IMMUNOLOGICAL PARAMETERS AND THE USE OF IMMUNOTHERAPY
IN OVARIAN CARCINOMA.

M. E. CROWThER, M.B.,B.S.

Department of Obstetrics & Gynaecology,
St. Bartholomew's Hospital, London.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR ADMISSION
TO THE DEGREE OF DOCTOR OF MEDICINE, UNIVERSITY OF
ADELAIDE, SOUTH AUSTRALIA.

August, 1979.
PREFACE

The work described in this Thesis is a continuation of that begun by Dr. L. Levin in the Williamson Laboratory, St. Bartholomew's Hospital, London. He and his co-workers showed that patients with ovarian cancer demonstrated lymphocyte responses to extracts of ovarian tumours, which were specific and related to the Stage of the disease. Subsequently, an Immunotherapy programme was initiated, which closely followed the protocol used by Dr. R. Powles, in the Acute Myeloid Leukaemia Trial, then being conducted at St. Bartholomew's Hospital.

This Thesis describes the results of that initial Trial, as well as a new properly controlled and randomized Trial being carried out in conjunction with the MRC Ovarian Cancer Chemotherapy Trial. The procedure is shown to be safe, possibly efficacious in prolonging life, and definitely worthy of further study. In vitro monitoring of patients shows that immunological parameters are boosted by immunotherapy with BCG and tumour cells, but its effects would not seem to be mediated through an increase in specific anti-tumour lymphocyte responses, but rather through a "boosting" of bone marrow, thereby allowing greater amounts of chemotherapy to be given.

The study of specific blastogenic responses to tumour extracts was not conclusive, and suggested that such responses were non-specific and unrelated to tumour load. Control subjects showed responses that were very significantly related to parity, and it was postulated that foetal sensitization of the mother's lymphocytes might explain the lower incidence of parous women with ovarian cancer, compared with those who are nulliparous.

The effects of chemotherapy on various immunological parameters were also studied, and led to rather paradoxical results. It was also suggested that although relapse patients had significantly decreased numbers of T-cells, as assessed by in vitro E-Rosetting, this did not represent a true decrease but the presence of serum factors
which prevented lymphocytes from binding to SRBC.

The study of in vitro serum effects was inconclusive but the measurement of immune complexes showed very significant relationships to the Stage of disease and presence of recurrence post-operatively. The measurement of ectopically produced trophoblast-specific hormones in ovarian cancer serum was also deemed to be of limited use.

The historical background to this work has been described in some length, but I think this is justified to give perspective to an area which is not only controversial in the field of Gynaecology, but also in the much wider world of Oncology.

I wish to gratefully acknowledge the helpful discussions and kind cooperation of a number of people: the Library staff at St. Bartholomew's, statisticians Miss M. Leighton and Mrs. J. Wadsworth, the Nursing Staff of Pitcairn Ward and Sr. P. Walker, my co-worker Mr. T. A. Poulton, my supervisor Professor C. N. Hudson, and my husband G. H. Kirkpatrick. Finally, one should not forget the courage of these patients, nearly all of whom are now dead, in submitting themselves to an experimental form of treatment, and who uncomplainingly had great demands made on their time for the in vitro monitoring described herein.
TABLE OF CONTENTS

CHAPTER 1. THE CONCEPT OF IMMUNOSURVEILLANCE 1
1.1 Indirect evidence for immunosurveillance 1
1.2 Direct evidence for immunosurveillance 2
Plan of Thesis 6

CHAPTER 2. MATERIALS AND METHODS 8
Abbreviations used in this Thesis 8
Reagents used in this Thesis 9
2.1 Preparation of cell membrane extracts 10
2.2 Preparation of serum 11
2.3 Preparation of lymphocytes 11
2.4 The Blastogenic Assay 13
2.5 The E-Rosette Assay 14
2.6 Separation of lymphocyte sub-populations for the Blastogenic Assay 15
2.7 The Suppressor Cell Assay 16
2.8 Disaggregation and cryopreservation of tumour cells for immunotherapy 30
2.9 Immunotherapy 31

CHAPTER 3. TUMOUR-ASSOCIATED ANTIGENS IN EXPERIMENTAL ANIMAL AND HUMAN TUMOURS 33
3.1 The Onco-foetal relationship 34
3.2 The study of tumour-associated immunity in humans 35
   (i) in vivo studies 35
   (ii) in vitro responses 36
      (A) humoral responses 36
      (B) cell-mediated responses 37
3.3 Immunological studies in ovarian cancer 45
3.4 Experimental Design: cellular responses in patients with ovarian cancer and relationship to parity
   Materials and Methods 50
   Results 50
   Discussion 51

CHAPTER 4. TUMOUR ESCAPE FROM IMMUNOLOGICAL DESTRUCTION: CELLULAR DEFECTS 65
4.1 Cellular defects 67
   (i) in vivo responses 67
   (ii) in vitro responses 67
4.2 Diminished numbers of lymphocytes and T-cells

(i) human non-malignant disease states and E-RFC
(ii) human cancer and E-RFC
(iii) surgery and E-RFC
(iv) radiotherapy and E-RFC
(v) chemotherapy and E-RFC
(vi) immunotherapy and E-RFC

4.3 Suppressor cells and their role in human cancer

4.4 Experimental Design: immunocompetence in patients with ovarian cancer and its relationship to sub-populations of lymphocytes following surgery, chemotherapy and immunotherapy

Materials and Methods

Results

Discussion

CHAPTER 5. SERUM EFFECTS ON LYMPHOCYTE CULTURES AND IMMUNE COMPLEXES IN OVARIAN CANCER

5.1 Evidence for serum inhibitory factors

(i) tumour antigen
(ii) "blocking" and "enhancing" antibody
(iii) immune complexes

5.2 Measurement of in vitro inhibition of lymphocyte responses by serum factors

5.3 Experimental Design: the investigation in vitro of various sera on blastogenic responses of lymphocytes, and the correlation of immune complex levels with clinical condition in patients with ovarian cancer

Materials and Methods

Results

Discussion

CHAPTER 6. IMMUNOTHERAPY AND ITS USE IN THE TREATMENT OF OVARIAN CANCER

6.1 Methods of immunotherapy

(i) prophylactic
(ii) passive
(iii) adoptive
(iv) active non-specific
(v) active specific

6.2 The nature of immunopotentiation with BCG

6.3 Chemoimmunotherapy

6.4 Immunotherapy trials in human cancer

(i) gynaecological cancer
(ii) non-gynaecological cancer

6.5 Complications from immunotherapy
6.6 Experimental Design: a study of active specific immunotherapy in women with ovarian carcinoma

Trial I: unraveled and retrospective

Results

Trial II: randomized and prospective

Results

Discussion

CHAPTER 7. MONITORING OF CELLULAR RESPONSES DURING IMMUNOTHERAPY

7.1 Immunological parameters monitored in human cancer: effects on -

(i) bone marrow
(ii) in vivo responses
(iii) in vitro blastogenic responses
(iv) complement, antibody and "serum factors"

7.2 Experimental Design: the monitoring of patients with ovarian cancer after immunotherapy with BCG and/or irradiated allogeneic tumour cells

Materials and Methods

Results and Discussion

Conclusions

CHAPTER 8. ECTOPIC HORMONE SYNTHESIS AND TUMOUR MARKERS IN HUMAN CANCER

8.1 Biochemical markers

8.2 Oncofoetal markers

(i) carcinoembryonic antigen
(ii) alpha-fetoprotein

8.3 Trophoblast-specific hormones

(i) human chorionic gonadotrophin
(ii) human placental lactogen
(iii) placental alkaline phosphatase
(iv) pregnancy-specific beta-glycoprotein
(v) pregnancy-associated alpha-macroglobulin

8.4 Experimental Design: a study of trophoblastic hormones in ovarian cancer

Materials and Methods

Results

Discussion

APPENDIX

BIBLIOGRAPHY