ALLOZYME ELECTROPHORESIS

A Handbook for Animal Systematics and Population Studies

B.J. RICHARDSON
Bureau of Flora and Fauna
Canberra
P.R. BAVERSTOCK and M. ADAMS
South Australian Museum
Adelaide

ACADEMIC PRESS

(Harcourt Brace Jovanovich, Publishers)
Sydney Orlando San Diego New York Austin
London Montreal Tokyo Toronto

ACADEMIC PRESS AUSTRALIA

Centrecourt, 25-27 Paul Street North
North Ryde, N.S.W. 2113
United States Edition published by
ACADEMIC PRESS INC.
Orlando, Florida 32887

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7DX
Copyright © 1986 by
ACADEMIC PRESS AUSTRALIA
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Printed in Australia
National Library of Australia Cataloguing-in-Publication Data

Richardson, B. J. (Barry John), date- .
Allozyme electrophoresis.
Bibliography.
Includes index.
ISBN 0125878400.

1. Enzymes - Analysis - Technique. 2. Electrophoresis - Technique. I. Baverstock, P. R. (Peter Raymond), date- . II. Adams, M. (Mark), date- . III.
Title.
591.19'25

CONTENTS

General Introduction xi
Part I. Project Planning 1
Introduction to Part I 1
Chapter 1. Genetics 3
1.1 Elementary Genetics 3
1.2 Population Genetics 8
1.2.1 Non-random mating 10
1.2.2 Small population size 11
1.2.3 Differential selection 11
1.3 Clines 12
Chapter 2. Electrophoresis 15
2.1 Protein Structure and Function 15
2.2 Electrophoresis 16
2.3 Staining Systems 20
2.4 Multiple Forms of Enzymes 22
2.4.1 The presence of more than one locus 22
2.4.2 The presence of more than one allele 22
2.4.3 Post-translational modifications 24
2.5 Allelic Variation 26
2.6 Applications of Allozyme Electrophoresis 28
Chapter 3. Population Structures 31
3.1 Alternative Population Models 32
3.2 Differentiating Between Population Models in Simple Situations 35
3.3 More Complex Field Situations 36
3.3.1 Overlapping subpopulations 36
3.3.2 Very small subpopulations 37
3.3.3 Failure to meet isolation-by-distance model assumptions 38
3.4 Sampling Strategies 39
Chapter 4. Systematics 40
4.1 Species 40
4.2 Supraspecific Categories 41
4.3 Electrophoresis in Systematics 46
4.3.1 Delineation of biological species 46
4.3.2 Phylogenetic reconstruction 53
Chapter 5. Statistical Methods 57
5.1 Binomially Distributed Data 57
5.2 Hypothesis Testing 58
5.3 Setting Sample Sizes for Population Studies 60
5.4 Testing for Differences in Allele Frequency 62
5.5 Testing the Assumption that a Single Panmictic Population is Sampled 65
5.6 Testing the Assumption that Alleles at a Single Locus are being Studied 69
5.7 Tests for the Independence of Loci 69
5.8 Measures of Genetic Relatedness for use in Population Studies 70
5.9 Sample Sizes in Taxonomic Studies 74
Chapter 6. Project Planning and Sampling Strategies 76
6.1 Population Studies 76
6.2 Systematic Studies 79
6.2.1 Delineating species boundaries 80
6.2.2 Phylogenetic studies 82
Part II. Collecting the Data 83
Introduction to Part II 83
Chapter 7. Sample Collection, Handling and Preparation 85
7.1 Background 85
7.2 General Principles of Sampling 87
7.3 Tissues 89
7.4 Taking and Processing 91
7.5 Preserving 93
7.6 Transport 94
7.7 Long-term Storage 94
7.8 Preparation of Samples for Electrophoresis 95
7.9 Compromises in Sampling Technique 98
Chapter 8. Electrophoresis Methods 99
8.1 Choice of Electrophoretic Support Medium 99
8.2 General Laboratory Requirements 102
8.2.1 Equipment 102
8.2.2 Consumables 103
8.3 Standard Electrophoretic Procedures 104
8.3.1 Pre-loading 113
8.3.2 Loading 115
8.3.3 The electrophoretic run 118
8.3.4 Staining 119
8.3.5 Scoring 122
8.4 Genetic Interpretation of Zymograms 127
8.4.1 Factors responsible for complex electrophoretic patterns 128
8.4.2 Practical interpretation procedures 136
8.4.3 General principles of interpretation 140
8.4.4 Line-up gels 142
8.4.5 Integration of results across gels 143
Chapter 9. Specific Enzyme Methods for Cellulose Acetate Electrophoresis 145
9.1 The Structure of the Enzyme Sheets 145
9.1.1 General background 145
9.1.2 Standardized nomenclature 146
9.1.3 Consumables 148
9.1.4 The format of the enzyme sheets 148
9.2 The Sheets 161
9.3 Explanatory Notes 219
9.3.1 Note 1: Buffers 219
9.3.2 Note 2: Stabilizers 219
9.3.3 Note 3: Common detection mechanisms 220
9.3.4 Note 4: Isozyme mobility 221
9.3.5 Note 5: Formazan precipitation 221
9.3.6 Note 6: Inhibition of phantom dehydrogerases 221
9.3.7 Note 7: Arsenate 222
9.3.8 Note 8: Post-coupling 222
9.3.9 Note 9: NAD-dependent G6PD 222
9.3.10 Note 10: Fluorescent detection systems 222
9.3.11 Note 11: Cytoplasmic and mitochondrial enzymes 224
9.3.12 Note 12: Multiple locus systems 225
9.3.13 Note 13: Hybridization between the isozyme products of separate loci 225
9.3.14 Note 14: Treatment-related modification 226
9.3.15 Note 15: Complex electrophoretic patterns 226
9.3.16 Note 16: Warping 227
9.3.17 Note 17: Uninterpretable variation 227
9.3.18 Note 18: Atypical heterozygotes 227
9.3.19 Note 19: Stain artifacts 228
Chapter 10. Strategies 229
10.1 Setting Up a New Electrophoresis Unit 229
10.1.1 Background concepts 229
10.1.2 Learning strategies for cellulose acetate 231
10.2 Enzyme Suitability 235
10.2.1 Presence 235
10.2.2 Staining intensity 236
10.2.3 Electrophoretic resolution 236
10.2.4 Reliability 237
10.2.5 Cost of stain 237
10.2.6 Tissue distribution 237
10.2.7 Number of loci 237
10.2.8 Tissue-specific loci 237
10.2.9 Electrophoretic conservativeness 238
10.2.10 Summary 238
10.3 Laboratory Strategies 238
10.3.1 Routine screen 239
10.3.2 Method modification 239
10.3.3 Further investigation 242
10.3.4 Line-ups 243
10.3.5 Random retyping 243
10.3.6 Reinterpretation 243
10.3.7 General laboratory protocol 243
10.3.8 Investigative work on multiple-locus systems 244
10.3.9 Electromorph splitting 249
10.4 Specific Resource-Saving Strategies 251
10.4.1 Tissue handling 251
10.4.2 Test strips 251
10.4.3 Choice of running buffers 252
10.4.4 Choice of tissues for screening 253
10.4.5 Pre-loading strategies 254
10.4.6 Selection of loading order 254
10.4.7 Mobility controls 256
10.4.8 Origin placements for cellulose acetate electrophoresis 256
10.4.9 Multiple origins 257
10.4.10 Multiple loading 258
10.4.11 Run strategies 258
10.4.12 Staining strategies 260
10.4.13 Staining weak activity enzymes 261
10.4.14 Double stains 261
10.4.15 Freezing gels 264
10.4.16 Trouble-shooting 264
10.4.17 Stain trouble-shooting 268
10.4.18 Large-scale genetic typing exercises 269
10.4.19 Inter-laboratory consultation 270
Part III. Analysing the Data 271
Introduction to Part III 271
Chapter 11. Population Analysis using Electrophoretic Data 273
11.1 Analysis of the Sample Set Data 274
11.1.1 Locus-specific phenomena 277
11.1.2 Population-specific phenomena 279
11.2 Within-Stock and Between-Stock Analysis 280
11.2.1 Comparisons between replicate sample sets 280
11.2.2 Comparisons within stocks 280
11.2.3 Comparisons of different stocks 282
11.2.4 Geographical analysis of allele frequencies 282
11.3 Further Analysis of Geographical Structuring 283
11.3.1 Theoretical relationships between genetic and geographical distance 287
11.3.2 The effects of other factors 288
11.3.3 Mapping the distributions of subpopulations 288
11.3.4 Estimating neighbourhood size 289
11.4 Examples of Analysis 290
11.4.1 The jackass morwong (Cheilodactylus macropterus) 290
11.4.2 The Australian snapper (Chrysophrys auratus) 293
11.4.3 The European rabbit in Australia 295
11.4.4 Brown Trout (Salmo trutta) in Scandinavia 298
11.4.5 Skipjack tuna (Katsuwonus pelamis) in the Bismark Sea 299
Chapter 12. Analysis of Electrophoretic Data in Systematics 303
12.1 Dissection of Species Complexes 303
12.1.1 Sympatric sibling species 303
12.1.2 Allopatric populations 304
12.2 Phylogenetic Reconstruction 309
12.2.1 Phenetic analysis 309
12.2.2 Numerical methods based on distance data 312
12.2.3 The Hennigian approach 316
12.2.4 Reticulate evolution 325
12.2.5 The molecular clock 326
12.3 Integration With Other Data 327
12.3.1 Phylogenetic analysis 327
12.3.2 Species complexes 328
12.4 A Worked Example of Phylogenetic Analysis 330
12.4.1 Distance analysis 331
12.4.2 Hennigian analysis 337
12.4.3 Synthesis 345
12.4.4 Details of computer programs 346
Part IV. Other Types of Project 347
Chapter 13. Other Biological Uses for Allozyme Electrophoresis 349
13.1 Genetic Identification 349
13.1.1 Genetic identification of an individual 349
13.1.2 Species identification 349
13.2 Genetic Quality Control of Laboratory Animal Stocks 351
13.2.1 Background 351
13.2.2 Project planning 351
13.2.3 Interpretation 352
13.3 Cell Culture Contamination 353
13.4 Parental Testing 353
13.5 Relating a Tissue to an Individual 354
13.6 Identifying Cryptic Species 354
13.7 Identifying Non-adult Forms 355
13.8 Identifying Meat Substitutions 355
13.9 Gene Mapping 356
13.10 Origins and Relationships of Domestic Forms 357
13.11 Assessing the Loss of Variability Due to Inbreeding 357
13.12 Applications in Protozoology and Bacteriology 358
13.13 Applications of Allozyme Electrophoresis to Plants 360
13.13.1 Ploidy level 360
13.13.2 Breeding systems 361
13.13.3 Chemical defence systems 361
Appendix I 363
Appendix II 367
Bibliography 389
Index 401

GENERAL INTRODUCTION

Since the advent of starch gel electrophoresis in 1959, the technique of electrophoresis has been increasingly used to provide useful information in a wide range of biological and medical situations. One major area has been its use as a tool for genetic analysis, using enzymatic proteins as markers of variation in the underlying genes (i.e. allozyme electrophoresis). Such genetic markers are useful for the identification of individuals, population structure analysis, the delineation of species boundaries and phylogenetic reconstruction. The purpose of this book is to address these aspects in a single, convenient handbook for all those intending to use electrophoresis as a tool to answer practical questions in population structure analysis, systematics or specimen identification.

Ferguson (1980) provides useful background information in these areas, but does not give the necessary practical details. The book by Harris and Hopkinson (1976), on the other hand, gives a detailed account of the practical procedures for conducting allozyme electrophoresis, but is directed towards work on humans. Both these books make excellent companion references for this handbook.

Whilst much of this book refers to zoological applications, the principles behind the technique and most of the methodology are applicable to virtually all life forms.

In times of budgeting restraint, considerations of cost in terms of money and, more especially, of time, are of paramount importance. A continuing theme throughout the book is that of maximum return for minimum cost. In electrophoretic work, collecting the samples in the field may be much more expensive than the electrophoresis itself. Therefore particular emphasis is placed upon project planning from the economic point of view without compromising the aims of the project.

Any electrophoretic analysis of population structure, species complexes, or phylogeny goes through three phases; project planning, electrophoresis of the samples, and data analysis. The book includes separate parts dealing with each of these three phases.

Part I considers background concepts. The book assumes no specialized knowledge of either genetics or biochemistry. However, some background knowledge is essential to economical and sensible sampling strategies, to
the process of electrophoresis and to the biological interpretation of the data obtained.

Part II covers the practical aspects of data collection, from the viewpoints of both taking and handling the samples for electrophoresis, and of running, staining and interpreting gels.

Part III discusses the analysis of data with methods and examples being given for the treatment of both population data and systematic data.

Part IV consists of a single chapter which briefly reviews other practical applications of allozyme electrophoresis, such as the identity of cell cultures, checking the 'purity' of inbred strains of laboratory animals, the identification of larval forms, and species identification in mixed fish catches.

A number of support media are suitable for allozyme electrophoresis. We have found that cellulose acetate is a very versatile medium and the easiest to use. Therefore the methods section of this book refers mainly to that medium (and in particular to the 'Cellogel' brand). However, we stress that all of Parts I, III and IV and much of Part II are independent of the support medium used. Therefore the book should prove useful to anyone using allozyme electrophoresis, whatever the support medium.

The authors' task of preparing this work was made easier by the support of many people. We would especially like to thank R. Andrews and S. Donnellan for their sustained effort in forcing us to clarify and clearly describe our ideas. We thank R. Hnatiuk, R. Longmore, P. O'Donahue, J. Orbach, T. Reardon, T. Schwaner and D. Walton, for their comments and suggestions on the manuscript, C. Curtis and A. Gunjko for computing assistance, J. Riede and J. Thurmer for preparing the figures and P. Kidd, G. Downing, V. Ochiltree, W. Riley and E. Tieni for typing assistance. We would also like to thank Grant Walker of Academic Press Australia for his patience and support during the long gestation of this book.

