLj+1), Sign(qHj+1) and Sign(qLj+1), partially or totally. Consequently, the process of

selecting the quotient digit becomes faster.

PR Formation

Using the decomposed radix-16 quotient digit, the radix-16 recurrence (5.40) can be

broken into two parts as

w[ j + 1] = 16w[ j] − dqj+1

= 4
(
4w[ j] − dqHj+1

)
− dqLj+1 . (5.42)

If the inner parenthesis is called wINT, (5.42) can be interpreted as two consecutive

radix-4 recurrences, which are performed by the dedicated radix-4 stages. As shown in

Figure (5.11), two sets of PR formations are used to carry out the recurrence. Once the

set consisting of PR Formation2 and PR Formation4 finishes calculating wINT, the other

set consisting of PR Formation3 and PR Formation5 can use this intermediate result to

form wj+1, based on (5.42).

103



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

x
w

2
R

egs
w

0
R

egs
w

1
R

egs
S

0
R

eg
S

1
R

eg
S

2
R

eg

M
ag(q

H
j ) R

egs
3             2          1         0

M
U

X
1  4:1{4w

[j]}
5

2.5

d

Factor
G

en.
2dd

2.8

M
ag(q

H
j+

1 )

{4w
[j]}

8

U
1

U
1

U
1

0
    2

    3
M

U
X

1  3:1

S
4w

[j] =
Sign(q

H
j+

1 )

3  2  1  0
M

U
X

2  4:1

{4w
[j]}

1
4

PR
 Form

ation
1

 {w
0 }

7  {w
1 }

7  {w
2 }

7

PR
 Form

ation
2

{w
0 }

13 {w
1 }

13 {w
2 }

13

{4w
IN

T [j]}
1

1

PR
 Sign

D
et.

w
1 R

eg
w

0 R
eg

S
0 R

eg
S

1 R
eg

S
2 R

eg

A
dj.

A
dj.

{4w
[j]}

lsf

PR
 Form

ation
4

{w
0 }

lsf  {w
1 }

lsf  {w
2 }

lsf

{4w
IN

T [j]}
lsf

3  2  1  0
M

U
X

3  4:1

w
2 R

eg

A
dj.

3
2

0
M

U
X

3  3:1Q
D

S
-

Q
D

S
+

{4w
k }

2
{4w

k }
5

U
1

M
U

X
1                  0

{w
k }

7
)

(
1

]
[

4
+

=
Lj

j
w

q
Sign

S
IN

T

PR
 Sign

D
et.

PR
 Sign

D
et.

*
*

Q
D

S
L

*

*

CRN

q
R

eg

Q
D

S
H

PR
 Form

ation
3

 {w
0 }

10 {w
1 }

10 {w
2 }

10

0
2

3
M

U
X

2  3:1

M
ag(q

L
j+

1 ) R
egs

0
1

3
M

U
X

4  3:1
0

1
3

M
U

X
5  3:1

P
R

S
ign

D
et.

PR
 Form

ation
4

{w
0 }

lsf  {w
1 }

lsf  {w
2 }

lsf

*

Figure 5.11: Implementation of the proposed radix-16 FP division recurrence.

104



5.3. Radix-16 FP Divider

Based on the hybrid overlap idea, the radix-16 PR formation unit is separated into

the most and the least significant formation units, which are implemented separately.

While the most significant part, which begins from MUX2 4:1 in Figure 5.11, calculates

the required digits of the next PR involved in the QDS process, the least significant

formation unit, which starts with MUX3 4:1, generates the rest of the digits, off the

critical path. The digit vectors involved in the least significant formation are indicated

by subscript ls f .

5.3.2 Digit Set and Iterations

Having selected the radix r as 16, the redundancy factor ρ is set to 2
3 . This is because

digits qHj+1 and qLj+1 are selected from the set
{
2, 1, 0, 1, 2

}
and therefore, (5.41) results in

qj+1 ∈
{
10, 9, · · · , 1, 0, 1, · · · , 9, 10

}
. (5.43)

Moreover, 15 iterations are required to determine the final quotient in the IEEE 754

standard representation. In the first 14 iterations division finishes and the last cycle is

spent on converting, rounding and normalising the result.

5.3.3 Precisions

Since the radix-16 FP divider is built using the radix-4 stages, the results obtained for

c′ and c′′ in Subsection 5.2.2 are still valid for all the comparators and the PR sign

detectors shown in Figure 5.11. Besides, the structure proposed for the divider let

the value already calculated for e′ be used for the comparators belonging to the QDS∗
function in the middle of the figure. However, due to representation overflow, different

values might be used for e′ defined in the QDS∗+ and QDS∗− functions, and e′′ specified

for all the PR sign detectors.

Starting from
{
4w[ j]

}
8 with 2 integer digits, the consequent BSD numbers calculated

by PR Formation1 have 3 digits in their integer parts. Having shifted these numbers to

calculate the 3 possible values for {4wINT}5, it is found that

e′ = 5 for the comparators operating in QDS∗+ and QDS∗− (5.44)

and

e′′ = 5 for the PR sign detectors operating in U1s. (5.45)

105



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Similarly,

e′′ = 8 for the PR sign detectors following PR Formation3. (5.46)

5.3.4 QDS Function

As explained in Subsection 5.3.1, the proposed radix-16 FP divider does not have a

central QDS function, but a distributed one made from the radix-4 QDS functions;

QDS∗H and a set of three copies of QDS∗L. These two groups are functionally the same,

but, architecturally different. In the following, the specifications of QDS∗H and QDS∗L
are described.

QDS∗H Function

Structurally, the QDS function tagged as QDS∗H in Figure 5.11 is same as the general

radix-4 QDS function proposed in Subsection 5.2.3. However, the asterisk next to its

label indicates that the PR sign detector is separated from the original circuit displayed

in Figure 5.1. In fact, the PR sign detector is replicated and situated right after PR

Formation1, inside the circuits marked U1.

QDS∗L Function

There is a QDS function constructed from two circuits named QDS∗+ and QDS∗−. To

make Figure 5.11 more readable, this function is defined in the subunit labeled U1.

Like the QDS∗H function, the PR sign detector operates outside U1. The sign detector is

duplicated in three copies and placed right after PR Formation3. The major difference

between QDS∗L and QDS∗H is that in the former, the circuit, which selects between {Mk}5
and − {Mk}5, is moved from beginning of the QDS function to the end. This is shown

in Figure 5.11 as a MUX 2:1 controlled by the output of the nearby PR sign detector.

Unlike the original approach to the QDS function proposed in Chapter 4, when start-

ing the process of selecting Mag(qLj+1), Sign(qLj+1) is not already available. Therefore, it is

not possible to determine from the beginning whether (4.25a) is the correct comparison

operation or (4.25b), unless the comparator waits until the sign is determined, which

adds an unwanted large delay to recurrence cycle time. So, as a different approach to

select the quotient digit, circuits QDS∗− and QDS∗+ are used to simultaneously perform

(4.25a) and (4.25b), respectively. Meanwhile, the adjacent PR sign detector detects the

106



5.3. Radix-16 FP Divider

sign of
{
4wINT[ j]

}
2 and therefore, without loosing time, the correct pair of bits is selected

by the MUX 2:1 as Mag(qLj+1).

5.3.5 Recurrence

As described in Subsection 5.3.1 and as shown in the general implementation in Fig-

ure 5.11, the proposed radix-16 recurrence is not an integrated structure like the radix-4

recurrence. In addition to the subunits described earlier, this recurrence is constructed

with two main stages of PR formation units (i.e. a group consisting of PR Formation2

and PR Formation4, and a group consisting of PR Formation3 and PR Formation5), as

well as an additional secondary PR formation unit (i.e. PR Formation1), different types

of multiplexors, adjust units and registers with different widths.

Registers

The types and the widths of registers employed in the radix-16 recurrence are exactly

the same as the registers used in the radix-4 recurrence. However, q1 and q0 registers

in Figure 5.7 are renamed to Mag(qLj+1) (and equivalently Mag(qHj)) in Figure 5.11.

Therefore, the Mag(qHj) and S0 registers are initialised to values indicated by (5.32) and

(5.35), respectively.

PR Formation Units

In the radix-16 FP division recurrence, PR Formation1, PR Formation2 and PR Formation3

are preformed using truncated values. To make sure that no precision is lost when sep-

arating the operands involved, the truncated BSD additions performed by these circuits

are carried out to one more digit precision. This is because in the BSD adder, when

adding a BSD and a 2’s complement numbers, the t-th result digit is only affected by

the t-th addend digits and the carry generated by addition in (t + 1)-th position. So,

{ZBSD}t =
{
XBSD + Y2’s comp.

}
t

=
{
{XBSD}t+1 +

{
Y2’s comp.

}
t+1

}
t
. (5.47)

In PR Formation4 and PR Formation5, which are the main parts of the least significant

PR formation path, digits that overflow the representation are discarded since they are

calculated in the most significant PR formation path.

107



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

The output width of a PR formation unit is determined by its consumer. Since

any instance of circuit U1 needs a 10-digit BDS number to determine a set of possible

values for Mag(qLj+1) and S4wINT[ j], PR Formation1 produces results in 10 digits. For the

same reason, PR Formation2 and PR Formation3, PR Formation4 and PR Formation5

are expected to deliver 16-digit, 16-digit, 43-digit and 45-digit results, respectively.

MUX 4:1

Three instances of MUX 4:1 are used in the implementation of the radix-16 FP division

recurrence. While MUX1 4:1 selects the correct value for
{
4w[ j]

}
8 from 10-digit BSD

inputs, the numbers applied to MUX2 4:1 and MUX3 4:1 have different lengths. As

indicated in Figure 5.11, MUX2 4:1 is the beginning of the path generating the most

significant digits of the next PR,
{
w[ j + 1]

}
10. Tracking the adjusted results back (from

inputs to outputs of the wk registers), it is found that MUX2 4:1 is required to deal with

16-digit BSD inputs, since the intermediate results participate in two BSD additions

and two 2-bit left shifts. The least significant digits of w[ j + 1] are calculated through

the path starting from MUX3 4:1. This means that MUX3 4:1 should handle 41-digit

BSD inputs.

MUX 3:1

While MUX1 3:1, with 1-bit inputs, determines S4w[ j] using the select signal Mag(qHj),

MUX2 3:1, MUX3 3:1, MUX4 3:1 and MUX5 3:1 select the correct values for Mag(qLj+1),

S4wINT[ j],
{
4wINT[ j]

}
11 and 4wINT[ j]ls f from inputs with 2, 1, 16 and 43 bits/digits using the

select signal Mag(qHj+1).

PR Sign Detectors

The PR sign detectors at the end of the recurrence determine all the possible values that

S4w[ j+1] may take. Recalling (5.46) and calling the values calculated by PR Formation3

{w0}10, {w1}10 and {w2}10, the PR sign detectors are required to deal with 10-digit BSD

numbers {4w0}2, {4w1}2 and {4w2}2. This means that since the overall delay of the PR

sign detectors is expressed as O
(
log2 n

)
, the carry generators incur more delay in the

radix-16 than the radix-4 FP division recurrence implementation. However, because

of the unique specification of the addends used by PR Formation3, the integer parts of

the three results calculated by PR Formation3 do not overflow the representation. In

108



5.4. CRN Unit

this case, they actually shrink and can be represented in not more than 3 BSD digits.

This means that the 3 most significant digits of the results can be ignored in the sign

detection. Therefore, instead of 10-digit carry generators, 7-digit carry generators can

be employed for implementing the PR sign detectors. Consequently, for the PR sign

detectors following PR Formation3, (5.46) has to be modified as

e′′ = 5 . (5.48)

Adjust Units

The circuits adjusting the representation of the three possible values for the next PR are

implemented through the circuit shown in Figure 5.10.

5.3.6 Convert, Round and Normalise Unit

Due to complexity of the functions carried out by the CRN unit, its implementation is

discussed separately in Section 5.4.

5.4 CRN Unit

The CRN unit performs two major operations; on-the-fly conversion, and round and

normalise. While the recurrence is producing the quotient digits, the on-the-fly conver-

sion is active and the round-normalise operation is inactive, however, after the last digit

is produced, the round-normalise operation awakes. In this section, both operations

and the interactions between them are defined. Also, implementations of the CRN

units suitable for the radix-4 and radix-16 FP dividers are suggested.

5.4.1 Previous Approaches

There are two approaches to producing quotients compatible with the IEEE 754 stan-

dard. In one, which is not used anymore, the on-the-fly conversion [EL87] is performed

on the SD quotient [Fan90]. Then, using the last PR sign, either A = Q or B = Q − 1 is

selected; if the sign is negative, B is picked otherwise, A is chosen. Then, if required,

the content of the selected register is normalised and sent to the round section. Using

the round, last and sticky bits, which are determined using a network of gates, the

RTNE rule (3.51) determines whether the truncated quotient should be incremented.

109



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

In this case, a full length binary addition is performed. Because two consecutive 55-bit

binary additions are involved2, it is clear that at least for small radices and typical

implementations, this type of CRN unit is not able to finish its tasks in one cycle. This

means that the corresponding FP divider requires at least two iterations to produce a

rounded quotient.

Ercegovac and Lang [EL89, EL92] develop an on-the-fly algorithm for rounding

as an extension to the idea of on-the-fly conversion algorithm. Considering n as the

converted quotient digit number, an additional digit of the quotient, qn+1, is required

by the algorithm for rounding. The on-the-fly rounding method combines the next two

steps of conversion and incrementation together to eliminate the final full range binary

addition. Instead of A and B, which are used by the on-the-fly conversion method, the

new algorithm uses notations Q and QM, respectively, and introduces an additional

digit-vector, QP. At the end of every division iteration, in addition to the result and the

result decremented by 1, the result incremented by 1 is obtained in the 2’s complement

format. This value is kept in QP.

The algorithm initializes QP, Q and QM with +1, 0 and −1, respectively. It updates

the digit-vectors at the end of every iteration using (3.39) and the recurrence

QP[ j + 1] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
Q[ j], (qj+1 + 1)

)
, if − 1 ≤ qj+1 ≤ r − 2(

QM[ j], (r − |qj+1| + 1)
)
, if qj+1 < −1(

QP[ j], 0
)
, if qj+1 = r − 1 .

(5.49)

The last PR sign and zero flags are determined as

sign =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if w[n] ≥ 0 ;

1 , if w[n] < 0
zero =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if w[n] � 0 ;

1 , if w[n] = 0 ,
(5.50)

and the rounded quotient is determined as

q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(QP[n],u) , if p ≥ r

(Q[n],u) , if 0 ≤ p ≤ r − 1

(QM[n],u) , if p < 0 ,

(5.51)

where

u =
⌊
p mod r

2s+1

⌋
, (5.52)

2One for finding the exact sign of the last PR and one for rounding it up.

110



5.4. CRN Unit

q Reg. (rounded)

Load
Shift

Control
qj+1

qn+1

sign
zero

u

p < 0

0  p  r-1
p  r

QM      Q        QP

QMin

Qin

QPin

QM Register

QP Register

Q Register

load-shift

load-shift

load-shift

* * *

*

* parallel load with wired left shift

Control

Figure 5.12: Scheme for implementing the RTNE using on-the-fly rounding algorithm

(adopted from [EL94]).

p = qn+1 − sign + 2s (5.53)

and

s = (b + 1) mod (log2 r) . (5.54)

In (5.54), symbol b is the actual number of bits required for representing the rounded

quotient. Also, the on-the-fly rounding algorithm jams the quotient to even, if the

discarded portion of qn+1 is 10 · · · 0 and sign = 0. Figure 5.12 shows the scheme proposed

by Ercegovac and Lang [EL94] for implementing the on-the-fly rounding algorithm. It

should be noted that the circuits detecting sign and zero are not shown in the figure.

The implementation of these circuits, which provide signals sign and zero according to

(5.50), is discussed in detail by Ercegovac and Lang.

As discussed in Subsection 3.9.1, since 1
2 < q[28] < 2, the integer bit of the quotient

(before being rounded and post-normalised) is either 1 or 0. This means that the integer

bit should be used to determine whether the quotient needs to be post-normalised. In

other words, the CRN unit must check this bit before rounding the quotient based

111



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

on the RTNE scheme. This is because the value of the integer bit directly affects the

exact position of the round bit and consequently, the decision on whether the truncated

quotient should be incremented.

As (5.51), (5.52), (5.53), (5.54) and Figure 5.12 show, the integer bit of the immediate

quotient is not involved in the original rounding process implemented through the

on-the-fly rounding algorithm. Although there are a number of reports of the im-

plementation of FP dividers based on high-radix SRT division, none of them clearly

explains how the on-the-fly rounding algorithm deals with unnormalised quotients.

Some, like [Nan99], limit the explanation of the CRN unit to numerical examples and

others, such as [ALMN02, ALB98], suppose that the on-the-fly rounding algorithm can

provide correctly rounded quotients under any circumstance. In another report, Quach

et al. [QTF91] address the issue of combining the post-normalising and the rounding

However, the discussion mainly concerns FP multiplication and no implementation is

given for FP division.

5.4.2 New Approach

In this subsection, a new approach toward rounding the quotients from the radix-4

and the radix-16 FP dividers is presented. It can be extended to any radix r. The new

method provides a rounded and normalised quotient complying with the requirements

of the IEEE 754 RTNE scheme. The approach calculates all the possible values for the

final result using the bit vectors formed in the QM, Q and QP registers. Then, using

criterion (3.51), it selects the correct answer, once the last quotient digit and the involved

signals are determined.

Occurrence of Halfway Condition

One main feature of the RTNE scheme, which makes it mandatory in the IEEE 754

standard, is taking care of the halfway condition. This makes the RTNE scheme an

unbiased rounding, however, it may increase the implementation complexity as well

as the response time. When a FP arithmetic operation produces a midpoint value in the

halfway condition, since the discarded part is equal to 100 · · · 00binary, the RTNE scheme

performs a special set of operations as follows.

• The last bit is checked.

112



5.4. CRN Unit

• If the last bit is 1, then the bits to the left of the last bit are abandoned and the rest

is incremented by 1.

• Otherwise, the number is only truncated up to the last bit.

In case of FP division, as discussed in Subsection 3.9.1, handling the halfway condi-

tion involves calculating the zero flag of the last PR. Here it is shown that this condition

never happens in a FP division performed through SRT division. This means that the

zero detection circuit, which represents a rather large overhead in the CRN unit imple-

mentation, is not required. Consequently, as fewer signals affect the rounding process,

the CRN unit can be realised through a simpler and faster circuit.

Consider x = 1.x1x2 · · · x51x52 as the dividend and d = 1.d1d2 · · · d51d52 as the divisor.

If a halfway condition occurs, the midpoint quotient (with two additional bits) is

represented either as

q = 0.1q2q3 · · · q52q531 (5.55a)

or as

q = 1.q1q2 · · · q51q5210 , (5.55b)

since 1
2 < q < 2. In both cases, because the division is exact, equation x = q d is always

satisfied. Therefore, x is calculated either as

1 d1 d2 · · · d51 d52 × 1 ∗
+ 1 d1 d2 · · · d51 d52 × q53

+ 1 d1 d2 · · · d51 d52 × q52
... . . . . . . . . . . . . . . . . . .

...
...

+ 1 d1 d2 · · · d51 d52 × q3

+ 1 d1 d2 · · · d51 d52 × q2

+ 1 d1 d2 · · · d51 d52 × 1
+ 0 0 · · · 0 0 0 × 0
x = 1. x1 x2 · · · x51 x52 x53 x54 · · · · · · · · · x105 x106

or as

0 · · · 0 0 0 0 × 0
+ 1 d1 d2 · · · d51 d52 × 1 ∗
+ 1 d1 d2 · · · d51 d52 × q52

+ 1 d1 d2 · · · d51 d52 × q51
... . . . . . . . . . . . . . . . . . .

...
...

+ 1 d1 d2 · · · d51 d52 × q2

+ 1 d1 d2 · · · d51 d52 × q1

+ 1 d1 d2 · · · d51 d52 × 1
x = 1. x1 x2 · · · x51 x52 x53 x54 · · · · · · · · · x105 x106

113



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

These two calculations result from (5.55a) and (5.55b), respectively. If the result of

either of the multiplications is to match the dividend x = 1.x1x2 · · · x51x52, then it is

required that x53x54 · · · x105x106 = 0. However, due to presence of at least one nonzero

bit in the rows indicated by ‘ * ’, the bit sequence cannot be all 0. This means that the

halfway condition cannot occur in a FP division. This is also proved independently by

Ercegovac and Lang [EL04].

Another application of the rounding method proposed in this section is reported by

Nikmehr and Lim [NL03]. Here this technique is extended to add (subtract) integer

number n to (from) Q, on-the-fly. Vector Q stores the 2’s complement equivalent of a

SD number, which is generated most significant digit first.

Implementation of Radix-4 CRN Unit

If the division is initialised as (3.53), after 28 iterations the quotient obtained is repre-

sented either as

bit number

q[28] =

∣∣∣∣55

0

∣∣∣∣ 54

.0

∣∣∣∣53

1

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ (5.56a)

or
bit number

q[28] =

∣∣∣∣55

0

∣∣∣∣ 54

.1

∣∣∣∣53

x

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ . (5.56b)

However, without affecting the generality of the problem, just by moving the binary

point one bit to the right, the representation can be altered to

bit number

q[28] =

∣∣∣∣55

0

∣∣∣∣ 54

0

∣∣∣∣ 53

.1

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ (5.57a)

or
bit number

q[28] =

∣∣∣∣55

0

∣∣∣∣ 54

1

∣∣∣∣ 53

.x

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ . (5.57b)

since it is expected that 1
2 < q[28] < 2. Now, to perform a correct rounding based on the

RTNE scheme, bits Z−l and Z−l−1, which are defined in Subsection 3.9.1, are set as

{Z−l,Z−l−1} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
q[28]<1>, q[28]<0>

}
, if q[28]<54>= 0 ;{

q[28]<2>, q[28]<1>
}
, if q[28]<54>= 1 .

(5.58)

As in (5.58), bit Z−l−2 is not used for the rounding because the halfway condition never

happens. The reason of having two different rounding cases in (5.58) is given as follows.

114



5.4. CRN Unit

• If q[28]<54>= 1, then the result is recognised to be normalised. Therefore, the

round bit is q[28]<2>.

• If q[28]<54>= 0, then the result needs to be normalised by shifting the quotient

one bit to the left Therefore, the round bit is q[28]<1>.

Table 5.5 summarises the rule, which can be used for obtaining a rounded and nor-

malised quotient q. The rule is defined by considering the round up condition (3.51),

the function of the on-the-fly rounding algorithm and a possible decrement by 1 to q[28]

(if a negative PR is obtained). Table 5.5 is constructed based on the assumption that

QM, Q and QP are stored in 53-bit registers rather that 56-bit. The reasons of taking

this assumption into account are as follows.

• In the last iteration, when q28 is applied to the CRN unit, the registers are not

updated. This issue is noted in Table 5.5 as QM[27], Q[27] and QP[27].

• The final quotient is always a positive 2’s complement number therefore, it is not

necessary to dedicate the leftmost bit to the sign bit. This fact and the nature of

the updating process (performed by the on-the-fly rounding through recurrences

(5.49) and (3.39)) reveal that the three registers have to be preset to

QM[0] = × , Q[0] = 0 and QP[0] = × , (5.59)

where × indicates a don’t care value.

Figure 5.13 shows how to implement the key components of the CRN unit employed

in the radix-4 FP divider. In addition, the following circuits, which are not shown in

the figure, must be considered as well.

• Networks such that suggested by Ercegovac and Lang [EL94] are needed to obtain

sign.

• The design given in Figure 5.12 is required to update vectors QM, Q and QP.

In Figure 5.13, signals s1 and s0 are generated by the control unit in order that the

appropriate register content is selected. Also, the 1-bit signal u concatenates to the right

of the selected register when applicable. The control unit can be implemented using

the truth table shown in Table A.1 in Appendix A.

115



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Table 5.5: The rules used by the radix-4 CRN unit to represent the unnormalised and

unrounded quotient in the IEEE 754 standard format.

53-bit normalised and rounded q

QM[27]<52> sign

q28 00 01 10 11

2 (QM[27]<51:0>, 1) (QM[27]<51:0>, 1) Q[27]<52:0> Q[27]<52:0>

1 (Q[27]<51:0>, 0) (QM[27]<51:0>, 1) Q[27]<52:0> Q[27]<52:0>

53-bit normalised and rounded q

Q[27]<52> sign

q28 00 01 10 11

0 (Q[27]<51:0>, 0) (Q[27]<51:0>, 0) Q[27]<52:0> Q[27]<52:0>

1 (Q[27]<51:0>, 1) (Q[27]<51:0>, 0) Q[27]<52:0> Q[27]<52:0>

2 (Q[27]<51:0>, 1) (Q[27]<51:0>, 1) QP[27]<52:0> Q[27]<52:0>

q Reg. (rounded)

q28

sign

QM[27] Q[27] QP[27]

s1
s0 Q[27]<52>

QM[27]<52>
11    00   01

1              0

<52:0> <52:0> <52:0>

Control

<52:0>

<51:0>

<52:0>

MUX

Sign(q28)

u

1     0

Figure 5.13: Implementation of the radix-4 CRN.

Implementation of the radix-4 CRN unit with only the key components shown.

116



5.4. CRN Unit

q14

sign

QM[13] Q[13]

s Q[13]<50>

QM[13]<50>

<50:0> <50:0>

Sign(qH14)0     1

1          0

u0

Control

u1
<50:0> <49:0>

1              0

q Reg. (rounded)

Sign(qL14)

Figure 5.14: Realisation of the radix-16 CRN unit with only the key components shown.

Implementation of Radix-16 CRN Unit

Like the radix-4 CRN unit, the unrounded and unnormalised q is represented as either

bit number

q[14] =

∣∣∣∣ 55

0

∣∣∣∣ 54

0

∣∣∣∣ 53

.1

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ (5.60a)

or
bit number

q[14] =

∣∣∣∣ 55

0

∣∣∣∣ 54

1

∣∣∣∣ 53

.x

∣∣∣∣ 52

x

∣∣∣∣51

x

∣∣∣∣ · · ·
∣∣∣∣ 2x
∣∣∣∣ 1

x

∣∣∣∣ 0x
∣∣∣∣ . (5.60b)

Therefore, bits Z−l and Z−l−1 can be expressed as

{Z−l,Z−l−1} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
q[14]<1>, q[14]<0>

}
, if q[14]<54>= 0 ;{

q[14]<2>, q[14]<1>
}
, if q[14]<54>= 1 ,

(5.61)

which results in the rounding rules shown in Table 5.6, for the radix-16 CRN unit. The

registers in the figure are 51 bits wide and initialised as in (5.59). They are updated

using on-the-fly conversion rules (3.39). Some more circuits are needed to calculate

sign and zero. They are not shown in Figure 5.14. Table A.2 in Appendix A explains

how signals s, u1 and u0 can be generated. The radix-16 CRN unit can be implemented

using the architecture shown in Figure 5.14.

5.4.3 Evaluation of the Proposed Rounding Algorithm

This subsection compares the proposed radix-4 and radix-16 CRN units with their

available counterparts reported in [ALMN02, Nan99, Qua93]. It should be noted that

117



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

Table 5.6: The rules used by the radix-16 CRN unit to represent the unnormalised and

unrounded quotient in the IEEE 754 standard format.

53-bit normalised and rounded q

QM[13]<50> sign

q14 00 01 10 11

10 (QM[13]<49:0>, 001) (QM[13]<49:0>, 001) (QM[13]<50:0>, 10) (QM[13]<50:0>, 01)

9 (QM[13]<49:0>, 100) (QM[13]<49:0>, 011) (QM[13]<50:0>, 10) (QM[13]<50:0>, 10)

8 (QM[13]<49:0>, 100) (QM[13]<49:0>, 100) (QM[13]<50:0>, 10) (QM[13]<50:0>, 10)

7 (QM[13]<49:0>, 101) (QM[13]<49:0>, 100) (QM[13]<50:0>, 10) (QM[13]<50:0>, 10)

6 (QM[13]<49:0>, 101) (QM[13]<49:0>, 101) (QM[13]<50:0>, 11) (QM[13]<50:0>, 10)

5 (QM[13]<49:0>, 110) (QM[13]<49:0>, 101) (QM[13]<50:0>, 11) (QM[13]<50:0>, 11)

4 (QM[13]<49:0>, 110) (QM[13]<49:0>, 110) (QM[13]<50:0>, 11) (QM[13]<50:0>, 11)

3 (QM[13]<49:0>, 111) (QM[13]<49:0>, 110) (QM[13]<50:0>, 11) (QM[13]<50:0>, 11)

2 (QM[13]<49:0>, 111) (QM[13]<49:0>, 111) (Q[13]<50:0>, 00) (QM[13]<50:0>, 11)

1 (Q[13]<49:0>, 000) (QM[13]<49:0>, 111) (Q[13]<50:0>, 00) (Q[13]<50:0>, 00)

53-bit normalised and rounded q

Q[13]<50> sign

q28 00 01 10 11

0 (Q[13]<49:0>, 000) (Q[13]<49:0>, 000) (Q[13]<50:0>, 00) (Q[13]<50:0>, 00)

1 (Q[13]<49:0>, 001) (Q[13]<49:0>, 000) (Q[13]<50:0>, 00) (Q[13]<50:0>, 00)

2 (Q[13]<49:0>, 001) (Q[13]<49:0>, 001) (Q[13]<50:0>, 01) (Q[13]<50:0>, 00)

3 (Q[13]<49:0>, 010) (Q[13]<49:0>, 001) (Q[13]<50:0>, 01) (Q[13]<50:0>, 01)

4 (Q[13]<49:0>, 010) (Q[13]<49:0>, 010) (Q[13]<50:0>, 01) (Q[13]<50:0>, 01)

5 (Q[13]<49:0>, 011) (Q[13]<49:0>, 010) (Q[13]<50:0>, 01) (Q[13]<50:0>, 01)

6 (Q[13]<49:0>, 011) (Q[13]<49:0>, 011) (Q[13]<50:0>, 10) (Q[13]<50:0>, 01)

7 (Q[13]<49:0>, 100) (Q[13]<49:0>, 011) (Q[13]<50:0>, 10) (Q[13]<50:0>, 10)

8 (Q[13]<49:0>, 100) (Q[13]<49:0>, 100) (Q[13]<50:0>, 10) (Q[13]<50:0>, 10)

9 (Q[13]<49:0>, 101) (Q[13]<49:0>, 100) (Q[13]<50:0>, 10) (Q[13]<50:0>, 10)

10 (Q[13]<49:0>, 101) (Q[13]<49:0>, 101) (Q[13]<50:0>, 11) (Q[13]<50:0>, 10)

118



5.5. Summary

the comparison is in the context of high-radix SRT division.

• The proposed method in Subsection 5.4.2 and the current implementations em-

ploy the on-the-fly rounding algorithm as the core of the convert/round operation.

• The proposed radix-4 and radix-16 CRN units handle not only normalised but also

unnormalised quotients by taking the quotient’s integer bit into consideration.

However, the previously reported round units do not seem to take care of this

issue. For example, Nannarelli [Nan99] provides a rounding method, which for

r = 4 and ρ = 2, matches the left column of Table 5.5, where the quotient integer

bit is 0. However, he does not provide any solution for cases when the quotient

is unnormalised.

• Recently, Ercegovac and Lang [EL04] have introduced an algorithm, which pro-

duces a correctly rounded and normalised quotient. This approach, which looks

like an amendment to their original on-the-fly rounding method, is almost the

same as the technique employed in the CRN unit proposed in Subsection 5.4.2.

5.5 Summary

In Chapter 5, a radix-4 FP divider was implemented using the comparison multiples

approach proposed in Chapter 4. The circuit was optimised to obtain a shorter critical

path delay. Using the radix-4 circuit and the idea of hybrid overlap introduced in

Subsection 3.7.4, a radix-16 FP divider was constructed. At the end of Chapter 5, an

algorithm was proposed for on-the-fly rounding the final quotient. This algorithm,

unlike its predecessors, did not require the post-normalisation step.

119



Chapter 5. Comparison Multiples Based Radix-4 and Radix-16 Floating-Point Dividers

120



Chapter 6

Decimal Signed-Digit Arithmetic, A

New Approach

This chapter introduces a new type of decimal arithmetic for signed-digit calculations.

The discussion is followed by architectures for mathematical units, which perform

decimal signed-digit addition and subtraction. At the end of Chapter 6, a decimal

signed-digit to non-redundant decimal conversion algorithm and architecture are in-

troduced. The chapter finishes with the evaluation of the proposed circuits.

121



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

6.1 Introduction

Performing manual calculations using decimal arithmetic is part of human nature.

Typical computers, on the other hand, support binary arithmetic more readily. The

ENIAC, which became operational in 1945 at the University of Pennsylvania, was

one of the early attempts to use radix 10 calculations in digital computers [HJS00].

Among recent processors, the IBM eServer z900 seems to be the only one capable of

performing decimal instructions in hardware [SCS+02, BKL+01]. However, its decimal

computation capability is limited to integers operands. Recently, decimal arithmetic

has become more attractive in the financial and commercial world including banking,

tax calculation, currency conversion, insurance and accounting. The following facts

may explain this recent interest.

• A survey of commercial databases [TO91] shows that 98.6% of the numbers stored

are decimal or integer while more than half of them are represented in pure

decimal format.

• It is well understood that when converting between decimal and binary formats,

most fractional decimal numbers are only approximately represented in binary

FP representation and therefore, may loose precision [Gay90, Cli90]. This means

that, using binary FP numbers in financial applications, which cannot tolerate

errors, does not necessarily guarantee correct results.

• Regulations such as that for the European Commission Directorate General II

[Eur99] specify decimal digits for currency calculations.

The importance of decimal arithmetic has led to a proposed revision to the IEEE 754

standard for FP arithmetic to include specifications for decimal arithmetic [Com04].

This means that even though computers are still carrying out decimal FP (DFP) calcu-

lations using software libraries [Mic01, Fou04] and binary FP numbers, it is likely that

in the near future, most high end processors will perform decimal operations directly

on DFP operands using dedicated DFP units, which are thousands of times faster than

the software packages [Cow03b].

Among the decimal arithmetic operations there are some complex functions, such as

sequential multiplication and digit recurrence division, which compute partial products

and add each newly calculated product to the previously accumulated partial product

122



6.2. Background

[Par00]. These repetitive operations cannot be accomplished in a reasonable time

without fast circuits for decimal addition. One method for implementing fast decimal

adders is to take advantage of carry-free addition. This limits carry propagation to few

digit positions and consequently allows all digits of the redundant decimal result to be

processed in parallel.

In Chapter 7, using a new type of decimal arithmetic called DSD arithmetic, a

decimal FP division algorithm and its implementation are proposed. Therefore, Chap-

ter 6 introduces DSD arithmetic and presents implementations for the corresponding

computational units. DSD arithmetic is proposed in Chapter 6. This is followed by in-

troducing algorithms and implementations for carry-free addition/subtraction in DSD

arithmetic. The input operands to these circuits can be two decimal, two DSD, or a dec-

imal and a DSD number. This chapter ends with an algorithm and the corresponding

realisation for DSD to BCD conversion, and its application for detecting the sign of a

DSD number.

6.2 Background

Traditionally, a conventional decimal digit zi, where

zi ∈ {0, 1, · · · , 8, 9} , (6.1)

is represented in a 4-bit format, known as binary coded decimal (BCD) [Hwa79]. How-

ever, this method is insufficient in its original form, to represent a DSD zi of the form

zi ∈
{
a, a − 1, · · · , 1, 0, 1, · · · , a − 1, a

}
, where 5 ≤ a ≤ 9 . (6.2)

Although redundant binary arithmetic is a mature subject with a research history

dating back to 1961 [Avi61], redundant decimal, specifically DSD systems, seem not to

have received similar attention. Shirazi et al. [SYZ89] present a balanced SD represen-

tation for BCD numbers, named RBCD. In RBCD arithmetic, every digit

zi ∈
{
7, 6, · · · , 1, 0, 1, · · · , 6, 7

}
, (6.3)

where zi is represented in 2’s complement form using a 4-bit binary array. Although

this system requires a small number of bits to represent a RBCD digit, it suffers from a

delay overhead incurred by a BCD to RBCD converter. The conversion is needed when

conventional decimal numbers are applied to the inputs of the system.

123



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

In the most recent reports [ES03, KS04], a redundant decimal system similar to the

binary CS format [Omo94] is utilised. This system, which was developed initially by

Schmookler and Weinberger [SW71] and used for implementing a decimal multiplier

by Ohtsuki et al. [OOI+87], represents redundant decimal digit zi as

zi = (ci+1, si) , (6.4)

where ci+1 is a single bit carry-out and si is a 4-bit sum digit in {0, 1, · · · , 8, 9}with weight
1
10 times the wight of ci+1. Although the decimal CS system requires only 5 bits to

represent a redundant decimal digit, negating numbers incurs a significant delay.

6.3 DSD Number Representation

In DSD arithmetic, a DSD number Z expressed as

Z = zn−1zn−2 · · · z1z0 =

n−1∑
i=0

zi × 10i (6.5)

is an n-digit array with digit zi selected from a maximally redundant set

{
9, 8, · · · , 1, 0, 1, · · · , 8, 9

}
. (6.6)

The digit zi is represented by a 4-digit BSD vector as

zi = zi3zi2zi1zi0 , (6.7)

where zik =
(
z+ik, z

−
ik

)
∈
{
1, 0, 1

}
and k = 0, 1, 2, 3. Hence each DSD is encoded as 8 bits, the

value of Z can be determined as

Z = (Z+,Z−)

= z+n−1z+n−2 · · · z+1 z+0 − z−n−1z−n−2 · · · z−1 z−0 , (6.8)

where the operator ‘−’ refers to decimal subtraction. This representation is a natural

extension to the well known BCD format therefore, a BCD to DSD format conversion

can be performed in zero time with no use of hardware. However, converting from

DSD to BCD, like all conversions from redundant to non-redundant formats, requires

a time consuming operation. This is discussed in Section 6.7.

124



6.5. DSD Carry-Free Addition

6.4 DSD Negation

The DSD number Z = (Z+,Z−) can be negated simply as

−Z = (Z−,Z+)

= (¬Z+,¬Z−) , (6.9)

where ‘¬’ denotes a 1’s complement (invert) function.

6.5 DSD Carry-Free Addition

This section introduces a decimal carry-free addition (DCFA) based on DSD arithmetic.

DCFA, like its binary predecessor (see Section 3.5), limits carry propagation to a small

number of digit position to the left and therefore, all digitwise addition operations,

irrespective of their length, execute in the same time. Depending on the formats in

which the addends are represented, DCFA is arranged into three classes; DD-DCFA,

which adds two DSD numbers, DB-DCFA, which accepts one DSD and one BCD value,

and BB-DCFA, which adds two BCD numbers. In the following, implementations for

these three types of DCFA are proposed.

6.5.1 DCFA with DSD Augend and Addend

Algorithm

Considering x and y as two DSD digits in set (6.6), a 1-digit DD-DCFA is expressed as

z = x + y , (6.10)

where

z ∈ {−18,−17, · · · ,−1, 0, 1, · · · , 17, 18} . (6.11)

However, z does not satisfy (6.6) and is, therefore, not a DSD. This problem is fixed by

performing a digit-set conversion using the idea of the generalized SD number system

[Par90] as follows.

1. A position sum is computed as

p = x + y . (6.12)

125



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

Table 6.1: Relationship among tout, tin, p and the final result digit.

tin =
(
t+in, t

−
in

)
p tout =

(
t+out, t

−
out

)
(0, 1) = 1 (0, 0) = 0 (1, 0) = 1

[−18,−2] (0, 1) = 1 z = p + 9 z = p + 10 z = p + 11

[−1, 1] (0, 0) = 0 z = p − 1 z = p + 0 z = p + 1

[2, 18] (1, 0) = 1 z = p − 11 z = p − 10 z = p − 9

2. A transfer digit tout =
(
t+out, t

−
out

)
is derived from p to calculate the final result digit

z = p + 10tout + tin , (6.13)

where tin =
(
t+in, t

−
in

)
is the transfer digit from the addition position to the right.

Although tout and tin can be selected from different digit sets, choosing set
{
1, 0, 1

}
not only simplifies and speeds up the computations of the transfer digits and z, but

also allows tout and tin to be interpreted as the traditional carry/borrow, as used in

conventional decimal addition.

Each value of tout relates to a specific subrange of p. The subranges should be

established so that a new transfer digit is not generated while calculating z1. There are

several possible sets for the subranges, however, the one shown in Table 6.1, lets some

hardware parts be shared. This reduces the implementation area.

Data Flow

The adder is arranged to minimise the response time for DD-DCFA. The structure of a

1-digit DD-DCFA is logically divided into 3 units as follows.

• The final result formation unit (FRFU), which calculates p = x + y, p − 11, p − 10,

p − 1, p + 9 and p + 10.

• The transfer digit selection unit (TDSU), which selects the appropriate value for

tout by investigating the range to which p belongs.

• The final result selection unit (FRSU), which uses tout, tin and the six values received

from the FRFU to calculate the final result.
1tout does not depend on the value of tin.

126



6.5. DSD Carry-Free Addition

x+ y+

tin
+

tin
-

tout
+

tout
-

x- y-

z+ z-

TDSU
tout

+ tout
-

FRFU
p-11 p-1 p+9pp-10 p+10

FRSU

Figure 6.1: The general structure of a 1-digit DD-DCFA.

Functionally, the FRFU and the TDSU operate concurrently improving the speed of

the circuit. The general structure of a 1-digit DD-DCFA is depicted in Figure 6.1.

The n-digit DD-DCFA shown in Figure 6.2 can be constructed using 1-digit DD-DCFA

building blocks. It is noted that the DSD digit cout must be used to form the overflow

digit, the (n + 1)-th digit of the result as

Z <n> = zn

= (000c+out, 000c−out) . (6.14)

FRFU Implementation

Figure 6.3 shows an implementation for the FRFU. In the figure, a 4-digit (4:2)-

compressor [VVDJ90, PGK01, PK94] performs the addition p = x + y. This counter

basically is a binary CFA, which accepts two 4-digit BSD addends to produce a 5-

digit BSD result2. A 1-bit (4:2)-compressor can be formed through a set of appropri-

ately arranged CFAs, as shown in Figure 6.4. However, alternative structures exist

[OSY+95, Kor02].

Having produced p, as in Figure 6.3, p−11, p−10, p−1, p+9 and p+10 are calculated

by five 5-digit BSD adders BSDA1 to BSDA5. They are implemented using the circuit

2Totally, four 1-bit addends in each addition position.

127



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

. . .

x+ x- y+ y-

tout
+ tin

+

tout
- tin

-

z+ z-

1-digit
DD-DCFA1

x+ x- y+ y-

tout
+ tin

+

tout
- tin

-

z+ z-

1-digit
DD-DCFA0

X<n-1:0>+

X<n-1:0>-

Y<n-1:0>+

Y<n-1:0>-

<0><0><0><0><1><1><1><1>

<n-1>

<n-1>

<n-1>

<n-1>

Z<n-1:0>+

Z<n-1:0>-
<0>

<0>

<1>

<1>

<n-1>

<n-1>

x+ x- y+ y-

tout
+ tin

+

tout
- tin

-

z+ z-

1-digit
DD-DCFAn-1

cin
+

cin
-

cout
+

cout
-

Figure 6.2: An n-digit DD-DCFA implemented using 1-digit DD-DCFA blocks.

x+ y+x- y-

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

(p-10)+ (p-10)-(p-11)+ (p-11)-

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

(p+10)+ (p+10)-(p+9)+ (p+9)-

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

p+ p-(p-1)+ (p-1)-

'0'

'0'

a+ a- b+ b-

cin1
      s+ s- cin0

4-digit
(4:2)-compressor

"10101"

a+ a- b
cin

s+ s-
BSDA1 '0'

"10110"

a+ a- b
cin

s+ s-
BSDA2 '0'

"11111"

a+ a- b
cin

s+ s-
BSDA3 '0'

"01001"

a+ a- b
cin

s+ s-
BSDA4 '0'

"01010"

a+ a- b
cin

s+ s-
BSDA5 '0'

Figure 6.3: The implementation of the FRFU used in DD-DCFA. The binary inputs to

the BSD adders are selected based on (6.15) and (6.16), where p = x + y.

128



6.5. DSD Carry-Free Addition

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

a     b
co FA ci
       s

<
0

>

<
0

>

<
0

>

<
0

>

<
1

>

<
1

>

<
1

>

<
1

>

<
2

>

<
2

>

<
2

>

<
2

>

<
3

>

<
3

>

<
3

>

<
3

>

a+
a-b+
b-

<1><1><2><2> <0><0><3><3><4><4>
cin0

cin1

s+

s-

cout1

cout0

Figure 6.4: An implementation of a 4-bit (4:2)-compressor. It accepts two BSD inputs

and produces a BSD result. The most significant digit of s, s4, results from representation

overflow, which applies through cout1 and cout0.

in Figure 5.33. The binary numbers shown in Figure 6.3 are obtained from

p − 11 = p + 10101 , where 101012 = 2’s complemented 010112 (6.15a)

p − 10 = p + 10110 , where 101102 = 2’s complemented 010102 (6.15b)

p − 1 = p + 11111 , where 111112 = 2’s complemented 000012 (6.15c)

and

p + 9 = p + 01001 (6.16a)

p + 10 = p + 01010 . (6.16b)

Due to representation overflows caused by the BSD additions, these numbers are

formed in more than 4 digits. Therefore, the adders are followed by adjust circuits.

These circuits convert the extended representations into 4-digit BSD forms. Receiving

value z′4z′3z′2z′1z′0, where z′k is a BSD, the adjust circuit, which is shown in Figure 6.5,

3The BSD resulting from representation overflow is discarded since it has no affect on the subsequent

additions.

129



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

<4:0><4:0>
<4>

<3>
<3>

<2:0><2:0>

<3>
<3>

z'+ z'-

z+ z-

<4>

Figure 6.5: The implementation of the adjust circuit used in FRFU.

generates a new representation as

z = z3z2z1z0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z′3z′2z′1z′0 , if z′4 � 0 ;

(−z′3)z′2z′1z′0 , if z′4 = 0 .
(6.17)

This function is obtained from the observation that 11z′2z′1z′0, 01z′2z′1z′0, 11z′2z′1z′0, 01z′2z′1z′0
and 00z′2z′1z′0 are the only valid digit patterns for representing z.

TDSU Implementation

The TDSU calculates tout by determining the range in which p lies. Table 6.1 shows that

tout =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 , if − 1 ≤ p ≤ +1

1 , if p > +1

1 , if − p > +1 .

(6.18)

These conditions imply that tout =
(
t+out, t

−
out

)
can be determined as

t+out = Sign(1 − p) and t−out = Sign(1 + p) , (6.19)

where the function Sign is defined as (4.19). Table 6.2 shows how the polarities of 1+ p

and 1 − p lead to the selection of a value for tout.

As stated previously, the digit set for tout and tin and the corresponding subranges

are selected in such a way as to maximise concurrency between the units and minimise

implementation area. Therefore, instead of recalculating 1+p and 1−p in the TDSU (see

130



6.5. DSD Carry-Free Addition

Table 6.2: Transfer digit tout versus (1 ± p) signs.

Sign(1 − p) Sign(1 + p) Condition
(
t+out, t

−
out

)
0 0 p ∈ [−1, 1] (0, 0)

× 1 p ∈ [−18,−2] (0, 1)

1 × p ∈ [2, 18] (1, 0)

1 1 Impossible Don’t Care

tout
- tout

+

X      Y
Sign Detector1

Sign(X-Y)

X      Y
Sign Detector2

Sign(X-Y)

p+ p- (p-1)- (p-1)+

<3:1> <3:0>

<0>'1'
<3:0> <3:0>

Figure 6.6: The implementation of the TDSU used in DD-DCFA.

Figure 6.1), these two values can be collected from the output of the FRFU as follows.

Operation 1 + p is performed by the TDSU in zero time as

1 + p =
(
p+3 p+2 p+1 1, p−3 p−2 p−1 p0

)
. (6.20)

The conversion performed by (6.20) is made possible because, when generating p = x+y,

by setting cin0 = 0 in the 4-digit (4:2)-compressor, p+0 is left 0. Value 1 − p is obtained

from p − 1 using (4.9). Figure 6.6 shows the TDSU configured from Table 6.2. In this

figure, 1 + p causes Sign Detector1 to generate t−out. Meanwhile, 1 − p leads to t+out. The

sign detectors are realised using 4-digit carry generators such as the one in Figure 5.5.

FRSU Implementation

Studying the way the FRFU produces p − 10, p and p + 10 reveals that their least

significant digits are represented in a general form of

(0, d) , (6.21)

where d ∈ {0, 1}. This is because, as shown in Figure 6.3, when forming p − 10, p and

p + 10, the carry-in signals applied to BSDA2, (4:2)-compressor and BSDA5 are all set

131



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

(p+10)+

1    0 1    0 tout
-

tout
+

tin
-

tin
+

(p-11)+ (p-10)+(p-1)+ p+(p+9)+

1    0 1    0

1    0

z+

1    0 1    0

(p-11)- (p-10)-(p-1)- p-(p+9)- (p+10)-

1    0 1    0

1    0

z-

<3:1>
<0>

Figure 6.7: The implementation of the FRSU employed in DD-DCFA.

to 0. On the other hand, inspecting Table 6.1 reveals that p − 9, p + 1 and p + 11 can be

respectively produced in zero time form p − 10, p and p + 11, just by replacing the bit

equal 0 in (6.21) with 1. This results in the function

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p − 11 + (tin = 0) , if t+outt
−
outt
−
in = 1×1

p − 10 + (tin = 0) , if t+outt
−
outt
−
in = 1×0

p − 10 + (tin = 1) , if t+outt
−
outt
−
in = 1×0

p − 1 + (tin = 0) , if t+outt
−
outt
−
in = 001

p + (tin = 0) , if t+outt
−
outt
−
in = 000

p + (tin = 1) , if t+outt
−
outt
−
in = 000

p + 9 + (tin = 0) , if t+outt
−
outt
−
in = ×11

p + 10 + (tin = 0) , if t+outt
−
outt
−
in = ×10

p + 10 + (tin = 1) , if t+outt
−
outt
−
in = ×10 ,

(6.22)

which can be implemented using the multiplexer network displayed in Figure 6.7.

6.5.2 DCFA with DSD Augend and BCD Addend

Algorithm

If x is a DSD in set (6.6) and y is a BCD in set (6.1), a 1-digit DB-DCFA is expressed as

z = x + y , (6.23)

132



6.5. DSD Carry-Free Addition

Table 6.3: Relationship between tout, tin, p and the final result digit.

tin

p tout 0 1

[−9, 0] 0 z = p + 0 z = p + 1

[1, 18] 1 z = p − 10 z = p − 9

where

z ∈ {−9,−8, · · · ,−1, 0, 1, · · · , 17, 18} . (6.24)

Having calculated position sum p from (6.12), using the same technique developed for

DD-DCFA, the final result digit can be obtained as

z = p + 10tout + tin , (6.25)

where transfer bits tout and tin are selected from the set {0, 1}. The regions, where these

bits are defined, are displayed in Table 6.3.

Data Flow

Like DD-DCFA, the structure of a 1-digit DB-DCFA is logically divided into a FRFU, a

TBSU and a FRSU, which are defined as follows.

• The final result formation unit (FRFU), which calculates p = x + y and p − 10.

• The transfer bit selection unit (TBSU), which computes tout by investigating the

range to which p belongs (see Table 6.3).

• The final result selection unit (FRSU), which employs p, p−10, tout and tin to select

the correct value for the final result.

The general structure of a 1-digit DB-DCFA, is depicted in Figure 6.8. The n-digit

DB-DCFA shown in Figure 6.9 is constructed using 1-digit DB-DCFA building blocks.

FRFU Implementation

An implementation for the FRFU is shown in Figure 6.10. In this figure, a 4-digit

BSD adder is used to perform the addition p = x + y. Then the result is applied to

133



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

x+

tin
tout

x- y

z+z-

FRSU

FRFU
p-10 p

TBSU
tout

Figure 6.8: The general structure of a 1-digit DB-DCFA.

. . .
x+ x- y
tout tin

z+ z-

1-digit
DB-DCFA0

X<n-1:0>+

X<n-1:0>-

Y<n-1:0>
<0><0><0><1><1><1>

<n-1>

<n-1>

<n-1>

Z<n-1:0>+

Z<n-1:0>-
<0>

<0>

<1>

<1>

<n-1>

<n-1>

cincout

x+ x- y
tout tin

z+ z-

1-digit
DB-DCFA1

x+ x- y
tout tin

z+ z-

1-digit
DB-DCFAn-1

Figure 6.9: An n-digit DB-DCFA implemented using 1-digit DB-DCFA blocks.

134



6.5. DSD Carry-Free Addition

x+ yx-

z'+ z'-

Adj.
z+ z-

(p-10)+ (p-10)- p+ p-

'0'

"10110"

a+ a- b
cin

s+ s-

BSDA2 '0'

a+ a- b
cin

s+ s-
BSDA1

z'+ z'-

Adj.
z+ z-

Figure 6.10: The implementation of FRFU employed in DB-DCFA.

BSDA2, a 5-digit BSD adder, which calculates p − 10. As expected, both p − 10 and

p are represented in more than 4 digits. Therefore, as shown in Figure 6.10, they are

reformatted by adjust circuits following BSDA1 and BSDA2.

TBSU Implementation

The TBSU calculates tout by checking the range to which p belongs. Table 6.3 shows that

tout =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if p ≤ 0 ;

1 , if p > 0 .
(6.26)

These conditions imply that tout can be determined as

tout = Sign(−p) . (6.27)

Value −p can be obtained from p using the negation method (4.9) in zero time. Fig-

ure 6.11 shows a design for the TBSU configured from (6.27). The sign detector in the

figure is implemented using a 4-digit carry generator such as that shown in Figure 5.5.

135



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

tout

X      Y
Sign Detector

Sign(X-Y)

p- p+

Figure 6.11: The implementation of the TBSU used in DB-DCFA.

tout

p-(p-10)-

tin
z-

1    0

p+(p-10)+

1    0

<3:1>
<0>

z+

Figure 6.12: The implementation of FRSU employed in DB-DCFA.

FRSU Implementation

When forming p − 10 and p, as shown in Figure 6.10, the carry-in signals applied to

BSDA1 and BSDA2, are all set to 0. This means that the least significand digit of both

are in the form of (6.21). Therefore, p − 9 and p + 1 can be respectively obtained in zero

time from p − 10 and p, just by replacing the bit equal to 0 in (6.21) with 1. Now, the

function expressing the FRSU can be shown as

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p − 10 + (tin = 0) , if tout = 1

p − 10 + (tin = 1) , if tout = 1

p + (tin = 0) , if tout = 0

p + (tin = 1) , if tout = 0 ,

(6.28)

which can be implemented using the multiplexer network displayed in Figure 6.12.

6.5.3 DCFA with BCD Augend and Addend

BB-DCFA can be considered as a special case of DB-DCFA with BCD x and y in set

(6.1). Therefore, the implementation proposed for DB-DCFA in Subsection 6.5.2 can be

136



6.6. DSD Carry-Free Subtraction

. . .
x+ y
tout tin

z+ z-

1-digit
BB-DCFA0

X<n-1:0>
Y<n-1:0>

<0><0><1><1>

<n-1>

<n-1>

Z<n-1:0>+

Z<n-1:0>-
<0>

<0>

<1>

<1>

<n-1>

<n-1>

cincout

x+ y
tout tin

z+ z-

1-digit
BB-DCFA1

x+ y
tout tin

z+ z-

1-digit
BB-DCFAn-1

Figure 6.13: An n-digit BB-DCFA implemented using 1-digit BB-DCFA building blocks.

simplified and used for BB-DCFA as well. An n-digit BB-DCFA built using n blocks of

1-digit BB-DCFA is shown in Figure 6.13.

6.6 DSD Carry-Free Subtraction

Although subtraction and addition are two separate mathematical operations, they can

share the same hardware circuits. In this section, DSD subtraction is defined in such a

way that it can be implemented using the circuits developed for DCFA in Section 6.5.

However, some additional peripheral logic may be required. Three types of subtraction

are defined for the 3 possible combinations of input operands, i.e. DSD and DSD, DSD

and BCD, and BCD and BCD. They are discussed in the following subsections.

6.6.1 DSD Minuend and Subtrahend

Using the simple negation method discussed in Section 6.4, the subtraction W = U−V,

where both U and V are DSD numbers, can be performed through a carry-free DSD

addition as

W = U − V

= (U+,U−) − (V+,V−)

= (U+,U−) + (V−,V+)

= (U+,U−) + (¬V+,¬V−) . (6.29)

137



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

X<n-1:0>+ X<n-1:0>- Y<n-1:0>+ Y<n-1:0>-

W<n:0>+ W<n:0>-

X+ X- Y+ Y-

Z+ Z-

n-digit   DD-DCFA cin
+

cin
-

cout
+

cout
-

<n>
<n>

s

cin
+

cin
-

Figure 6.14: A DSD adder/subtractor with DSD input operands using an n-digit DD-

DCFA. For addition, s = 0 and for subtraction, s = 1.

Subtraction (6.29) can be performed simply using DD-DCFA with operands X =

(U+,U−) and Y = (V−,V+) (or Y = (¬V+,¬V−), equivalently). The design shown in

Figure 6.14 demonstrates how an integrated DSD adder/subtractor with DSD input

operands can be implemented using an n-digit DD-DCFA depicted in Figure 6.2.

6.6.2 DSD Minuend and BCD Subtrahend

In DSD arithmetic, the subtraction W = U − V, where U is a DSD number and V is a

BCD value, is defined as

W = U − V

= U + VC + 1 . (6.30)

In (6.30), value VC is a BCD number equal to the 9’s complement of V [Par00]. An

n-digit decimal number V = vn−1vn−2 · · · v1v0 is 9’s complemented by subtracting each

BSD digit vi from 9 as

vi = vi3vi2vi1vi0

9’s complemet conversion
−→ vC

i = vC
i3vC

i2vC
i1vC

i0 =

9︷︸︸︷
1001 −vi3vi2vi1vi0 . (6.31)

Subtraction (6.30) can be performed using DB-DCFA discussed in Subsection 6.5.2. For

that purpose, the inputs to the circuit displayed in Figure 6.9 are set as X = (U+,U−),

Y = VC and cin = 1. However, the circuit can be altered to that is shown in Figure 6.15,

to operate as a combined DSD adder/subtractor with one DSD and one BCD input.

138



6.6. DSD Carry-Free Subtraction

X<n-1:0>+ X<n-1:0>- Y<n-1:0>

s

9's Comp.

 1          0

W<n:0>+ W<n:0>-

X+ X- Y
Z+ Z-

n-digit
DB-DCFA

cincout

<n><n>

Figure 6.15: A DSD adder/subtractor with one DSD and one BCD input using an n-digit

DB-DCFA. For addition, s = 0 and for subtraction, s = 1.

6.6.3 BCD Minuend and Subtrahend

In DSD arithmetic, the subtraction W = U − V, where U and V are two n-digit BCD

numbers, can be performed through two completely different approaches as follows.

BB-DCFA Approach

Since the subtrahend V is a normal BCD number, the subtraction can be represented as

W = U − V

= U + VC + 1 . (6.32)

This means that (6.32) can be carried out using BB-DCFA. To fulfill this, the inputs to

the circuit depicted in Figure 6.13 are set to X = U, Y = VC and cin = 1. Using the circuit

shown in Figure 6.16, which takes advantage of the design depicted in Figure 6.13, both

DSD addition and DSD subtraction with BCD inputs can be performed.

No-Hardware Approach

Subtraction W = U−V, where U and V are two n-digit BCD numbers, can be performed

with no hardware and therefore with no time delay as

W = (W+,W−) = (U,V) . (6.33)

139



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

X<n-1:0> Y<n-1:0>

9's Comp.

 1          0

W<n:0>+ W<n:0>-

X Y
Z+ Z-

n-digit
BB-DCFA

cincout

<n><n>

s

Figure 6.16: A DSD adder/subtractor with BCD inputs using an n-digit BB-DCFA. For

addition, s = 0 and for subtraction, s = 1.

To demonstrate this, the subtraction is considered digit by digit as

wi = ui − vi

= ui3ui2ui1ui0 − vi3vi2vi1vi0 , (6.34)

where i = 0, 1, · · · ,n− 1. It is stated in Subsection 5.2.3 that the result of the subtraction

ui − vi, where ui and vi are two binary numbers, can be interpreted as BSD number

(ui, vi). On the other hand, since ui and vi are two BCD numbers, it is known that

ui and vi ∈ {0, 1, · · · , 8, 9} . (6.35)

Therefore, the digitwise subtraction (6.34) results in

wi = ui − vi = (ui, vi) ∈
{
9, 8, · · · , 1, 0, 1, · · · , 8, 9

}
. (6.36)

6.7 DSD to BCD Conversion

This section introduces an algorithm and an implementation of a DSD to BCD con-

version (DSD2BCD). The DSD2BCD algorithm not only is used for converting a DSD

number to its BCD equivalent, but also used to speed up sign detection of DSD numbers.

6.7.1 Assumptions and Definitions

The assumptions and the definitions made for the DSD2BCD algorithm are as follows.

140



6.7. DSD to BCD Conversion

• An n-digit integer DSD number Z is represented as

Z =
n−1∑
i=0

zi × 10i . (6.37)

• Every zi is in the DSD set {
9, 8, · · · , 1, 0, 1, · · · , 8, 9

}
. (6.38)

• A DSD zi is represented as

zi = (z+i , z
−
i )

= (z+i3z+i2z+i1z+i0, z
−
i3z−i2z−i1z−i0) , (6.39)

where zik ∈
{
1, 0, 1

}
, z+ik ∈ {0, 1} and z−ik ∈ {0, 1}.

• The DSD2BCD converting function f is defined as

f (Z) = Z′ =
n−1∑
i=0

z′i × 10i . (6.40)

• A BCD digit z′i is represented as

z′i = z′i3z′i2z′i1z′i0 ∈ {0, 1, · · · , 8, 9} , (6.41)

where z′ik ∈ {0, 1}.

6.7.2 Algorithm

This subsection represents the DSD2BCD conversion as a prefix problem [Zim98]. This

means that the corresponding parallel-prefix algorithms can be used to minimise the

conversion cycle time. Similar to conventional binary parallel-prefix algorithms, the

DSD2BCD algorithm is described through the generate-propagate scheme [WH04].

Signal Definition

For an n-digit DSD number Z represented by 6.37, the signals propagate and generate

respectively are defined as

pi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , if zi = 0 ;

0 , otherwise
(6.42)

141



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

and

gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , if zi < 0 ;

0 , otherwise.
(6.43)

In addition, a new signal, namely borrow, is introduced as

bi = gi OR
(
pi AND bi−1

)
. (6.44)

This signal, which has a definition opposite to carry, indicates whether a value equal to

1 should be subtracted from the next digit. Now, to represent (6.44) as a parallel-prefix

algorithm, the group propagate and generate signals are recursively defined as

Pi: j = Pi:l AND Pl−1: j , where Pi:i = pi (6.45)

and

Gi: j = Gi:l OR
(
Pi:l AND Gl−1: j

)
, where Gi:i = gi . (6.46)

Also, the group borrow can be defined as

Bi = Gi:0 , where B−1 = b−1 = bin (6.47)

and

bout = Bn−1 . (6.48)

DSD2BCD Function

The DSD2BCD function is defined as follows.

1. Each digit zi of the DSD number Z is converted into 2’s complement format. The

result digit is named z0′i . In this operation, n digitwise conversions are carried

out simultaneously. Meanwhile, for every position i, values

zi + 10 , zi + 9 , and zi − 1 (6.49)

are generated in 2’s complement format. The 2’s complement numbers zi, zi + 10,

zi + 9 and zi − 1 are the four candidates for the result digit z′i . Due to the binary

sign extensions [Hwa79], each number may have additional bit appended to the

left of its representation. However, since z′i is represented in the BCD format with

4 bits, this bit is ignored. So, zi, zi + 10, zi + 9 and zi − 1 are represented in 4 bits.

142



6.7. DSD to BCD Conversion

2. Recalling (6.42) and (6.43), it is understood that pi and gi can be produced as

pi = (z+i3 XNOR z+i3) AND (z+i2 XNOR z+i2)

AND (z+i1 XNOR z+i1) AND (z+i0 XNOR z+i0) (6.50)

and

gi = ¬ coutzi , (6.51)

where coutzi is the most significant carry generated when converting zi from DSD

to 2’s complement.

3. Using (6.45), (6.46) and (6.47), all the group propagate and the group generate

signals required for producing Bi, where i = 0, 1, · · · ,n − 1, are calculated.

4. Finally, either zi, zi + 10, zi + 9 or zi − 1 is selected as z′i using the function

z′i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi , if gi = 0 AND Bi−1 = 0

zi + 10 , if gi = 1 AND Bi−1 = 0

zi + 9 , if pi = 1 AND Bi−1 = 1

zi − 1 , if pi = 0 AND gi = 0 AND Bi−1 = 1 .

(6.52)

6.7.3 Implementation

Based on the algorithm discussed in Subsection 6.7.2, an implementation for the

DSD2BCD conversion is introduced and shown in Figure 6.17. As explained in Sub-

section 5.2.3, converting a BSD number (x+, x−) to 2’s complement representation is

equivalent to performing binary addition x+ + ¬x− + 1. Therefore, as shown in Fig-

ure 6.17, zi is converted to 2’s complement using a 4-bit binary adder with a = z+i ,

b = ¬z−i and cin = 1. Also, after the three 4-digit BSD adders perform additions

(6.49), the subsequent 4-bit binary adders convert the BSD results into 2’s complement

format. While the 4-digit BSD adders are implemented using the circuit depicted in

Figure 5.3, the 4-bit binary adders can be realised through either carry-propagating or

parallel-prefix approaches.

To produce the group propagate (Pi: j) and the group generate (Gi: j) signals (and conse-

quently, Bi signals), any parallel-prefix method including Sklansky [Skl60], Brent-Kung

[BK82], Kogge-Stone [KS73] and Han-Carlson [HC87] is applicable.

143



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

z'i

...
p

0
g

0
p

1
g

1
p

n
g

n
b

in =b
-1

B
-1

B
0

...
B

n-1
B

o
ut =B

n

a
b

cout              cin
s 4-bit

binary adder

'1'

zi +
zi -

g
i

a
+

a
-

b
cin

 s +
s -

4-digit
B

SD
A

10

'0'

a
b

cout              cin
s 4-bit

binary adder

a
+

a
-

b
cin

 s +
s -

4-digit
B

SD
A

-1

'0''1'

a
b

cout              cin
s 4-bit

binary adder

a
+

a
-

b
cin

 s +
s -

4-digit
B

SD
A

9

'0''1'

zi +10
zi -1

zi +9
p

i

a
b

cout              cin
s 4-bit

binary adder

'1'

zi

 0          1

 0          1

B
i-1

0            1

parallel-prefix netw
ork

zi0
-

zi1
-

zi2
-

zi3
-

zi3
+

zi0
+

zi1
+

zi2
+

Figure 6.17: An implementation for the proposed DSD2BCD converter.

144



6.8. Evaluation

6.7.4 DSD Sign Detection Using DSD2BCD Algorithm

The sign of a DSD number is equal to the sign of its most significant nonzero digit.

Therefore, for detecting the polarity of the DSD number Z, a time consuming full-range

investigation is requited over all the digits. However, the speed of sign detection can be

improved using a parallel-prefix algorithm. Having assumed zj as the most significant

nonzero digit, it is consequently assumed that DSD digits from zn−1 to zj+1 are all 0.

Using recursive expressions (6.45) and (6.46) as well as definition (6.47), it is understood

that Bj, which indicates the sign of zj and consequently the sign Z, is transferred from

position j to n through the borrow generating network with bin = 0. Therefore, the sign

of Z can be determined as

Sign(Z) = Bout =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if Z ≥ 0 ;

1 , if Z < 0 .
(6.53)

Clearly, the DSD sign detection using the DSD2BCD conversion algorithm does not

require the digit formation circuit depicted in Figure 6.17. However, those parts pro-

ducing pi and gi are still needed. The sign detector can be implemented through the

borrow generator, which is a parallel-prefix based network calculating Bi. For simplic-

ity, the parts calculating the unwanted group borrow signals can be eliminated.

6.7.5 Combined BCD Adder/Subtractor

One of the interesting applications of the proposed DSD2BCD conversion algorithm is

its role in improving the BCD addition/subtraction response time. In order to perform

a decimal addition/subtraction on two BCD numbers, one approach is to use the design

in Figure 6.18. In this structure, the multiplexer selecting between addition and sub-

traction is followed by the DSD2BCD converter. If add/sub = 0, the DSD number X +Y

calculated by the BB-DCFA is selected; otherwise, the DSD number X − Y obtained

from the no-hardware approach in Subsection 6.6.3 is selected. After either case, the

result is converted to BCD using the DSD2BCD conversion.

6.8 Evaluation

Studying the literature published on decimal arithmetic reveals a few implementations

of redundant decimal adders. The RBCD adder introduced by Shirazi et al. [SYZ89]

145



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

BB-DCFA

X     Y    X Y

0            1 add/sub

DSD2BCD Conversion

Z

Z'

Figure 6.18: An implementation of a combined decimal adder/subtractor.

is one such circuit. This decimal adder, which accepts SD input operands as (6.3), is

developed based on RBCD arithmetic discussed in Section 6.2. To compare response

times, the simple timing analysis method employed by Shirazi et al. is used. Based on

this method,∆, 2∆, 4∆ and 6∆ are propagation delays of a 3-input AND/OR gate, a MUX

2:1, a carry look ahead (CLA) generator [EL04] and a (4:2)-compressor, respectively.

Therefore, regardless of length of the input operands, the delay of DD-DCFA is about

18∆. This can be compared with the RBCD adder delay of 18∆. The numbers to be

added by DD-DCFA are from DSD set (6.6). Therefore, since BCD set {0, 1, · · · , 8, 9} is

a subset of the DSD set, BCD numbers can be directly used by DD-DCFA. However,

since the addend and the augend to the RBCD adder are from set (6.3), a BCD to RBCD

conversion is required when applying conventional BCD numbers to this adder. This

incurs an extra delay of O
(
log2 n

)
to addition response time. Clearly, as DB-DCFA

has a smaller logic depth, its response time is smaller than 18∆. Since no adders

similar to DB-DCFA is introduced by Shirazi et al. or any other publications, no timing

comparisons for DB-DCFA is possible.

Erle and Schulte develop a decimal multiplier using decimal (4:2)-compressors and

decimal (3:2)-counters [ES03]. These two adders are almost identical to DD-DCFA and

DB-DCFA, respectively. However, the redundant inputs to the former set are decimal

CS numbers (see Section 6.2) while, the redundant addends to the latter group are

represented in the DSD format. The decimal (4:2)-compressor and the decimal (3:2)-

counter, which are designed based on the redundant adder introduced by Schmookler

and Weinberger [SW71], are not included in delay estimations. Nevertheless, since they

have the same number of logic levels, they have delays approximately equal to their

DSD counterparts. The main difference between the decimal (4:2)-compressor and the

146



6.9. Summary

proposed DD-DCFA is in performing a decimal carry-free subtraction on redundant

operands. The former circuit requires a rather slow 2’s complement converter, preced-

ing the compressor, to be able to accomplish the subtraction. The delay is proportional

toO
(
log2 n

)
. In the integrated adder/subtractor shown in Figure 6.14, selecting between

V and ¬V is performed using an array of XOR gates.

6.9 Summary

Chapter 6 proposed DSD arithmetic, which was a new redundant decimal system with

SD number representation. The features of DSD arithmetic are as follows.

• In this arithmetic, digits are selected from a maximally redundant decimal set.

• Addition (subtraction) can be defined in DSD arithmetic such that no full-range

carry (borrow) propagation occurs during the operation.

• Depending on the types of input operands, three implementations for carry-free

addition/subtraction can be introduced.

In addition, Chapter 6 introduced an algorithm for converting a DSD number to the

BCD format followed by a discussion on its application to detecting the sign of a DSD

number, and performing conventional BCD addition/subtraction.

147



Chapter 6. Decimal Signed-Digit Arithmetic, A New Approach

148



Chapter 7

Comparison Multiples Based Decimal

Floating-Point Divider

Chapter 7 redefines the new comparison multiples idea in order to make it applicable

for implementing a DFP divider. The divider takes advantage of decimal signed-digit

arithmetic introduced in Chapter 6 to carry out the division recurrence. The chapter

ends with an implementation for the divider.

149



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

7.1 Introduction

This chapter starts with a brief background on the implementation of decimal division

through digit recurrence algorithm. It is followed by a description of the DFP spec-

ification introduced in the IEEE 754R standard [Com04]. Then, the most recent DFP

division stated by Cowlishaw [Cow04] is discussed followed by a short review of the

rounding issues in DFP arithmetic. Chapter 7 describes how the comparison multiples

approach presented in Chapter 4 can be changed to be applicable for implementing DFP

division. At the end of the chapter, a circuit performing a decimal division directly on

DFP operands is proposed. Chapter 8 gives a timing evaluation of the implementation.

7.2 Digit Recurrence Based Decimal Division History

Yabe et al. [YOI+87] present an implementation of a digit recurrence decimal division.

Every iteration, limited digit numbers from the normalised divisor and PR are applied

to a prediction table to find a value for the quotient digit. If the new PR is negative, then

the divisor is added to the PR (restoration step) and the incorrectly predicted quotient

digit, which is represented in a redundant form, is adjusted in the next iteration. This

semi-restoring decimal division requires a full-length decimal addition per iteration.

Also, if restoration is needed, a full-length decimal subtraction must be performed as

well. So, due to these two time consuming operations, the divider becomes very slow.

The division presented by Busaba et al. [BKL+01] is a simple restoring division,

which like the approach of Yabe et al. [YOI+87], subtracts the divisor from the PR

each iteration until the PR becomes negative. The algorithm restores the PR and

obtains the corresponding quotient digit. This method, which is used in the IBM z900

decimal arithmetic unit again uses a very slow full-length BCD addition/subtraction

per iteration.

Yamaoka et al. [YWK87] develop a non-restoring decimal divider, which subtracts

the divisor from the dividend every iteration and accumulates the number of iterations

in the quotient register. It suffers from a full-length decimal addition/subtraction every

iteration since the PR is represented in the conventional BCD format. Also, as another

disadvantage, the number of iterations is unknown until a negative PR is found.

A non-heuristic decimal divider presented by Ferguson [Fer96] determines one quo-

tient digit every iteration. It limits the number of candidates for the quotient digit to

150



7.3. DFP Representation in IEEE 754R Standard

two by normalising both the divisor and the dividend. The normalisation is performed

by multiplying the dividend and the divisor by a common factor. This adds a large de-

lay overhead to the operation. To select the correct quotient digit from the candidates,

a subtraction must be performed. Using the quotient digit, the corresponding multiple

of the normalised divisor is selected form a table. The multiples must be already calcu-

lated and stored in the table. This operation requires parallel full-length multiplications

(or successive full-length additions/subtractions), which not only increase the decimal

division execution time massively but also increase the implementation area. The di-

vider adjusts the final quotient if the divisor is normalised at the beginning of division.

This adjustment involves doubling, and several times incrementing or decrementing

the quotient. The delay penalty caused by the adjustment is also rather high.

7.3 DFP Representation in IEEE 754R Standard

In the proposed revision to the IEEE 754 standard, the encodings for decimal numbers

allow for a range of positive and negative values together with values of ±0, ±∞ and

Not-a-Number (NaN) [Cow03a]. Three formats of decimal numbers are as follows.

• A decimal32 number, which is encoded in four consecutive bytes (32 bits).

• A decimal64 number, which is encoded in eight consecutive bytes (64 bits).

• A decimal128 number, which is encoded in 16 consecutive bytes (128 bits).

A finite DFP number is defined by a sign, an exponent and a decimal integer coefficient.

The value of the DFP number F is given by

F = (−1)sign × coefficient × 10exponent . (7.1)

In this representation, sign is a single bit (as in IEEE 754 standard for binary FP), exponent

is encoded as an unsigned binary integer from which a bias is subtracted and coefficient

is an unsigned decimal integer. The three DFP formats specifications are summarized

in Table 7.1. The representation format proposed for coefficient uses Densely Packed

Decimal encoding [CH75]. It is a compressed form of the traditional BCD (binary-

coded decimal) format. This encoding is a lossless algorithm, which compresses three

BCD digits into 10 bits. The algorithm can be applied or reversed using only simple

boolean operations [Cow02].

151



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

Table 7.1: The DFP representing specifications defined by the IEEE 754R standard

[Com04].

Format

Specification decimal32 decimal64 decimal128

coefficient length in digit 7 16 34

Maximum exponent (Emax) 96 384 6144

Minimum exponent (Emin) -95 -383 -6143

bias 101 398 6176

Unlike the binary FP representation in which the significand is a normalized number,

coefficient has no such limitation. This means that it can take any value between 0 and

10clength − 1, where clength is the length of coefficient in decimal digits. However, the

standard lets a decimal number be represented in the scientific form with one digit

(nonzero unless coefficient= 0) before the decimal point. In this case, exponent is adjusted

to exponent + (clength − 1).

7.4 DFP Division Definition

Assuming neither of the operands is a special value like±∞ or NaN, the general decimal

arithmetic specification [Cow04] defines a DFP division as follows.

If the divisor is 0 then either the Division undefined condition is raised (if the

dividend is 0) and the result is NaN or the Division by 0 condition is raised

and the result is an Infinity with a sign, which is the XOR of the operand signs.

Otherwise, a long division is effected as follows.

• An integer variable, adjust, is initialised to 0.

• If the dividend is nonzero, the result coefficient is computed as follows

(using working copies of the operand coefficients, as necessary).

1. The operand coefficients are adjusted so that the dividend coefficient is

greater than or equal to the divisor coefficient and is also less than ten

times the divisor coefficient thus;

– While the dividend coefficient is less than the divisor coefficient, it

is multiplied by 10 and adjust is incremented by 1.

152



7.5. Precision and Rounding Modes

– While the dividend coefficient is greater than or equal to ten times

the divisor coefficient, the divisor coefficient is multiplied by 10 and

adjust is decremented by 1.

2. The result coefficient is initialized to 0.

3. The following steps are then repeated until the division completes.

– While the divisor coefficient is smaller than or equal to the dividend

coefficient, the former is subtracted from the latter and the result

coefficient is incremented by 1.

– If the dividend coefficient is now 0 and adjust is greater than or

equal to 0, or if the result coefficient has the appropriate number

of digits of precision, the division is complete. If not, the result

coefficient and the dividend coefficient are multiplied by 10 and

adjust is incremented by 1.

4. Any remainder (the final dividend coefficient) is recorded and taken

into account for rounding. Otherwise (the dividend is 0), the result

coefficient is 0 and adjust is unchanged (is 0).

• The result exponent is computed by subtracting the sum of the original di-

visor exponent and the value of adjust at the end of the coefficient calculation

from the original dividend exponent.

• The result sign is the XOR of the operand signs.

The result is then rounded to the precision digits, if necessary, according to the

rounding algorithm and taking into account the remainder from the division.

Later in this chapter, it is shown how this definition matches the requirements of

high-radix SRT division.

7.5 Precision and Rounding Modes

Rounding and precision have different definitions in decimal arithmetic. However,

they are adopted from the same concepts as their binary counterparts. Cowlishaw

[Cow04] gives descriptions for rounding and precision in decimal arithmetic. They are

summarised in the following subsections.

153



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

7.5.1 Precision

Precision, p, is a positive integer, which sets the maximum number of significant digits

that can result from an arithmetic operation. The upper limit to it can be the length of the

coefficient supported by the decimal representation format, i.e. 7, 16 or 34 corresponding

to decimal32, decimal64 and decimal128, respectively. There is a lower limit on the

setting p, which may be the same as the upper limit.

7.5.2 Rounding Modes

The five rounding modes defined in decimal arithmetic [Cow04] are as follows.

• Round down (Round toward 0)

The discarded digits are ignored; the result is unchanged.

• Round half up

If the discarded digits represent greater than or equal to half (0.5) of the value of

a 1 in the next position to the left then the result coefficient should be incremented

by 1 (rounded up). Otherwise, the discarded digits are ignored.

• Round half even

If the discarded digits represent greater than half (0.5) the value of a 1 in the next

position to the left then the result coefficient should be incremented by 1 (rounded

up). If they represent less than half, then the result coefficient is not adjusted (that

is, the discarded digits are ignored). Otherwise (they represent exactly half), the

result coefficient is unaltered if its rightmost digit is even or incremented by 1

(rounded up) if its rightmost digit is odd (to make an even digit).

• Round ceiling (Round toward +∞)

If all the discarded digits are 0 or if the sign is 1 the result is unchanged. Otherwise,

the result coefficient should be incremented by 1 (rounded up).

• Round floor (Round toward −∞)

If all the discarded digits are 0 or if the sign is 0 the result is unchanged. Otherwise,

the sign is 1 and the result coefficient should be incremented by 1.

Among them, round half even (RHE) is the closest to the RTNE (round to nearest even)

scheme defined by the IEEE 754 standard for rounding binary numbers. In fact, the

154



7.6. DFP Division Through SRT Algorithm

RHE mode, which is sometimes called bankers rounding, is the usual rounding algorithm

used in European countries, in international financial dealings and in the USA for tax

calculations [Cow04].

7.6 DFP Division Through SRT Algorithm

DFP division defined in Section 7.4 can be recognised as a decimal restoring division

like the binary algorithm introduced in Subsection 2.3.3. However, for implementa-

tion, there are better alternatives than restoring division. This section introduces DFP

division using high-radix SRT division, i.e. r = 10. The proposed method fulfills the

requirements of the original DFP division.

7.6.1 Assumptions

• The radix r = 10.

• It is already stated in Section 3.4 that as the redundancy factor increases, the

number of digits to be compared by the QDS function decreases and consequently,

the division cycle time decreases. However, a larger and slower factor generator

may be required. This means that a tradeoff between a smaller factor generator

and a faster QDS function must be performed in order to achieve a fast circuit

for DFP division. It is known that to have a CFA in any radix r, the SD set from

which the quotient digit is selected, must satisfy

⌈r + 1
2

⌉
≤ a ≤ r − 1 , (7.2)

where a is the largest allowed digit. Now, the tradeoff becomes equivalent to

making a decision to select a value in [6, 9] for a. In Subsection 7.7.4, it is shown

that almost the same propagation delay occurs when generating either set {d, 2d,

· · · , 5d, 6d} or set {d, 2d, · · · , 8d, 9d}. So, the quotient digits are selected from

qj+1 ∈
{
9, 8, · · · , 1, 0, 1, · · · , 8, 9

}
, (7.3)

which is the maximally redundant set corresponding to ρ = 1.

155



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

Table 7.2: Values of p corresponding to the representation format.

Format p (BCD digit)

decimal32 7

decimal64 16

decimal128 34

7.6.2 DFP Division Formulation

Considering w as the PR and p as the precision determined from Table 7.2, the DFP

division definition (for nonzero and non-special operands) is reformulated as follows.

• The original representations of the dividend coefficient, x, and the divisor coefficient,

d, are written in the fraction form. They are

x = xp−1xp−2 · · · x1x0 → x = 0.xp−1xp−2 · · · x1x0

d = dp−1dp−2 · · · d1d0 → d = 0.dp−1dp−2 · · · d1d0 .
(7.4)

• With appropriate number of left shifts, x and/or d obtained from (7.4) are nor-

malised so that

1
10
≤ x < 1 and

1
10
≤ d < 1 . (7.5)

Consequently, the dividend exponent, eX, and the divisor exponent, eD, should be

modified accordingly. Based on the new values, the quotient exponent eQ is set as

eQ = −p + (eX − eD) . (7.6)

• Decimal recurrence

w[ j + 1] = 10w[ j] − qj+1d , where j = 0, 1, · · · , p (7.7)

and

w[0] =
x
10
, (7.8)

156



7.6. DFP Division Through SRT Algorithm

is used in order that the next RP is generated. The decimal QDS function

qj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9 , if
{
10w[ j]

}
c′′ < 0 and

{
10w[ j]

}
c′ < − {M9}c′

...

k , if
{
10w[ j]

}
c′′ < 0 and − {Mk+1}c′ ≤ {10w[ j]

}
c′ < − {Mk}c′

...

1 , if
{
10w[ j]

}
c′′ < 0 and − {M2}c′ ≤ {10w[ j]

}
c′ < − {M1}c′

0 , if
{
10w[ j]

}
c′′ < 0 and − {M1}c′ ≤ {10w[ j]

}
c′

0 , if
{
10w[ j]

}
c′′ ≥ 0 and

{
10w[ j]

}
c′ < {M1}c′

1 , if
{
10w[ j]

}
c′′ ≥ 0 and {M1}c′ ≤ {10w[ j]

}
c′ < {M2}c′

...

k , if
{
10w[ j]

}
c′′ ≥ 0 and {Mk}c′ ≤ {10w[ j]

}
c′ < {Mk+1}c′

...

9 , if
{
10w[ j]

}
c′′ ≥ 0 and {M9}c′ ≤ {10w[ j]

}
c′ ,

(7.9)

which is the radix-10 case of the general QDS function (4.24), selects the correct

value for the quotient digit qj+1 from SD set (7.3) so that the convergence condition

−d ≤ w[ j + 1] < d (7.10)

is always satisfied. The QDS function (7.9) involves the truncated comparisons

{
10w[ j]

}
c′ − {Mk}c′ , if

{
10w[ j]

}
c′′ ≥ 0 ; (7.11a){

10w[ j]
}

c′ + {Mk}c′ , if
{
10w[ j]

}
c′′ < 0 (7.11b)

as well as the PR sign detection

S10w[ j+1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if

{
10w[ j + 1]

}
c′′ ≥ 0 ;

1 , if
{
10w[ j + 1]

}
c′′ < 0 ,

(7.12)

which are the radix-10 cases of the comparisons (4.25) and the sign detection (4.29),

respectively. This generalisation is made possible because the comparison multi-

ples method described Section 4.2 is given in the general radix r. However, since

radix 10 is not a power of 2, there are differences between the implementations,

which are discussed later.

157



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

• Using the quotient digits generated in every recurrence, q is formed as

q =
p∑

j=0

qj+110p−( j+1) = q1q2 · · · qp−1qp

decimal point

↓. qp+1 (7.13)

after p + 1 cycles. The additional digit qp+1 is used later for rounding.

• The value of sQ is set as

sQ = sX XOR sD . (7.14)

7.6.3 Convert and Round

In the proposed DFP divider, RHE is considered as the default rounding mode. Like

the binary dividers, after the (p + 1)-th division iteration, another cycle is needed to

complete the quotient conversion and rounding processes. In that cycle, the last PR,

w[p + 1], is sign detected by the convert and round (CR) unit as

signp+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if w[p + 1] ≥ 0 ;

1 , if w[p + 1] < 0
(7.15)

Also, since the halfway condition may happen to the decimal rounding, for example

0.10
0.16

= 0.625 and
0.12
0.32

= 0.375 , (7.16)

unlike the binary rounding, the final PR is zero detected in the (p + 2)-th cycle as

zerop+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if w[p + 1] � 0 ;

1 , if w[p + 1] = 0 .
(7.17)

Then, the rounded q is determined using the values formed by the on-the-fly rounding

algorithm in QM[p], Q[p] and QP[p] registers, and the rules shown in Table 7.3. It should

be noted that the final q is not post-normalised because the decimal representation

suggested by the IEEE 754R standard is a non-normalised format.

7.6.4 Dealing with Exact Results

Another issue, which only DFP division deals with, is representing exact quotients

correctly. Defining the ideal exponent as the original dividend exponent minus the

original divisor exponent, Cowlishaw [Cow04] explains how the quotient should be

represented if it is the result of an exact division.

158



7.6. DFP Division Through SRT Algorithm

Table 7.3: The rules used by the decimal CR units to represent the unrounded quotient

in the IEEE 754R standard format.

q rounded to p digits

(signp+1, zerop+1)

qp+1 (1,×) (0, 0) (×, 1)

9 QM[p] QM[p] QM[p]

8 QM[p] QM[p] QM[p]

7 QM[p] QM[p] QM[p]

6 QM[p] QM[p] QM[p]

QM[p] if QM[p]<lsb>= 0
5 QM[p] Q[p]

Q[p] if QM[p]<lsb>= 1

4 Q[p] Q[p] Q[p]

3 Q[p] Q[p] Q[p]

2 Q[p] Q[p] Q[p]

1 Q[p] Q[p] Q[p]

0 Q[p] Q[p] Q[p]

1 Q[p] Q[p] Q[p]

2 Q[p] Q[p] Q[p]

3 Q[p] Q[p] Q[p]

4 Q[p] Q[p] Q[p]

Q[p] if Q[p]<lsb>= 0
5 Q[p] QP[p]

QP[p] if Q[p]<lsb>= 1

6 QP[p] QP[p] QP[p]

7 QP[p] QP[p] QP[p]

8 QP[p] QP[p] QP[p]

9 QP[p] QP[p] QP[p]

After the division, if the result is exact then the coefficient and exponent giving

the correct value and with the exponent closest to the ideal exponent is returned.

If the result is inexact, the coefficient will have exactly precision [p] digits (unless

the result is subnormal), and the exponent will be set appropriately.

In the proposed implementation of the DFP division, zerop, which is determined as

zerop =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if w[p] � 0 ;

1 , if w[p] = 0 ,
(7.18)

159



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

signals whether the quotient is exact. Having found the partial remainder equal to zero

in p-th iteration, it can be derived that all the consequent quotient digits are zero. If

the division is exact, q is adjusted by an appropriate number of right or left shifts when

required, otherwise q remains unchanged. Correspondingly, eQ obtained from (7.6) is

adjusted. The circuit performing this operation can be embedded in the CR unit.

7.7 Implementation

This section presents an implementation for the proposed DFP division complying

with the requirements of the IEEE 754R standard. The divider is realised based on

the comparison multiples idea developed in Chapter 4 and supported by the two

examples in Chapter 5. The explanation covers the realisation of the subunits involved

in recurrence (7.7), however, due to the simple structure of the remaining parts, i.e.

sign and exponent calculation circuits as well as the CR unit, their implementations

are not included in this section. The input operand format is decimal128, however,

the implementation structure can be easily reconfigured for the other representation

formats.

Since the comparison multiples method is defined for the general radix r, the struc-

tures shown in Figures 4.8 and 4.9 can be used for implementing the decimal QDS

function and the decimal recurrence, respectively. However, due to different nature of

the binary and the DFP dividers, there might be some differences between the way in

which these structures are implemented.

7.7.1 DFP versus Previously Proposed Binary Divider

Unlike the radix-4 divider discussed in Section 5.2, which uses only two comparison

multiples {M1}5 and
{
M′

2

}
5
, and two groups of divisor multiples±d and±2d, the decimal

QDS function requires nine values of each. Values Mk and±kd, where k ∈ {1, 2, · · · , 8, 9},
can be represented in either the DSD or the BCD format. The advantages and disad-

vantages of these methods are as follows.

• DSD Representation Approach

In this method, all numbers involved in comparisons (7.11) and PR formation (7.7)

are represented in the DSD format. This makes the factor and the comparison

multiple generators faster because all calculations are performed by DD-DCFAs

160



7.7. Implementation

as introduced in Subsection 6.5.1. However, since both the addends are in the DSD

form (rather than one in the DSD and one in the BCD format), the comparators and

the PR formation circuits, which have to be realised through DD-DCFAs as well,

become more complex and consequently, slower. As a result, although having

all the numbers involved in the proposed DFP division represented in the DSD

format cancels the additional initialising cycle (for generating the comparison and

the divisor multiples), it adds a small delay to recurrence cycle time. Therefore,

after p + 2 cycles, where p = 34 for decimal128 format, a large amount of delay

is accumulated. However, dealing with shorter decimal formats, i.e. decimal32

and decimal64, may result in other decisions concerning the representation of Mk

and ±kd.

• BCD Representation Approach

If the comparison multiple generator and the divisor multiple generator are given

an interval equal to a recurrence cycle time, they are able to generate Mk and ±kd

in the BCD format. As shown in Subsection 6.8, parallel-prefix decimal adders

have the overall delay of O
(
log2 n

)
. This means that having one cycle sacrificed

in favour of simpler (shallower in digit depth) comparators and PR formation

circuits, may result in a faster recurrence cycle time. Therefore, the corresponding

DFP divider is expected to produce the final quotient faster.

From this discussion it is found that generating Mk and ±kd in the non-redundant BCD

format can improve the DFP division response time. However, it causes DFP division

calculated the final quotient in p + 3 cycles.

7.7.2 Determining the QDS Function Operands Precisions

Due to the similarities between the previously introduced binary and the newly pro-

posed the DFP dividers, the statements expressing the lower bounds on e′ and c′ (the

number of integer and fractional digits of the shifted PR involved in the comparisons

(7.11), respectively) for the decimal implementation are derived based on the expres-

sions given in Section 4.4. Also, the similarities let the formulations expressed in

Subsection 4.4.2 be used for determining the lower bounds on e′′ (the number of inte-

ger digits of the shifted PR involved in the sign detection (7.12)) and c′′ (the number of

fractional digits of the shifted PR involved in the sign detection (7.12)), when designing

161



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

the DFP divider.

Determining e′ and c′

Replacing base 2 by 10 in (4.42) and considering the assumptions given in Subsec-

tion 7.6.1 yields

10c′ >
11
d
, (7.19)

which leads to

10c′ > 110 (7.20)

or

c′ ≥ 3 , (7.21)

since d ≥ 1
10 . Inequality (7.21) determines the lower bond on c′, however, selecting

c′ = 3 (7.22)

results in a simpler and consequently, faster implementation.

Considering the assumptions and following the reasons given in Subsection 4.4.1

for determining e′ for the binary designs, the number of integer BCD/DSD digits of the

operands involved in the comparisons (7.11) is determined as

e′ = 1 + i , (7.23)

where i indicates the number of integer DSD digits that w[ j] already has. Studying

Figure 4.9 reveals that i = 0 and therefore, (7.24) gives

e′ = 1 . (7.24)

However, due to representation overflow, the numbers delivered to the following sign

detectors may be one digit wider in their integer part.

Determining e′′ and c′′

Replacing base 2 by 10 in (4.48) and considering the assumptions of the proposed DFP

division described in Subsection 7.21 gives

10−c′′ ≤ d (7.25)

162



7.7. Implementation

or

c′′ ≥ 1 , (7.26)

since d ≥ 1
10 . In the proposed implementation, c′′ is set as

c′′ = 1 , (7.27)

Using a similar justification to that in Subsection 4.4.2, where the lower bound of e′′

required for implementing the binary division is calculated, the minimum value of e′′

for the DFP division implementation can be expressed as

e′′ = 1 + i′ . (7.28)

In (7.28), i′ indicates the number of integer DSD digits of w[ j + 1] applied to the

PR sign detectors. The architecture depicted in Figure 4.9 shows that while 10w[ j]

has at most one integer digit, due to representation overflow caused by the DSD

addition/subtraction in recurrence (7.7), w[ j + 1] may have 2 integer digits. Therefore,

(7.28) results in

e′′ = 3 . (7.29)

7.7.3 QDS Function

The QDS function used in the proposed DFP division is described using function (7.9).

In this subsection the implementations of the subunits constructing the QDS function

are given. They are schematically displayed in Figure 7.1.

Comparison Multiple Generator

In order to perform the comparisons (7.11), nine positive comparison multiples {Mk}3
and nine 9’s complement comparison multiples

{
MC

k

}
3
, where k ∈ {1, 2, · · · , 8, 9}, are

provided by the comparison multiple generator. The generator produces {Mk}3 and

then, using these values,
{
MC

k

}
3

are supplied. The 9’s complement mapping process is

accomplished by the circuit depicted in Figure 7.2. This circuit maps a single BCD digit

z to its peer 9’s complement zC. The truth table, on which the circuit is constructed, can

be easily derived from (6.31).

163



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

S
1

0w
[j]

S
1

0w
[j+

1]

{kd}
3

{10w
[j]}

3
{10w

[j+1]}
1

{M
1 }

3
{M

1 C}
3  {M

2 }
3

{M
2 C}

3  ... {M
4 }

3
{M

4 C}
3  ... {M

8 }
3

{M
8 C}

3  {M
9 }

3
{M

9 C}
3

PR
 Sign D

et.

C
om

parison M
ultiple G

enerator

C
om

p
1

C
om

p
2

C
om

p
4

C
om

p
8

C
om

p
9

C
om

p.
Sign D

et1
C

om
p.

Sign D
et2

C
om

p.
Sign D

et4
C

om
p.

Sign D
et8

C
om

p.
Sign D

et9
...

...

...
...

M
ag(q

j+
1 )

q1
q0

q2
q3

C
oder

Figure 7.1: The implementation of the proposed decimal QDS function.

164



7.7. Implementation

C
0z

z3 z2 z1

C
3z C

2z C
1z

z0

Figure 7.2: The circuit mapping BCD digit z = z3z2z1z0 to the corresponding 9’s com-

plement value zC = zC
3 zC

2 zC
1 zC

0 .

Table 7.4: The ranges, which Mk are defined.

k Range Ak Mk

1 1
100 ≤M1 ≤ d − 1

1000
5
10

5
10 d

2 d + 1
100 ≤M2 ≤ 2d − 1

1000
15
10

15
10 d

3 2d + 1
100 ≤M3 ≤ 3d − 1

1000
25
10

25
10 d

4 3d + 1
100 ≤M4 ≤ 4d − 1

1000
35
10

35
10 d

5 4d + 1
100 ≤M5 ≤ 5d − 1

1000
45
10

45
10 d

6 5d + 1
100 ≤M6 ≤ 6d − 1

1000
55
10

55
10 d

7 6d + 1
100 ≤M7 ≤ 7d − 1

1000
65
10

65
10 d

8 7d + 1
100 ≤M8 ≤ 8d − 1

1000
75
10

75
10 d

9 8d + 1
100 ≤M9 ≤ 9d − 1

1000
85
10

85
10 d

Mk can be selected in the range

d(k − 1) +
1

100
≤Mk ≤ kd − 1

1000
, for k = 1, 2, · · · , 8, 9 . (7.30)

This inequality is obtained by applying (7.22) and the assumption given in Subsec-

tion 7.6.1 to (4.41) and meanwhile, changing base 2 to 10. It gives tighter ranges than

(4.15), since rather than full-range, truncated comparison multiples are used in the

comparisons. The ranges are listed in Table 7.4 in detail. In the rightmost column of

the table, one set of the most easily-calculated values for Mk is shown. Therefore, for

obtaining the DSD comparison multiples, the calculations

{M1}3 = {5 d}2
10

(7.31a)

{Mk}3 = {10 k d}2 − {5 d}2
10

, for k = 2, · · · , 8, 9 (7.31b)

165



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

{kd}3= x.xxx {5d}2= x.xx

xxx
d

.0
10

}5{ 2 ="0.000"

{M1}3
+ {M1}3

- {Mk}3
+ {Mk}3

-

DSD to BCD
Converterk

DSD to BCD
Converter1

{M1}3 {Mk}3

9's Complement 9's Complement

{M1
C}3 {Mk

C}3

Figure 7.3: The implementation of the comparison multiple generator, for k =

2, 3, · · · , 8, 9. The final results are in the BCD format.

can be used. Although (7.31b) does not exactly yield
{

15
10 d
}

3
to
{

85
10 d
}

3
, the calculated

values are close enough to be accepted as {Mk}3, for k = 2, 3, · · · , 8, 9. The feasibility of

this substitution can be proven using the discussion already given in Subsection 5.2.3,

where {2d}5 −
{

1
2 d
}

5
is selected as the replacement for

{
3
2 d
}

5
. It should be mentioned

that the integer multiples of the divisor, which are represented in the BCD format,

are supplied by the factor generator. Moreover, all the division (multiplication) by

10 operations are performed simply by one BCD wired right (left) shift, in zero time.

Also, since the minuends and subtrahends are in the BCD format, as discussed in

Subsection 6.6.3, (7.31) is carried out in zero time as well. However, a DSD to BCD

conversion operation is required after every subtraction (7.31). The implementation of

the converter is discussed in Section 6.7. Figure 7.3 displays the implementation of the

comparison multiple generator employed in the proposed decimal QDS function.

Comparators

Since in (7.11),
{
10w[ j]

}
3 is a DSD and {Mk}3 is a BCD number, the comparisons (7.11)

can be expressed as

{
10w[ j]

}
3 +
{
MC

k

}
3
+ ¬S10w[ j] , if ¬S10w[ j+1] = 1 ; (7.32a){

10w[ j]
}

3 + {Mk}3 + ¬S10w[ j] , if ¬S10w[ j+1] = 0 , (7.32b)

166



7.7. Implementation

1      0

{10w[j]}3
+ {10w[j]}3

- {Mk
C}3{Mk}3

S10w[j]

Pk
+ Pk

-

 X + X - Y
cout cin

Z + Z -
4-digit DB-DCFA

Figure 7.4: The implementation of the comparators used in the proposed decimal QDS

function, for k = 1, 2, · · · , 8, 9.

which can be implemented by a 4-digit DB-DCFA. Figure 7.4 displays the implemen-

tation of any of the 9 comparators. Unfortunately, due to representation overflow, Pk is

produced in 5 digits, which makes the subsequent comparison sign detectors respond

in a time proportional to log2 5 rather than log2 4. However, investigating the circum-

stances involved in generating Pk<4> and Pk<3> provides a solution, which with no

additional time, represents Pk in 4 digits.

Considering (7.31) and assumption 1
10 ≤ d < 1, it is obtained that

Mk<35>∈ {0, 1, · · · , 7, 8} (7.33a)

MC
k<35>∈ {1, 2 · · · , 8, 9} . (7.33b)

This, used with (7.32), yields

P∗k<3>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<35> +Mk<35>

) ∈ [9, 8] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<35> +MC
k<35>

)
∈ [1, 18] , if

{
10w[ j]

}
3 ≥ 0 ,

(7.34)

where P∗k<3> represents Pk<3> before the transfer bit from the previous addition

position is applied. Now, changing the addition rules displayed in Table 6.3 to those

listed in Table 7.5, (6.30), Figure 6.15 and (7.34) give

Pk<4>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0) = 0 , if

{
10w[ j]

}
3 < 0 ;

(1, 1) = 0 , if
{
10w[ j]

}
3 ≥ 0

(7.35a)

P∗k<3>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<35> +Mk<35> +0

) ∈ [9, 8] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<35> +MC
k<35> −10

)
∈
[
9, 8
]
, if
{
10w[ j]

}
3 ≥ 0 .

(7.35b)

167



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

Therefore, to determine the polarity, the comparison sign detectors only need to in-

vestigate the 4 least significant digits of Pk. The altered 1-digit DB-DCFA, namely

DB-DCFA′, is displayed in Figure 7.5. It is designed based on the rules shown in Ta-

ble 7.5. However, as explained in (7.35a), the TBSU can be ignored. The adder has less

logic complexity than the circuit introduced in Subsection 6.5.2.

Table 7.5: Alternative rules for performing 1-digit DB-DCFA.

tin

p tout 0 1

[−9, 8] 0 z = p + 0 z = p + 1

[9, 18] 1 z = p − 10 z = p − 9

x+ yx-

z'+ z'-

Adj.
z+ z-

z+ z-

'0'

"10110"

a+ a- b
cin

s+ s-
BSDA2

a+ a- b
cin

s+ s-
BSDA1

S10w[j+1]

tin

Figure 7.5: An implementation for 1-digit DB-DCFA′, an alternative to DB-DCFA. It is

used in the most significant position of the circuit shown in Figure 7.4.

Comparison and PR Sign Detectors

The nine comparators performing (7.32) produce nine 4-digit DSD numbers. As shown

in Figure 7.1, their polarities are determined by the comparison sign detectors. Mean-

while, the PR sign detector is used to find the sign of the next PR truncated to c′′

168



7.7. Implementation

'0'

X + X -

bout bin

Sign(X)

4-DSD
Borrow

Generator

Figure 7.6: The architecture used for implementing the comparison sign detectors and

the PR employed in the proposed DFP divider.

fractional digits, S10w[ j+1]. As displayed in Figure 4.9, 10 copies1 of the PR sign detector

operate in parallel to determine the signs of the possible values for the next PR. Accord-

ing to (7.27) and (7.29), the input to every PR sign detector is a 4-digit DSD number.

This means that any circuit employed for the comparison sign detectors can be used for

the PR sign detector as well. Figure 7.6 presents an architecture for the sign detectors

used in the proposed decimal QDS function. The borrow generator employed in this

figure is introduced in Subsection 6.7.4 as a part of the DSD2BCD converter. It has

overall delay of O
(
log2 n

)
.

Coder

In the proposed DFP divider, the DSD quotient digit qj+1 is represented using the

sign-magnitude method (like the binary predecessor introduced in Subsection 4.3.1

using (4.30) and (4.31)). Based on the value of
{
10w[ j]

}
3, the comparison sign detectors

produce nine bits, namely SM1 to SM9 . These bits, along with Sign(qj+1) = S10w[ j], are

used by the coder to construct Mag(qj+1). The values represented by SM1 to SM9 as well

as their relationship with the exact value of qj+1 are shown in Table 7.6. Investigating

the table reveals that Mag(qj+1) can be generated using SM1 to SM9 and Sign(qj+1) by

1Because a + 1 = 10.

169



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

Table 7.6: Values of qj+1 constructed by Mag(qj+1) = q3q2q1q0 and Sign(qj+1).

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 Sign(qj+1) q3q2q1q0 qj+1

1 1 1 1 1 1 1 1 1 1 1111 9

1 1 1 1 1 1 1 1 0 1 1110 8

1 1 1 1 1 1 1 0 0 1 1101 7

1 1 1 1 1 1 0 0 0 1 1100 6

1 1 1 1 1 0 0 0 0 1 1011 5

1 1 1 1 0 0 0 0 0 1 1010 4

1 1 1 0 0 0 0 0 0 1 1001 3

1 1 0 0 0 0 0 0 0 1 1000 2

1 0 0 0 0 0 0 0 0 1 0111 1

0 0 0 0 0 0 0 0 0 1 0110 0

1 1 1 1 1 1 1 1 1 0 0110 0

0 1 1 1 1 1 1 1 1 0 0111 1

0 0 0 1 1 1 1 1 1 0 1000 2

0 0 0 1 1 1 1 1 1 0 1001 3

0 0 0 0 1 1 1 1 1 0 1010 4

0 0 0 0 0 1 1 1 1 0 1011 5

0 0 0 0 0 0 1 1 1 0 1100 6

0 0 0 0 0 0 0 1 1 0 1101 7

0 0 0 0 0 0 0 0 1 0 1110 8

0 0 0 0 0 0 0 0 0 0 1111 9

implementing expressions

q3 = S′M8
(7.36a)

q2 = S′M4
OR ¬S′M8

(7.36b)

q1 = S′M2
OR
(
S′M6

AND ¬ S′M4

)
OR
(
¬S′M8

AND ¬ S′M7

)
(7.36c)

q0 = S′M1
OR
(
S′M3

AND ¬ S′M2

)
OR
(
S′M5

AND ¬S′M4

)
OR(

S′M7
AND ¬S′M6

)
OR
(
S′M9

AND ¬ S′M8

)
, (7.36d)

where

S′Mk
= SMk XNOR Sign(qj+1) , for k = 1, 2, · · · , 8, 9 . (7.37)

170



7.7. Implementation

Buffers

As displayed in Figure 7.1, buffers are inserted to reduce the fan out of the circuits

supplying the comparators. The logic depths derived from (7.36) and the configuration

of the multiplexors in Figure 7.8 determine that except for comparators Comp4 and

Comp8, inputs applied to the other comparators can be buffered.

7.7.4 Recurrence

The recurrence proposed for the DFP divider is shown schematically in Figure 7.7. Its

structure follows that of the general radix-r divider introduced in Subsection 4.3.3. In

this subsection, implementations for the units involved in the recurrence are given.

MUX 11:1

As shown in Figure 7.7, MUX1 11:1 is on and MUX2 11:1 is off the DFP divider critical

path. Each multiplexer is internally separated into two almost identical parts, namely

MUX 11:1+ and MUX 11:1−. These multiplexors are implemented using four levels of

MUX 2:1, as displayed in Figure 7.8. These circuits are structured in such a way that

the multiplexing operations happen in the shortest possible time. Like the binary FP

dividers, to comply with (7.8) and therefore, to let x pass through MUX1 11:1 in the first

iteration, the registers storing q3, q2, q1 and q0 are initialised by the control unit to

q3[0] = 0 , q2[0] = 1 , q1[0] = 0 and q0[0] = 1 , (7.38)

which is a bit combination that never emerges from the coder during division. While

inputs to MUX1 11:1 are truncated 3-DSD numbers, inputs to MUX2 11:1 are full-range

35-digit DSD values.

MUX 10:1

MUX 10:1 can be constructed using almost the same structure as MUX 11:1. Figure 7.8

shows a circuit for MUX 10:1 employed in the proposed DFP divider.

Factor Generator

Unlike the binary factor generator shown in Figure 5.8, which is implemented using

just a few wires, producing BCD kd, for k = 1, 2, · · · , 8, 9, is more complex. The factor

171



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

{9d}
3

{d}
3

. . .

. . .
. . .

. . .

M
U

X
1  11:1

. . .

M
U

X
 10:1

d

. . .

. . .
Q

D
S*

Factor
G

enerator

S
1

0w
[j]

. . .
PR

 Sign
D

et.

w
0

R
eg

w
1

R
eg

S
0

R
eg

S
1

R
eg

S
9

R
eg

x
w

9
R

eg

M
U

X
2  11:1

9dd

{10w
[j]}

3
10w

[j]

. . .

PR
 Form

ation

PR
 Sign

D
et.

9d
C

d
C

. . .

sel3sel2sel1sel0

in0
in1

. . .
in9

in10
 in0

in1
. . .

in9
in0

in1
. . .

in9
in10

S
0

R
eg

S
9

R
eg

w
0

w
9

. . .

. . .
w

0
R

eg
w

9
R

eg
. . .

q0
R

eg
q3

R
eg

q1
R

eg
q2

R
eg

q3
R

eg

q0
R

eg

q2
R

eg

q1
R

eg

. . .

Convert and Round

. . .

q
R

eg

Figure 7.7: Structure of the recurrence of the proposed DFP division.

172



7.7. Implementation

1    0 1    0

in4 in5in0 in1in8 in9

0    1

out

in7

1    0

in10

0    1

in3

0    1

in2 in6

0    1

0    1

0    1

0    1

sel3

sel2

sel1

sel0

in7

For MUX1 11:1-

For MUX1 11:1+

in7
sel3sel3

For MUX 10:1

Figure 7.8: The implementations of MUX 11:1 and MUX 10:1. Inputs to MUX1 11:1,

MUX2 11:1 and MUX 10:1 are 3 DSD, 35 DSD and 1 bit wide, respectively.

generator used in the proposed DFP divider provides the multiples and the 9’s com-

pleted multiples of d not only in full range, but also in truncated form in order to supply

the comparison multiple generator discussed in Subsection 7.7.3.

Using the following scheme, the appropriate multiples of d are produced in full-

range in the BCD format as quickly as possible.

1. Having produced 10d in the BCD format just by a wired left shift as

10 d = left shifted d , (7.39)

value 9d is calculated in the DSD format as

9 d = 10 d − d . (7.40)

Meanwhile, DSD 2d is produced as

2 d = d + d . (7.41)

173



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

2. Then, using the values obtained, 3d, 4d and 8d are calculated in DSD as

3 d = 2 d + d (7.42a)

4 d = 2 d + 2 d (7.42b)

8 d = 9 d − d . (7.42c)

3. Afterward, 5d, 6d and 7d are generated and represented in DSD as

5 d = 8 d − 3 d (7.43a)

6 d = 8 d − 2 d (7.43b)

7 d = 9 d − 2 d . (7.43c)

4. The multiples of d represented in the DSD format are reformatted into the BCD

form using the DSD2BCD converter introduced in Subsection 6.7.4.

In the discussed scheme, operation (7.40) is performed in zero time because it involves

a subtraction with BCD minuends and subtrahends, as introduced in Subsection 6.6.3.

Operation (7.41) is carried out by a BB-DCFA, given in Subsection 6.5.3. Also, (7.42a)

is accomplished by a DB-DCFA while (7.42b) is performed by a DD-DCFA. These two

adders are discussed in Subsections 6.5.2 and 6.5.1, respectively. Moreover, operations

(7.43a), (7.43b) and (7.43c) are fulfilled by DSD subtractors proposed in Subsection 6.6.1.

The DSD subtraction circuit introduced in Subsection 6.6.2 carries out (7.42c). It should

be mentioned here that 9’s complemented kd, kdC, is produced using the converter

shown in Figure 7.2.

PR Formation

The PR Formation, which is shown in Figure 7.9, provides all the 10 possible values for

w[ j + 1]. This circuit operates as

wk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10w[ j] + kdC + ¬S10w[ j] , if ¬S10w[ j] = 1 ;

10w[ j] + kd + ¬S10w[ j] , if ¬S10w[ j] = 0 ,
for k = 1, · · · , 8, 9 (7.44a)

10w[ j] , for k = 0 . (7.44b)

As shown in Figure 7.9, rather than normal DB-DCFA, circuits CIRCUIT1 and DB-

DCFA′′ are employed in the 2 most significant addition positions of (7.44a). This

174



7.7. Implementation

. . .

10w[j]+ 10w[j]-

<0><0><0><34>
<34>

<34>

wk
+ wk

-

<0><0><34><34>

x+ x- y
tin

z+ z- s

1-digit
DB-DCFA''

1      0

kdCkd S10w[j+1]

w0
+ w0

-

x1
+x1

- x2
+x2

-

Adjust
 z+ z-

x+ x- y
tout tin

z+ z-

1-digit
DB-DCFA0

<35>
<35> <35>

x+ x- y Sign
tout tin

s
CIRCUIT1

. . .

<35>
<35>

<34><34>

<3
3:

0>
<3

3:
0>

<34>
<34>

Figure 7.9: The implementation of the PR Formation used in the DFP divider.

combination not only prevents representation overflow, but also adjusts the resulting

representations to 35-digit fractions. The implementations for CIRCUIT1 and DB-

DCFA′′ are shown in Figures 7.10 and 7.11, respectively. The following is an explanation

of how the adjust process is performed by the set of CIRCUIT1 and DB-DCFA′′.

Considering assumption 1
10 ≤ d < 1, it can be obtained that

kd<35>∈ {0, 1, · · · , 7, 8} (7.45a)

kdC<35>∈ {1, 2, · · · , 8, 9} , (7.45b)

for k = 1, 2, · · · , 8, 9. On the other hand, from (7.44a) it can be derived that

w∗k<35>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<35> + kd<35>

) ∈ [−9, 8] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<35> + kdC<35>
)
∈ [1, 18] , if

{
10w[ j]

}
3 ≥ 0

(7.46a)

w∗k<34>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<34> + kd<34>

) ∈ [−9, 18] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<34> + kdC<34>
)
∈ [−9, 18] , if

{
10w[ j]

}
3 ≥ 0 ,

(7.46b)

where w∗k<34> (w∗k<35>) represents wk<34> (wk<35>) before the transfer bit from

the previous addition position is applied. Now, if the addition rules in Table 7.5 are

175



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

x+ yx-

z'+ z'-

Adj.
z+ z-

'0'

"10110"

a+ a- b
cin

s+ s-

BSDA2

a+ a- b
cin

s+ s-
BSDA1

Sign(qj+1)

'0'

tintout
<0>
<0>

<1>
<1>

4-digit
Sign Det

4-digit
Sign Det

'1'

<0>

s0 s1 s2

Figure 7.10: The implementation of CIRCUIT1 used in the decimal PR formation.

applied to (7.46a), it can be derived that

wk<36>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0) = 0 , if

{
10w[ j]

}
3 < 0 ;

(1, 1) = 0 , if
{
10w[ j]

}
3 ≥ 0

(7.47a)

w∗k<35>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<35> + kd<35> +0

) ∈ [9, 8] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<35> + kdC<35> −10
)
∈
[
9, 8
]
, if

{
10w[ j]

}
3 ≥ 0

(7.47b)

w∗k<34>=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
10w[ j]<34> + kd<34>

) ∈ [−9, 18] , if
{
10w[ j]

}
3 < 0 ;(

10w[ j]<34> + kdC<34>
)
∈ [−9, 18] , if

{
10w[ j]

}
3 ≥ 0 .

(7.47c)

However, since convergence condition (7.10) is always true, regardless of the exact

value of d, the digits adjacent to the decimal point of w[ j + 1] can only take one of the

176



7.7. Implementation

0              1

x+ yx-

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

'0'

a+ a- b
cin

s+ s-
BSDA1 '0'

"01100"

a+ a- b
cin

s+ s-
BSDA2 '0'

a+ a- b
cin

s+ s-

"01010"

BSDA0

"10110"

a+ a- b
cin

s+ s-
BSDA3 '0'

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

0                1

0                1 s0

s2

s1

z+ z-

tin<0>

Figure 7.11: An implementation for DB-DCFA′′ used in the decimal PR formation.

177



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

combinations

w∗[ j + 1]<35 : 34>=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · x , where x ∈ [11, 18]

1 · x , where x ∈ [10, 18]

0 · x , where x ∈ [−9, 9]

1 · x , where x ∈ [−9,−1] .

(7.48)

To remove w[ j + 1]<35>, a special carry/borrow generating process converts (7.48) to

w[ j + 1]<35> · w∗[ j + 1]<34>=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 + 2) · (x − 20) ≡ 0 · y , where y ∈
[
9, 2
]

(1 + 1) · (x − 10) ≡ 0 · y , where y ∈ [0, 8]

0 · y , where y ∈
[
9, 9
]

(1 − 1) · (x + 10) ≡ 0 · y , where y ∈ [1, 9] .

(7.49)

Statement (7.49) is the adjust process realised through CIRCUIT1 and DB-DCFA′′. While

CIRCUIT1 is checking whether w∗k<35> is equal to 2, 1, 0 or 1, DB-DCFA′′ performs

additions w∗k<35>−20, w∗k<35>−10 and w∗k<35>+10. Once w∗k<35> is determined, the

multiplexing structure shown in Figure 7.11, selects the appropriate value as w∗k<34>.

Still the representation of w0 needs to be altered to be a 35-digit DSD fraction. Again,

it can be shown that if w0 is the legitimate candidate for w[ j + 1], its 2 most significant

digits can take only a value from the combinations in (7.48). This means that the unit

named Adjust in Figure 7.9 can be implemented through almost the same method as

CIRCUIT1 and DB-DCFA′′ are realised. Figure 7.12 shows the implementation.

Registers

A set of 10 registers store wk, for k = 0, 1, · · · , 8, 9. Each register is able to maintain a

35-digit DSD number. Also, there are 10 1-bit registers, which are required to store Sk,

the polarities of wk. In addition, values q3, q2, q1 and q0 are stored in registers with the

same names. It should be mentioned that in the first iteration, since x
10 passes through

MUX 11:1s as w[0], S7 register must be initialised to

S7[0] = 0 . (7.50)

To initialise (7.38) and (7.50), q3, q2, q1, q0 and S7 registers should be equipped with

appropriate asynchronous set and reset inputs.

178



7.7. Evaluation

x1
+ x1

-

<0>
<0>

<1>
<1>

4-digit
Sign Det

4-digit
Sign Det

'1'

<0>

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

a+ a- b
cin

s+ s-
BSDA1 '0'

"01100"

a+ a- b
cin

s+ s-
BSDA2 '0'

"01010" "10110"

a+ a- b
cin

s+ s-
BSDA3 '0'

z'+ z'-

Adj.
z+ z-

z'+ z'-

Adj.
z+ z-

0                     1

0              1

0                                1

z+ z-

x2
+ x2

-

Figure 7.12: An implementation for the adjust unit used in the decimal PR formation.

7.7.5 Evaluation

The reason for developing decimal units, as mentioned in Section 6.1, is not only to

minimise the precision loss when using the traditional binary algorithms for the pur-

pose of DFP division, but also to satisfy the increasing demand for decimal calculation

and to comply with new regulations. However, the improved accuracy does not come

for free. As the DFP division implementation shows, the design is more complex and

slower than the radix-16 FP divider proposed in Section 5.32. However, with respect

to other implementations of decimal division, the proposed DFP divider shows some

improvements.

Neither of the digit recurrence based dividers discussed in Section 7.2 are designed

to perform DFP division on DFP operands. They all suffer from at least one long

full-length decimal addition/subtraction per iteration on numbers represented in the

BCD format. The proposed design accepts two DFP numbers as the dividend and the

divisor and after a specified number of cycles delivers the final rounded quotient in the

2This comparison is made because, both dividers generate 4-bit quotients per iteration.

179



Chapter 7. Comparison Multiples Based Decimal Floating-Point Divider

DFP format defined by the IEEE 754R standard. All internal decimal calculations are

performed through DSD arithmetic introduced for the first time in Chapter 6. Therefore,

the delay is shortened due the use of the redundant DSD addition/subtraction in the

recurrence.

The critical path of the DFP divider is indicated in red in Figure 7.7. In Chapter 8 a

complete timing evaluation of the proposed DFP division implementation is given.

7.8 Summary

An algorithm suitable for implementing DFP division was proposed in Chapter 7. The

main features of DFP division are as follows.

• The backbone of the implementation is based on the comparison multiples ap-

proach introduced in Chapter 4. In order to match radix 10, which is not a power

of 2, the original radix-r comparison multiples divider method has to be tweaked.

• DFP division produces the quotients complying with the IEEE 754R standard. A

convert and round unit converts the final quotient from DSD to BCD on-the-fly

and delivers the quotient rounded based on RHE scheme.

• To construct the DFP divider, different types of DCFA introduced in Chapter 6

can be used.

180



Chapter 8

Timing Evaluation of the Floating-Point

Dividers

This chapter shows the results of the critical path timing analysis of the FP dividers

introduced in Chapters 5 and 7. Using the results, division response times for radix-4

FP, radix-16 FP and DFP dividers are determined and compared with those of available

designs. The timing evaluations are performed using the method of logical effort.

181



Chapter 8. Timing Evaluation of the Floating-Point Dividers

8.1 Introduction

After a design is developed, two major types of evaluation must be performed, func-

tional and timing. They are explained as follows.

• A functional evaluation of a circuit consists of comparing its derived behavior

with the desired behavior. Although not identical, the two descriptions should

be mathematically equivalent, in which case the circuit is successfully verified.

In a functional evaluation, the circuit components are first behaviorally described

in terms of their inputs, outputs and internal states. Then, by combining the

component descriptions, an overall circuit behavior is produced that represents

the circuit function.

• In order to optimize the circuit performance and to make sure that the clock cycles

meet the constrains1 a timing evaluation, which determines the circuit critical path

delay is carried out. The timing evaluation is more like electrical-rule checking

because its essential function is to traverse the circuit network [Rub94]. For every

input and output signal, there are many possible paths through the circuit. Each

path consists of a set of network nodes that connect the output of one component

to the input of another. If each node delay is first determined and stored, then the

evaluation consists of recursively finding the worst-case path to every output.

8.1.1 Functional Evaluation

The implementations proposed for radix-4 FP, radix-16 FP and decimal FP dividers in

the previous chapters have been functionally checked by the author, which is explained

briefly as follows. The functional evaluation process started with describing each

design using VHDL (VHSIC Hardware Description Language) RTL and/or behavioral

models [Nav97] such as the codes shown in Figure 8.1 (see Appendix B for the codes of

the radix-4 divider). Then, to uncover uncommon bugs in the design, 10 test vectors (for

x and d) on corner cases, as well as 200 random test vectors were generated. Afterward,

the functional description along with the test vectors were fed to the Mentor Graphics

ModelSim XE II/Starter 5.7c simulator and the results were collected. Finally, the results

were compared to the expected results obtained from an online simulator2 in order to

1For sequential circuits.
2Available at http://www.ecs.umass.edu/ece/koren/arith/simulator/.

182



8.2. Logical Effort

determine whether the design was functionally correct. If there was an inconsistency,

the description was altered by fixing the mistakes and then, the functional evaluation

process was restarted. This iterative investigation repeated until both results matched.

8.1.2 Timing Evaluation

To achieve the greatest speed or to meet a delay constraint, designers face different

choices. These choices may be summarised as designs with the same functionality but

different circuitries, where the differences can be expressed in terms of gate sizes and/or

number of logic levels. The range of timing evaluation techniques varies from manual

verification in the case of a custom design to automated timing analysis using expensive

and sophisticated synthesis tools. However, if the speed requirements are not met, then

in the former method, the designer may have to manually resize gates or even redesign

the circuit through a different topology. In the latter technique, although automating

tools are used, it is the circuit designer who sets directives for the synthesis tool in order

to reduce the critical path delay.

Both the manual and automated approaches should start from a reasonable estimated

delay. Otherwise, the iterative simulate and tweak process either never converges to the

required timing specification, or takes tens of hours to meet the target delay. Therefore,

to estimate the delay, the designer needs an easy and efficient way offering a systematic

approach to the topology selection and the gate sizing.

A fast and easy to use delay model, called logical effort, is introduced by Sutherland

et al [SSH99]. This model is accurate enough not only to predict whether circuit a

is faster than circuit b but also to express an approximation to the circuit absolute

delay. Studying reports, which involve delay estimation, reveals that this method is

very popular among recent researchers as well as circuit designers [HOH97, Amr99,

YOW01, SMN+02, CCA03].

In Chapter 8, the execution time of the implementations proposed for radix-4, radix-

16 and DFP divisions are calculated. Due to the simplicity and accuracy of the method

of logical effort, this technique is used to estimate the critical path delay of the dividers.

It should be mentioned that although logical effort can be applied to any type of logic

design technique, to be able to compare the proposed circuits with the existing dividers,

the timing evaluations are given in the conventional static CMOS context.

183



Chapter 8. Timing Evaluation of the Floating-Point Dividers

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 

entity critical is 
   port( 
   m1, m2, w2p, w1p, x, w0p, 
   w2m, w1m, w0m   : in  std_logic_vector(6 downto 0); 
   clk, sign2, sign1, sign0                  : in  std_logic; 
   q1q0_non                                  : out std_logic_vector(1 downto 0)); 
end critical; 

architecture behavioral of critical is 
component ff 
generic( 
   n     :  integer  ); 
port( 
   clk   :  in    std_logic; 
   din   :  in    std_logic_vector(n - 1 downto 0);
   dout  :  out   std_logic_vector(n - 1 downto 0)); 
end component; 
component mux1muxs 
   generic( 
   n                                          : integer); 
   port( 
   signx_out, sign0_out, sign1_out, sign2_out : in  std_logic; 
   q1q0                                       : in  std_logic_vector(1 downto 0); 
   w0p_out, w2m_out, w1m_out, w0m_out         : in  std_logic_vector(n - 1 downto 0);
   w2p_out, w1p_out, x                        : in  std_logic_vector(n - 1 downto 0);
   rwp, rwm                                   : out std_logic_vector(n - 1 downto 0);
   sign                                       : out std_logic); 
end component; 
component qds 
   port( 
   sign                 : in std_logic; 
   rwp, rwm, m1, m2     : in std_logic_vector(6 downto 0); 
   q1, q0               : out std_logic); 
end component; 
signal rwp, rwm                                 : std_logic_vector(6 downto 0); 
signal q1q0_out                                 : std_logic_vector(1 downto 0); 
signal sign, q1_out, q0_out, q1, q0             : std_logic; 
signal q1_tmp, q0_tmp, q1_out_tmp, q0_out_tmp   : std_logic_vector(0 downto 0); 
begin 
q1_ff: ff 
generic map( 
   n     => 1) 
port map( 
   clk      => clk, 
   din      => q1_tmp, 
   dout     => q1_out_tmp); 
q1_tmp(0)   <= q1; 
q1_out      <= q1_out_tmp(0); 
. 
. 
. 
. 

Figure 8.1: A piece of VHDL code used for functional evaluation.

184



8.2. Logical Effort

8.2 Logical Effort

Given a CMOS logic circuit implementing a logic function, logical effort is used for

estimating the circuit critical path delay. In fact, it is a design methodology, which

determines not only the optimum number of logic stages3 but also the gate (transistor)

sizes in order to minimise the delay [SS91]. Logical effort uses the traditional RC model

of CMOS gate delay, which is reformulated so that the effects of gate size, topology,

parasitics and load on delay are separated.

For a given gate, total delay d is partitioned into intrinsic parasitic delay p and effort

delay f . While p is not dependent on the gate size4, the newly defined f is affected by

logical effort g, which is equivalent to the gate complexity, and electrical effort h, which is

defined as

h =
Cout

Cin
. (8.1)

In (8.1), Cout is the load capacitance driven by the gate and Cin is the gate input ca-

pacitance. If the gate and an inverter both can drive the same load equally (provide

the same amount of current), logical effort g determines the ratio of the gate input

capacitance to the inverter input capacitance. The formula, which relates d, g, h and p

together, is

d = gh + p . (8.2)

Gate effort f , which is called effort delay or stage effort, is defined as

f = gh . (8.3)

Delay d in (8.2) is expressed in the time unit of τ, the delay of an inverter with an identical

inverter as the load. Expressing d in this normalised form allows designers to compare

circuits speeds even though they are implemented in different CMOS technologies.

However, since designers tend to show the delay in the process-independent unit FO4

(delay of an inverter driving 4 identical inverters), logical effort uses

5τ = 1 FO4 (8.4)

to convert the delay unit τ to FO4, where required.

3It includes buffers.
4The wider the corresponding transistors, the larger the diffusion capacitances.

185



Chapter 8. Timing Evaluation of the Floating-Point Dividers

The idea of logical effort can be extended from a single gate to a path containing

different types of gates and several branches. Path electrical effort H is defined as

H =
Cout

Cin
, (8.5)

where Cout and Cin refer to input and output capacitances of the whole path, respectively.

Path logical effort G is given by

G =
∏

gi , (8.6)

where gi refers to logical effort of every gate along the path. Branches redirect part of

the current produced by the gates off the path. The method of logical effort takes the

branch effect into account by defining

b =
Con−path + Coff−path

Con−path
, (8.7)

where b is called branching effort. Consequently, path branching effort can be defined as

B =
∏

bi . (8.8)

Now, using G, B and H, path effort F can be expressed as

F = GBH . (8.9)

Path delay D, which is equal to the sum of gate delays along the path, is expressed as

D =
∑

di

= DF + P , (8.10)

where path effort delay DF and path parasitic delay P are respectively defined as

DF =
∑

gihi and P =
∑

pi . (8.11)

D is minimised if stage efforts along the path are equal. Therefore, for a given path

with N stages, when stage effort is

f̂ = gi hi =
N√

F , (8.12)

minimum path delay D̂ is achieved as

D̂ = N
N√

F + P . (8.13)

186



8.3. Radix-4 FP Divider Timing Evaluation

Considering (8.12), if every stage along the path is sized in such a way that

ĥi =
f̂
gi
=

N√F
gi
, (8.14)

then stage effort becomes minimised. This means that to calculate the i-th stage input

capacitance, which is equivalent to determining its transistor size, calculation

Cini =
gi Couti

f̂
, where CoutN = Cout and Cin1 = Cin , (8.15)

should be performed, starting from the end of the path and working to the beginning.

This backward calculation is possible because, normally, designers know their circuits

input and output capacitances.

Although the discussed calculations provide an analytical approach to finding the

minimum delay along a path with N stages, (8.13) can be solved to find the minimum

number of stages N̂, which achieves the minimum delay. According to the discussion

given by Sutherland et al [SSH99], for static CMOS logic,

f̂ ≈ 4 (8.16)

and therefore, the best number of stages is approximately

N̂ ≈ log4 F . (8.17)

However, even though 2.4 ≤ f̂ ≤ 6, D varies around ±15% of D̂ [SSH99].

To have a minimised delay along a specific path of the circuit, the correct number of

stages, N̂ with low logical efforts and parasitic delays should be selected. Although the

calculations seem very simple, timing evaluation using them is not very straightfor-

ward. From (8.17), it is found that N̂ cannot be determined without knowing F. On the

other hand, when designing a logic circuit for the first time, assuming H as a known

value, (8.9) shows that F is dependent on G and B; both are dependent on the stages

and the whole design topologies. Therefore, calibrating a design for a fast response

time using logical effort method is an iterative process.

8.3 Radix-4 FP Divider Timing Evaluation

To perform a timing evaluation on the radix-4 FP divider proposed in Section 5.2, the

structure of the recurrence shown in Figure 5.7 is revisited. The divider critical path,

187



Chapter 8. Timing Evaluation of the Floating-Point Dividers

a  b

s

ci

co

Majority
Gate

(a) An approach with a 3-input

XOR gate and a majority gate.

a b

ci

s

co

MUX 2:1

(b) An approach with two

2-input XOR gates and a

multiplexer.

Figure 8.2: Implementations for 1-bit full-adder.

which is indicated in red in the figure, passes through MUX1 4:1/MUX 3:1, QDS∗ and

q0 register. This route is obtained from the comparison shown in Figure 4.10, where for

the general radix-r FP divider, the path with less logic depth is found to be shorter.

Considering Figure 4.10 and the description given in Subsections 5.2.3 and 5.2.4,

it is found that the components that are on the critical path are already represented

using fundamental logic gates (i.e. NAND/AND, NOR/OR, INV, XNOR/XOR and

MUX), except the full-adders used for implementing the comparators, and the binary

carry generators employed in the comparison sign detectors. Since any of the two

components can be implemented through different approaches, it is required to decide

which implementation may result in a smaller critical path delay when employed in

the proposed radix-4 FP divider.

8.3.1 Full-Adders Implemented for Speed

Studying the literature reveals that several circuits are suggested for implementing a

1-bit full-adder [WH04, Zim98, CBF01]. However, many of the suggested implemen-

tations are applicable only in some specific types of logic (such as domino, dynamic,

dual rail, etc). Among them, the circuits that are suitable for static CMOS designs can

be categorised into the two groups shown in Figure 8.2.

If the full-adder depicted in Figure 8.2(a) is employed in the comparators, then in

order to shorten the critical path, the XNOR gate preceding the BSD adder (see the

188



8.3. Radix-4 FP Divider Timing Evaluation

ai
+ai

-

si
-

cincout

bi

S4w[j]

si
+

3-input
Inverting
Majority

Gate

(a) 4-input XNOR approach.

cout

ai
+ai

- bi

S4w[j]

si
-

cin

si
+

(b) 2 stages of 2-input XNOR approach.

Figure 8.3: Realisations for the modified 1-digit BSD adder used in the comparators.

radix-4 QDS function shown in Figure 5.1) is embedded into the following gate. This

minimises the effect of the XNOR gate on the recurrence response time.

Figure 8.2(b) shows another approach to implement a full-adder. It employs two

consecutive 2-input XOR gates. One advantage of this implementation is that signal ci

takes part once the result of the prior XOR gate is available. This means that addition is

not affected even if ci arrives at the full-adder, as much as one XOR gate delay later than

a and b. Taking advantage of this feature, it may be possible to decrease the recurrence

response time by providing concurrency among the components of the comparator.

Using either of the above approaches and modifying it to be used as a BSD adder,

two new implementations for a 1-digit BSD adder are made possible. These circuits,

which can be used in the comparators, are displayed in Figure 8.3.

8.3.2 Binary Carry Generators Implemented for Speed

As stated in Subsection 5.2.3, when adding two 2’s complement numbers (or equiva-

lently when converting a BSD number to its 2’s complement representation), the carry

sent out from the most significant addition position can be interpreted as the inverted

sign of the result.

Studying the reported improvements on fast binary adders reveals that binary carry

generators based on parallel-prefix methods, e.g. Sklansky [Skl60], Brent-Kung [BK82],

Kogge-Stone [KS73], Han-Carlson [HC87], Knowles [Kno99], Ladner-Fischer [LF80],

are appropriate candidates for realising fast comparison sign detectors. In all these

189



Chapter 8. Timing Evaluation of the Floating-Point Dividers

algorithms, the carry generation process starts from the least significant and proceeds

to the most significant carry position. The common advantage of the parallel-prefix

algorithms is that they reduce the carry generation delay to O
(
log2 n

)
. However, their

absolute delays, which are affected by other structural parameters (like the fan out and

the number of interconnecting wiring tracks), are different.

Harris [Har03] presents an approach to classifying parallel-prefix binary adders.

This method defines a 3-dimensional taxonomy (l, f , t), where l corresponds to the

number of logic levels, f is used to determine the fan out and t relates to the number

of wiring tracks, for every n-bit parallel-prefix network. The classification determines

the number of logic levels, fan out and the number of wiring tracks as

number of logic levels = L + l , where L = log2 n (8.18)

fan out = 2 f + 1 (8.19)

number of wiring tacks = 2t . (8.20)

For example, the standard Brent-Kung adder is represented by (L − 1, 0, 0) and the

Han-Carlson network has a taxonomy of (1, 0,L − 2). Since equation

l + f + t = L − 1 (8.21)

is correct for all parallel-prefix networks, the suggested taxonomy approach can be

used to facilitate tradeoff between the number of logic levels, fan out and the number

of wiring tracks. The taxonomy is illustrated in a 3-dimensional space, where the

axes represent the number of logic levels, fan out and the number of wiring tracks.

According to this classification, all parallel-prefix adders lie on a triangle shape plan,

which is represented by (8.21). The vertices of the plan are represented by Sklansky

with the maximum fan out, Kogge-Stone with the maximum number of wiring tracks

and Brent-Kung with the maximum number of logic levels.

A performance comparison [DO02, OZHDK03] based on logical effort shows that

between two 64-bit binary adders with Kogge-Stone and Han-Carlson parallel-prefix

carry generators the Kogge-Stone based approach shows less delay. The accuracy of

the comparison is validated by circuit simulation using H-SPICE for 1.8 v, 0.180 µm

Fujistsu technology. However, no comparison result is reported by Dao and Oklobdzija

[DO02] on parallel-prefix adders with operands with less than 64 bits.

Knowles [Kno99] compares the delay of a 32-bit Kogge-Stone and a 32-bit Ladner-

Fischer based adder. The evaluation is carried out using an industrial structured-

190



8.3. Radix-4 FP Divider Timing Evaluation

custom design flow to layout in a 0.25 µm 6-metal CMOS process with 1 µm contacted

wire pitch. A speedup of 15% in the response time of the Kogge-Stone based adder is

reported, compared to the Ladner-Fischer based circuit. It should be mentioned here

that based on the Harris 3-dimensional taxonomy, the Ladner-Fischer method is on the

t = 0 plane, right on the straight line connecting Slansky to Brent-Kung.

Another more precise investigation of logical effort of parallel-prefix binary adders

[HS03] shows that with the simplifying assumption of zero-capacitance wires, inverting

static CMOS Kogge-Stone adders with 16-bit to 128-bit addends respond faster than

other types of parallel-prefix binary adders. However, when a more realistic timing

evaluation is carried out, i.e. the effect of wire capacitance on the logical effort method is

taken into account, the calculations show that in a 1.8 v, 0.180 µm process, where w = 0.5

(w is defined as the ratio of wire capacitance per column traversed to input capacitance

of a unit inverter), Han-Carlson parallel-prefix binary adders with 32-bit, 64-bit and

128-bit operands, show better average delay than the corresponding Kogge-Stone based

binary adders with the same specifications. However, the estimation shows that a 16-

bit Kogge-Stone based binary adder is faster than its Han-Carlson counterpart. Having

applied trend lines to the results of 16-bit to 128-bit adders, Figure 8.4 is obtained. It

shows that when the trend lines are extrapolated to the bit numbers equal to 8 or less,

the supremacy of Kogge-Stone over Han-Carlson remains true. So, it seems reasonable

to select a 7-bit Kogge-Stone carry generating network with c0 = 1 as a candidate for

implementing the comparison sign detector shown in Figure 5.5. The implementation

is shown in Figure 8.5. As discussed in Subsection 5.2.3, parts of the carry generator,

which are not involved in producing the most significant carry, are removed.

On the other hand, since in the BSD sign detection, the goal is to calculate the

most significant carry, it is possible to apply an algorithm to calculate the carries in

reverse [BL00]. This method, which is called the multilevel reverse-carry (MRC), was

originally proposed for fast computation of the most significant carry in a binary

addition. However, it can be used as a new approach to calculating the input carries,

which are required for a complete binary addition [BL01]. Like the parallel-prefix

algorithms, the overall delay of this algorithm is claimed to be proportional to log2 n.

Delay estimations on a 64-bit adder implemented using the MRC approach show a

considerable reduction in the critical path delay with respect to a CLA based adder

with the same complexity [LB99]. The timing evaluation is performed using a 0.5 µm

CMOS standard cell library. A faster alternative to the original 64-bit MRC generator

191



Chapter 8. Timing Evaluation of the Floating-Point Dividers

5

10

15

20

25

81624324048566472808896104112120128
bit number

de
la

y
(F

O
4

in
ve

rt
er

)

Kogg-Stone

Han-Carlson

Kogge-Stone

8    16          32                       64                                                 128

Figure 8.4: Delay estimations on Kogge-Stone and Han-Carlson based adders with

different operand widths. Data and assumptions are adopted from Table 4 in [HS03].

is reported by Bruguera and Lang [BL03]. It is obtained by implementing the first

level of the circuit using the traditional CLA approach and incurs about 15% reduction

in the response time compared to the traditional parallel-prefix realisations. So, a 7-

bit reverse-carry generator with first level of CLA network is another candidate for

implementing the comparison sign detector. The circuit is displayed in Figure 8.6.

The critical paths, which are indicated in red in the Figures 8.5 and 8.6, result from

timing investigations on all the possible data paths through the networks. As shown

in the figures, the carry generating networks are constructed based on set of signals,

gi and ki (kill) instead of set gi and pi [WH04]. This change shortens the critical paths

by replacing the XOR gates required for calculating pi = ai XOR bi with NOR gates

producing ki = ai NOR bi.

8.3.3 Recurrence Critical Path

Using the discussion given in Section 5.2 concerning the components participating

in the proposed radix-4 FP divider critical path, and the choices for implementing

the comparators and the comparison sign detectors, four possible critical paths are

suggested. These paths, which are displayed in Figures 8.7 and 8.8, result from timing

investigations of all the possible paths through the circuits. Compared to the originals,

192



8.3. Radix-4 FP Divider Timing Evaluation

<6
>

<6
>

<5
>

<5
>

<4
>

<4
>

<3
>

<3
>

<2
>

<2
>

<1
>

<1
>

<0
>

<0
>

a+ a-

Sign(a)

x       y

z1   z2

x y  z     t

 o1      o2

x y  z     t

 o1      o2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y     z  t
GK1

o1 o2

x  y     z  t
GK1

o1 o2

x  y     z  t
GK1

o1 o2

x  y     z  t
GK2

o1 o2

x  y     z
G2

o

x  y     z
G1

o

 o

x y  z

x y  z

 o

Figure 8.5: The comparison sign detector implemented using Kogge-Stone approach.

the following changes can be found in the depicted critical paths.

• In order to decrease the delay, where applicable, two consecutive inverters are

removed from the original recurrence implementation.

• To reduce the components on the critical paths, inverters followed by XNOR/XOR

gates are eliminated and the corresponding XNOR (XOR) gates are replaced by

XOR (XNOR).

• Where necessary, 2-1 forks are interleaved [SSH99]. They provide the true and

complement signals to drive multiplexors select inputs, XOR and XNOR gates.

193



Chapter 8. Timing Evaluation of the Floating-Point Dividers

Sign(a)

<6
>

<6
>

<5
>

<5
>

<4
>

<4
>

<3
>

<3
>

<2
>

<2
>

<1
>

<1
>

<0
>

<0
>

a+ a-

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y     z  t
GK1

o1 o2

x  y     z  t
GK1

o1 o2

x  y     z  t
GK1

o1 o2

Figure 8.6: A comparison sign detector realised using the MRC approach.

194



8.3. Radix-4 FP Divider Timing Evaluation

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

Fork

to D-FF

 21

 7

(a) Kogge-Stone based sign detector.

Fork

to D-FF

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 21

 7

(b) Reverse-carry based sign

detector.

Figure 8.7: Suggested critical paths for the proposed radix-4 FP divider using the

comparator given in Figure 8.3(a).

8.3.4 Logical Effort Calculation

For the logical effort calculation, path electrical effort is set to 1 (H = 1) because

the circuit under investigation is expected to drive the same circuit [Bur03b, Bur03a].

However, in case of the proposed radix-4 recurrence, this is not just a simplifying

assumption. As in the radix-4 recurrence shown in Figure 5.7, the recurrence critical

path begins from the q0 register and ends at the q0 register again.

Table 8.1 summarises the logical efforts and the parasitic delays of the components

involved in the critical paths shown in Figures 8.7 and 8.8. Using the table, the following

calculations are performed for every critical path shown in Figures 8.7 and 8.8.

• For every component compi on the studied critical path, parasitic delay pi and the

total logical effort born by that component, namely LEi, are determined.

195



Chapter 8. Timing Evaluation of the Floating-Point Dividers

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 21

 7

Fork

Fork

to D-FF

(a) Kogge-Stone based sign detector.

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 21

 7

Fork

Fork

to D-FF

(b) Reverse-carry based sign

detector.

Figure 8.8: Suggested critical paths for the proposed radix-4 FP divider using the

comparator given in Figure 8.3(b).

• Path parasitic delay P is calculated using (8.11) and path effort F is produced as

F =
∏

LEi . (8.22)

• By substituting the value obtained from (8.22) in (8.12) and continuing with (8.13),

minimum path delay D̂ is computed for that specific path.

This approach is equivalent to the original method of computing F, which is defined

by (8.6) and (8.8). However, when computing LE for a component, it merges stage

branching effort into stage logical effort [HS03]. This means that product GB is calcu-

lated directly (rather than G and B individually). The calculations of minimum delays

of the four critical paths are summarised in Table 8.2. A comparison between the path

delays indicates that the smallest critical path for the proposed radix-4 FP divider is

D̂radix−4 = 78.16 τ = 15.63 FO4 (8.23)

196



8.3. Radix-4 FP Divider Timing Evaluation

Table 8.1: Logical efforts and parasitic delays of the components used in this chapter.

Component g per input p

INV 1 1

2-1 Fork (per input bundle) 2 2

Buffer 1 1

NAND2 4
3 2

NAND3 5
3 3

NOR2 5
3 2

NOR3 7
3 3

NOR4 3 4

AOI ≡ (a AND b) NOR c 2 (a and b inputs), 5
3 (c input) 11

3

OAI ≡ (a OR b) NAND c 2 (a and b inputs), 4
3 (c input) 8

3

Asymmetric 3-input inverting majority gate 2 (smallest logical effort) 4

OAI221 ≡ (a OR b) NAND (c OR d) NAND e 7
3 (a, b, c and d inputs), 5

3 (e input) 13
3

AOI221 ≡ (a AND b) NOR (c AND d) NOR e 8
3 (a, b, c and d inputs), 7

3 (e input) 11
3

MUX 2:1 (per select bundle, per data input) 2 4

XOR2/XNOR2 4 4

Asymmetric XOR4/XNOR4 (per input bundle) 8 (smallest logical effort) 8

Asymmetric XOR3/XNOR3 (per input bundle) 6 (smallest logical effort) 6

D-FF 2 5
3

if the comparators are built based on the circuit displayed in Figure 8.3(a) and the

comparison sign detectors are constructed using the network depicted in Figure 8.5.

Also, due to similarity between the comparators and the PR formation, BSD adders

based on the 4-input XNOR approach can be used to implement the PR formation as

well. In addition, the equality between the PR sign detectors and the comparison sign

detectors (see Subsection 5.2.3) allows the PR sign detectors to be constructed using the

Kogge-Stone based network.

In addition to the above evaluation performed using the method of logical effort,

the critical path delay of the proposed radix-4 FP divider is calculated using Synopsys

design compiler (DC) with Artisan 0.18 µm typical library. Having supplied the tool

with the VHDL model of the design (see Appendix B), a pre-layout delay of 2.34 ns is

worked out for the divider’s critical path.

197



Chapter 8. Timing Evaluation of the Floating-Point Dividers

Table 8.2: Logical effort calculations on the critical paths in Figures 8.7 and 8.8.

Figure 8.7(a) Figure 8.7(b) Figure 8.8(a) Figure 8.8(b)

Compi LEi pi Compi LEi pi Compi LEi pi Compi LEi pi

D-FF 2 1.7 D-FF 2 1.7 D-FF 2 1.7 D-FF 2 1.7

2-1 Fork 56.7 2 2-1 Fork 56.7 2 2-1 Fork 56.7 2 2-1 Fork 56.7 2

MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4

MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4

2-1 Fork 9 2 2-1 Fork 9 2 2-1 Fork 9 2 2-1 Fork 6.3 2

XOR4 3 8 XOR4 3 8 XOR2 3.3 4 XOR2 3.3 4

NOR2 3.7 2 NOR2 3.7 2 2-1 Fork 4 2 2-1 Fork 4 2

NOR2 3.3 2 NOR2 2.7 2 XOR2 3 4 XOR2 3 4

NAND2 2 2 NAND2 2.3 2 NOR2 3.7 2 NOR2 3.7 2

OAI 2 2.7 NOR3 3 3 NOR2 3.3 2 NOR2 2.7 2

2-1 Fork 4 2 NOR4 2 4 NAND2 2 2 NAND2 2.3 2

XOR2 2 4 2-1 Fork 4 2 OAI 2 2.7 NOR3 3 3

- - - XOR2 2 4 2-1 Fork 4 2 NOR4 2 4

- - - - - - XOR2 2 4 2-1 Fork 4 2

- - - - - - - - - XOR2 2 4

N = 15 N = 16 N = 18 N = 19

P = 36.3 P = 40.7 P = 38.3 P = 42.7

F = 4787200 F = 13404160 F = 44916938 F = 47162785

D̂ = 78.16 τ D̂ = 85.29 τ D̂ = 86.24 τ D̂ = 90.82 τ

198



8.4. Radix-16 FP Divider Timing Evaluation

8.3.5 Division Execution Time

As stated in Subsection 7.7.1, the proposed radix-4 FP divider delivers the quotient

represented in the IEEE 754 standard to the consumer after 29 iterations. Therefore, the

division execution time in terms of the cycle time (8.23) is obtained as

radix-4 FP divider execution time = 29 × 78.16 τ = 2266.64 τ = 453.33 FO4 . (8.24)

8.4 Radix-16 FP Divider Timing Evaluation

The critical path of the proposed radix-16 FP divider is shown in red in Figure 5.11.

Studying this path reveals that the implementations of all the components involved

are already known. They are either introduced in Chapter 5 or selected in Section 8.3.

This means that the critical path is limited to only one choice. In this section a timing

evaluation of the path performed using the logical effort approach is discussed.

8.4.1 Recurrence Critical Path

The critical path of the radix-16 FP divider is displayed in detail in Figure 8.9. It is

derived from the schematic design shown in Figure 5.11. The components and their

connectivities result from the discussion given on fast full-adders and fast binary carry

generators in Subsections 8.3.1, 8.3.2 and 8.3.3.

8.4.2 Logical Effort Calculation

Table 8.3 summarises LE and p for every component on the path. In the last row of the

table, the minimum path delay of the radix-16 recurrence can be found as

D̂radix−16 = 124.70 τ = 24.94 FO4 . (8.25)

As shown in Figure 8.9 and discussed in Subsection 8.3.4, circuits depicted in Figures

8.3(a) and 8.5 are employed to construct the PR formation and the PR sign detectors in

the proposed radix-16 FP divider.

8.4.3 Division Execution Time

As noted in Subsection 5.3.2, 15 iterations are required for the proposed radix-16 FP

divider to produce the final quotient in the IEEE 754 standard representation. So, using

199



Chapter 8. Timing Evaluation of the Floating-Point Dividers

D-FF

Mux 2:1

Mux 2:1

Fork

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 2

to D-FF

Fork Maj.
Gate

Figure 8.9: Critical path of the proposed radix-16 FP divider.

Table 8.3: Logical effort calculations on the critical path shown in Figure 8.9.

Compi LEi pi Compi LEi pi

D-FF 2 1.7 XOR2 2 4

MUX 2:1 2 4 2-1 Fork 5 2

MUX 2:1 2 4 MUX 2:1 2 4

2-1 Fork 9 2 MUX 2:1 2 4

XOR4 3 8 2-1 Fork 35.7 2

NOR2 3.7 2 XOR4 4 8

NOR2 3.3 2 NOR2 3.7 2

NAND2 2 2 NOR2 3.3 2

OAI 2 2.7 AOI 2 2

2-1 Fork 4 2 OAI 2 2.7

N = 24 P = 63 F = 6938624000

D̂ = 124.70 τ

200



8.5. DFP Divider Timing Evaluation

the critical path delay (8.25), the division execution time is

radix-16 FP divider execution time = 15 × 124.70 τ = 1870.50 τ = 374.10 FO4 . (8.26)

8.5 DFP Divider Timing Evaluation

This section uses the logical effort to estimate the critical path delay of the proposed

DFP divider. The decimal recurrence in Figure 7.7 shows that the critical path starts

from MUX1 11:1/MUX 10:1, passes through QDS∗ and ends at the q3 register. Studying

the DFP divider critical path indicates that all its components are already granulated

except the comparison sign detectors, which are parts of QDS∗. Studying Figure 7.6

and Subsection 6.7.4 shows that the problem of finding a fast 4-DSD comparison sign

detector is equivalent to the problem of finding a fast 4-DSD borrow generator.

8.5.1 DSD Borrow Generators Implemented for Speed

According to the discussion given in Subsection 6.7.3, the structure of the nine com-

parison sign detectors used in the QDS function of the proposed DFP divider can be

divided into 2 parts; a circuit generating pi and gi for every digit of the 4-DSD number Pk

(see Subsection 7.7.3), and the network generating the corresponding group propagate

and group generate signals, to calculate Bout = Sign(Pk). In the following, the issues

concerning the implementation of these 2 parts are discussed.

pi and gi Generator Choices

Signals pi and gi, which are defined as (6.42) and (6.43), can be produced using the design

shown in Figure 8.10. This structure is implicitly displayed as a part of the DSD2BCD

converter depicted in Figure 6.17. However, the 4-DSD sign detector (or equivalently,

the 4-bit binary carry generator) can be implemented through two different approaches,

i.e. Kogge-Stone and MRC, both with c0 = 1, as indicated in Figure 5.5. The two

candidates for implementing the pi/gi generator are shown in detail in Figures 8.11 and

8.12. The circuit displayed in Figure 8.12 results from the original MRC approach. Its

simple gates are merged to reduce the number of logic levels.

201



Chapter 8. Timing Evaluation of the Floating-Point Dividers

zi
+ zi

-

<3
>

<3
><2

>
<2

><1
>

<1
><0

>
<0

>

pi gi

a+ a-

Sign(a)
4-BSD Sign Detector

Figure 8.10: The design producing pi and gi for every Pk = zi, where k = 1, 2, · · · , 8, 9.

zi
+ zi

-

<3
>

<3
><2

>
<2

><1
>

<1
><0

>
<0

>

pi

<3
>

<3
>

<2
>

<2
>

<1
>

<1
>

<0
>

<0
>

gi

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y     z  t
GK1

o1 o2

x  y     z
G2

o

x  y     z
G1

o

Figure 8.11: An implementation for circuit producing pi and gi using Kogge-Stone

based borrow generator.

202



8.5. DFP Divider Timing Evaluation

zi
+ zi

-

<3
>

<3
><2

>
<2

><1
>

<1
><0

>
<0

>

pi

<3
>

<3
>

<2
>

<2
>

<1
>

<1
>

<0
>

<0
>

gi

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y
GK

z1 z2

x  y     z
G1

o

Figure 8.12: An implementation for circuit producing pi and gi using an MRC based

borrow generator.

Pi: j and Gi: j Generator Choices

Signals Pi: j and Gi: j, which are defined in (6.45) and (6.46), can be produced using either

the circuit shown in Figure 8.13, which is a Kogge-Stone based network, or the circuit

in Figure 8.14, which is based on the MRC approach. In designing the circuits, the

initial condition bin = 0 is taken into account. It should be mentioned that the circuit

in Figure 8.14 results from the original MRC approach. Its simple gates are merged to

reduce the number of logic levels.

8.5.2 Recurrence Critical Path Choices

Considering two possible circuits for the pi/gi generator (see Figures 8.11 and 8.12) and

two candidates for the Pi: j and Gi: j generator (see Figures 8.13 and 8.12), 4 choices for

the circuit implementing the critical path of the proposed DFP divider recurrence are

obtained. These critical paths are shown in Figures 8.15 and 8.16.

203



Chapter 8. Timing Evaluation of the Floating-Point Dividers

x  y     z  t
GK2

o1 o2

Bout

x  y     z
G1

o

x  y     z
G2

o

g3 p3   g2 p2  g1 p1      g0

Figure 8.13: An implementation for the network producing Pi: j and Gi: j from pi and gi

using the Kogge-Stone approach.

Bout

x  y     z
G2

o

g3 p3   g2 p2  g1 p1      g0

Figure 8.14: An implementation for the network producing Pi: j and Gi: j from pi and gi

using the MRC approach.

204



8.5. DFP Divider Timing Evaluation

Fork

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 143

 16

to D-FF

Mux 2:1

Mux 2:1

M
ux

 2
:1

M
ux

 2
:1

Fork

Fork

Fork

Fork

Maj.
Gate

Maj.
Gate

(a) Kogge-Stone based Pi: j/Gi: j generator.

Fork

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 143

 16

to D-FF

Mux 2:1

Mux 2:1

M
ux

 2
:1

M
ux

 2
:1

Fork

Fork
Fork

Fork

Maj.
Gate

Maj.
Gate

(b) MRC based Pi: j/Gi: j generator.

Figure 8.15: Suggested critical paths for the proposed DFP divider using the pi/gi

generator shown in Figure 8.11.

205



Chapter 8. Timing Evaluation of the Floating-Point Dividers

Fork

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 143

 16

to D-FF

Mux 2:1

Mux 2:1

M
ux

 2
:1

M
ux

 2
:1

Fork

Fork

Fork

Fork

Maj.
Gate

Maj.
Gate

(a) Kogge-Stone based Pi: j/Gi: j generator.

Fork

D-FF

Fork

M
ux

 2
:1

M
ux

 2
:1

Mux 2:1

Fork

 143

 16

to D-FF

Mux 2:1

Mux 2:1

M
ux

 2
:1

M
ux

 2
:1

Fork

Fork
Fork

Fork

Maj.
Gate

Maj.
Gate

(b) MRC based Pi: j/Gi: j generator.

Figure 8.16: Suggested critical paths for the proposed DFP divider using the pi/gi

generator shown in Figure 8.12.

206



8.5. DFP Divider Timing Evaluation

Table 8.4: Logical effort calculations on the critical paths in Figures 8.15 and 8.16.

Figure 8.15(a) Figure 8.15(b) Figure 8.16(a) Figure 8.16(b)

Compi LEi pi Compi LEi pi Compi LEi pi Compi LEi pi

D-FF 2 1.7 D-FF 2 1.7 D-FF 2 1.7 D-FF 2 1.7
2-1 Fork 315.7 2 2-1 Fork 315.7 2 2-1 Fork 315.7 2 2-1 Fork 315.7 2
MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4
MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4
MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4
MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4
2-1 Fork 5 2 2-1 Fork 5 2 2-1 Fork 5 2 2-1 Fork 5 2
MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4 MUX 2:1 2 4
2-1 Fork 10 2 2-1 Fork 10 2 2-1 Fork 10 2 2-1 Fork 10 2

XOR4 2 8 XOR4 2 8 XOR4 2 8 XOR4 2 8
2-1 Fork 6 2 2-1 Fork 6 2 2-1 Fork 6 2 2-1 Fork 6 2

XOR4 2 8 XOR4 2 8 XOR4 2 8 XOR4 2 8
2-1 Fork 6 2 2-1 Fork 6 2 2-1 Fork 6 2 2-1 Fork 6 2

XOR3 2 6 XOR3 2 6 XOR3 2 6 XOR3 2 6
2-1 Fork 4 2 2-1 Fork 4 2 2-1 Fork 4 2 2-1 Fork 4 2
NOR2 3.7 2 NOR2 3.7 2 NOR2 2 2 NOR2 2 2
NOR2 2 2 NOR2 3 2 OAI 2.7 2.7 OAI 2.7 2.7
AOI 2 3.7 AOI 2 3.7 AOI221 3.3 3.7 AOI221 2 3.7
OAI 3.3 2.7 OAI 2 2.7 NAND2 2 2 AOI 2.3 3.7

NAND2 2 2 AOI 2.3 3.7 OAI 2 2.7 OAI221 2 4.3
OAI 2 2.7 OAI221 2 4.3 AOI 2 3.7 2-1 Fork 4 2
AOI 2 3.7 2-1 Fork 4 2 2-1 Fork 4 2 XNOR2 2 4

2-1 Fork 4 2 XNOR2 2 4 XNOR2 2 4 - - -
XNOR2 2 4 - - - - - - - - -

N = 31 N = 30 N = 30 N = 29
P = 80.3 P = 80 P = 78.3 P = 78

F = 3641005397333 F = 318587972267 F = 331000490667 F = 115850171733

D̂ = 159.14τ D̂ = 152.54τ D̂ = 150.96τ D̂ = 147.81τ

8.5.3 Logical Effort Calculation

Logical effort calculations of the 4 critical paths’ minimum delays are summarised in

Table 8.4. As shown in the table, the smallest critical path delay

D̂DFP = 147.81 τ = 29.56 FO4 (8.27)

can be achieved for the proposed DFP divider if the comparison sign detectors are

built using the circuit displayed in Figures 8.12 and 8.14. As a secondary result, due to

similarity between the PR sign detectors and the comparison sign detectors, the former

can be constructed using the same circuit as well.

207



Chapter 8. Timing Evaluation of the Floating-Point Dividers

8.5.4 Division Execution Time

As noted in Subsection 7.6.3, DFP division finishes in p + 3 cycles, where p is the

precision determined from Table 7.2. Considering p = 34 to have the longest execution

time, using the critical path delay (8.27), the division execution time is

DFP divider execution time = 37 × 147.81 τ = 5468.97 τ = 1093.79 FO4 . (8.28)

8.6 Discussion

This section compares the results obtained from the timing evaluations reported in

Sections 8.3, 8.4 and 8.5 with those of the recent designs available in the literature.

8.6.1 Radix-4 FP Divider

Antelo et al [ALMN02] report timing evaluation results for 3 different radix-4 FP di-

viders implemented using high-radix SRT division. They use a pre-layout estimation,

which does not take into account the wiring parasitic capacitance. A 0.35 µm/3.3 V

standard cell library, and Synopsys analysis and synthesis tools are used. The dividers

are as follows.

• Divider, named A for easy referencing, is the original radix-4 FP divider intro-

duced by Ercegovac and Lang [EL94]. This circuit uses a QDS function based on

the traditional selection constant method discussed in Subsection 3.2.3. Since the

PR is represented in the CS format, the QDS function is similar to the structure

shown in Figure 3.8. The quotient is produced after the 29th iteration.

• Divider, named C, is the circuit developed by Burgess and Hinds [BH01]. This

divider, which is explained in Section 4.1.2, employs a technique to pre-load the

corresponding selection constants and performs the selection using the compara-

tors followed by the sign detectors. Divider C requires 29 iterations to calculate

the quotient in the appropriate representation.

• Divider, named D, is the retimed version of Divider C. It is described in Sec-

tion 4.1.3. In Divider D, the QDS function is moved to the end of the recurrence.

This allows the comparison operands to be reordered and therefore, part of the

208



8.6. Discussion

critical path to be transferred to the noncritical part of the divider. A the end of

the 30th iteration, the quotient appears at the output.

Before, starting the discussion on the speed of the designs, it is necessary to sum-

marise the results obtained up until now. To do that, Table 8.5 is constructed containing

the following information.

• The critical path delay and the execution time of Dividers A, C, D calculated by

Antelo et al [ALMN02] using the logic synthesis are reported in both absolute

and FO4 time unit. For that particular technology (0.35 µm/3.3 V), FO4 = 0.15 ns.

• To make a consistent comparison between the designs, the critical path delay

and the execution time of Divider A, which is the fundamental FP divider, are

calculated using the method of logical effort as well as logic synthesis, and re-

ported. The logic synthesis is carried out using Synopsys design compiler (DC)

with Artisan 0.18 µm typical library.

• The recurrence latency and the execution time of Divider E, which is the compar-

ison multiples based radix-4 divider proposed in Chapter 5, are included. These

values reported in Subsections 8.3.4 and 8.3.5 are calculated using the method of

logical effort as well as the logic synthesis. The logic synthesis is carried out using

Synopsys design compiler (DC) with Artisan 0.18 µm typical library.

• In addition to the previously defined dividers, for further clarification on the

sources of the improvements obtained from the new design, a new divider, named

B, is introduced. Divider B is structurally identical to Divider A, however, it has

the comparison multiples based QDS function used in Divider E. In fact, while

Divider A is different from Divider B just in the QDS function, it is distinctive

from Divider E in both the QDS function and the critical path. Therefore, the

effects of the comparison multiples based QDS function and the change in the

divider’s architecture (such as the new critical path) can be studied separately.

For Divider B, the critical path delay and the division execution time are calculated

using the method of logical effort and listed in Table 8.5.

Using the information in Table 8.5, the following comparison cases are possible.

• Logical effort versus logical effort results

For the critical path delays obtained using the method of logical effort, Table 8.5

209



Chapter 8. Timing Evaluation of the Floating-Point Dividers

Table 8.5: Critical path delays and the execution times of Dividers A, B, C, D and E.

Synthesis Logical effort

Iteration delay Execution time Iteration delay Execution time

Design Specification FO4 ns FO4 ns FO4 FO4

21.67a 3.25a 628.43a 94.25a

Divider A
– 3.00b – 87.00b

22.53 653.37

Divider B – – – – 18.50 536.50

Divider C 20.67a 3.10a 599.43a 89.90a – –

Divider D 16.00a 2.40a 480.00a 72.00a – –

Divider E – 2.34b – 67.86b 15.63 453.27

a Reported by Antelo et al [ALMN02] for a 0.35 µm/3.3 V process.
b Calculated by the author of the thesis for the Artisan 0.18 µm typical library.

shows that Divider B performs FP division about 18% faster than Divider A. Also,

when Divider B is upgraded to Divider E, more than 15% additional speedup is

gained. The table indicates more than 30% decrease in the execution time of

Divider E compared to Divider A.

• Logical effort versus synthesis results

The good correlation between synthesis results and logical effort results for Di-

vider A and Divider E suggests that the two measures are well calibrated and

that comparisons between the two may be tentatively made. Considering delay

of 21.67 FO4 for Divider A and 15.63 FO4 for Divider E, Divider E is almost 28%

faster than the traditional Divider A. This corresponds with the 30% improvement

obtained in the previous comparison case carried out on logical effort results. In

addition, Divider E is about 24% faster than Divider C. Investigating Table 8.5

reveals that moving from Divider D to Divider E achieves more than 2% improve-

ment in the iteration time. However, Divider E responds about 6% faster than

Divider D due to one less iteration required for finishing FP division.

• Synthesis versus synthesis results

Comparing the corresponding latencies listed in Table 8.5 shows 22% speedup

for Divider E comparing to Divider A. This again supports the comparisons

performed in the previous two cases.

210



8.6. Discussion

As an auxiliary result on implementation size, a rough high-level assessment [SHL98,

BN02] states that there is no meaningful difference between the VLSI area of Divider B

and Divider A. However, another evaluation using the same method shows about 25%

increase in the size of Divider E comparing to Divider A. This is due to employing the

adjust circuits and the PR sign detectors, and using more registers and multiplexors.

8.6.2 Radix-16 FP Divider

According to the execution times (8.24) and (8.26), using the radix-16 FP divider in-

troduced in Chapter 5 results in a speedup of 1.2 with respect to the proposed radix-4

building block. This means that the quotient is produced more than 17% faster when

the radix-16 FP divider is used instead of the radix-4 FP divider.

Considering the timing evaluation performed by Nannarelli [Nan99], the execution

time of the radix-16 FP divider developed by Ercegonac and Lang [EL04] is calculated

as 398.74 FO4. This means that the proposed radix-16 comparison multiples based FP

divider is more than 6% faster than the Ercegovac and Lang implementation.

8.6.3 DFP Divider

Realisation of decimal division complying with the requirements of the IEEE 754R

is reported by Wang and Schulte [WS04]. Their design is a Newton-Raphson based

divider, which is different from the proposed DFP divider in nature. However, to the

best of the author’s knowledge, it is the only DFP divider published in the literature.

An estimated critical path delay of 0.69 ns is reported by Wang and Schulte [WS04].

The timing evaluation is obtained from a synthesis using Synopsys Design Compiler

and LSI Logic 0.11 µm gflx-p standard cell library, under nominal operating conditions

and a supply voltage of 1.2 V. In order to make the delays comparable, the reported

critical path delay must be represented in FO4 unit. Using the measure

FO4 ≈ 360 Ldrawn ps , (8.29)

where Ldrawn = 2λ in µm [HMH01], for this specific technology, FO4 is calculated

as FO4 ≈ 40ps conforming to the timing reported by Tamura [Tam04] from Fujitsu

Laboratories. This means that the cycle time of the Newton-Raphson based DFP

divider is about 17 FO4. Wang and Schulte report a latency of 113 cycles for decimal128

operands or equivalently around 1949 FO4. However, this delay can be obtained only

211



Chapter 8. Timing Evaluation of the Floating-Point Dividers

if a sequential decimal multiplier can be found capable of processing 4 decimal digits

per cycle. The proposed DFP divider based on the comparison multiples idea with

execution time of 1094 FO4 is about 1.8 times faster than the ideal Newton-Raphson

based DFP divider. The difference becomes even greater when realistic conditions are

considered for estimating the division execution time. A Newton-Raphson based DFP

divider, which benefits from an initial reciprocal approximation lookup table with a

reasonable size and a sequential fixed-point multiplier with the ability of processing

1 digit per cycle (like that introduced by Earl and Schulte [ES03]), requires 246 cycles

to calculate the quotient. This delay is about 4244 FO4, which is about 4 times the

execution time 1094 FO4 reported in Subsection 8.5.4.

8.7 Summary

In Chapter 8, the critical path delays of the FP dividers developed in Chapters 5 and

7 were estimated using the method of logical effort. Using the delays estimated,

the dividers’ execution times were calculated in both τ and FO4 units. Then, the

calculated execution times were contrasted with the corresponding timing evaluations

reported in the public literature. The comparisons showed that in all the cases the

comparison multiples based FP dividers produced the quotients in shorter times than

their counterparts.

212



Chapter 9

Conclusions and Future Works

Chapter 9 summarises the findings presented in the thesis and discusses some avenues

for future research.

213



Chapter 9. Conclusions and Future Works

9.1 Conclusions

Among all digit recurrence and multiplicative based algorithms, high-radix SRT di-

vision is known to be one of the best approaches for performing FP division [SL96].

This is mainly because of its ability to produce a correctly rounded quotient satis-

fying the IEEE 754 standard [IEE85] in a reasonably short period of time. Many

attempts have been reported to improve the performance of high-radix SRT division

[Tay85, OF95a, OF95b, BW95, HOH97, OF97a, BH01, Kor03]. They try to reduce the

divider critical path delay by minimising the QDS function, finding the best balance

between the radix and the degree of redundancy, developing algorithms resulting in

faster circuits (such as adders/subtractors, multiplexors and comparators) and/or max-

imising the overlap between the design components. While for practical reasons, the

quotient digits are selected from minimally redundant digit sets of radix 4 or at most

8, improving the implementation of the QDS function and increasing the concurrency

are the most effective for reducing the critical path delay. Therefore, the goal of this

thesis is to shorten high-radix SRT division cycle time by developing a more efficient

QDS function, taking some parts of the QDS function off the critical path and breaking

the critical path into two or more parallel but shorter paths. Applying these changes to

high-radix SRT division may result in a FP divider with shorter response time.

9.1.1 Comparison Multiples Approach

In Chapter 4, a new implementation of the QDS function based on the new compar-

ison multiples approach is proposed. In this method, which is mathematically and

architecturally described, instead of searching for the quotient digit in a lookup table,

the quotient digit is directly calculated in the sign and magnitude format. Using the

new representation for the quotient digits, the fan out of some components on the

critical path is almost halved making them operate faster. The QDS function receives

a truncated PR and investigates the range to which the PR belongs. It performs the

examination by comparing the truncated PR with the truncated multiples of the divisor

produced once at the beginning of division. The result of the comparisons are delivered

to a coder in order to produce the magnitude of the quotient digit. Meanwhile another

part of the QDS function, called the PR sign detector, calculates the polarity of the

quotient digit by inspecting the sign of the truncated PR. In the comparison multiples

214



9.1. Conclusions

based QDS function, the PR sign detector operates off the critical path because the quo-

tient digit sign and magnitude are calculated separately. These changes make the QDS

function faster and consequently reduce the divider critical path delay. In addition,

by reordering the components of the recurrence it is possible to merge some circuits

together to further minimise the critical path.

9.1.2 Comparison Multiples Based Radix-4 and Radix-16 FP Divider

To support the argument, Chapter 5 introduces two practical examples of the FP divider

based on the comparison multiples approach. The first is a radix-4 FP divider and

the second is a radix-16 FP divider constructed using two hybrid overlapped radix-4

stages. Applying extended optimisation techniques such as using 2-level multiplexors

and skewing some of the registers make the radix-4 FP divider calculate the quotient

faster and consequently, result in a faster radix-16 FP divider.

9.1.3 Comparison Multiples Based DFP Divider

Due to increasing demand for decimal arithmetic in financial and banking applications,

developing circuits capable of performing arithmetic directly on decimal operands has

become an attractive research topic. While addition, subtraction and multiplication are

much simpler to implement, implementing a divider accepting decimal dividends and

divisors in the recently introduced IEEE 754R standard is a real challenge. Chapter 6

introduces DSD arithmetic, which is a new type of redundant decimal arithmetic.

Based on DSD arithmetic, circuits performing carry-free addition, subtraction and

sign detection on DSD operands are developed. Then, in Chapter 7, using the DSD

components, a DFP divider based on the proposed comparison multiples approach is

introduced. However, since radix 10 is not a power of 2, some minor changes must be

applied to the original approach.

9.1.4 Timing Evaluation

After making sure that the developed radix-4 FP, radix-16 FP and DFP dividers are

functionally correct, timing evaluation is performed on the circuits. In this research,

the method of logical effort is used to estimate the critical path delay of the dividers,

in terms of the technology independent unit of FO4. The calculations carried out in

215



Chapter 9. Conclusions and Future Works

Chapter 8 show that the comparison multiples based radix-4 FP divider is more than

30% faster than a traditional implementation of radix-4 FP division. Moreover, the

logical effort timing estimation reveals that the comparison multiples based radix-16

FP divider produces the quotient more than 17% faster than its radix-4 building block.

Also, the radix-16 divider is over 6% faster than the conventional implementation. The

critical path delay evaluation indicates that the proposed DFP divider is about 4 times

faster than the one available Newton-Raphson based DFP divider.

9.2 Future Work

As discussed in Chapter 3, increasing the radix is one method to achieve a faster

divider. As shown in Chapter 7, the radix of the proposed DFP divider is r = 101,

which results in one decimal quotient digit retired every iteration. As future work

on the DFP dividers, it is very likely to calculate two decimal digits per iteration by

increasing the radix to r = 102 = 100. Another approach toward generating more than

one decimal digit per cycle is to use two stages of the original radix-10 divider and

overlap them appropriately (see Section 3.7). Therefore, although the high-radix DFP

divider will require a larger VLSI area when implemented, a reasonable speedup on

DFP division can be obtained.

Achieving the highest speed in the smallest VLSI area is one of the important goals

when designing a circuit, however, there are some other concerns for the circuit design-

ers to consider. Among them, there is design with low power consumption [RCN02],

which is motivated by battery-operated devices demanding intensive computation in

portable environments. Several techniques have been investigated for reducing the

power consumption in CMOS digital circuits while maintaining computational perfor-

mance. They mainly use the lowest possible supply voltage coupled with architectural,

logic style, circuit and technology optimisation methods [Nan99]. For the proposed

dividers, one may be interested to investigate whether they can be redesigned for low

power without or with only small calculation performance loss.

216



Appendix A

Radix-4 and Radix-16 CRN Units Tables

Table A.1: The truth table of the signals generated by the radix-4 CRN unit. The last

quotient digit q28 is represented as Sign(q28)Mag(q28).

q28 sign Q[27]<52> QM[27]<52> u s1 s0

2 = 111 0 × 0 1 1 1

2 = 111 0 × 1 × 0 0

2 = 111 1 × 0 1 1 1

2 = 111 1 × 1 × 0 0

1 = 110 0 × 0 0 0 0

1 = 110 0 × 1 × 0 0

1 = 110 1 × 0 1 1 1

1 = 110 1 × 1 × 0 0

0 =×00 0 0 × 0 0 0

0 =×00 0 1 × × 0 0

0 =×00 1 0 × 0 0 0

0 =×00 1 1 × × 0 0

1 = 010 0 0 × 1 0 0

1 = 010 0 1 × × 0 0

1 = 010 1 0 × 0 0 0

1 = 010 1 1 × × 0 0

2 = 011 0 0 × 1 0 0

2 = 011 0 1 × × 0 1

2 = 011 1 0 × 1 0 0

2 = 011 1 1 × × 0 0

217



Appendix A. Radix-4 and Radix-16 CRN Units Tables

Table A.2: The truth table of the signals generated by the radix-16 CRN unit. The last

quotient digit is represented as q14 = 4qH14+qL14 = Sign(qH14)Mag(qH14)Sign(qL14)Mag(qL14).

q14 sign Q[13]<50> QM[13]<50> u1 u0 s

10 = 111111 0 × 0 × 001 1

10 = 111111 0 × 1 10 × 1

10 = 111111 1 × 0 × 001 1

10 = 111111 1 × 1 01 × 1

9 = 111110 0 × 0 × 100 1

9 = 111110 0 × 1 10 × 1

9 = 111110 1 × 0 × 011 1

9 = 111110 1 × 1 10 × 1

8 = 111×00 0 × 0 × 100 1

8 = 111×00 0 × 1 10 × 1

8 = 111×00 1 × 0 × 100 1

8 = 111×00 1 × 1 10 × 1

7 = 111010 0 × 0 × 101 1

7 = 111010 0 × 1 10 × 1

7 = 111010 1 × 0 × 100 1

7 = 111010 1 × 1 10 × 1

6 = 111011 0 × 0 × 101 1

6 = 111011 0 × 1 11 × 1

6 = 111011 1 × 0 × 101 1

6 = 111011 1 × 1 10 × 1

6 = 110111 0 × 0 × 101 1

6 = 110111 0 × 1 11 × 1

6 = 110111 1 × 0 × 101 1

6 = 110111 1 × 1 10 × 1

5 = 110110 0 × 0 × 110 1

5 = 110110 0 × 1 11 × 1

5 = 110110 1 × 0 × 101 1

5 = 110110 1 × 1 11 × 1

4 = 110×00 0 × 0 × 110 1

4 = 110×00 0 × 1 11 × 1

4 = 110×00 1 × 0 × 110 1

4 = 110×00 1 × 1 11 × 1

Continued on next page

218



A.0. Future Work

Table A.2: – continues from previous page

q14 sign Q[13]<50> QM[13]<50> u1 u0 s

3 = 110010 0 × 0 × 111 1

3 = 110010 0 × 1 11 × 1

3 = 110010 1 × 0 × 110 1

3 = 110010 1 × 1 11 × 1

2 = 110011 0 × 0 × 111 1

2 = 110011 0 × 1 00 × 0

2 = 110011 1 × 0 × 111 1

2 = 110011 1 × 1 11 × 1

2 =×00111 0 × 0 × 111 1

2 =×00111 0 × 1 00 × 0

2 =×00111 1 × 0 × 111 1

2 =×00111 1 × 1 11 × 1

1 =×00110 0 × 0 × 000 0

1 =×00110 0 × 1 00 × 0

1 =×00110 1 × 0 × 111 1

1 =×00110 1 × 1 00 × 0

0 =×00×00 0 0 × × 000 0

0 =×00×00 0 1 × 00 × 0

0 =×00×00 1 0 × × 000 0

0 =×00×00 1 1 × 00 × 0

1 =×00010 0 0 × × 001 0

1 =×00010 0 1 × 00 × 0

1 =×00010 1 0 × × 000 0

1 =×00010 1 1 × 00 × 0

2 =×00011 0 0 × × 001 0

2 =×00011 0 1 × 01 × 0

2 =×00011 1 0 × × 001 0

2 =×00011 1 1 × 00 × 0

2 = 010111 0 0 × × 001 0

2 = 010111 0 1 × 01 × 0

2 = 010111 1 0 × × 001 0

2 = 010111 1 1 × 00 × 0

3 = 010110 0 0 × × 010 0

3 = 010110 0 1 × 01 × 0

3 = 010110 1 0 × × 001 0

Continued on next page

219



Appendix A. Radix-4 and Radix-16 CRN Units Tables

Table A.2: – continues from previous page

q14 sign Q[13]<50> QM[13]<50> u1 u0 s

3 = 010110 1 1 × 01 × 0

4 = 010×00 0 0 × × 010 0

4 = 010×00 0 1 × 01 × 0

4 = 010×00 1 0 × × 010 0

4 = 010×00 1 1 × 01 × 0

5 = 010010 0 0 × × 011 0

5 = 010010 0 1 × 01 × 0

5 = 010010 1 0 × × 010 0

5 = 010010 1 1 × 01 × 0

6 = 010011 0 0 × × 011 0

6 = 010011 0 1 × 10 × 0

6 = 010011 1 0 × × 011 0

6 = 010011 1 1 × 01 × 0

6 = 011111 0 0 × × 011 0

6 = 011111 0 1 × 10 × 0

6 = 011111 1 0 × × 011 0

6 = 011111 1 1 × 01 × 0

7 = 011110 0 0 × × 100 0

7 = 011110 0 1 × 10 × 0

7 = 011110 1 0 × × 011 0

7 = 011110 1 1 × 10 × 0

8 = 011×00 0 0 × × 100 0

8 = 011×00 0 1 × 10 × 0

8 = 011×00 1 0 × × 100 0

8 = 011×00 1 1 × 10 × 0

9 = 011010 0 0 × × 101 0

9 = 011010 0 1 × 10 × 0

9 = 011010 1 0 × × 100 0

9 = 011010 1 1 × 10 × 0

10 = 011011 0 0 × × 101 0

10 = 011011 0 1 × 11 × 0

10 = 011011 1 0 × × 101 0

10 = 011011 1 1 × 10 × 0

220



Appendix B

VHDL Code of the Radix-4 Divider

B.1 adjust.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity adjust is

port(

s0p, s0m, s1p, s1m, s2p, s2m : in

std_logic_vector(2 downto 0); w0p, w0m, w1p, w1m, w2p, w2m : out

std_logic_vector(1 downto 0));

end adjust;

architecture behavioral of adjust is

begin process(s0p, s0m, s1p, s1m, s2p, s2m)

begin

if s0p(2) = s0m(2) then

w0p <= s0p(1 downto 0);

w0m <= s0m(1 downto 0);

elsif s0p(1) = s0m(1) then

w0p <= s0m(0) & s0m(0);

w0m <= s0p(0) & s0p(0);

else

w0p <= s0m(1) & s0p(0);

w0m <= s0p(1) & s0m(0);

end if;

221



Appendix B. VHDL Code of the Radix-4 Divider

if s1p(2) = s1m(2) then

w1p <= s1p(1 downto 0);

w1m <= s1m(1 downto 0);

elsif s1p(1) = s1m(1) then

w1p <= s1m(0) & s1m(0);

w1m <= s1p(0) & s1p(0);

else

w1p <= s1m(1) & s1p(0);

w1m <= s1p(1) & s1m(0);

end if;

if s2p(2) = s2m(2) then

w2p <= s2p(1 downto 0);

w2m <= s2m(1 downto 0);

elsif s2p(1) = s2m(1) then

w2p <= s2m(0) & s2m(0);

w2m <= s2p(0) & s2p(0);

else

w2p <= s2m(1) & s2p(0);

w2m <= s2p(1) & s2m(0);

end if;

end process;

end behavioral;

B.2 compsd.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity compsd is

port(

p1p, p1m, p2p, p2m : in std_logic_vector(6 downto 0);

sign : in std_logic;

q1 , q0 : out std_logic);

end compsd;

architecture behavioral of compsd is

signal sm1, sm2 : std_logic;

begin

222



B.3. comparator.vhd

process(p1p, p1m, p2p, p2m)

begin

if (p1p >= p1m) then

sm1 <= ’0’;

else

sm1 <= ’1’;

end if;

if (p2p >= p2m) then

sm2 <= ’0’;

else

sm2 <= ’1’;

end if;

end process;

q1 <= sm1 xnor sign;

q0 <= sm2 xnor sign;

end behavioral;

B.3 comparator.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity comparator is

port(

rwp, rwm, m1_xnor, m2_xnor : in std_logic_vector(6 downto 0);

sign : in std_logic;

p1p, p1m, p2p, p2m : out std_logic_vector(6 downto 0));

end comparator;

architecture behavioral of comparator is

begin

process(rwp, rwm, sign, m1_xnor, m2_xnor)

begin

for i in 0 to 5 loop

p1p(i+1) <= not (rwp(i) xor (not rwm(i)) xor m1_xnor(i));

p1m(i) <= (rwp(i) and (not rwm(i))) or (m1_xnor(i)

and rwp(i)) or (m1_xnor(i) and (not rwm(i)));

end loop;

223



Appendix B. VHDL Code of the Radix-4 Divider

p1m(6) <= (rwp(6) and (not rwm(6))) or (m1_xnor(6) and

rwp(6)) or (m1_xnor(6) and (not rwm(6)));

p1p(0) <= not sign;

for i in 0 to 5 loop

p2p(i+1) <= not (rwp(i) xor (not rwm(i)) xor m2_xnor(i));

p2m(i) <= (rwp(i) and (not rwm(i))) or (m2_xnor(i)

and rwp(i)) or (m2_xnor(i) and (not rwm(i)));

end loop;

p2m(6) <= (rwp(6) and (not rwm(6))) or (m2_xnor(6) and

rwp(6)) or (m2_xnor(6) and (not rwm(6)));

p2p(0) <= not sign;

end process;

end behavioral;

B.4 critical.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity critical is

port(

m1, m2, w2p, w1p, x, w0p,

w2m, w1m, w0m : in std_logic_vector(6 downto 0);

clk, sign2, sign1, sign0 : in std_logic;

q1q0_non : out std_logic_vector(1 downto 0));

end critical;

architecture behavioral of critical is

component ff

generic(

n : integer );

port(

clk : in std_logic;

din : in std_logic_vector(n - 1 downto 0);

dout : out std_logic_vector(n - 1 downto 0));

end component;

component mux1muxs

generic(

224



B.4. critical.vhd

n : integer);

port(

signx_out, sign0_out, sign1_out, sign2_out : in std_logic;

q1q0 : in std_logic_vector(1 downto 0);

w0p_out, w2m_out, w1m_out, w0m_out : in std_logic_vector(n - 1 downto 0);

w2p_out, w1p_out, x : in std_logic_vector(n - 1 downto 0);

rwp, rwm : out std_logic_vector(n - 1 downto 0);

sign : out std_logic);

end component;

component qds

port(

sign : in std_logic;

rwp, rwm, m1, m2 : in std_logic_vector(6 downto 0);

q1, q0 : out std_logic);

end component;

signal rwp, rwm : std_logic_vector(6 downto 0);

signal q1q0_out : std_logic_vector(1 downto 0);

signal sign, q1_out, q0_out, q1, q0 : std_logic;

signal q1_tmp, q0_tmp, q1_out_tmp, q0_out_tmp : std_logic_vector(0 downto 0);

begin

q1_ff: ff

generic map(

n => 1)

port map(

clk => clk,

din => q1_tmp,

dout => q1_out_tmp);

q1_tmp(0) <= q1;

q1_out <= q1_out_tmp(0);

q0_ff: ff

generic map(

n => 1)

port map(

clk => clk,

din => q0_tmp,

dout => q0_out_tmp);

q0_tmp(0) <= q0;

q0_out <= q0_out_tmp(0);

q1q0_out <= q1_out & q0_out;

q1q0_non <= q1q0_out;

225



Appendix B. VHDL Code of the Radix-4 Divider

mux: mux1muxs

generic map(

n => 7)

port map(

signx_out => sign0,

sign0_out => sign0,

sign1_out => sign1,

sign2_out => sign2,

q1q0 => q1q0_out,

w2p_out => w2p,

w1p_out => w1p,

x => x,

w0p_out => w0p,

w2m_out => w2m,

w1m_out => w1m,

w0m_out => w0m,

rwp => rwp,

rwm => rwm,

sign => sign);

qds_r4: qds

port map(

sign => sign,

rwp => rwp,

rwm => rwm,

m1 => m1,

m2 => m2,

q1 => q1,

q0 => q0);

end behavioral;

B.5 divider.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity divider is

port(

x, d : in std_logic_vector(54 downto 0);

226



B.5. divider.vhd

clk : in std_logic;

sq1q0 : out std_logic_vector(2 downto 0));

end divider;

architecture behavioral of divider is

component critical

port(

m1, m2, w2p, w1p, x, w0p, w2m, w1m, w0m : in std_logic_vector(6 downto 0);

clk, sign2, sign1, sign0 : in std_logic;

q1q0_non : out std_logic_vector(1 downto 0)

sign_non : out std_logic);

end component;

component ff

generic(

n : integer);

port(

clk : in std_logic;

din : in std_logic_vector(n - 1 downto 0);

dout : out std_logic_vector(n - 1 downto 0));

end component;

component mux1muxs

generic(

n : integer);

port(

signx_out, sign0_out, sign1_out, sign2_out : in std_logic;

q1q0 : in std_logic_vector(1 downto 0);

w0p_out, w2m_out, w1m_out, w0m_out : in std_logic_vector(n - 1 downto 0);

w2p_out, w1p_out, x : in std_logic_vector(n - 1 downto 0);

rwp, rwm : out std_logic_vector(n - 1 downto 0);

sign : out std_logic);

end component;

component prformation

port (

rwp, rwm, d1_xnor, d2_xnor : in std_logic_vector(56 downto 0);

sign : in std_logic;

s0p, s0m, s1p, s1m, s2p, s2m : out std_logic_vector(57 downto 0));

end component;

component prsd

port (

s0p, s0m, s1p, s1m, s2p, s2m : in std_logic_vector(6 downto 0);

227



Appendix B. VHDL Code of the Radix-4 Divider

sign0, sign1, sign2 : out std_logic);

end component;

component adjust

port (

s0p, s0m, s1p, s1m, s2p, s2m : in std_logic_vector(2 downto 0);

w0p, w0m, w1p, w1m, w2p, w2m : out std_logic_vector(1 downto 0));

end component;

component multiplegen

port(

d : in std_logic_vector(54 downto 0);

sign : in std_logic;

d1_xnor, d2_xnor : out std_logic_vector(56 downto 0));

end component;

signal s0p, s0m, s1p, s1m, s2p, s2m : std_logic_vector(57 downto 0);

signal d1_xnor, d2_xnor, rwp, rwm : std_logic_vector(56 downto 0);

signal w0m_out, w1p_out, w1m_out, w2p_out, w2m_out : std_logic_vector(54 downto 0);

signal w0p, w0m, w1p, w1m, w2p, w2m : std_logic_vector(54 downto 0);

signal m1, m2 : std_logic_vector(6 downto 0);

signal q1q0 : std_logic_vector(1 downto 0);

signal sign, sign0, sign1, sign2, sign0_out, sign1_out, sign2_out : std_logic;

signal sign1_out_tmp, sign2_tmp, sign2_out_tmp : std_logic_vector(0 downto 0);

signal sign0_tmp, sign0_out_tmp, sign1_tmp : std_logic_vector(0 downto 0);

begin

m1 <= "000" & d(54 downto 51);

m2 <= ’0’ & (d(54 downto 49) - ("00" & d(54 downto 51)));

sq1q0 <= sign & q1q0;

d1 <= ’0’ & d & ’0’;

d2 <= d & "00";

w0pff: ff

generic map(

n => 55)

port map(

clk => clk,

din => w0p,

dout => w0p_out);

w0mff: ff

generic map(

n => 55)

port map(

clk => clk,

228



B.5. divider.vhd

din => w0m,

dout => w0m_out);

w1pff: ff

generic map(

n => 55)

port map(

clk => clk,

din => w1p,

dout => w1p_out);

w1mff: ff

generic map(

n => 55)

port map(

clk => clk,

din => w1m,

dout => w1m_out);

w2pff: ff

generic map(

n => 55)

port map(

clk => clk,

din => w2p,

dout => w2p_out);

w2mff: ff

generic map(

n => 55)

port map(

clk => clk,

din => w2m,

dout => w2m_out);

s0: ff

generic map(

n => 1)

port map(

clk => clk,

din => sign0_tmp,

dout => sign0_out_tmp);

sign0_tmp(0) <= sign0;

sign0_out <= sign0_out_tmp(0);

s1: ff

229



Appendix B. VHDL Code of the Radix-4 Divider

generic map(

n => 1)

port map(

clk => clk,

din => sign1_tmp,

dout => sign1_out_tmp);

sign1_tmp(0) <= sign1;

sign1_out <= sign1_out_tmp(0);

s2: ff

generic map(

n => 1)

port map(

clk => clk,

din => sign2_tmp,

dout => sign2_out_tmp);

sign2_tmp(0) <= sign2;

sign2_out <= sign2_out_tmp(0);

mux1muxs: mux1muxs

generic map(

n => 48)

port map(

q1q0 => q1q0,

signx_out => sign0_out,

sign0_out => sign0_out,

sign1_out => sign1_out,

sign2_out => sign2_out,

w2p_out => w2p_out(47 downto 0),

w1p_out => w1p_out(47 downto 0),

x => x(47 downto 0),

w0p_out => w0p_out(47 downto 0),

w2m_out => w2m_out(47 downto 0),

w1m_out => w1m_out(47 downto 0),

w0m_out => w0m_out(47 downto 0),

rwp => rwp(49 downto 2),

rwm => rwm(49 downto 2),

sign => sign);

critical_path: critical

port map(

m1 => m1,

m2 => m2,

230



B.5. divider.vhd

w2p => w2p_out(54 downto 48),

w1p => w1p_out(54 downto 48),

x => x(54 downto 48),

w0p => w0p_out(54 downto 48),

w2m => w2m_out(54 downto 48),

w1m => w1m_out(54 downto 48),

w0m => w0m_out(54 downto 48),

clk => clk,

sign2 => sign2_out,

sign1 => sign1_out,

sign0 => sign0_out,

q1q0_non => q1q0);

mult_gen: multiplegen

port map(

d => d,

sign => sign,

d1_xnor => d1_xnor,

d2_xnor => d2_xnor);

pr_form: prformation

port map (

rwp => rwp,

rwm => rwm,

d1_xnor => d1_xnor,

d2_xnor => d2_xnor,

sign => sign,

s0p => s0p,

s0m => s0m,

s1p => s1p,

s1m => s1m,

s2p => s2p,

s2m => s2m);

pr_sign_det: prsd

port map(

s0p => s0p(57 downto 51),

s0m => s0m(57 downto 51),

s1p => s1p(57 downto 51),

s1m => s1m(57 downto 51),

s2p => s2p(57 downto 51),

s2m => s2m(57 downto 51),

sign0 => sign0,

231



Appendix B. VHDL Code of the Radix-4 Divider

sign1 => sign1,

sign2 => sign2);

adj: adjust

port map(

s0p => s0p(55 downto 53),

s0m => s0m(55 downto 53),

s1p => s1p(55 downto 53),

s1m => s1m(55 downto 53),

s2p => s2p(55 downto 53),

s2m => s2m(55 downto 53),

w0p => w0p(54 downto 53),

w0m => w0m(54 downto 53),

w1p => w1p(54 downto 53),

w1m => w1m(54 downto 53),

w2p => w2p(54 downto 53),

w2m => w2m(54 downto 53));

w0p(52 downto 0) <= s0p(52 downto 0);

w0m(52 downto 0) <= s0m(52 downto 0);

w1p(52 downto 0) <= s1p(52 downto 0);

w1m(52 downto 0) <= s1m(52 downto 0);

w2p(52 downto 0) <= s2p(52 downto 0);

w2m(52 downto 0) <= s2m(52 downto 0);

end behavioral;

B.6 ff.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity ff is

generic(

n : integer := 8);

port(

clk : in std_logic;

din : in std_logic_vector(n - 1 downto 0);

dout : out std_logic_vector(n - 1 downto 0));

end ff;

232



B.8. multiplegen.vhd

architecture behavioral of ff is

begin

process (clk)

begin

if clk’event and clk=’1’ then --clk rising edge

dout <= din;

end if;

end process;

end behavioral;

B.7 m1m2invert.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity m1m2invert is

port(

sign : in std_logic;

m1, m2 : in std_logic_vector(6 downto 0);

m1_xnor, m2_xnor : out std_logic_vector(6 downto 0));

end m1m2invert;

architecture behavioral of m1m2invert is

begin

process(sign, m1, m2)

begin

for i in m1’range loop

m1_xnor(i) <= m1(i) xnor sign;

m2_xnor(i) <= m2(i) xnor sign;

end loop;

end process;

end behavioral;

B.8 multiplegen.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

233



Appendix B. VHDL Code of the Radix-4 Divider

use ieee.std_logic_unsigned.all;

entity multiplegen is

port(

d : in std_logic_vector(54 downto 0);

sign : in std_logic;

d1_xnor, d2_xnor : out std_logic_vector(56 downto 0));

end multiplegen;

architecture behavioral of multiplegen is

signal d_tmp : std_logic_vector(54 downto 0);

begin

mult_gen: process(d, sign)

begin

for i in d’range loop

d_tmp(i) <= d(i) xnor sign;

end loop;

end process;

d1_xnor <= (not sign) & (not sign) & d_tmp;

d2_xnor <= (not sign) & d_tmp & (not sign);

end behavioral;

B.9 mux1muxs.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity mux1muxs is

generic(

n : integer := 7);

port(

signx_out, sign0_out, sign1_out, sign2_out : in std_logic;

q1q0 : in std_logic_vector(1 downto 0);

w0p_out, w2m_out, w1m_out, w0m_out : in std_logic_vector(n - 1 downto 0);

w2p_out, w1p_out, x : in std_logic_vector(n - 1 downto 0);

rwp, rwm : out std_logic_vector(n - 1 downto 0);

sign : out std_logic);

end mux1muxs;

234



B.10. prformation.vhd

architecture behavioral of mux1muxs is

signal zero : std_logic_vector(n - 1 downto 0);

begin

mux1: process (q1q0, w2p_out, w1p_out, x, w0p_out, w2m_out, w1m_out, w0m_out)

begin

for i in 0 to n - 1 loop

zero(i) <= ’0’;

end loop;

case q1q0 is

when "00" =>

rwp <= w0p_out;

rwm <= w0m_out;

when "01" =>

rwp <= x;

rwm <= zero;

when "10" =>

rwp <= w1p_out;

rwm <= w1m_out;

when "11" =>

rwp <= w2p_out;

rwm <= w2m_out;

when others => null;

end case;

end process;

muxs: process(q1q0, signx_out, sign0_out, sign1_out, sign2_out)

begin

case q1q0 is

when "00" =>

sign <= sign0_out;

when "01" =>

sign <= signx_out;

when "10" =>

sign <= sign1_out;

when "11" =>

sign <= sign2_out;

when others => null;

end case;

end process;

end behavioral;

235



Appendix B. VHDL Code of the Radix-4 Divider

B.10 prformation.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity prformation is

port (

rwp, rwm, d1_xnor, d2_xnor : in std_logic_vector(56 downto 0);

sign : in std_logic;

s0p, s0m, s1p, s1m, s2p, s2m : out std_logic_vector(57 downto 0));

end prformation;

architecture behavioral of prformation is

begin

process(rwp, rwm, sign, d1_xnor, d2_xnor)

begin

s1p(0) <= not sign;

s1m(57) <= not sign;

s2p(0) <= not sign;

s2m(57) <= not sign;

s0p <= ’0’ & rwp;

s0m <= ’0’ & rwm;

for i in 0 to 56 loop

s1p(i+1) <= not (rwp(i) xor (not rwm(i)) xor d1_xnor(i));

s1m(i) <= (rwp(i) and (not rwm(i))) or (d1_xnor(i)

and rwp(i)) or (d1_xnor(i) and (not rwm(i)));

s2p(i+1) <= not (rwp(i) xor (not rwm(i)) xor d2_xnor(i));

s2m(i) <= (rwp(i) and (not rwm(i))) or (d2_xnor(i)

and rwp(i)) or (d2_xnor(i) and (not rwm(i)));

end loop;

end process;

end behavioral;

B.11 prsd.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

236



B.12. qds.vhd

use ieee.std_logic_unsigned.all;

entity prsd is

port(

s0p, s0m, s1p, s1m, s2p, s2m : in std_logic_vector(6 downto 0);

sign0, sign1, sign2 : out std_logic);

end prsd;

architecture behavioral of prsd is

begin

process(s2p, s2m, s1p, s1m, s0p, s0m)

begin

if s2p >= s2m then

sign2 <= ’0’;

else

sign2 <= ’1’;

end if;

if s1p >= s1m then

sign1 <= ’0’;

else

sign1 <= ’1’;

end if;

if s0p >= s0m then

sign0 <= ’0’;

else

sign0 <= ’1’;

end if;

end process;

end behavioral;

B.12 qds.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity qds is

port(

sign : in std_logic;

237



Appendix B. VHDL Code of the Radix-4 Divider

rwp, rwm, m1, m2 : in std_logic_vector(6 downto 0);

q1, q0 : out std_logic);

end qds;

architecture behavioral of qds is

component comp_sd

port(

p1p, p1m, p2p, p2m : in std_logic_vector(6 downto 0);

sign : in std_logic;

q1 , q0 : out std_logic);

end component;

component m1m2invert

port(

sign : in std_logic;

m1, m2 : in std_logic_vector(6 downto 0);

m1_xnor, m2_xnor : out std_logic_vector(6 downto 0));

end component;

component comparator

port(

rwp, rwm, m1_xnor, m2_xnor : in std_logic_vector(6 downto 0);

sign : in std_logic;

p1p, p1m, p2p, p2m : out std_logic_vector(6 downto 0));

end component;

signal m1_xnor, m2_xnor, p1p, p1m, p2p, p2m : std_logic_vector(6 downto 0);

begin

m1m2_inv: m1m2invert

port map(

sign => sign,

m1 => m1,

m2 => m2,

m1_xnor => m1_xnor,

m2_xnor => m2_xnor);

comparators: comparator

port map(

rwp => rwp,

rwm => rwm,

m1_xnor => m1_xnor,

m2_xnor => m2_xnor,

sign => sign,

238



B.12. qds.vhd

p1p => p1p,

p1m => p1m,

p2p => p2p,

p2m => p2m);

comp_sign_det: compsd

port map(

p1p => p1p,

p1m => p1m,

p2p => p2p,

p2m => p2m,

sign => sign,

q1 => q1,

q0 => q0);

end behavioral;

239



Appendix B. VHDL Code of the Radix-4 Divider

240



BIBLIOGRAPHY

Bibliography

[AK74] D. E. Atkins and V. U. Kalaycioglu. Concurrency in Generalized Radix,

Non-restoring Division. In Proceedings 12th Allerton Conference on Circuit

and Switching Theory, pages 628–640, Illinois, USA, October 1974. Univer-

sity of Illinois.

[ALB98] E. Antelo, T. Lang, and J. D. Bruguera. Computation of
√

x/d in a Very

High Radix Combined Division/Square-Root Unit with Scaling and Se-

lection by Rounding. IEEE Transactions on Computers, 47(2):152–161, Feb-

ruary 1998.

[ALMN02] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli. Fast Radix-4 Re-

timed Division with Selection by Comparisons. In Proceedings of the IEEE

International Conference on Application-Specific Systems, Architectures, and

Processors (ASAP’02), pages 185–196, San Jose, CA, USA, 17–19 July 2002.

[Amr99] B. Amrutur. Design and Analysis of Fast Low Power SRAMs. PhD thesis,

Stanford Univerisy, Stanford, CA, USA, August 1999.

[Atk67] D. E. Atkins. The Theory and Implementation of SRT Division. Technical

Report UIUCDCS-R-67-230, Department of Computer Science, University

of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1967.

[Atk68] D. E. Atkins. Higher-Radix Division Using Estimates of the Divisor and

Partial Remainders. IEEE Transactions on Computers, C-17:925–934, 1968.

[Atk70] D. E. Atkins. A Study of Methods for Selection of Quotient Digits during

Digital Division. PhD thesis, Department of Computer Science, University

of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1970.

241



BIBLIOGRAPHY

[Avi61] A. Avizienis. Signed-Digit Number Representations for Fast Parallel

Arithmetic. IRE Transactions on Electronic Computers, EC-10:389–400, Sep-

tember 1961.

[BH01] N. Burgess and C. Hinds. Design Issues in Radix-4 SRT Square Root

and Divide Unit. In Proceedings of the 35th Asilomar Conference on Signals,

Systems and Computers (ASILOMAR’01), pages 1646–1650, Pacific Grove,

CA, USA, 4–7 November 2001.

[BK82] R. P. Brent and H. T. Kung. A Regular Layout for Parallel Adders. IEEE

Transactions on Electronic Computers, C-31(3):260–264, March 1982.

[BKL+01] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R. Carlough.

The IBM z900 Decimal Arithmetic Unit. In Proceedings of the 35th Asilomar

Conference on Signals, Systems and Computers (ASILOMAR’01), pages 1335–

1339, Pacific Grove, CA, USA, 4–7 November 2001.

[BL00] J. D. Bruguera and T. Lang. Multilevel Reverse-Carry Adder. In Proceed-

ings of the 2000 IEEE International Conference on Computer Design: VLSI

in Computers & Processors (ICCD2000), pages 155–162, Austin, TX, USA,

17–20 September 2000. IEEE Computer Society.

[BL01] J. D. Bruguera and T. Lang. Using the Reverse-Carry Approach for Dou-

ble Datapath Floating-Point Addition. In Proceedings of the 15th IEEE

Symposium on Computer Arithmetic (ARITH-15’01), pages 203–210, Vail,

Colorado, USA, 11–13 June 2001. IEEE Computer Society Press.

[BL03] J. D. Bruguera and T. Lang. Multilevel Reverse-Carry Addition: Single

and Dual Adders. The Journal of VLSI Signal Processing-Systems for Signal,

Image, and Video Technology, 33(1–2):55–74, January–February 2003.

[Bla98] G. M. Blair. The Equivalence of Twos-Complement Addition and the

Conversion of Redundant-Binary to Twos-Complement Numbers. Trans-

actions on Circuits and Systems I, 45(6):669–671, July 1998.

[BN02] K. M. Buyukshahin and F. N. Najm. High-Level Area Estimation. In

ISLPED ’02: Proceedings of the 2002 international symposium on Low power

242



BIBLIOGRAPHY

electronics and design, pages 271–274, New York, NY, USA, 2002. ACM

Press.

[BPPT87] B. K. Bose, D. A. Patterson, L. Pei, and G. S. Taylor. Fast Multiply and

Divide for a VLSI Floating-Point Unit. In Proceedings of the 8th IEEE

Symposium on Computer Arithmetic (ARITH-8’87), Como, Italy, 19–21 May

1987. IEEE Computer Society Press.

[Bry96] R. E. Bryant. Bit-Level Analysis of an SRT Divider Circuit. In Proceedings

of the 33rd Annual Conference on Design Automation, pages 661–665, Las

Vegas, NV, USA, June 1996. ACM Press.

[Bur91] N. Burgess. Radix-2 SRT Division Algorithm with Simple Quotient Digit

Selection. Electronics Letters, 27(21):1910–1911, October 1991.

[Bur03a] N. Burgess. Logical Effort Analysis of a Media-Enhanced Adder. In

Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers

(ASILOMAR’03), pages 344–348, Pacific Grove, CA, USA, 9–12 November

2003.

[Bur03b] N. Burgess. Logical Effort Analysis of Register File Architectures. In

Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers

(ASILOMAR’03), Pacific Grove, CA, USA, 9–12 November 2003.

[BW95] N. Burgess and T. Williams. Choices of Operand Truncation in the SRT

Division Algorithm. IEEE Transactions on Computers, 44(7):933–938, 1995.

[CBF01] A. Chandrakasan, W. J. Bowhill, and F. Fox, editors. Design of High-

Performance Microprocessor Circuits. John Wiley & Sons and IEEE Press,

2001.

[CC99] G. Cornetta and J. Cortadella. A Radix-16 SRT Division Unit with Spec-

ulation of the Quotient Digits. In Proceedings of the Ninth Great Lakes

Symposium on VLSI (GLS-VLSI‘99), pages 74–77, Ann Arbor, MI, USA, 4–6

March 1999. IEEE Computer Society Press.

[CCA03] P. Celinski, S. D. Cotofana, and D. Abbott. Logical Effort Delay Modeling

of Sense Amplifier Based Charge Recycling Threshold Logic Gates. In

243



BIBLIOGRAPHY

Proceedings of the 14th Annual Workshop on Circuits, Systems and Signal

Processing (ProRISC 2003), pages 43–48, November 2003.

[CCT00] J. S. Chiang, H. D. Chung, and M. S. Tsai. Carry-Free Radix-2 Subtractive

Division Algorithm and Implementation of the Divider. Tamkang Journal

of Science and Engineering, 3(4):249–255, 2000.

[CH75] T. C. Chen and I. T. Ho. Storage-Efficient Representation of Decimal Data.

Communications of the ACM, 18(1):49–52, 1975.

[Cli90] W. D. Clinger. How to Read Floating Point Numbers Accurately. In

Proceedings of the Conference on Programming Language Design and Imple-

mentation, pages 92–101, White Plains, NY, USA, June 1990. ACM Press.

[CM91] L. Ciminiera and P. Montuschi. Simple Radix 2 Division and Square Root

with Skipping Some Addition Steps. In Proceedings of the 10th IEEE Sym-

posium on Computer Arithmetic (ARITH-10’91), pages 202–209, Grenoble,

France, 26–28 June 1991. IEEE Computer Society Press.

[CNI95] R. M. Owens C. Nagendra and M. J. Irwin. Unifying Carry-Sum and

Signed-Digit Number Representations for Low Power. In Proceedings of

International Symposium on Low Power Design ISLPD’95, pages 15–20, Dana

Point, CA, USA, April 23–26 1995. ACM-SIGDA and IEEE-CAS.

[Com04] IEEE Standard Committee. Some Proposals for Revising ANSI/IEEE Std

754-1985. http://754r.ucbtest.org/, 21 July 2004.

[Cow02] M. Cowlishaw. Densely Packed Decimal Encoding. IEE Proceedings -

Computers and Digital Techniques, 142(3):102–104, May 2002.

[Cow03a] M. Cowlishaw. Decimal Arithmetic Encoding Strawman 4d.

http://www2.hursley.ibm.com/decimal/decbits.pdf, 21 February 2003.

[Cow03b] M. F. Cowlishaw. Decimal Floating-Point: Algorism for Computers. In

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH-

16’03), pages 104–111, Santiago de Compostela, Spain, 15–18 June 2003.

IEEE Computer Society Press.

244



BIBLIOGRAPHY

[Cow04] M. Cowlishaw. General Decimal Arithmetic Specification – Version 1.45.

http://www2.hursley.ibm.com/decimal/decarith.pdf, 2 August 2004.

[CS57] J. Cocke and D. W. Sweeney. High Speed Arithmetic in a Parallel Device.

Technical report, IBM Corp., February 1957.

[CSSW01] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb. A Decimal

Floating Point Specification. In Proceedings of the 15th IEEE Symposium on

Computer Arithmetic (ARITH-15’01), pages 147–154, Vail, Colorado, USA,

11–13 June 2001. IEEE Computer Society Press.

[Dix92] K. M. Dixit. New CPU Benchmark Suites from SPEC. In Proceedings of

the Thirty-Seventh International Conference on COMPCON, pages 305–310.

IEEE Computer Society Press, 1992.

[DO02] H. Q. Dao and V. G. Oklobdzija. Performance Comparison of VLSI Adders

Using Logical Effort. In Proceedings of the 12th International Workshop

on Integrated Circuit Design. Power and Timing Modeling, Optimization and

Simulation (PATMOS 2002), pages 25–34, Seville, Spain, 11–13 September

2002. Springer-Verlag.

[Don90] J. J. Dongarra. The LINPACK Benchmark: an Explanation. In Evaluating

Supercomputers. Strategies for Exploiting, Evaluating and Benchmarking Com-

puters with Advanced Architectures, pages 1–21. Chapman and Hall, Ltd.,

London, UK, 1990.

[EL87] M. D. Ercegovac and T. Lang. On-the-Fly Conversion of Redundant

into Conventional Representations. IEEE Transactions on Computers, C-

36(7):895–897, July 1987.

[EL89] M. D. Ercegovac and T. Lang. On-The-Fly Rounding for Division and

Square Root. In Proceedings of 9th IEEE Symposium on Computer Arithmetic

(ARITH-9’89), pages 169–173, Santa Monica, CA, USA, 6–8 September

1989. IEEE Computer Society Press.

[EL90] M. D. Ercegovac and T. Lang. Simple Radix-4 Division with Operands

Scaling. IEEE Transactions on Computers, 39(9):1204–1208, 1990.

245



BIBLIOGRAPHY

[EL92] M. D. Ercegovac and T. Lang. On-the-Fly Rounding. IEEE Transactions on

Computers, 41(12):1497–1503, 1992.

[EL94] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence

Algorithms and Implementations. Kluwer Academic Publishers Group, Nor-

well, MA, USA, and Dordrecht, The Netherlands, 1994.

[EL97] M. D. Ercegovac and T. Lang. Effective Coding for Fast Redundant Adders

using the Radix-2 Digit Set {0, 1, 2, 3}. In Proceedings of the 31th Asilomar

Conference on Signals, Systems and Computers (ASILOMAR’97), pages 1163–

1167, Pacific Grove, CA, USA, 2–5 November 1997.

[EL04] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann

Publishers, Inc., 2004.

[ELM91] M. D. Ercegovac, T. Lang, and P. Montuschi. On the Implementation

of a Parallel Algorithm for Higher Radix Division. In Proceedings of

5th Annual European Computer Conference (CompEuro’91), pages 603–607,

Bologna, Italy, May 1991. IEEE Computer Society Press.

[ES03] M. A. Erle and M. J. Schulte. Decimal Multiplication Via Carry-Save

Addition. In Proceedings of the IEEE International Conference on Application-

Specific Systems, Architectures, and Processors (ASAP’03), pages 348–359,

The Hague, The Netherlands, 24–26 June 2003. IEEE Computer Society.

[Eur99] European Commission Directorate General II. The Introduction of the

Euro and the Rounding of Currency Amounts. Note II/28/99-EN Euro

Papers No. 22., 32pp, DGII/C-4-SP(99) European Commission, Directorate

General II; Economic and Financial Affairs, Brussels, Belgium, February

1999.

[Fan87] J. Fandrianto. Algorithms for High Speed Shared Radix 4 Division and

Radix 4 Square Root. In Proceedings of the 8th IEEE Symposium on Computer

Arithmetic (ARITH-8’87), pages 73–79, Como, Italy, 19–21 May 1987. IEEE

Computer Society Press.

[Fan89] J. Fandrianto. Algorithms for High Speed Shared Radix 8 Division and

Radix 8 Square Root. In Proceedings of the 9th IEEE Symposium on Com-

246



BIBLIOGRAPHY

puter Arithmetic (ARITH-9’89), pages 68–75, Santa Monica, CA, USA, 6–8

September 1989. IEEE Computer Society Press.

[Fan90] J. Fandrianto. Method and Apparatus for Shared radix 4 Division and

Radix 4 Square Root. Weitek Corporation, US patent 4939686, 3 July 1990.

[Fer96] D. E. Ferguson. Non-Heuristic Decimal Divide Method and Apparatus.

Amalgamated Software of North America Inc, US patent 5587940, 24

December 1996.

[FL94] E. N. Frantzeskakis and K. J. R. Liu. A Class of Square Root and Divi-

sion Free Algorithms and Architectures for QRD-Based Adaptive Signal

Processing. IEEE Transactions on Signal Processing, 42(9):2455–2469, Sep-

tember 1994.

[Fou04] Python Software Foundation. Python 2.4.

http://www.python.org/2.4/index.html, 8 July 2004.

[Fre61] C. V. Freiman. Statistical Analysis of Certain Binary Division Algorithms.

IRE Proceedings, 49(1):91–103, January 1961.

[Gay90] D. M. Gay. Correctly Rounded Binary-Decimal and Decimal-Binary Con-

versions. Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories,

Murray Hill, NJ, USA, 1990.

[Gol64] R. Z. Goldschmidt. Applications of Division by Convergence. Master’s

thesis, Department of Electrical Engineering, Massachussetts Institute of

Technology, Cambridge, MA, USA, June 1964.

[Gol91] D. Goldberg. What Every Computer Scientist Should know about

Floating-Point Arithmetic. ACM Computing Surveys, 23(1):5–48, March

1991.

[Har03] D. Harris. A Taxonomy of Parallel Prefix Networks. In Proceedings of

the 37th Asilomar Conference on Signals, Systems and Computers (ASILO-

MAR’03), pages 2213–2217, Pacific Grove, CA, USA, 9–12 November 2003.

[HC87] T. Han and D. Carlson. Fast Area-Efficient VLSI Adders. In Proceedings

of the 8th IEEE Symposium on Computer Arithmetic (ARITH-8’87), pages

49–56, Como, Italy, 19–21 May 1987. IEEE Computer Society Press.

247



BIBLIOGRAPHY

[HJS00] M. D. Hill, N. P. Jouppi, and G. S. Sohi. Readings in Computer Architecture.

Morgan Kaufmann Publishers, Inc., 2000.

[HMH01] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of Wires. Proceedings

of the IEEE, 89(4):490–504, April 2001.

[HOH97] D. Harris, S. Oberman, and M. Horowitz. SRT Division Architectures and

Implementations. In Proceedings of the 13th IEEE Symposium on Computer

Arithmetic (ARITH-13’97), pages 18–25, Los Alamitos, CA, USA, July 1997.

IEEE Computer Society Press.

[HP90] J. L. Hennessy and D. A. Patterson. Appendix A: Computer Arithmetic.

In Computer Architecture: A Quantitative Approach, San Mateo, CA, USA,

1990. Morgan Kaufmann Publishers, Inc.

[HS03] D. Harris and I. Sutherland. Logical Effort of Carry Propagate Adders. In

Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers

(ASILOMAR’03), pages 873–878, Pacific Grove, CA, USA, 9–12 November

2003.

[HW02] Y. L. Hsu and S. J. Wang. Retiming-Based Logic Synthesis for Low-Power.

In Proceedings of the 2002 International Symposium on Low Power Electronics

and Design, pages 275–278. ACM Press, 2002.

[Hwa79] K. Hwang. Computer Arithmetic: Principles, Architecture, and Design. John

Wiley & Sons, New York, NY, USA, 1 edition, 1979.

[IEE85] IEEE. Std 754-1985 IEEE Standard for Binary Floating-Point Arithmetic.

Standards Committee of The IEEE Computer Society. 345 East 47th Street,

New York, NY 10017, USA, 1985.

[Jen98] T. A. Jensen. Alternative Implementations of SRT Division and Square

Root Algorithms. Master’s thesis, Department of Mathematics and Com-

puter Science (IMADA), University of South Denmark, Odense, Den-

mark, June 1998.

[Kal75] V. U. Kalaycioglu. Analysis and Synthesis of GEneralized-radix Additive Nor-

malization Division Techniques. PhD thesis, Department of Electrical and

248



BIBLIOGRAPHY

Computer Engineering, University of Michigan, Ann Arbor, Michigan,

USA, 1975.

[Kan96] V. Kantabutra. A New Algorithm for Division in Hardware. In Proceedings

of the 1996 International Conference on Computer Design, pages 551–556,

Austin, TX, USA, October 1996. IEEE Press.

[Kan97] V. Kantabutra. A New Theory for High-Radix Division in Hard-

ware: Two Direct, Comparison-Based Radix-8 Cases. Unpublished

http://math.isu.edu/∼vkantabu/radix8.pdf, August 1997.

[Kno99] S. Knowles. A Family of Adders. In Proceedings of the 14th IEEE Symposium

on Computer Arithmetic (ARITH-14’99), pages 30–34, Adelaide, Australia,

14–16 April 1999. IEEE Computer Society Press.

[Kor94] P. Kornerup. Digit-Set Conversions: Generalizations and Applications.

IEEE Transactions on Computers, 43(5):622–629, 1994.

[Kor99] P. Kornerup. Necessary and Sufficient Conditions for Parallel and Con-

stant Time Conversion and Addition. In Proceedings of the 14th IEEE

Symposium on Computer Arithmetic (ARITH-14’99), Adelaide, Australia,

14–16 April 1999. IEEE Computer Society Press.

[Kor01] I. Koren. Computer Arithmetic Algorithms. A. K. Peters, Ltd., Natick, MA,

USA, 2nd edition, November 2001.

[Kor02] P. Kornerup. Reviewing 4-to-2 Adders for Multi-Operand Addition. In

Proceedings of the IEEE International Conference on Application-Specific Sys-

tems, Architectures and Processors (ASAP’02), pages 218–229. IEEE Com-

puter Society, July 2002.

[Kor03] P. Kornerup. Revisiting SRT Quotient Digit Selection. In Proceeding of the

16th IEEE Symposium on Computer Arithmetic (ARITH-16’03), pages 38–45,

Santiago de Compostela, Spain, 15–18 June 2003. IEEE Computer Society.

[KS73] P. M. Kogge and H. S. Stone. A Parallel Algorithm for the Efficient Solution

of a general Class of Recurrence Equations. IEEE Transactions on Electronic

Computers, 22(8):783–791, August 1973.

249



BIBLIOGRAPHY

[KS04] R. D. Kenney and M. J. Schulte. Multioperand Decimal Addition. In

Proceedings of IEEE Computer Society Annual Symposium on VLSI Emerg-

ing Trends in VLSI Systems Design (ISVLSI’04), pages 251–253, Lafayette,

Louisiana, USA, 19–20 February 2004. IEEE Computer Society.

[LB99] T. Lang and J. D. Bruguera. Multilevel Reverse-Carry Computation for

Comparison and for Sign and Overflow Detection in Addition. In Proceed-

ings of the 1999 IEEE International Conference on Computer Design (ICCD99),

pages 73–79, Austin, TX, USA, 10–13 October 1999. IEEE Computer Soci-

ety.

[LF80] R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. Journal of The

ACM, 27(4):831–838, 1980.

[Mac61] O. L. MacSorley. High-Speed Arithmetic in Binary Computers. Proceedings

of the IRE, 49:67–91, January 1961.

[Man90] D. M. Mandelbaum. A Systematic Method for Division with High Average

Bit Skipping. IEEE Transactions on Computers, 39(1):127–130, 1990.

[MC92] P. Montuschi and L. Ciminiera. Design of a Radix 4 Division Unit with

Simple Selection Table. IEEE Transactions on Computers, 41(12):1606–1611,

1992.

[MC93] P. Montuschi and L. Ciminiera. Reducing Iteration Time when Result

Digit is Zero for Radix 2 SRT Division and Square Root with Redundant

Remainders. IEEE Transactions on Computers, 42(2):239–246, Feb 1993.

[MC94] P. Montuschi and L. Ciminiera. Over-Redundant Digit Sets and the De-

sign of Digit-By-Digit Division Units. IEEE Transactions on Computers,

43(3):269–277, 1994.

[MDG93] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for

Low Power. In Proceedings of the 1993 IEEE/ACM International Conference

on Computer-Aided Design, pages 398–402. IEEE Computer Society Press,

1993.

250



BIBLIOGRAPHY

[Met62] G. Metze. A Class of Binary Divisions Yelding Minimally Represented

Quotients. IRE Transactions on Electronic Computers, EC-11(6), December

1962.

[Mic01] Sun Microsystems. JSR-000013 Decimal Arithmetic

Enhancement for the Java Programming Language.

http://jcp.org/aboutJava/communityprocess/review/jsr013/index.html, 25

August 2001.

[MMH93] S. E. McQuillan, J. V. McCanny, and R. Hamill. New Algorithms and

VLSI Architectures for SRT Division and Square Root. In Proceedings of the

10th IEEE Symposium on Computer Arithmetic (ARITH-11’93), pages 80–86,

Windsor, Canada, June 1993. IEEE Computer Society Press, Los Alamitos,

CA.

[Mol95] C. B. Moler. A Tale of Two Numbers. SIAM News, 28(1):16–16, January

1995.

[Nad56] M. Nadler. A High-Speed Electronic Arithmetic Unit for Automatic Com-

puting Machines. Alta Technica (Prague), (6):464–478, 1956.

[Nan99] A. Nannarelli. Low Power Division and Square Root. PhD Dissertation,

Department of Electrical and Computer Engineering, University of Cali-

fornia, Irvine, USA, June 1999.

[Nav97] Z. Navabi. VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill,

2nd edition, 1997.

[NK97] A. M. Nielsen and P. Kornerup. Generalized Base and Digit Set Conver-

sion. In GAMM/IMACS International Symposium on Scientific Computing,

Computer Arithmetic and Validated Numerics, pages XII–8–11, Ecole Nor-

male Superieure, Lyon, France, 10–12 September 1997.

[NL03] H. Nikmehr and C. C. Lim. A New On-the-fly Summation Algorithm.

In Proceedings of 8th Asia-Pacific Computer Systems Architecture Conference

ACSAC 2003, volume 2823 of Lecture Notes in Computer Science, pages

258–267, Aizu-Wakamatsu, Japan, 23–26 September 2003.

251



BIBLIOGRAPHY

[NM96] A. M. Nielsen and J. M. Muller. Borrow-Save Adders for Real and Com-

plex Number Systems. In Proceedings of 2nd Conference on Real Numbers

and Computers, pages 121–137, Marseille, France, April 1996.

[Obe97] S. F. Oberman. Design Issues in High Performance Floating Point Arithmetic

Units. PhD thesis, Stanford University, Electrical and Electronic Depart-

ment, January 1997.

[OF95a] S. F. Oberman and M. J. Flynn. An Analysis of Division Algorithms and

Implementations. Technical Report CSL-TR-95-675, Departments of Elec-

trical Engineering and Computer Science, Stanford University, Stanford,

CA, USA, July 1995.

[OF95b] S. F. Oberman and M. J. Flynn. Measuring the Complexity of SRT Tables.

Technical Report CSL-TR-95-679, Computer Systems Laboratory, Stanford

University, Stanford, CA, USA, November 1995.

[OF97a] S. F. Oberman and M. J. Flynn. Design Issues in Division and Other

Floating-Point Operations. IEEE Transactions on Computers, 46(2):154–161,

February 1997.

[OF97b] S. F. Oberman and M. J. Flynn. Division Algorithms and Implementations.

IEEE Transactions on Computers, 48(6):833–854, August 1997.

[Omo94] A. R. Omondi. Computer Arithmetic Systems: Algorithms, Architecture, and

Implementation. Prentice Hall, Inc, 1994.

[OOI+87] T. Ohtsuki, Y. Oshima, S. Ishikawa, K. Yabe, and M. Fukuta. Apparatus

for Decimal Multiplication. Hitachi Ltd., Japan, US patent 4677583, 30

June 1987.

[OQF94] S. F. Oberman, N. Quach, and M. J. Flynn. The Design and Implementation

of a High-Performance Floating-Point Divider. Technical Report CSL-

TR-94-599, Departments of Electrical Engineering and Computer Science,

Stanford University, Stanford, CA, USA, January 1994.

[OSY+95] N. Ohkubo, M. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nak-

agome. A 4.4 ns CMOS 54 × 54-b Multiplier Using Pass Transistor Multi-

plexer. IEEE Journal of Solid State Circuits, 30(3):251–257, 1995.

252



BIBLIOGRAPHY

[OZHDK03] V. G. Oklobdzija, B. R. Zeydel, S. Mathew H. Dao, and R. Krishnamurthy.

Energy-Delay Estimation Technique for High-Performance Microproces-

sor. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic

(ARITH-16’03), pages 272–279, Santiago de Compostela, Spain, 15–18

June 2003. IEEE Computer Society Press.

[Par88] B. Parhami. Carry-Free Addition of Recoded Binary Signed-Digit Num-

bers. IEEE Transactions on Computers, C-37(11):1470–1476, November 1988.

[Par90] B. Parhami. Generalized signed-digit number systems: A unifying frame-

work for redundant number representations. IEEE Transactions on Com-

puters, C-39(1):89–98, January 1990.

[Par97] K. K. Parhi. Fast Low-Energy VLSI Binary Addition. In Proceedings of IEEE

Conference on Computer Design, pages 676–684, Austin, TX, USA, October

1997.

[Par00] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, Walton Street, Oxford OX2 6DP, UK, 2000.

[Par01] B. Parhami. Precision Requirements for Quotient Digit Selection in High-

Radix Division. In Proceedings of the 35th Asilomar Conference on Signals,

Systems and Computers (ASILOMAR’01), pages 1670–1673, Pacific Grove,

CA, USA, 4–7 November 2001.

[Par02] B. Parhami. Private Communication, 3 January 2002.

[PGK99] D. S. Phatak, T. Goff, and I. Koren. Redundancy Management in Arith-

metic Precessing via Redundant Binary Representations. In Proceedings

of the 33th Asilomar Conference on Signals, Systems and Computers (ASILO-

MAR’99), pages 1475–1479, Pacific Grove, CA, USA, 24–27 October 1999.

[PGK01] D. S. Phatak, T. Goff, and I. Koren. Constant-Time Addition and Simulta-

neous Format Conversion Based on Redundant Binary Representations.

IEEE Transactions on Computers, 50(11):1267–1278, 2001.

[PK94] D. S. Phatak and I. Koren. Hybrid Signed-Digit Number Systems: A uni-

fied Framework for Redundant Number Representations with Bounded

253



BIBLIOGRAPHY

Carry Propagation Chains. IEEE Transactions on Computers, 43(8):880–891,

August 1994.

[PK99] D. S. Phatak and I. Koren. Intermediate Variable Encodings That Enable

Multiplexor-Based Implementations of Two Operand Addition. In Pro-

ceedings of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14’99),

Adelaide, Australia, 14–16 April 1999. IEEE Computer Society Press.

[PPB03] D. Piso, J. A. Pineiro, and J. D. Bruguera. Analysis of the Impact of

Different Methods for Division/Square Root Computation in the Perfor-

mance of a Superscalar Microprocessor. Journal of Systems Architecture,

49(12–15):543–555, December 2003.

[PS95] K. K. Parhi and H. R. Srinivas. A Fast Radix-4 Division Algorithm and its

Architecture. IEEE Transactions on Computers, 44(6):826–831, 1995.

[PZ95] J. A. Prabhu and G. B. Zyner. 167 MHz Radix-8 Divide and Square

Root Using Overlapped Radix-2 Stages. In Proceedings of the 12th IEEE

Symposium on Computer Arithmetic (ARITH-12’95), pages 155–162, Bath,

UK, 19–21 July 1995. IEEE Computer Society Press.

[QF92] N. T. Quach and M. J. Flynn. A Radix-64 Floating-Point Divider. Technical

report CSL-TR-92-529, Computer Systems Laboratory, Stanford Univer-

sity, Stanford, CA, USA, June 1992.

[QTF91] N. Quach, N. Takagi, and M. J. Flynn. On Fast IEEE Rounding. Technical

Report CSL-TR-91-459, Computer Systems Laboratory, Stanford Univer-

sity, Stanford, CA, USA, January 1991.

[Qua93] N. Quach. Reducing the Latency of Floating-Point Arithmetic Operations.

PhD thesis, Departments of Electrical Engineering and Computer Science,

Stanford University, Stanford, CA, USA, 1993.

[RCN02] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.

Prentice Hall, 2nd edition, 2002.

[RH03] E. Rice and R. Hughey. A New Iterative Structure for Hardware Division:

The Parallel Paths Algorithm. In Proceedings of the 16th IEEE Symposium on

254



BIBLIOGRAPHY

Computer Arithmetic (ARITH-16’03), pages 54–62, Santiago de Compostela,

Spain, 15–18 June 2003. IEEE Computer Society Press.

[Rob58] J. E. Robertson. A New Class of Digital Division Methods. IRE Transactions

on Electronic Computers, EC-7(3):88–92, September 1958.

[RSS96] H. Rueß, N. Shankar, and M. K. Srivas. Modular Verification of SRT

Division. In Computer-Aided Verification, CAV’96, volume 1102 of Lec-

ture Notes in Computer Science, pages 123–134, New Brunswick, NJ, USA,

July/August 1996. Springer-Verlag.

[Rub94] S. M. Rubin. Computer Aids for VLSI Design. Addison-Wesley Publishing

Company, 2nd edition, 1994.

[Sco85] N. R. Scott. Computer Number Systems and Arithmetic. Prentice-Hall, Upper

Saddle River, NJ 07458, USA, 1985.

[SCS+02] E. M. Schwarz, M. A. Check, C. L. K. Shum, T. Koehler, S. B. Swaney,

J. D. MacDougall, and C. A. Krygowski. The Microarchitecture of the

IBM eServer z900 Processor. IBM Journal of Research and Developement,

46(4/5):381–394, July/September 2002.

[SHL98] A. Srinivasan, G. D. Huber, and D. P. LaPotin. Accurate Area and Delay

Estimation from RTL Descriptions. IEEE Transactions on Very Large Scale

Integration Systems, 6(1):168–172, March 1998.

[Skl60] J. Sklansky. Conditional-Sum Addition Logic. IRE Transactions on Elec-

tronic Computers, EC-9:226–231, 1960.

[SL96] P. Soderquist and M. Leeser. Area and performance tradeoffs in floating-

point divide and square-root implementations. ACM Computing Surveys

(CSUR), 28(3):518–564, 1996.

[SMN+02] V. Stojanovic, D. Markovic, B. Nikolic, M. A. Horowitz, and R. W. Broder-

sen. Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing

and Supply Voltage Optimization. In Proceedings of 28th European Solid-

State Circuits Conference (ESSCIRC’2002), pages 211–214, Florence, Italy,

24–26 September 2002.

255



BIBLIOGRAPHY

[SP92] H. R. Srinivas and Keshab K. Parhi. A Fast VLSI Adder Architecture.

IEEE Journal of Solid-State Circuits, 27(5):761–768, May 1992.

[SPM97] H. R. Srinivas, K. K. Parhi, and L. A. Montalvo. Radix 2 Division with

Over-Redundant Quotient Selection. IEEE Transactions on Computers,

46(1):85–92, 1997.

[SS91] I. E. Sutherland and R. F. Sproull. Logical Effort: Designing for Speed on

the Back of an Envelope. In Proceedings of the Advanced Research in VLSI,

pages 1–16, Santa Cruz, CA, USA, 1991.

[SSH99] I. E. Sutherland, R. F. Sproull, and D. Harris. Logical Effort: Designing Fast

CMOS Circuits. Morgan Kaufman Publishers, Inc., San Francisco, CA,

USA, 1999.

[SW71] M. S. Schmookler and A. Weinberger. High Speed Decimal Addition.

IEEE Transactions on Computers, C-20(8):862–867, August 1971.

[SYZ89] B. Shirazi, D. Y. Y. Yun, and C. N. Zhang. RBCD: Redundant Binary

Coded Decimal Adder. IEE Proceedings - Computers and Digital Techniques,

136(2):156–160, March 1989.

[Tam04] H. Tamura. CMOS High Speed I/Os - Background, Circuits, and Future

Trends. Presented at the IEEE Toronto Section, University of Toronto,

Toronto, Canada, 26 November 2004.

[Tan78] K. G. Tan. The Theory and Implementation of High-Radix Division. In

Proceedings of the 4th IEEE Symposium on Computer Arithmetic (ARITH-

4’78), pages 154–163, Santa Monica, CA, USA, 25–26 October 1978.

[Tay85] G. S. Taylor. Radix 16 SRT Dividers with Overlapped Quotient Selection

Stages. In Proceedings of the 7th IEEE Symposium on Computer Arithmetic

(ARITH-7’85), pages 64–71. IEEE Computer Society Press, 1985.

[Tho97] M. A. Thornton. Signed Binary Addition Circuitry with Inherent Even

Parity Outputs. IEEE Transactions on Computers, 46(7):811–816, 1997.

[TO91] A. Tsang and M. Olschanowsky. A Study of Database 2 Customer Queries.

Technical Report TR-03.413, IBM Santa Teresa Laboratory, San Jose, CA,

USA, April 1991.

256



BIBLIOGRAPHY

[Toc58] K. D. Tocher. Techniques of Multiplication and Division for Automatic

Binary Computers. Quarterly Journal of Mechanics and Applied Mathematics,

11:364–384, 1958.

[UKY84] M. Uya, K. Kaneko, and J. Yasui. A CMOS Floating-Point Multiplier. IEEE

Journal of Solid State Circuits, SC-19(5):697–702, October 1984.

[VVDJ90] A. Vandemeulebroecke, E. Vanzieleghem, T. Denayer, and P. G. A. Jespers.

A New Carry-Free Division Algorithm and its Application to a Single-

Chip 1024-b RSA Processor. IEEE Journal of Solid-State Circuits, 25(3):748–

755, June 1990.

[Wad66] R. M. Wade. A Carry-Independent Quaternary Division Schem. Technical

Report TR 00.1531, IBM Poughkeepsie, IBM Corporation, Poughkeepsie,

NY, USA, September 1966.

[Wei89] N. Weiderman. Hartstone: Synthetic Benchmark Requirements for Hard

Real-Time Applications. Technical Report CMU/SEI-89-TR-23 (ESD-89-

TR-31), Software Engineering Institute, Carnegie Mellon University, June

1989.

[WH86] T. E. Williams and M. Horowitz. SRT Division Diagrams and Their Usage

in Designing Custom Integrated Circuits for Division. Technical Report

CSL-TR-87-326, Stanford University, Stanford, CA, USA, 1986.

[WH04] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems

Perspective. Addison-Wesley, 3rd edition, 2004.

[WL61] J. B. Wilson and R. S. Ledley. An Algorithm for Rapid Binary Division.

IRE Transactions on Electronic Computers, EC-10:662–670, 1961.

[WS04] L. K. Wang and M. J. Schulte. Decimal Floating-Point Division Using

Newton-Raphson Iteration. In Proceedings of the IEEE International Confer-

ence on Application-Specific Systems, Architectures, and Processors (ASAP’04),

pages 84–95, Galveston, TX, USA, 27–29 September 2004. IEEE Computer

Society.

257



BIBLIOGRAPHY

[YOI+87] H. Yabe, Y. Oshima, S. Ishikawa, T. Ohtsuki, and M. Fukuta. Binary Coded

Decimal Number Division Apparatus. Hitachi Ltd, US patent 4635220, 6

January 1987.

[YOW01] X. Y. Yu, V. G. Oklobdzija, and W. W. Walker. Application of Logical

Effort on Design of Arithmetic Blocks. In Proceedings of the 35th Asilomar

Conference on Signals, Systems and Computers (ASILOMAR’01), pages 872–

874, Pacific Grove, CA, USA, 4–7 November 2001.

[YWK87] A. Yamaoka, K. Wada, and K. Kuriyama. Coded Decimal Non-Restoring

Divider. Hitachi Ltd, US patent 4692891, 8 September 1987.

[Zim98] R. Zimmermann. Binary Adder Architectures for Cell-Based VLSI and their

Synthesis. PhD Dissertation, Swiss Federal Institute of Technology Zurich,

Hartung-Gorre Verlag, 1998.

258


