ON THE ENDOCRINE FUNCTION OF THE HUMAN GRAAFIAN FOLLICLE

By

John F.P. Kerin

A thesis submitted to the University of Adelaide
in fulfilment of the requirements
for the degree of
Doctor of Medicine

Department of Obstetrics & Gynaecology
The Queen Elizabeth Hospital
The University of Adelaide

December, 1977
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>VIII</td>
</tr>
<tr>
<td>Declaration</td>
<td>IX</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>X</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>XI</td>
</tr>
<tr>
<td>Summary</td>
<td>XI</td>
</tr>
<tr>
<td>Publications and presentations arising from and related to work</td>
<td>XIV</td>
</tr>
<tr>
<td>submitted in this thesis</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1. Rationale for the Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Historical Literature Review (1555-1950)</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Recent Literature Review (1950-1977)</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1. Elucidation of the steroid pathways in the Graafian follicle</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2. Factors controlling maturation of the Graafian follicle</td>
<td>10</td>
</tr>
<tr>
<td>(1) The pattern of follicular growth</td>
<td></td>
</tr>
<tr>
<td>(2) The oocyte</td>
<td></td>
</tr>
<tr>
<td>(3) Development of receptor sites</td>
<td></td>
</tr>
<tr>
<td>1.3.3. The role of Prolactin in the Graafian follicle</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4. Oestrogen and aromatase activity within the Graafian follicle</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5. The effect of LH on aromatase activity</td>
<td>13</td>
</tr>
<tr>
<td>1.3.6. Steroid activity during the menstrual & oestrous cycle</td>
<td>14</td>
</tr>
<tr>
<td>1.3.7. Cellular localization of steroid activity within the follicle</td>
<td>14</td>
</tr>
<tr>
<td>1.3.8. The role of gonadotrophins and cyclic AMP in follicular</td>
<td>15</td>
</tr>
<tr>
<td>steroidogenesis</td>
<td></td>
</tr>
<tr>
<td>1.3.9. Distribution of collagenous connective tissue in Graafian follicles</td>
<td>17</td>
</tr>
<tr>
<td>1.3.10. The role of prostaglandin F in human follicular function</td>
<td>17</td>
</tr>
<tr>
<td>1.3.11. Nervous innervation related to the Graafian follicle</td>
<td>17</td>
</tr>
<tr>
<td>1.3.12. δ-3β-hydroxysteroid dehydrogenase activity within the</td>
<td>18</td>
</tr>
<tr>
<td>Graafian follicle</td>
<td></td>
</tr>
</tbody>
</table>
2. STEROID PROFILES OF HUMAN OVARIAN FOLLICLES IN ORGAN CULTURE: CORRELATIONS WITH FOLLICLES REMOVED IN THE EARLY FOLLICULAR PHASE, LATE FOLLICULAR PHASE, LUTEAL PHASE AND THE IMMEDIATE POST PARTUM PERIOD

2.1. Introduction

2.2. Methodology

2.2.1. Criteria for ovarian follicle biopsy

2.2.2. Ethical Considerations

2.2.3. Surgical technique for ovarian biopsy

2.2.4. Dissection and incubation of ovarian follicles

2.2.5. Materials – Transport, dissecting & incubation media

2.2.6. Radioimmunoassay procedures for testosterone, oestrone and progesterone

2.2.7. Measurement of specificity of the antisera

2.2.8. Radioimmunoassay for Oestradiol-17\(\beta\), progesterone and testosterone

2.2.9. Sensitivity of assays

2.2.10. Methods of statistical analysis

2.2.11. Validation for relating human follicular diameter to follicular weight

2.2.12. Histochemical/Histological assessment of follicular wall thickness

2.2.13. Histological dating of the endometrium

2.3. Results

2.3.1. Age of patients

2.3.2. Steroid profiles of early follicular phase follicles, invitro

2.3.3. Steroid profiles of late follicular phase follicles, invitro

2.3.4. Steroid profiles of luteal phase follicles, invitro
3. STEROID PROFILES OF HUMAN OVARIAN FOLLICLES IN ORGAN CULTURE DURING INCUBATION WITH GONADOTROPHINS. CORRELATIONS WITH FOLLICLES REMOVED IN THE EARLY FOLLICULAR, LATE FOLLICULAR, LUTEAL PHASE AND THE IMMEDIATE POST PARTUM PERIOD

3.1. Introduction

3.2. Materials & Methods

3.2.1. The Gonadotrophins used

3.2.2. Incubation procedure

3.3. Results

3.3.1. The differential steroid activity of early follicular, compared to late follicular phase follicles during incubation with gonadotrophins

3.3.2. The differential steroid activity of luteal phase follicles during incubation with either FSH or hCG

3.3.3. Steroid activity of post partum follicles during incubation with FSH

3.4. Discussion

3.5. Summary
ENZYME 3β-3β-HYDROXYSTEROID DEHYDROGENASE (3β-HSD) IN RE-
LATION TO THE STEROID ACTIVITY OF HUMAN GRAAFIAN FOLLICLES
IN ORGAN CULTURE, EXPLANTED THROUGHOUT THE MENSTRUAL CYCLE
AND IN THE IMMEDIATE POST PARTUM PERIOD: COMPARISONS BETWEEN
FOLLICLES INCUBATED WITH AND WITHOUT GONADOTROPHINS

4.1. Introduction
4.2. Theoretical considerations with respect to assessing 3β-HSD enzyme activity by histochemical methods
4.2.1. Properties of the Tetrazolium salts
4.2.2. The Role of Coenzymes
4.2.3. The Role of Diaphorases
4.2.4. Reasons for the addition of Coenzymes
4.2.5. Substrate and Fomazan Specificity
4.2.6. Histochemical localization of 3β-HSD activity
4.3. Materials & Methodology
4.3.1. Materials
4.3.2. Methodology
4.3.3. Histochemical Controls
4.3.3. (1) Omission of the substrate
4.3.3. (2) Omission of the coenzyme
4.3.3. (3) Heat denaturation
4.3.3. (4) Exogenous steroid suppression of enzyme activity
4.3.4. A histochemical score of 3β-HSD steroid activity
4.3.5. Assessment of Diaphorase Activity
4.4. Preliminary evaluation of steroid activity in relation to the site of 3β-HSD activity in sheep follicles
4.4.1. Incubation of sheep follicles with HCG
4.4.2. The effect of irradiation on the steroid and 3β-HSD enzyme activity of sheep ovaries
4.5. Results
4.5.1. Assessment of 3β-HSD activity in unstimulated follicles invitro. Comparisons between follicles explanted during the early follicular, late follicular and luteal phase of the menstrual cycle
4.5.2. Assessment of 3β-HSD activity following the incubation of early and late follicular phase follicles with gonadotrophins
4.5.3. Assessment of 3β-HSD activity following the incubation of luteal phase follicles with gonadotrophins
4.5.4. Assessment of 3α-HSD activity following the incubation of post partum follicles with FSH
4.6. Comparative studies on 3α-HSD activity in follicles incubated with HCG for varying periods of time
4.7. The pattern of 3α-HSD activity in late follicular phase follicles following incubation with various substrates
4.8. The distribution of 3α-HSD activity in whole ovarian slices, obtained throughout the menstrual cycle
4.8.1. Histochemical localization of 3α-HSD activity in ovarian tissue explanted during the early follicular phase
4.8.2. Histochemical localization of 3α-HSD activity in ovarian tissue explanted during the late follicular phase
4.8.3. Histochemical localization of 3α-HSD activity in a very early corpus luteum
4.8.4. Histochemical localization of 3α-HSD activity in a mid luteal phase corpus luteum
4.8.5. Histochemical studies on a corpus albicans
4.9. Correlations between the steroid activity of ovarian follicles invitro and the site of 3α-HSD enzyme activity
4.10. Discussion
4.11. Summary

5. TESTOSTERONE, ESTROGEN AND PROGESTERONE ACTIVITY IN ISOLATED HUMAN THECA AND GRANULOSA CELLS IN TISSUE CULTURE
5.1. Introduction
5.2. Methodology
5.2.1. Technique of granulosa cell and theca cell isolation, culture and incubation
5.2.2. Assessment of the weight of intact theca-granulosa tissues, isolates of theca cell tissue and granulosa cell monolayers
5.3. Results
5.3.1. Comparative steroid activity of intact theca-granulosa tissues, theca cell tissues and granulosa cell monolayers, invitro
6. THE ASSESSMENT OF STEROID ACTIVITY AND THE LOCALIZATION OF 3α,5α-HYDROXYSTEROID DEHYDROGENASE ACTIVITY IN SLICES OF POST MENOPAUSAL OVARY, INVITRO

6.1. Introduction 181
6.2. Materials & Methods 181
6.3. Results 182
6.3.1. Steroid activity from slices of postmenopausal ovary, invitro 182
6.3.2. Histochemical assessment of 3α-HSD activity in postmenopausal ovarian slices 184
6.4. Discussion 184
6.5. Summary 185

7. RELAXIN ACTIVITY WITHIN THE HUMAN GRAAFIAN FOLLICLE

7.1. Introduction 186
7.2. Materials & Methods 186
7.3. Results 187
7.4. Discussion 188
7.5. Summary 191

8. THE DISTRIBUTION OF COLLAGENOUS CONNECTIVE TISSUE IN THE HUMAN GRAAFIAN FOLLICLE

8.1. Introduction 192
8.2. Materials & Methods 192
8.2.1. van Gieson's method for collagen staining 192
8.3. Results 194
8.4. Discussion 195
8.5. Summary 195

9. BLOOD PROLACTIN LEVELS BEFORE, DURING AND FOLLOWING SURGERY: FOLLICULAR STEROID ACTIVITY DURING INCUBATION OF WHOLE FOLLICLES WITH FSH AND PROLACTIN

9.1. Introduction 196
9.2. Methodology 196
9.2.1. Assessment of peripheral venous prolactin before, during and after surgery in relation to follicular fluid prolactin, sodium and potassium concentration and osmolality during surgery 196
SUMMARY

Two hundred and eight human Graafian follicles with diameters ranging from 3-12 millimetres were obtained from eighty nine ovarian biopsies, which were performed in women who had spontaneous, regular menstrual cycles. These follicles were incubated either as whole follicles in organ culture or dissected into their respective theca and granulosa cell components and incubated separately. In some instances gonadotrophins were included in the culture medium. The culture medium was aspirated daily and its content of testosterone, oestradiol-17β and progesterone estimated by validated radioimmunoassay procedures. The follicles were either processed histologically for assessment of cellular morphology, theca and granulosa layer thickness and cell size, or were examined histochemically in an attempt to localize the site and activity of the enzyme, 3β-3α-hydroxysteroid dehydrogenase (3α-HSD), at various times throughout the incubation period.

The following conclusions were drawn:-

1. The maintenance of isolated human follicles in organ culture to facilitate useful endocrine investigations has been achieved. Observations indicated that follicular growth was a continuum, but that rapid follicular growth occurred only during the late follicular phase of the reproductive cycle. In culture, endocrine function as assessed by steroid release was sustained but varied between individual follicles. This variation appeared related both to follicular size and the stage in the menstrual cycle when follicles were removed.

2. Follicles removed during the late follicular phase (preovulatory) of the cycle were significantly larger than follicles removed during the early follicular phase, luteal phase or the immediate post partum period. No significant difference in size could be demonstrated in follicles removed during the early follicular or luteal phase of the menstrual cycle. Follicles removed during the early post partum period were significantly smaller than both the luteal and the early follicular phase follicles.

3. On a weight for weight basis steroid activity in late follicular phase follicles appeared to be related to the size of the follicle. The release of oestrogen and progesterone increased progressively with increasing follicular size and approaching ovulation. A steady rise in testosterone release occurred until the late follicular phase follicle
reached a diameter of 8 mm, and then declined, coincident with a progressive increase in oestrogen and progesterone release. This change in steroid activity coincided with the appearance of pronounced 3α-HSD activity in the granulosa cell layer but with persistence of 3α-HSD activity in the theca layer.

4. Invitro, the smaller early follicular phase follicles released testosterone predominantly, and 3α-HSD activity mainly was confined to the theca interna cells. Luteal phase follicles also released similar amounts of androgen but less amounts of oestrogen and progesterone than late follicular phase follicles and retained moderate activity of 3α-HSD in both theca and granulosa cells. Follicles removed within the first week of parturition maintained steroid activity, which was comparable with that of unstimulated late follicular phase follicles, and also possessed moderate 3α-HSD activity in both the theca and granulosa cells.

5. Invitro, the steroid release by isolates of theca and granulosa cells obtained from late follicular phase follicles, indicated that the theca was the primary source of testosterone synthesis and the granulosa cells the primary source of progesterone synthesis. Interestingly, isolates of both theca and granulosa cells were able to produce oestrogen, indicating that both cell types may contribute to oestrogen synthesis within the follicle, thereby lending support to the two cell theory for optimal oestrogen production.

6. Small slices of postmenopausal ovary which were devoid of follicles released small amounts of testosterone and progesterone but no oestradiol-17β. Histochemical localization for 3α-HSD in these ovaries demonstrated small patches of positive reaction indicating focal areas of steroid activity.

7. The incubation of follicles with gonadotrophins indicated that follicular phase follicles develop an ability to respond to FSH for both oestrogen and progesterone production, but that the luteal phase follicles tended to maintain their capacity to respond to FSH for increased progesterone production (a reflection of granulosa cell activity) but not for increased oestrogen production (a possible indication of falling theca cell aromatase activity). Incubation with HCG was associated with an increased progesterone output in both follicular and luteal phase follicles, increased testosterone output by follicular phase follicles but at the same time a decrease in the oestrogen production.
by these follicles. This observation was consistent with the hypothesis that HCG may inhibit aromatase activity in the follicular phase follicle. The luteal follicle theca cells lost their ability to produce an increased release of oestrogen and testosterone following incubation with either FSH or HCG. However morphologically they did not regress as do the theca cells of the corpus luteum. Although post partum follicles produced steroids, *in vitro*, they failed to respond to FSH apart from a transient increased output of progesterone. This observation was consistent with the hypothesis that FSH receptor sites were either sparse or non-functional in these follicles.

8. Preliminary observations suggested that the addition of high concentrations of prolactin to the incubation media of whole follicles did not augment steroidogenesis and may well have an inhibitory effect, even in the presence of FSH.

9. Preliminary observations also suggested that human ovarian follicles were able to release relaxin, *in vitro*. Maximum release of relaxin occurred from those follicles explanted during the luteal phase and in particular from the follicles removed from the ovary containing the corpus luteum. This hormone may be involved in the corpus luteum and in follicle regression or as a mediator of collagenses activity.

10. Collagen was demonstrated in the theca interna but was more marked in the theca externa of follicles from 2 to 12 mm in diameter. Collagen deposition was more abundant as the follicles became larger and was also present in luteal phase follicles. Collagen deposition was dispersed in the theca cells of the corpus luteum but was present in abundance in the surrounding stroma. The basement membrane lying between the theca and granulosa cells of follicles was prominent and stained identically to that of collagen. Evidence of the basement membrane or its remnants were not seen in corpora lutea. The circumferential pattern of collagen surrounding follicles probably appeared more prominent as the follicles grew due to a condensation effect on the surrounding connective tissue.

11. The combination of anesthesia and surgery was associated with a significant elevation of blood prolactin levels. However follicular fluid prolactin levels obtained during surgery appeared to be independent of blood levels over the time interval studied.