THE INTESTINAL ANTIBODY RESPONSE TO BACTERIAL GASTROENTERITIS IN HUMANS

Justin LaBrooy M.B.B.S., M.R.C.P.(U.K.), F.R.A.C.P.

Department of Medicine,
The University of Adelaide,
Adelaide.
SOUTH AUSTRALIA.

A thesis submitted for the degree of
Doctor of Medicine

July, 1979
ABSTRACT

THE INTESTINAL ANTIBODY RESPONSE TO BACTERIAL GASTROENTERITIS IN HUMANS

This thesis examines the antibody response to bacterial gastroenteritis in humans with particular reference to antibody levels in the intestine.

While understanding of the secretory antibody system has advanced greatly through animal experiments and studies with vaccines, the intestinal antibody response to gastroenteritis has been inadequately documented. This area is reviewed and the lack of appropriate antibody assays for measuring intestinal antibody is pinpointed as one of the fundamental reasons for this.

The effect of different storage temperatures on antibody activity in intestinal fluid was examined in preliminary studies.

The development and validation of a radio-immuno assay for measuring intestinal antibody is described.

Using this assay the antibody response in serum and gastrointestinal secretions was measured on two occasions in 16 adults and 9 children after Salmonella and Shigella gastroenteritis. Their responses were compared with controls who were either healthy or recovering from a minor attack of gastroenteritis with no defined bacterial agent responsible.

The results showed a consistent antibody response in the intestine which was mainly in the IgA class. Taking
the patients as a group, the serum response was of the same order of magnitude as the intestinal response but this was not so in individual patients. The response in the intestine was early and could conceivably play a part in recovery from the disease. The duration of the response will require further study. Antibody in saliva and in the IgA class in the serum did not appear to reflect the antibody response in the intestine.

The relevance of these results to immunity in bacterial gastroenteritis and further studies that need to be undertaken in relation to the possible development of vaccination programmes against these diseases are discussed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1. MAN AND INTESTINAL BACTERIA</td>
<td></td>
</tr>
<tr>
<td>Control of the commensal flora</td>
<td>1</td>
</tr>
<tr>
<td>Intestinal infections caused by bacteria</td>
<td>1</td>
</tr>
<tr>
<td>A. Enterotoxin production</td>
<td>4</td>
</tr>
<tr>
<td>B. Local invasion</td>
<td>6</td>
</tr>
<tr>
<td>C. Enteric disease with systemic invasion</td>
<td>8</td>
</tr>
<tr>
<td>Immune response to bacterial enteritis in humans</td>
<td>10</td>
</tr>
<tr>
<td>A. The immune response and gastroenteritis-recovery</td>
<td>11</td>
</tr>
<tr>
<td>i. Correlation between recovery and increase in the immune mechanism</td>
<td>11</td>
</tr>
<tr>
<td>ii. Intestinal infection in immune deficiency states</td>
<td>13</td>
</tr>
<tr>
<td>iii. Restoration of deficient immune function</td>
<td>14</td>
</tr>
<tr>
<td>B. The immune response and gastroenteritis-protection</td>
<td>14</td>
</tr>
<tr>
<td>i. Does bacterial gastroenteritis or vaccination prevent infection</td>
<td>15</td>
</tr>
<tr>
<td>ii. Do measures of immune function correlate with resistance to infection</td>
<td>21</td>
</tr>
<tr>
<td>Conclusion</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER 2. IMMUNITY AND THE GASTROINTESTINAL TRACT</td>
<td>24</td>
</tr>
<tr>
<td>Historical</td>
<td>24</td>
</tr>
<tr>
<td>Current concepts of the intestinal immune system</td>
<td>25</td>
</tr>
</tbody>
</table>
Interaction of immune responses manifest at secretory surfaces and in the rest of the body 32

problems in studying intestinal antibody 35

Sampling and measurements of intestinal antibody 35

Dilutional effects 39

The effects of protein degradation 41

Assay techniques 45

Studies of the intestinal antibody response to bacterial gastroenteritis in humans 49

Aims of this thesis 60

CHAPTER 3. MATERIALS AND METHODS 63

Bacterial strains 63

Tetanus toxoid 63

Gel chromatography 64

Ion-exchange chromatography 64

Affinity chromatography 65

Protein estimations 66

Extinction co-efficients 66

Quantitative Folin assay 67

Single radial immuno-diffusion 67

Qualitative determinations of protein purity 69

Immuno-electrophoresis 70

Ouchterlony analysis 70

Precipitin analysis of antisera 71

Immunoglobulin and light chain preparation 71

Immunoglobulin A 71

Immunoglobulin G 72

Light-chains 73

Secretory IgA 74
Preparation of antisera
Analysis of the anti-IgA serum
Analysis of the anti-IgG serum
Columns for affinity chromatography
Purification of specific antibodies from goat antisera
Preparation of lipo-polysaccharide from Salmonella bovis-morbificans
Commercial antisera and standards
Radio-iodination of antisera
Haemagglutination assay for anti-tetanus toxin
Vibriocidal assay
Radio-immuno assay
Sampling of subjects

CHAPTER 4. STABILITY OF ANTIBODY DURING STORAGE
Background
Design of experiment
Results
Conclusions

CHAPTER 5. RADIO-IMMUNO ASSAY
Description of assay
Detailed steps in assay
Shape of immune curve
Experiments in development of the assay
Effects of washes
Effects of time on binding
Effects of temperature on binding
Effect of carrier protein
Volumes of antibody containing fluid
Excess of bacteria
Method of preparing bacteria for use in assays
Specificity of assay
Natural antibody or non-specific binding in non-immune sera
Radio-labelled secondary antibody
Maximum binding of secondary antibody
 i. Determination of antibody activity of secondary antibody
 ii. Binding of secondary antibody to polymerised immunoglobulin
Saturation of antigenic surface of primary antibody by secondary antibody
Background binding
End-point
Variation intra-assay and inter-assay
Standardisation of the assay
Quantitation of the assay
Inhibition of binding of secondary antibody by purified secretory IgA and IgG
The assay and intestinal antibody

CHAPTER 6. STUDY AND RESULTS
Subjects studied
Results on individual subjects
Comparison of antibody response in serum and in intestinal aspirate
Pattern of change in antibody response with time
Relationship between intestinal and serum antibody in individual patients
Immunoglobulin class of antibody in serum, aspirate and saliva
Correlations of intestinal antibody with salivary and serum IgA antibody
High responders
Persistence of bacteria
CHAPTER 7. DISCUSSION

The measurement of antibody in intestinal fluid 117
Temporal pattern of intestinal antibody response 119
Relationship of intestinal antibody to other measures of humoral immunity 120
Class of antibody 123
Persistence of bacteria in the presence of antibody 124
High antibody responders 125
Improvement in methodology - The assay 126
Improvement in methodology - Inhibitors of proteolysis 128
Improvement in methodology - Controls 128
Further studies arising out of this thesis 129

APPENDIX - Results from individual subjects 131

BIBLIOGRAPHY 168

FIGURES

CHAPTER 2.

Figure

II-1 Antibody response to cholera 56

CHAPTER 3.

III-1 Analysis of IgA using immuno-electrophoresis 74
III-2 Analysis of IgG using immuno-electrophoresis 74
III-3 Analysis of light chains using immuno-electrophoresis 74
III-4 Analysis of secretory IgA using immuno-electrophoresis 74
III-5 Analysis of Anti-IgA and Anti-α serum using immuno-electrophoresis 77
III-6 Analysis of Anti-IgG and Anti-γ serum using immuno-electrophoresis 77
III-7 Analysis of Anti light-chain serum using immuno-electrophoresis 77