THE MARFAN SYNDROME AND RELATED PHENOTYPES

Delineation of various phenotypes and analysis of the fibrillin gene (FBN1) for putative mutations

BY -

Lesley Carole Adès (MBBS, FRACP, clinical geneticist)

A thesis submitted for the Degree of Doctor of Medicine

Department of Paediatrics, Women's and Children's Hospital,
The University of Adelaide

November 1995
ABSTRACT

THE MARFAN SYNDROME AND RELATED PHENOTYPES

Delineation of various phenotypes and analysis of the fibrillin gene (FBN1) for putative mutations.

Lesley Carole Adbs
University of Adelaide
Submitted for the degree of Doctor of Medicine November 1995

Marfan syndrome is an autosomal dominant connective tissue disorder involving multiple organ systems which, if untreated, shortens life expectancy mainly because of cardiovascular complications. It has an incidence of at least 1 in 5,000 live births. The phenotype represents a continuum, one end of which merges with the normal population. The disease is caused by mutations in the FBN1 gene, which encodes the fibrillin-1 protein. Fibrillin, a component of extracellular matrix microfibrils, has a highly repetitive structure including forty-seven EGF-like motifs, seven cysteine-rich TGF-β1 BP motifs and two hybrid motifs.

The clinical and molecular study of patients with unequivocal Marfan syndrome, or an undiagnosed connective tissue disorder that has some features in common with Marfan syndrome, forms the basis of this thesis. The clinical features of these forty-eight patients are described. The phenotype of six Marfan patients in whom a FBN1 mutation was determined, patients with Shprintzen-Goldberg syndrome or Furlong syndrome (two Marfanoid-craniosynostosis disorders), and two children with congenital aneurysms of the great vessels, are presented.

The molecular screening of 44% of the FBN1 gene coding sequence for putative mutations is detailed. Five novel heterozygous single base pair changes in the FBN1 gene were identified in five separate Marfan syndrome families. These were G2113A, G2132A, T3163G, G3458A and A7868C. These result in the amino acid substitutions A705T, C711Y, C1055G, C1152Y and H2629P, respectively. Three of the characterised mutations, C711Y, C1152Y and C1055G result in replacement of cysteine by another amino acid; the latter two occur within EGF-like motifs in exon 27 and 25, respectively. The A705T mutation occurs at exon 16 adjacent to the GT splice site. The H2629P mutation occurs immediately adjacent to one of the conserved cysteines in the second-to-last EGF-like domain. The A705T and C711Y mutations at exon 16 and 17, respectively, are the first documented in the second TGF-β1 BP-like motif. Polymorphisms, believed to be normal variants, were identified in exons 15 and 28 of FBN1 in nine patients.
CONTENTS

Abstract i
Statement ii
Acknowledgements iii
Glossary of abbreviations iv
Contents vii

Chapter One. Literature Review 1

1.1 Background

1.1.1 Historical Perspective and Introduction 2
1.1.2 Elastic Fibres, Elastin and Microfibrils 3
1.1.3 Fibrillin 6
1.1.4 Identification of the Genetic Defect in Marfan Syndrome 7
1.1.5 Protein Structure of Fibrillin 8
 1.1.5.1 General overview 8
 1.1.5.2 The proline-rich region 11
 1.1.5.3 The RGD (cell attachment) sequence 12
 1.1.5.4 EGF-like motifs 12
 1.1.5.5 TGF-β1 BP motifs 14
 1.1.5.6 Hybrid motifs 16
 1.1.5.7 The carboxy-terminal region 16
1.1.6 The Fibrillin Gene 16
 1.1.6.1 Alternatively spliced exons at the 5' end of FBN1 17
 1.1.6.2 The promotor region 17
1.1.7 Microfibrillar Structure and Assembly 19
1.1.8 Fibrillin Biosynthesis, Metabolism and Extracellular Assembly 21

1.2 Marfan Syndrome: The Clinical Entity

1.2.1 Cardiovascular Features 23
1.2.2 Ocular Features 26
1.2.3 Skeletal Features 26
1.2.4 Other Features 26
1.2.5 Diagnosis 28
1.2.6 Differential Diagnosis 28
1.2.7 Intrafamilial Variability in Marfan Syndrome 31
1.2.8 Genetic Heterogeneity in Marfan Syndrome 31
1.2.9 Presymptomatic and Prenatal Diagnosis 31
1.2.10 Clinical Management 32

1.3 FBN1 Gene Mutations: Their Characterisation and Mechanisms of Action

1.3.1 FBN1 Gene Mutation Detection 34
1.3.2 Missense Mutations 35
1.3.3 Mutations Leading to a Truncated Protein 37
1.4 Genotype-Phenotype Correlations
1.4.1 Spectrum of Phenotypes Associated with Fibrillin Gene Mutations
 1.4.1.1 Neonatal Marfan syndrome
 1.4.1.2 Autosomal dominant ectopia lentis
 1.4.1.3 Annuloaortic ectasia, mitral valve prolapse syndrome and the MASS phenotype
 1.4.1.4 Familial aortic aneurysms
 1.4.1.5 Isolated skeletal features
 1.4.1.6 Congenital contractural arachnodactyly
1.4.2 Spectrum of Phenotypes Associated with Fibrillin Protein Defects
 1.4.2.1 Idiopathic scoliosis
 1.4.2.2 Bovine Marfan syndrome
1.4.3 Extending the Search
 1.4.3.1 Marfanoid-craniosynostosis syndromes

1.5 Bovine and Other Animal Model Data
 1.5.1 Bovine Model
 1.5.2 Murine Model

1.6 Towards a Diagnostic Test

1.7 Future Directions

1.8 Aims of the Thesis

Chapter Two. Materials and Methods

2.1 Materials
 2.1.1 Sources and Consumables
 2.1.2 Solution and Equipment Sterilisation
 2.1.3 Precautions Against Ribonucleases

2.2 General Methods: Sample Preparation
 2.2.1 Isolation of Peripheral Lymphocyte DNA
 2.2.2 Extraction of Total RNA
 2.2.3 Reverse Transcription of RNA and PCR Amplification of cDNA
 2.2.4 Spectrophotometric Estimation of Nucleic Acid Concentration

2.3 Specific Methods
 2.3.1 Skin Biopsy Collection
 2.3.2 Fibroblast Tissue Culture
 2.3.3 Fibrillin Pulse-Chase Analysis
 2.3.4 Preparation and Electrophoretic Analysis of Fibrillin
 2.3.5 Types I and III Collagen Screening
 2.3.6 Fluorescent In Situ Hybridisation (FISH)

2.4 The Polymerase Chain Reaction (PCR)
 2.4.1 Standard Reaction
2.5 Oligonucleotide Primers
 2.5.1 Oligonucleotide Primer Synthesis
 2.5.2 Oligonucleotide Cleavage and Deprotection
 2.5.3 Oligonucleotide Purification
 2.5.4 MgCl₂ Optimisation of Oligonucleotide Primers
 2.5.5 Restriction Enzyme Digestion of PCR Products

2.6 PCR Product Detection

2.7 Single Strand Conformational Polymorphism (SSCP) Analysis and Electrophoresis
 2.7.1 Preparation of Samples for SSCP Analysis: Protocol I
 2.7.2 SSCP Analysis and Electrophoresis: Protocol I
 2.7.3 Silver Staining Technique
 2.7.4 Preparation of Samples for SSCP Analysis: Protocol II
 2.7.5 Modification to the Preparation of Samples for SSCP Analysis: Protocol II
 2.7.6 SSCP Analysis and Electrophoresis: Protocol II

2.8 Population Screening And Polymorphism Detection

2.9 Preparation of, and Direct DNA Sequencing of PCR Products

2.10 Sequencing Gel and Electrophoresis

2.11 Autoradiography

2.12 The Subjects
 2.12.1 Patient Ascertainment and Research

Chapter 3. Clinical Results

3.1 Clinical Results
 3.1.1 Patient Classification and General Characteristics

3.2 Clinical Features of Group 1 Patients
 3.2.1 Reclassification from Group 2 to Group 1
 3.2.2 Clinical Features in Group 1 Patients with a Defined FBN1 Gene Mutation

3.3 Clinical Features of Group 2 Patients
 3.3.1 Furlong syndrome
 3.3.2 Three Unusual Group 2 Patients
 3.3.3 Reclassification from Group 1 to Group 2

3.4 Response to Questionnaire

3.5 Discussion
Chapter 4. Laboratory Results

4.1 Laboratory Results
4.1.1 Identification of SSCP Band Shifts in the FBN1 Gene in Group 1 Patients
4.1.2 False Positive Results Obtained by RT-PCR and SSCP of the FBN1 Gene
4.1.3 Identification of FBN1 Gene Polymorphisms by SSCP and Genomic Screening

4.2 Mutation Detection in Group 1 Patients

4.3 Sequencing of Putative Mutations in the FBN1 Gene in Group 1 Patients

4.4 SSCP Screening of the FBN1 Gene in Group 2 Patients

4.5 Fibrillin Pulse Chase Analysis

4.6 Collagen Screening

4.7 Special Studies

4.8 Discussion
4.8.1 Current Methods of Mutation Detection
4.8.2 Clinical Utility and Success of Mutation Detection
4.8.3 Technical Issues Regarding SSCP Gels and RT-PCR
4.8.4 Technical Issues Regarding Direct Sequencing of Genomic and Plasmid DNA
4.8.5 Detection of Band Shifts by SSCP
4.8.6 Genotype-Phenotype Correlation in Group 1 Patients
4.8.6.1 FBN1 Mutations: An Overview
4.8.7 Genotype-Phenotype Correlation in Patients Without Marfan Syndrome
4.8.8 Special Studies

Chapter Five. Summary and Concluding Remarks

5.1 Summary
5.1.1 The Research
5.1.2 Observations Based on the Clinical Studies of Group 1 Patients
5.1.3 Clinical Observations Based on the Studies of Group 2 Patients

5.2 Concluding Remarks

5.3 Current Knowledge and Future Directions
References

Appendix 1A Amino Acid Abbreviation Table
Appendix 2A Medical Record: Connective Tissue Disorder
Appendix 2B Invitation to Participate in a Research Study: Definition of Fibrillin Gene Mutations in Marfan Syndrome
Appendix 2C Consent Form 1: Participation in Study
Consent Form 2: Blood Collection
Consent Form 3: Skin Biopsy
Consent Form 4: Permission to use Clinical Photographs for Educational Purposes and Scientific Articles
Appendix 2D South Australian Marfan Syndrome Research Project Updates (December 1993 and January 1995)
Appendix 3 Publications Arising From Thesis
Appendix 3A Published manuscript
Appendix 3B Manuscripts in press or submitted for publication