BLOOD THROMBOPLASTIN FORMATION

A STUDY OF ITS MEASUREMENT IN VARIOUS DISORDERS.

WITH PARTICULAR REFERENCE TO A RAPID SCREENING TEST.

A THESIS

SUBMITTED FOR THE DEGREE OF M.D.

OF

THE UNIVERSITY OF ABERDEEN.

By

M. D. HICKS, M.D., B.S., ABERDEEN, 1948.
The regulations of the University of Adelaide for the degree of Doctor of Medicine require:

(1) A declaration that the thesis is the writer’s own composition. This declaration may be found on page 5.

(2) An indication of where the writer considers the thesis to advance medical knowledge or practice. This subject is contained in the Summary and Conclusions on page 123.

<table>
<thead>
<tr>
<th>PART I - INTRODUCTION.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Reasons for the Study</td>
</tr>
<tr>
<td>A Brief Outline of the Study Undertaken</td>
</tr>
<tr>
<td>Acknowledgements and Publications</td>
</tr>
<tr>
<td>Declaration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART II - HISTORICAL SURVEY OF METHODS FOR MEASURING THROMBOPLASTIN GENERATION IN BLOOD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Whole Blood Coagulation Time</td>
</tr>
<tr>
<td>The Recalcified Plasma Clotting Time</td>
</tr>
<tr>
<td>The Partial Thromboplastin Time</td>
</tr>
<tr>
<td>The Consumption of Prothrombin During Coagulation</td>
</tr>
<tr>
<td>The Generation of Thrombin During Coagulation</td>
</tr>
<tr>
<td>The Thromboplastin Generation Test</td>
</tr>
<tr>
<td>Modifications of the Thromboplastin Generation Test for the Assay of APT</td>
</tr>
<tr>
<td>Modification of the Thromboplastin Generation Test to Measure Platelet Thromboplastic Function</td>
</tr>
<tr>
<td>A Brief Historical Survey Regarding the Discovery and Mode of Action of Anticoagulant Drugs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX TO PART II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods for the Estimation of the Whole Blood Coagulation Time</td>
</tr>
<tr>
<td>(1) Methods Using Capillary Tubes</td>
</tr>
<tr>
<td>(2) Methods in which the Motion of the Corpuscles was Observed</td>
</tr>
<tr>
<td>(3) Methods using Wire Loops</td>
</tr>
<tr>
<td>(4) Methods Depending upon Direct Observation of the Appearance of Fibrin</td>
</tr>
<tr>
<td>(5) Methods Depending on the Change in Contour of the Blood</td>
</tr>
</tbody>
</table>
PART III - THE DEVELOPMENT AND APPLICATION OF THE RAPID SCREENING TEST FOR DISORDERS OF THROMBOPLASTIN GENERATION.

Experiment 1. Selection of a Suitable Solution for the Screening Test
Experiment 2. The Amount of Thrombin Generated in the Test
Experiment 3. The Relative Parts Played by Thromboplastin and Thrombin in the Reaction
Experiment 4. Establishing a Normal Range of Results
Experiment 5. A consideration of the Variations in the Test
Experiment 6. A Further Range of Normal Results
Experiment 7. Tests on Patients with Haemophilia
Experiment 8. Further Tests on Patients with Haemophilia
Experiment 9. Tests on a Patient with Mild Haemophilia before and after Transfusion
Experiment 10. The Screening Test Performed on Mixtures of Normal and Haemophilic Plasma
Experiment 11. Tests on Patients with Christmas Disease
Experiment 12. Tests on a Patient with Christmas Disease before and after Transfusion
Experiment 13. Tests on Patients Receiving Lindevea
Experiment 14. Tests on Patients with a Congenital Deficiency of Factor VII
Experiment 15. Tests on Patients with Liver Disease
Experiment 16. Further Tests on Patients with Liver Disease
Experiment 17. Tests on a Patient with Disseminated Lupus Erythematosus and on a Patient with a Malabsorption Syndrome
Experiment 18. The Effect of Contamination with Tissue Extracts on Thromboplastin Generation
An assessment of the Value of the Screening Test
Conclusions

PART IV - THE MEASUREMENT OF PLATELET FUNCTION BY A MODIFICATION OF THE SCREENING TEST.

Experiment 19. First Method
Experiment 20. Second Method
PART I - INTRODUCTION.

The Reasons for the Study.

The introduction by Biggs and Douglas (1955a) and Biggs, Douglas and Macfarlane (1955), of the thromboplastin generation test, provided a sensitive tool for the diagnosis of haemophilia and allied disorders of clotting function. Without this test, serious disorders can be overlooked. Subsequent surgery in these cases often produces fatal results. It is therefore imperative that thromboplastin generation be tested in every case of suspected bleeding tendency, particularly if surgery is contemplated. Other tests of clotting function such as the whole blood coagulation time and the prothrombin consumption test do not always detect disorders of thromboplastin generation. The thromboplastin generation test has been modified by Pitney (1956) and by Biggs (1957) to provide an assay of anti-haemophilic globulin, (AHG). Pitney (1956) showed that some patients with a normal thromboplastin generation test had mild bleeding tendencies due to minor deficiencies of anti-haemophilic globulin. These patients suffered from troublesome rather than severe haemorrhagic tendencies and it is felt that the thromboplastin generation test is adequate for the diagnosis of any appreciable degree of haemophilia or related disorder. Any less sensitive test is inadequate. Unfortunately, the technique is time consuming and sufficiently complicated to deter many haematologists who do not normally carry out specialised coagulation work. However, it must again be emphasised that it is misleading and dangerous to regard the coagulation mechanism of a patient as normal if this test has been omitted.

When blood is allowed to clot an extremely powerful thromboplastin.
is formed. In this study it is shown that if plasma is diluted in a
suitable buffer and incubated with a platelet substitute together with
calcium chloride, a powerful thromboplastin is still formed even when the
dilution of the plasma is as high as 1 part in 20. Thrombin is also formed
in this mixture, but in relatively small amounts and it does not interfere
with the measurement of thromboplastin when subsamples are taken and added
to a normal plasma used as substrate. Using this observation, a test was
devised to compare thromboplastin generation in different plasma samples.
It was felt that if this were sufficiently sensitive it would provide a
satisfactory rapid and more simple substitute for the thromboplastin
generation test. It was hoped that with this procedure patients with normal
coagulation could be distinguished from those with abnormalities of
thromboplastin generation. The test is, of course, not specific and any
abnormalities detected require further investigation to determine their
exact nature. Its main purpose is to provide a rapid means of detecting
haemophilia and allied disorders.

Hence-forth in this thesis the procedure is referred to as the
"screening test of thromboplastin generation", or, more simply, the
"screening test". Other more simple tests are required for the detection
of abnormalities and defects involving the prothrombin complex, fibrinogen
and platelets. The following routine is suggested for the investigation
of patients with suspected bleeding disorders:

(1) Case history, family history and physical examination.
(2) Bleeding time.
(3) Hess' test. (Tourniquet test)
(4) Platelet count.
(5) Whole blood coagulation time (tube method of Mereckey, 1950b)
and examination of the clot 2 hours after coagulation to assess
the degree of clot retraction and to detect any abnormal
fibrinolysis.

(6) The one-stage prothrombin test.

(7) The screening test for disorders of thromboplastin generation.

This scheme can confidently be expected to detect any appreciable
degree of capillary, platelet or coagulation abnormality of any type so far
described. All tests can be carried out rapidly and are simple to perform.
This provides a quick and efficient means of screening cases of possible
haemorrhagic disorders.

The study detailed in this thesis was undertaken to test the
sensitivity of the screening test and to compare it with the thromboplastin
generation test of Biggs and Douglas and other tests of clotting function.
In the investigation of some specialised aspects of coagulation, the assay
of individual factors is required and the screening test has been adapted
for this purpose.

A Brief Outline of the Study Undertaken.

The original work to be presented in this thesis can be
summarised as follows:

1. The development of a rapid screening test for disorders of
 thromboplastin generation describing the results in 256 normal
 subjects.

2. An investigation of 62 cases of haemophilia and allied disorders,
 comparing the results obtained with this test with those of other
tests of clotting function.

3. The study of platelet function in 13 patients.

4. The assay of anti-haemophilic globulin by a modification of the