WATER-SOLUBLE CONTRAST MEDIA

AND

THE BRAIN INTERFACES

BY

W.R. SIEGE, MBBS (Adelaide)

DEPARTMENT OF SURGERY

Submitted for the degree of Doctor of
medicine, The University of Adelaide, 1983.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BACKGROUND AND SUBJECT REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 CONCEPT OF PROJECT</td>
<td>1</td>
</tr>
<tr>
<td>1.2 THE BLOOD-BRAIN BARRIER</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Concept of the Blood-Brain Barrier</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Morphological Aspects of the Blood-Brain Barrier</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 The Properties and Purpose of the Blood-Brain Barrier</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4 Sites of the Blood-Brain Barrier</td>
<td>9</td>
</tr>
<tr>
<td>1.3 CSF KINETICS</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 The CSF-Brain Interface</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2 CSF Circulation</td>
<td>15</td>
</tr>
<tr>
<td>1.4 WATER-SOLUBLE CONTRAST MEDIA</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1 Development of Water-Soluble Contrast Media</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2 Osmotic Activity and Iodine Content of Contrast Media</td>
<td>23</td>
</tr>
<tr>
<td>1.4.3 General Kinetics of Intravenous CM</td>
<td>28</td>
</tr>
<tr>
<td>1.5 CAROTID ANGIOGRAPHY</td>
<td>30</td>
</tr>
<tr>
<td>1.6 ENHANCEMENT IN COMPUTERIZED TOMOGRAPHY</td>
<td>34</td>
</tr>
<tr>
<td>1.6.1 The Blood-Brain Barrier and Contrast Enhancement in Computerized Tomography</td>
<td>34</td>
</tr>
<tr>
<td>1.6.2 Intravenous CM and the Blood-Brain Interface</td>
<td>37</td>
</tr>
</tbody>
</table>
1.6.3 Intravenous CM and the CSF-Blood Interface
1.6.4 Pathological Alterations in the BBB and their
 Relevance to CT Enhancement
 1.6.4.1 Intra-Axial Tumours
 1.6.4.2 Extra-Axial Tumours
 1.6.4.3 Hypoxia, Ischaemia and Infarction
 1.6.4.4 Inflammatory Diseases
 1.6.4.5 Radiation
 1.6.4.6 Brain Trauma and Cerebral Oedema
1.6.5 Miscellaneous Causes of Changes in the Permeability
 of the BBB
 1.6.5.1 Multiple Sclerosis
 1.6.5.2 Epilepsy
 1.6.5.3 Disturbance of Normal Auto-Regulation
 1.6.5.4 Hypertonic Solutions, Including Contrast
 Media
1.7 MYELOGRAPHY
 1.7.1 Myelography
 1.7.2 Intrathecal CM and the CSF-Brain Interface
 1.7.3 Clearance of Intrathecal Contrast Media
2 MATERIALS AND METHODS
 2.1 DEVELOPMENT OF MODEL FOR INTRA-ARTERIAL STUDIES
 2.1.1 Animal Preparation
 2.1.2 Test Solutions
2.1.3 Selective Canine Angiography..70
2.1.4 Computerised Tomography of Canine Brain..........................73
2.1.5 Assessment of BBB Disruption by Evans' Blue Staining
and CT Enhancement...76
2.1.6 Evans' Blue Assessment of BBB Disruption.........................77
2.1.7 CT Assessment of BBB Disruption..................................80
2.1.8 Distribution of BBB Disruption....................................80
2.1.9 Relationship between BBB Disruption by Evans' Blue
Staining and Contrast Enhancement....................................82

2.2 DEFINITIVE INTRA-ARTERIAL EXPERIMENTS...............................84
2.2.1 Definitive Experimental Model......................................84
2.2.2 Definitive Studies..86

2.3 DEVELOPMENT OF MODEL FOR INTRATECHAL STUDIES....................87
2.3.1 Animal Preparation..87
2.3.2 Test Solutions...87
2.3.3 Canine Cisternal Puncture..87
2.3.4 CT Demonstration and Assessment of the Presence of
Water-Soluble CM in the Brain Parenchyma.............................88
2.3.4.1 In Vitro Studies..88
2.3.4.2 In Vivo Assessment..90
2.3.4.3 Evans' Blue Assessment of BBB Disruption.....................91

2.4 DEFINITIVE INTRATECHAL EXPERIMENTS................................92
2.4.1 Definitive Experimental Model......................................92
2.4.2 Definitive Studies..96

2.5 INTRATECHAL BRAIN PENETRATION IN HUMANS..........................97
2.5.1 Aims of Study..27
2.5.2 Research Method...27
2.6 DEVELOPMENT OF MODELS FOR INTRAVENOUS STUDIES........100
2.6.1 Intravenous CM and the CSF-Blood Interface...............100
2.6.2 Intravenous CM and the Blood-Brain Interface..............100
2.6.2.1 Test Solutions..100
2.6.2.2 Method of Assessment of WBB..101
2.6.2.3 Preliminary Assessment of Evans' Blue and Technetium-99m-Pertechnetate..102
2.7 DEFINITIVE INTRAVENOUS EXPERIMENTS.............................104
2.7.1 Intravenous CM and the CSF-Blood Interface...............104
2.7.2 Intravenous CM and the Blood-Brain Interface..............105

3 RESULTS...107
3.1 INTRARAMERAL STUDIES......................................107
3.1.1 Series I: Methylglucamine Iothalamate, 25% Mannitol and isotonic Saline..107
3.1.2 Series II: Methylglucamine Iothalamate, Metrizamide, Iopamidol and Iohexol at Iodine Concentrations of 280mgI/ml..110
3.2 INTRACEREBRAL STUDIES......................................114
3.2.1 Series I: Methylglucamine Iothalamate and Metrizamide at an Iodine Concentration of 280mgI/ml. Brain penetration after 60 minutes..114
3.2.2 Series II: Iopamidol at an Iodine Concentration of 280mgI/ml. Brain Penetration After 15 and 60 Minutes...116
2.2.3 Series III: Clinical Study with Metrazamide at an
Isotonic Concentration of 190mg/ml..................118

3.3 INTRAVENOUS STUDIES................................127
3.3.1 Intravenous CM and CSF-Blood Interface..........127
3.3.2 Intravenous CM and the BBB......................127

4 DISCUSSION...131
4.1 WATER-SOLUBLE CM AND THE BLOOD-BRAIN INTERFACE (BBB)......131
4.1.1 Distribution and Assessment of BBB Disruption
Following Intra-arterial Injection of Hypertonic
Solutions..131
4.1.2 Intra-arterial CM and the BBB......................133
4.1.3 Intravenous CM and the BBB......................136
4.1.4 Intra-thecal CM and the BBB......................139
4.2 WATER-SOLUBLE CM AND THE CSF-BRAIN INTERFACE...........140
4.3 WATER-SOLUBLE CM AND THE BLOOD-CSF INTERFACE...........144
SUMMARY

The blood, cerebro-spinal fluid (CSF) and the extracellular fluid of the brain parenchyma form the fluid compartments of the brain with three interfaces between, namely the blood-brain interface (BBB), the CSF-brain interface and the blood-CSF interface. One or more of these interfaces are exposed to water-soluble contrast medium (CM) following intra-arterial, intravenous, or intrathecal CM administration during cerebral angiography, computerised tomography (CT) or myelography.

Studies were performed in dogs to demonstrate that CT could be used to assess the distribution and the degree of BBB disruption after the intra-arterial injection of hypertonic solutions. Utilising this fact, further studies were performed to assess the effect of intra-arterial injections of various water-soluble CM on the permeability of the BBB. Whereas isotonic saline resulted in no change, hypertonic tonic methylglucamine tothalamate produced consistent, although variable breakdown of the BBB as demonstrated by both Evans' Blue staining and CT enhancement. Although this was thought to be due to the hypertonicity of the methylglucamine tothalamate, a solution of 25% mannitol which has a similar osmolality to methylglucamine tothalamate did not produce the same degree of breakdown at a similar dose. This indicates that although the osmolality of particular solutions remains a major factor in producing BBB disruption following intra-arterial injections, other factors must play a part. The viscosity of methylglucamine tothalamate is more than twice that of 25% mannitol at 37 degrees centigrade and it is postulated that this may be a factor in BBB
disruption by increasing the contact time with the endothelium of the cerebral capillaries following intra-arterial injection.

Using similar dose rates and iodine concentration as methylglucamine lothalamate, the non-ionic CM, metrizamide, iopamidol and iohexol failed to produce any evidence of BBB disruption. This is thought to reflect their lower osmolality when compared with methylglucamine lothalamate and 30% mannitol. As neurotoxicity appears to be at least partly related to the effect of CM on the blood-brain interface, the blood-brain barrier, these studies suggest that non-ionic CM with their lower osmolality should replace ionic CM for intra-arterial angiography.

Large intravenous doses of ionic CM are recommended for CT enhancement and digital intravenous angiography. Such large doses of ionic CM may briefly increase the osmolality of blood and hence lead to BBB disruption. However, studies with large doses of ionic sodium lothalamate in rabbits failed to demonstrate any quantitative evidence of BBB disruption. This probably reflects the rapid distribution of water-soluble CM into the plasma and also the extracellular fluid of non-neural tissue following intravenous injection resulting in rapid dilution of the CM within blood.

Intrathecially ionic CM are known to be more neurotoxic than equivalent iodine concentrations of non-ionic CM. It has been suggested that the toxicity of metrizamide is related to brain penetration and concentration. Studies were therefore carried out to compare the rate of brain penetration and concentration of ionic methylglucamine lothalamate and non-ionic metrizamide and iopamidol.
The depth of penetration and the concentration of CM in the brain parenchyma 60 minutes after intrathecal injection were found to be the same for each. This indicates that the relative difference in neurotoxicity is not due to a different rate of penetration across the CSF-brain interface but must be related to the molecular structure of the individual CM. Studies with iopamidol showed that there is rapid passage of CM across the CSF-brain interface and that a positive rate of diffusion across the CSF-brain barrier continues at least up to 60 minutes with an increase in concentration within the brain parenchyma.

Although there is no active CSF circulation in the spinal subarachnoid space, a clinical study indicated that following lumbar myelography in which metrizamide was deliberately placed in the lumbar thecal sac both during and after the examination, the CM passed cranially and by 6 hours was demonstrated in the intracranial CSF in the majority of patients with obvious brain penetration. This brain penetration of CM persisted for 24 hours, with an increase in depth of penetration and without a reduction in the concentration within the brain parenchyma. Gross brain penetration by metrizamide was demonstrated in the absence of any headache, neurological sequelae or post-myelographic EKG changes. No change in the density of the white matter was demonstrated in the absence of any intraventricular reflux to suggest penetration of CM into the white matter and there was no evidence of a reduction in density to suggest the development of brain oedema.

It was recently suggested that following a large intravenous dose of water-soluble CM that the CM may pass into the CSF across the
blood-CSF interface, allowing intravenous CT myelography to be performed. Studies with ionic sodium iothalamate showed that there was only minimal passage of CM across the blood-CSF interface after intravenous injection indicating that intravenous enhancement of the CSF is not possible.