ELECTRODERMAL INDICES OF INFORMATION PROCESSING AND FUNCTIONAL CEREBRAL ASYMMETRY IN SCHIZOPHRENIA.
A COMPARISON WITH AFFECTIVE DISORDER

VAUGHAN J. CARR
M.B.,B.S, F.R.C.P.(C), F.R.A.N.Z.C.P.

Thesis submitted to The University of Adelaide
in fulfilment of the requirement for the degree of Doctor of Medicine

Prepared in
The Department of Psychiatry
The University of Adelaide
May 1987.
CONTENTS

Summary viii
Certification x
Consent xi
Acknowledgements xii

1. Introduction 1

2. Symptomatology 5
 2.1 The problem of heterogeneity 6
 2.2 Patterns of recovery from schizophrenic psychosis 11
 2.2.1 The continuum model 11
 2.2.2 The categorical model 29
 2.2.3 Postpsychotic depression 42
 2.3 A formulation 45
 2.3.1 Psychotic disorganization 46
 2.3.2 Inhibition 47
 2.3.3 Activation 48
 2.3.4 Organizing phenomena 49
 (a) Perceptual organization 49
 (b) Ideational organization 50
 (c) Delusional organization 50
2.3.5 Dysphoria

2.4 Summary

3. Electrodermal Activity

3.1 Neural mechanisms and the characteristics of electrodermal activity

3.1.1 Control of electrodermal activity

3.1.2 Characteristics of electrodermal activity

3.1.2.1 Basic concepts

3.1.2.2 The orienting response

3.1.3 Model of the orienting response

3.2 Electrodermal activity in schizophrenia

3.2.1 Orienting-arousal

3.2.2 Lateral asymmetry

3.2.3 Symptomatology

3.3 Electrodermal activity in depressive disorders

3.3.1 Orienting-arousal

3.3.2 Lateral asymmetry

3.3.3 Symptomatology

3.4 Electrodermal activity and drug effects

4. Theory and Hypotheses

4.1 A model of schizophrenia

4.2 Hypotheses
4.2.1 Schizophrenia 105
4.2.1.1 Toxic arousal 105
4.2.1.2 Orienting activity 105
4.2.1.3 Response amplitude 106
4.2.1.4 Lateral asymmetry 106
4.2.1.5 Symptomatology 107
4.2.2 Depression 108
4.2.2.1 Toxic arousal 108
4.2.2.2 Orienting activity 108
4.2.2.3 Lateral asymmetry 109
4.2.2.4 Symptomatology 109

5. Method
5.1 Subjects 111
5.2 Rating instruments 112
5.2.1 Demographic and background data 112
5.2.2 Hand preference 114
5.2.3 Symptomatology 115
5.3 Psychophysiological apparatus 116
5.3.1 Laboratory 117
5.3.2 Skin conductance 118
5.3.3 Stimulus conditions 119
5.4 Procedure 120
5.4.1 Demographic and clinical assessment 120
5.4.2 Psychophysiological testing 121
<table>
<thead>
<tr>
<th>6. Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Comparison of group characteristics</td>
<td>127</td>
</tr>
<tr>
<td>6.2 Schizophrenia</td>
<td>136</td>
</tr>
<tr>
<td>6.2.1 Toxic arousal</td>
<td>126</td>
</tr>
<tr>
<td>6.2.2 Orienting activity</td>
<td>138</td>
</tr>
<tr>
<td>6.2.3 Response amplitude</td>
<td>145</td>
</tr>
<tr>
<td>6.2.4 Lateral asymmetry</td>
<td>147</td>
</tr>
<tr>
<td>6.2.5 Symptomatology</td>
<td>156</td>
</tr>
<tr>
<td>6.2.6 Factor analysis</td>
<td>175</td>
</tr>
<tr>
<td>6.2.7 Effects of age, sex and drug status</td>
<td>180</td>
</tr>
<tr>
<td>6.2.8 Summary of findings</td>
<td>182</td>
</tr>
<tr>
<td>6.3 Depression</td>
<td>185</td>
</tr>
<tr>
<td>6.3.1 Effects of age, sex and drug status</td>
<td>185</td>
</tr>
<tr>
<td>6.3.2 Tonic arousal</td>
<td>187</td>
</tr>
<tr>
<td>6.3.3 Orienting activity</td>
<td>190</td>
</tr>
<tr>
<td>6.3.4 Lateral asymmetry</td>
<td>197</td>
</tr>
<tr>
<td>6.3.5 Symptomatology</td>
<td>201</td>
</tr>
<tr>
<td>6.3.6 Summary of findings</td>
<td>205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Discussion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>208</td>
</tr>
<tr>
<td>7.2 Schizophrenia</td>
<td>211</td>
</tr>
<tr>
<td>7.2.1 Tonic arousal</td>
<td>211</td>
</tr>
<tr>
<td>7.2.2 Orienting activity</td>
<td>211</td>
</tr>
<tr>
<td>7.2.3 Response amplitude</td>
<td>213</td>
</tr>
</tbody>
</table>
7.2.4 Lateral asymmetry 214
7.2.5 Symptomatology 218
7.2.5.1 Activation 218
7.2.5.2 Psychotic disorganization 219
7.2.5.3 Inhibition 219
7.2.5.4 Hallucinations 221
7.2.5.5 Delusions 223
7.3 Depression 225
7.3.1 Tonic arousal 225
7.3.2 Orienting activity 226
7.3.3 Lateral asymmetry 227
7.3.4 Symptomatology 229

8. Conclusions 234

Appendix A: Rating Instruments 242
Psychosis project demographic & background data 243
Neurological & pharmacological record 245
Annett Handedness Questionnaire 246
Brief Psychiatric Rating Scale (BPRS) 247
Present State Examination (PSE) 249

Appendix B: Present State Examination and Brief Psychiatric Rating Scale 270
Dimensional scoring methods 270
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Instructions to Subjects prior to Psychophysiological Testing</td>
<td>282</td>
</tr>
<tr>
<td>D</td>
<td>List of Abbreviations Used in the Text</td>
<td>284</td>
</tr>
<tr>
<td>E</td>
<td>Schizophrenia: An Information Processing Model</td>
<td>288</td>
</tr>
<tr>
<td>F</td>
<td>Discussion of Statistical Analysis</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>350</td>
</tr>
</tbody>
</table>
SUMMARY

Skin conductance measures of the orienting response and tonic arousal were used to test the general hypothesis that certain groups of symptoms occurring in schizophrenia could be understood in terms of anomalies in the stages of perceptual information processing. A review of the literature describing patterns of symptom change during recovery from schizophrenic psychoses led to the identification of relatively discrete groups of symptoms. The delineation of these groups was based on their *prima facie* internal consistency and the tendency for their constituent items to covary with time. It was proposed that one of these symptom groups may be a more or less direct manifestation of some primary or "core" psychotic process of fundamental importance in schizophrenia. Other symptom groups were thought to represent secondary, corrective or compensatory information processing strategies that served to counterbalance those of the primary abnormality.

A model of the orienting response which was developed by Arne Ohman within the framework of attention and information processing theory was modified and incorporated within an information processing model of schizophrenia. When certain components of this model were tested using bilateral skin conductance measurements in a tone habituation paradigm, it was found that acutely psychotic schizophrenic patients had relatively high levels of tonic arousal and showed a pattern of asymmetry in several skin conductance variables which suggested underactivity of left hemisphere functioning relative to that of the right. Using amplitude of the orienting response as the central information processing variable of relevance to the proposed model of schizophrenia, it was found that those symptoms representing the putative primary abnormality in schizophrenia and those representing the secondary or compensatory processes were each related to this orienting response variable in opposite directions in a manner predicted by the proposed model of.
schizophrenia. Furthermore, these secondary symptoms, unlike those reflecting the primary disorder, seemed to be associated with reduced tonic arousal and, to a lesser extent, normalization of the lateral asymmetry in skin conductance. This is, they seemed to be associated with increasing activation of left hemisphere functioning relative to that of the right.

In contrast, the findings with respect to patients with depressive illness failed to confirm predictions based on the literature dealing with electrodermal activity in depression. In particular, reduced tonic arousal in depression was not demonstrated. Neither did the direction of skin conductance asymmetry conform to expectation. Finally, there was a positive correlation between tonic arousal levels and severity of psychomotor slowing instead of the predicted negative correlation. This unexpected finding was discussed in the light of other research conducted by the author.

Reference: