COMPUTER-ANIMATED INSTRUCTION AND STUDENTS' ACHIEVEMENT GAINS IN ELECTROCHEMISTRY

Othman Talib. B.Sc. (Universiti Kebangsaan Malaysia),
M.Sc. (Universiti Putra Malaysia)

Research portfolio submitted in fulfillment of the requirements for the degree of Doctor of Education, The University of Adelaide

December 2006
ABSTRACT

This study compares the effects of computer-animated instruction (CAAnI) and conventional-based instruction (CBI) on students' conceptual change. The subjects, 85 matriculation students from the International Islamic University (IIU), Malaysia were taught the fundamentals of electrochemistry. They were randomly assigned to a CAAnI (N=45) or a CBI group (N=40). The CAAnI group received lessons through computer-animated presentation and collective discussions, while the CBI group received lessons through the teacher's explanation and presentation using overhead prepared transparencies. A combination of questionnaires, pre-test and post-test scores, and interview transcripts was used to analyze subjects' conceptual change and perceptions towards CAAnI and CBI respectively. The questionnaire analysis revealed that students in the CBI group considered the teacher's direct transmission approach aided by transparencies with emphasis on explaining simple facts as the most helpful aspect to improve their understanding of electrochemistry concepts, while the students in the CAAnI group clearly believed that the systematic step-by-step discrete sequences of animation as the most helpful aspect of their teacher's presentation. The overall pre-test and post-test analyses revealed that the students in the CAAnI group experienced stronger conceptual change compared to the subjects in the CBI group. The answers given by the interviewees in the CAAnI group improved dramatically in the post-test, thus showing evidence of their stronger conceptual change in comparison to the students who were exposed to the CBI. The findings also revealed that subjects in both groups experienced weak conceptual change as they failed to deeply understand the structure of some conceptually complex questions. However, the overall answers given by the CAAnI
group in the post-test and during interviews tended to display more correct logical sequence in their use of concepts, thus showing evidence of their stronger conceptual change in comparison to the students who were exposed to the CBI. These results show clear evidence that the CAnI approach is more successful in the fostering of higher order learning than the conventional CBI, and thus supports the assertion that CAnI is an effective instructional means to enhance students' strong conceptual change and deeper understanding.
TABLES OF CONTENTS

DECLARATION ... i
ABSTRACT .. ii
ACKNOWLEDGEMENTS .. iv
TABLES OF CONTENTS ... v
LIST OF TABLES ... vii
LIST OF FIGURES .. x

PART
BACKGROUND OF THE STUDY ... 1
STATEMENT OF PROBLEM ... 9
RATIONALE FOR STUDY .. 14
THEORETICAL FRAMEWORK ... 16
OBJECTIVES OF THE STUDY .. 23
RESEARCH QUESTIONS ... 25
OPERATIONAL DEFINITION OF TERMS 26
LIMITATIONS OF THE STUDY ... 28
ORGANIZATION OF THE RESEARCH PORTFOLIO 30

PART I
LITERATURE REVIEW .. 32
1.0 Constructivist Theory of Learning 32
1.1 Important Aspects of Conceptual Change 42
1.2 Computers in Science Education 56
1.3 Reasons for Animation ... 59
1.4 Research Related to Electrochemistry 65
1.5 Pedagogical Implications for Conceptual Change 68
1.6 Critiques of Conceptual Change 72
Summary of the Literature .. 74
PART II
DEVELOPMENT OF THE COMPUTER-ANIMATED INSTRUCTION

2.0 Special Features ... 77

2.1 Development of CANi ... 79

2.2 Orientation and Types of Animations .. 84

2.3 Lesson Plan .. 92

PART III .. 94

QUANTITATIVE ANALYSIS ... 94

3.0 Introduction .. 94

3.1 Research Design .. 94

3.2 Procedure ... 113

3.3 Parametric Statistical Test .. 117

3.4 Results of Pre-test and Post-test ... 124

3.5 Results of Questionnaire .. 147

3.6 Discussion and Conclusion ... 158

PART IV .. 161

QUALITATIVE ANALYSIS .. 161

4.0 Introduction .. 161

4.1 Focus of Analysis .. 161

4.2 Open-ended Questionnaire ... 162

4.3 Interview .. 164

4.4 Sampling Procedure .. 173

4.5 Procedures .. 174

4.6 Results and Discussion ... 176

4.7 Conclusions from the qualitative analyses ... 247
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY AND CONCLUSION TO PORTFOLIO</td>
<td>252</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>252</td>
</tr>
<tr>
<td>SUMMARY OF THEORETICAL BACKGROUND</td>
<td>252</td>
</tr>
<tr>
<td>CONCLUSIONS OF THE STUDY</td>
<td>254</td>
</tr>
<tr>
<td>RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>259</td>
</tr>
<tr>
<td>APPENDIX A: LESSON PLAN</td>
<td>262</td>
</tr>
<tr>
<td>APPENDIX B: POST-TEST</td>
<td>266</td>
</tr>
<tr>
<td>APPENDIX C: SUMMARY OF SHAPIRO- WILK 'S TEST</td>
<td>269</td>
</tr>
<tr>
<td>APPENDIX D: LEVENE'S TEST</td>
<td>270</td>
</tr>
<tr>
<td>APPENDIX E: SAPIRO-WILK'S TEST</td>
<td>271</td>
</tr>
<tr>
<td>APPENDIX F: ASSUMPTION OF ANCOVA</td>
<td>273</td>
</tr>
<tr>
<td>APPENDIX G: PAIRED-SAMPLES STATISTICS FOR CANL GROUP</td>
<td>276</td>
</tr>
<tr>
<td>APPENDIX H: PAIRED-SAMPLES STATISTICS FOR CBI GROUP</td>
<td>277</td>
</tr>
<tr>
<td>APPENDIX I: INTERVIEW TRANSCRIPTS</td>
<td>278</td>
</tr>
<tr>
<td>APPENDIX J: SCORES</td>
<td>296</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>299</td>
</tr>
</tbody>
</table>