THE DEXTROAMPHETAMINE RESPONSE IN HUMAN SUBJECTS: A
PSYCHOLOGICAL, PSYCHOPHYSIOLOGICAL AND NEUROENDOCRINE STUDY.

by

David Jacobs, M.B., B.S. F.R.A.N.Z.C.F.

Department of Psychiatry.

University of Adelaide.

September 1985
Table of Contents

General Introduction

PART I: An Investigation of the Roles of the
Dopamine and Noradrenergic Pathways in
Dextromethamphetamine Induced Arousal

Introduction

1.1. Introduction 9

1.2. Amphetamine Arousal in Yenan 10

1.3. Central Catecholamine Pathways 20

1.4. Previous Attempts to Elucidate the
Role of the Dopamine and Noradrenergic
Pathways in Amphetamine Arousal 57

1.5. Receptor Blocking Drugs 62

Methods

1.6. Introduction 68

1.7. Subjects 70

1.8. Measurements 73

1.9. Drugs Used 80

1.10. Statistical Analysis 83

1.11. Ethical Approval and Informed Consent 84

Results

1.12. Dextromethamphetamine Induced Arousal:
Psychological and Psychophysiological
Aspects 86

1.13. The Role of the Captopathways
in Dextromethamphetamine Induced Arousal 96

1.14. The Role of the Noradrenergic
Pathways in Dextromethamphetamine
Induced Arousal 120
Part II The Response of the Neuroendocrine System to Dextroamphetamine: Effects of Dopaminergic or Noradrenergic Blockade

2.1. General Introduction 151
2.2. Methodology 158
2.3. The Response of the Neuroendocrine System to Dextroamphetamine 163
2.4. Effects of Dopaminergic and Noradrenergic Blockade on the Response of the Neuroendocrine System to Dextroamphetamine 183
2.5. General Discussion 264

Part III Dextroamphetamine Induced Arousal as a Pharmacological Model for Mild Mania 267

3.1. Introduction 269
3.2. Methods 287
3.3. Results 286
3.4. Discussion 301

Bibliography 317
SUMMARY

Noradrenaline and dopamine have been implicated in the pathogenesis of affective disorders. Our understanding of these disorders should therefore be enhanced by clarification of the roles of the noradrenaline and dopamine pathways within the central nervous system. An ideal agent for such research is dextroamphetamine sulphate as it acts by the release of noradrenaline and dopamine at specific sites in the CNS. Dextroamphetamine alters psychological and biological functioning in normal subjects in a manner that resembles affective illness. Its effects on neuroendocrine responses have been used in research on affective illness.

The aims of this study were to examine: (1) the psychological, psychophysiological and neuroendocrine responses to dextroamphetamine; and (2) the roles of central noradrenaline and dopamine pathways in these responses by using specific centrally acting blocking drugs. These have been achieved by examining the changes induced in normal human volunteers by a single oral 20 mg dose of dextroamphetamine and by observing the effects on these responses by pretreatment with either the selective alpha-1-noradrenergic receptor blocker thymoxamine or the selective dopamine receptor blocker pimozide.

Experiments were randomized, placebo controlled and double blind. Subjective changes were measured using visual
analogue rating scales. Psychophysiological measures included pulse rate, blood pressure and skin conductance. The neuroendocrine responses measured were: plasma cortisol and serum prolactin, growth hormone (GH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Plasma (dextroamphetamine levels were assayed to confirm that changes observed were not the result of pharmacokinetic effects of the blocking drugs.

Dextroamphetamine increased subjective arousal and produced a concomitant rise in pulse rate, blood pressure and skin conductance. These responses were attenuated by dopamine blockade (pimozide) and enhanced by noradrenergic blockade (thymoxamine). These findings imply that dopamine pathways are involved in the promotion of arousal, with noradrenergic pathways exerting a modulatory role.

Dextroamphetamine was found to stimulate the release of cortisol, prolactin TSH, LH and FSH but not GH. The interaction of the blocking drugs on the neuroendocrine response to dextroamphetamine imply that dopamine pathways are stimulatory in the release of LH and FSH, are inhibitory in the release of prolactin and TSH, and have no effect on cortisol release. They may play a dual role in the regulation of GH release. Noradrenaline pathways may be stimulatory in LH release, inhibitory in the release of cortisol GH and TSH, and not involved in prolactin and FSH release. The complexity of control of secretion of these
hormones mean that the significance of dextroamphetamine
induced changes in neuroendocrine functioning in patients
with affective disorder must be interpreted with care.

The response to a single dose of 20mg of dextroamphetamine
in normal volunteers would appear to be a useful model for
mania since: (1) the range of subjective responses to
dextroamphetamine which were observed, were similar to the
symptoms which are commonly seen in mania; (2) both the
physiological and neuroendocrine effects of
dextroamphetamine were the same as those reported to occur
in mania; (3) the response to the dopamine receptor blocking
drug pimozide is similar in the two conditions.