

ALLOZYME ELECTROPHORESIS

A Handbook for Animal Systematics and Population Studies

B.J. RICHARDSON Bureau of Flora and Fauna Canberra

P.R. BAVERSTOCK and M. ADAMS South Australian Museum Adelaide

ACADEMIC PRESS

(Harcourt Brace Jovanovich, Publishers) Sydney Orlando San Diego New York Austin London Montreal Tokyo Toronto ACADEMIC PRESS AUSTRALIA Centrecourt, 25–27 Paul Street North North Ryde, N.S.W. 2113

United States Edition published by ACADEMIC PRESS INC. Orlando, Florida 32887

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Copyright © 1986 by ACADEMIC PRESS AUSTRALIA

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Printed in Australia

National Library of Australia Cataloguing-in-Publication Data

Richardson, B. J. (Barry John), date- . Allozyme electrophoresis.

Bibliography. Includes index. ISBN 0 12 587840 0.

1. Enzymes - Analysis - Technique. 2. Electrophoresis - Technique. I. Baverstock, P. R. (Peter Raymond), date-. II. Adams, M. (Mark), date-. III. Title.

591.19'25

Library of Congress Catalog Card Number: 86-70495

General Introduction	xi
Part I. Project Planning	1
Introduction to Part I	1
Chapter 1. Genetics 1.1 Elementary Genetics 1.2 Population Genetics 1.2.1 Non-random mating 1.2.2 Small population size 1.2.3 Differential selection 1.3 Clines	3 3 8 10 11 11 12
 Chapter 2. Electrophoresis 2.1 Protein Structure and Function 2.2 Electrophoresis 2.3 Staining Systems 2.4 Multiple Forms of Enzymes 2.4.1 The presence of more than one locus 2.4.2 The presence of more than one allele 2.4.3 Post-translational modifications 2.5 Allelic Variation 2.6 Applications of Allozyme Electrophoresis 	15 15 20 22 22 22 24 26 28
 Chapter 3. Population Structures 3.1 Alternative Population Models 3.2 Differentiating Between Population Models in Simple Situations 3.3 More Complex Field Situations 3.3.1 Overlapping subpopulations 	31 32 35 36 36
3.3.2 Very small subpopulations3.3.3 Failure to meet isolation-by-distance model assumptions3.4 Sampling Strategies	37 38 39

Chapter 4. Systematics	40
4.1 Species	40
4.2 Supraspecific Categories	41
4.3 Electrophoresis in Systematics	46
4.3.1 Delineation of biological species	46
4.3.2 Phylogenetic reconstruction	53
Chapter 5. Statistical Methods	57
5.1 Binomially Distributed Data	57
5.2 Hypothesis Testing	58
5.3 Setting Sample Sizes for Population Studies	60
5.4 Testing for Differences in Allele Frequency	62
5.5 Testing the Assumption that a Single Panmictic Population	
is Sampled	65
5.6 Testing the Assumption that Alleles at a Single Locus	<i>(</i>)
are being Studied	69
5.7 Tests for the Independence of Loci	69
5.8 Measures of Genetic Relatedness for use in Population Studies	
5.9 Sample Sizes in Taxonomic Studies	74
Chapter 6. Project Planning and Sampling Strategies	76
6.1 Population Studies	76
6.2 Systematic Studies	79
6.2.1 Delineating species boundaries	80
6.2.2 Phylogenetic studies	82
Part II. Collecting the Data	83
Introduction to Part II	83
Chapter 7. Sample Collection, Handling and Preparation	85
7.1 Background	85
7.2 General Principles of Sampling	87
7.3 Tissues	89
7.4 Taking and Processing	91
7.5 Preserving	93
7.6 Transport	94
7.7 Long-term Storage	94
7.8 Preparation of Samples for Electrophoresis	95
7.9 Compromises in Sampling Technique	98
Chapter 8. Electrophoresis Methods	99
8.1 Choice of Electrophoretic Support Medium	99
8.2 General Laboratory Requirements	102

vi

CO	NT	FN	ITS
CO	141	Lin	110

8.2.1 Equipment	102
8.2.2 Consumables	103
8.3 Standard Electrophoretic Procedures	104
8.3.1 Pre-loading	113
8.3.2 Loading	115
8.3.3 The electrophoretic run	118
8.3.4 Staining	119
8.3.5 Scoring	122
8.4 Genetic Interpretation of Zymograms	127
8.4.1 Factors responsible for complex electrophoretic patterns	128
8.4.2 Practical interpretation procedures	136
8.4.3 General principles of interpretation	140
8.4.4 Line-up gels	142
8.4.5 Integration of results across gels	143
Chapter 9. Specific Enzyme Methods for Cellulose Acetate	
Electrophoresis	145
9.1 The Structure of the Enzyme Sheets	145
9.1.1 General background	145
9.1.2 Standardized nomenclature	146
9.1.3 Consumables	148
9.1.4 The format of the enzyme sheets	148
9.2 The Sheets	161
9.3 Explanatory Notes	219
9.3.1 Note 1: Buffers	219
9.3.2 Note 2: Stabilizers	219
9.3.3 Note 3: Common detection	
	220
9.3.4 Note 4: Isozyme mobility	221
9.3.5 Note 5: Formazan precipitation	221
9.3.6 Note 6: Inhibition of phantom	
dehydrogerases	221
9.3.7 Note 7: Arsenate	222
9.3.8 Note 8: Post-coupling	222
9.3.9 Note 9: NAD-dependent G6PD	222
9.3.10 Note 10: Fluorescent detection	
systems	222
9.3.11 Note 11: Cytoplasmic and mitochondrial	
	224
	225
.9.3.13 Note 13: Hybridization between the	
isozyme products of separate loci	225

vii

.

9.3.14 Note 14: Treatment-related modification	226
9.3.15 Note 15: Complex electrophoretic patterns	226
9.3.16 Note 16: Warping	227
9.3.17 Note 17: Uninterpretable variation	227
9.3.18 Note 18: Atypical heterozygotes	227
9.3.19 Note 19: Stain artifacts	228
Chapter 10. Strategies	229
10.1 Setting Up a New Electrophoresis Unit	229
10.1.1 Background concepts	229
10.1.2 Learning strategies for cellulose acetate	231
10.2 Enzyme Suitability	235
10.2.1 Presence	235
10.2.2 Staining intensity	236
10.2.3 Electrophoretic resolution	236
10.2.4 Reliability	237
10.2.5 Cost of stain	237
10.2.6 Tissue distribution	237
10.2.7 Number of loci	237
10.2.8 Tissue-specific loci	237
10.2.9 Electrophoretic conservativeness	238
10.2.10 Summary	238
10.3 Laboratory Strategies	238
10.3.1 Routine screen	239
10.3.2 Method modification	239
10.3.3 Further investigation	242
10.3.4 Line-ups	243
10.3.5 Random retyping	243
10.3.6 Reinterpretation	243
10.3.7 General laboratory protocol	243
10.3.8 Investigative work on multiple-locus systems	244
10.3.9 Electromorph splitting	249
10.4 Specific Resource-Saving Strategies	251
10.4.1 Tissue handling	251
10.4.2 Test strips	251
10.4.3 Choice of running buffers	252
10.4.4 Choice of tissues for screening	253
10.4.5 Pre-loading strategies	254
10.4.6 Selection of loading order	254
10.4.7 Mobility controls	256
10.4.8 Origin placements for cellulose acetate electrophoresis	256
10.4.9 Multiple origins	257

CON	ITEN	ITS
-----	------	-----

10.4.10 Multiple loading	258
10.4.11 Run strategies	258
10.4.12 Staining strategies	260
10.4.13 Staining weak activity enzymes	261
10.4.14 Double stains	261
10.4.15 Freezing gels	264
10.4.16 Trouble-shooting	264
10.4.17 Stain trouble-shooting	268
10.4.18 Large-scale genetic typing exercises	269
10.4.19 Inter-laboratory consultation	270
Part III. Analysing the Data	271
Introduction to Part III	271
Chapter 11. Population Analysis using Electrophoretic Data	273
11.1 Analysis of the Sample Set Data	273
11.1.1 Locus-specific phenomena	274
11.1.2 Population-specific phenomena	279
11.2 Within-Stock and Between-Stock Analysis	280
11.2.1 Comparisons between replicate sample sets	280
11.2.2 Comparisons within stocks	280
11.2.3 Comparisons of different stocks	280
11.2.4 Geographical analysis of allele frequencies	282
11.3 Further Analysis of Geographical Structuring	283
11.3.1 Theoretical relationships between genetic and	205
geographical distance	287
11.3.2 The effects of other factors	288
11.3.3 Mapping the distributions of subpopulations	288
11.3.4 Estimating neighbourhood size	289
11.4 Examples of Analysis	290
11.4.1 The jackass morwong (<i>Cheilodactylus macropterus</i>)	290
11.4.2 The Australian snapper (<i>Chrysophrys auratus</i>)	293
11.4.3 The European rabbit in Australia	295
11.4.4 Brown Trout (Salmo trutta) in Scandinavia	298
11.4.5 Skipjack tuna (Katsuwonus pelamis) in the Bismark Sea	299
Chapter 12. Analysis of Electrophoretic Data in Systematics	303
12.1 Dissection of Species Complexes	303
12.1.1 Sympatric sibling species	303
12.1.2 Allopatric populations	304
12.2 Phylogenetic Reconstruction	309
12.2.1 Phenetic analysis	309

ix

12.2.2 Numerical methods based on distance data	312
12.2.3 The Hennigian approach	316
12.2.4 Reticulate evolution	325
12.2.5 The molecular clock	326
12.3 Integration With Other Data	327
12.3.1 Phylogenetic analysis	327
12.3.2 Species complexes	328
12.4 A Worked Example of Phylogenetic Analysis	330
12.4.1 Distance analysis	331
12.4.2 Hennigian analysis	337
12.4.3 Synthesis	345
12.4.4 Details of computer programs	346
Part IV. Other Types of Project	347
Chapter 13. Other Biological Uses for Allozyme Electrophoresis	349
13.1 Genetic Identification	349
13.1.1 Genetic identification of an individual	349
13.1.2 Species identification	349
13.2 Genetic Quality Control of Laboratory Animal Stocks	351
13.2.1 Background	351
13.2.2 Project planning	351
13.2.3 Interpretation	352
13.3 Cell Culture Contamination	353
13.4 Parental Testing	353
13.5 Relating a Tissue to an Individual	354
13.6 Identifying Cryptic Species	354
13.7 Identifying Non-adult Forms	355
13.8 Identifying Meat Substitutions	355
13.9 Gene Mapping	356
13.10 Origins and Relationships of Domestic Forms	357
13.11 Assessing the Loss of Variability Due to Inbreeding	357
13.12 Applications in Protozoology and Bacteriology	358
13.13 Applications of Allozyme Electrophoresis to Plants	360
13.13.1 Ploidy level	360
13.13.2 Breeding systems	361
13.13.3 Chemical defence systems	361
Appendix I	363
Appendix II	367
Bibliography	389
Index	401

GENERAL INTRODUCTION

Since the advent of starch gel electrophoresis in 1959, the technique of electrophoresis has been increasingly used to provide useful information in a wide range of biological and medical situations. One major area has been its use as a tool for genetic analysis, using enzymatic proteins as markers of variation in the underlying genes (i.e. allozyme electrophoresis). Such genetic markers are useful for the identification of individuals, population structure analysis, the delineation of species boundaries and phylogenetic reconstruction. The purpose of this book is to address these aspects in a single, convenient handbook for all those intending to use electrophoresis as a tool to answer practical questions in population structure analysis, systematics or specimen identification.

Ferguson (1980) provides useful background information in these areas, but does not give the necessary practical details. The book by Harris and Hopkinson (1976), on the other hand, gives a detailed account of the practical procedures for conducting allozyme electrophoresis, but is directed towards work on humans. Both these books make excellent companion references for this handbook.

Whilst much of this book refers to zoological applications, the principles behind the technique and most of the methodology are applicable to virtually all life forms.

In times of budgeting restraint, considerations of cost in terms of money and, more especially, of time, are of paramount importance. A continuing theme throughout the book is that of maximum return for minimum cost. In electrophoretic work, collecting the samples in the field may be much more expensive than the electrophoresis itself. Therefore particular emphasis is placed upon project planning from the economic point of view without compromising the aims of the project.

Any electrophoretic analysis of population structure, species complexes, or phylogeny goes through three phases; project planning, electrophoresis of the samples, and data analysis. The book includes separate parts dealing with each of these three phases.

Part I considers background concepts. The book assumes no specialized knowledge of either genetics or biochemistry. However, some background knowledge is essential to economical and sensible sampling strategies, to the process of electrophoresis and to the biological interpretation of the data obtained.

Part II covers the practical aspects of data collection, from the viewpoints of both taking and handling the samples for electrophoresis, and of running, staining and interpreting gels.

Part III discusses the analysis of data with methods and examples being given for the treatment of both population data and systematic data.

Part IV consists of a single chapter which briefly reviews other practical applications of allozyme electrophoresis, such as the identity of cell cultures, checking the 'purity' of inbred strains of laboratory animals, the identification of larval forms, and species identification in mixed fish catches.

A number of support media are suitable for allozyme electrophoresis. We have found that cellulose acetate is a very versatile medium and the easiest to use. Therefore the methods section of this book refers mainly to that medium (and in particular to the 'Cellogel' brand). However, we stress that all of Parts I, III and IV and much of Part II are independent of the support medium used. Therefore the book should prove useful to anyone using allozyme electrophoresis, whatever the support medium.

The authors' task of preparing this work was made easier by the support of many people. We would especially like to thank R. Andrews and S. Donnellan for their sustained effort in forcing us to clarify and clearly describe our ideas. We thank R. Hnatiuk, R. Longmore, P. O'Donahue, J. Orbach, T. Reardon, T. Schwaner and D. Walton, for their comments and suggestions on the manuscript, C. Curtis and A. Gunjko for computing assistance, J. Riede and J. Thurmer for preparing the figures and P. Kidd, G. Downing, V. Ochiltree, W. Riley and E. Tieni for typing assistance. We would also like to thank Grant Walker of Academic Press Australia for his patience and support during the long gestation of this book.

