IMMUNOHISTOCHEMICAL PROGNOSTIC PARAMETERS
IN BREAST CARCINOMA

WENDY ANN RAYMOND, M.B.,B.S.

DIVISION OF TISSUE PATHOLOGY
INSTITUTE OF MEDICAL AND VETERINARY SCIENCE
ADELAIDE, SOUTH AUSTRALIA

awarded 2.7.90

THESIS SUBMITTED TO THE UNIVERSITY OF ADELAIDE
FOR THE DEGREE OF DOCTOR OF MEDICINE

JANUARY 1990
CONTENTS

Abstract v
Statement vii
Contributions of this Thesis viii
Acknowledgements xi

CHAPTER I. INTRODUCTION 1

CHAPTER II. REVIEW OF CURRENT PROGNOSTIC INDICATORS 7

a. Tumour Size 8
b. Histological Type 10
c. Histological Grade 17
d. Vascular Invasion 23
e. Lymph Node Metastases 26
f. Hormone Receptor Status 32
g. Tumour Proliferation 43
h. Miscellaneous Factors 61
i. Conclusions 67

CHAPTER III. MATERIALS AND METHODS 70

III.1. Materials 71

III.2. Methods 76

a. Introduction 77
b. Avidin-biotin complex (ABC) staining technique 81
c. Tissues examined 84
- fresh frozen
- paraffin-embedded
- controls
d. Assessment of staining 87
e. Statistical methods 91
CHAPTER IV. PROGNOSTIC PARAMETERS STUDIED

IV.1. Lymph Node Micrometastases
 a. Introduction
 b. Methodology
 c. Results
 d. Discussion

IV.2. Immunohistochemical Estrogen Receptor Analysis
 a. Introduction
 b. Development of optimal fixation and staining procedures in imprints and frozen sections
 c. Frozen sections
 d. Imprints
 e. Correlation with cytosolic radioimmunoassay
 f. Correlation with histological and clinical parameters
 g. Paraffin sections
 - present methods
 - fixation
 - staining technique
 - correlation with frozen section and cytosolic assays
 h. Discussion

IV.3. Tumour Growth Fraction
 a. Introduction
 b. Methodology
 c. Results
 1. Ki-67 staining
 2. Correlation with histological grade, lymph node status and clinical parameters
 3. Correlation with ER content
 d. Discussion

IV.4. Intermediate Filament Protein Analysis
 a. Introduction
 b. Methodology
 c. Results
 1. Coexpression of cytokeratins and vimentin in benign breast epithelium
 2. Vimentin expression in breast carcinomas
 3. Correlation between vimentin expression and tumour growth fraction.
 d. Discussion
IV.5. Silver Nucleolar Organizer Regions (AgNORs)

a. Introduction
b. Methodology
c. Results
 1. AgNOR staining of breast epithelium
 - benign
 - malignant
 2. AgNOR correlation with tumour proliferation and other clinico-pathological parameters.
d. Discussion

IV.6. Other Traditional Protein Markers of Breast Carcinoma

a. Introduction
b. Alpha-lactalbumin
c. Pregnancy-specific β1-glycoprotein (SP1)
d. Prolactin
e. Discussion

IV.7. Immunohistochemical Assessment of Vascular Invasion

a. Introduction
b. Factor VIII
c. Ulex europaeus agglutinin I (UEA I)
d. Discussion

IV.8. Assessment of Tumour Invasion Using Antibodies to Basement Membrane Antigens and Myoepithelial Cell Antigens

a. Introduction
b. Type IV collagen and laminin
c. Actin and muscle specific actin
d. Discussion

CHAPTER V. CONCLUSIONS

a. Major prognostic parameters
b. Minor prognostic parameters
c. Recommendations
APPENDICES

I Avidin-biotin peroxidase technique (paraffin sections)
II Avidin-biotin peroxidase technique (frozen sections)
III Correlation Matrix
IV Abbreviations

ADDENDUM

BIBLIOGRAPHY
ABSTRACT

The biological behaviour of breast cancer is unpredictable and present prognostic markers do not accurately indicate survival times for individual patients. Recent investigations have focused on a search for intracellular markers which might provide information unattainable by histology. This thesis examines the relationship between traditional pathological prognostic parameters and several new potential prognostic indicators, identified and quantified by immunohistochemical staining, in 115 malignant breast neoplasms.

A modified technique of identifying estrogen receptor (ER) protein in frozen sections and imprints utilizing a new commercial monoclonal anti-ER antibody is reported. Optimal preservation of the ER antigen is observed following fixation in periodate-lysine-paraformaldehyde (PLP) for 10 minutes. An improved, reproducible method of detecting ERs in formalin-fixed paraffin sections using the anti-ER antibody is described.

A recently synthesized monoclonal antibody to proliferating cells, Ki-67, is used to estimate the tumour growth fraction (GF) in all cases and an inverse relationship between GF and ER status is identified. Coexpression of cytokeratin and vimentin intermediate filaments (IFs) is documented, for the first time, in 10.4 per cent of ductal carcinomas. Acquisition of vimentin correlates strongly with a high tumour GF and the role of vimentin as a potential prognostic marker is discussed. Staining of nucleolar organizer regions (NORs) with the silver impregnation technique of
Crocker et al (1986) reveals a correlation between the NOR count and the Ki-67 count. Finally, it is recommended that all lymph nodes in cases of node-negative breast cancer be stained with anti-cytokeratins following the identification of "missed" micrometastases in 22 per cent of 55 cases studied by this technique.

Alpha-lactalbumin, pregnancy-specific β1-glycoprotein (SP1) and prolactin, three traditional markers for breast carcinoma, are assessed and deemed non-specific and of no prognostic value. Antisera to basement membrane and myoepithelial cell antigens assist in identifying early invasive foci in intraductal carcinomas and in differentiating sclerosing adenosis from well-differentiated carcinoma. Anti-factor VIII and UEA I, employed to detect vascular invasion, provide no advantage over an assessment of haematoxylin and eosin-stained sections.

In conclusion, lymph node status and tumour GF are considered the major prognostic parameters in breast cancer. Minor prognostic markers include ER status, histological type and grade, and tumour size. Expression of vimentin IFs by breast carcinomas and NOR counts may also prove to be of prognostic value.