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SUIMATEY

Three detailed determinatbions of the crysbal
gtenetures of wnica minerals have clearly shown bthat
fubure studies of this kind on layer silicabes should
only be based on experimental X-ray data of high
accuracy, analysed by large-gscale high-speed computing
facilities. The first of these sbudles led to a
crltical review of the currently accepted ideas about
the cryslbal glructures of layer silicates, Affer
re-agsesaing in an empivical. way the relative importance
of various forces within these minerals it became
possible to predict gbructural detalls with considervable
confidence, simply on the basis of chemlcal composition
and unit cell dimensions, i.e. by using data which are
relatively easiiy obtained, Furthermore it has been
posslble 1o postulate soﬁe sensglble limlting conditions
for certain common structural configurations, and to
examine whether these limits ‘are compvatible owv
coincldent with independent data, e.p. the observed
range of chemical composition for naturally-occcurring
gpecimens of a given mineral. species. Some accepbed
ideas about physical propertles such as micro-
moxrphology have algo heen shown té regqulre at least

substential modificabion and/or re-investlgation.




Finally, thls kind of criticsal weview of a large
group of related minevals whose sbructures can he
predicted in delail allows the experienced
crysgtallographer to make a much betber choice of
those individual steuctures most worthy of precise
and detalled analysis in the fulore.

This gtudy has been important because it hag
demonstrabed very thoroughly, and possibly for the firet
time, just how much can be gained by studying a wide
group of related minerals, bearing in mind the
reasonably expecled Llimits Lo glven interatomic
distances and angles for structural units and groups
such ms sllica tetrahedra, aluminiwm octahedra etc,

At the same time the rather rigid models previously
developed for these mineral structures have been
replaced by more dynamic models in which the overall
adjustments to specific internsl changes (such as an
isomorphous substitutlion) may be taken into account.
The result is that our crystallographic ideas aboul
layer silicates are now far more reallslic, emd hence

mece ugeful in other studies.
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The structure of the 2/, polymorph of muscovite, originally described by Jackson & West (1930,
1933), has been refined. The new atomic parameters show the structure to be considerably distorted
from the ideal structure, especially by a departure from hexagonal symmetry on the surfaces of the
silicate sheets. A number of difficulties concerning muscovite can now be resolved, and tentative
explanations offered for properties of other layer silicates.

Though the structures of the micaceous minerals have
been known in their main features for many years
there is now considerable interest in the precise details
of these and related layer-lattice silicate structures,
especially the clay minerals.

The unit cells and symmetries of the micas were first
investigated by Mauguin (1928). Their general struc-
tural scheme was then proposed by Pauling (1930)
from a consideration of these dimensions, and of the
known layer structures of the related minerals hydrar-
gillite (i.e. gibbsite) A{OH)s, brucite Mg(OH)s, f-tri-
dymite SiOz and f-cristobalite SiO2. Pauling showed
that the micas also are layer structures, with an octa-
hedral Al-O layer between two tetrahedral Si-O
layers.* At the same time Jackson & West (1930, 1933)

muscovite 2(Sia o(OH)2) er, in-

ing the rel posi of the 1 in the
z and y directions. Their structure, based on symmetry
and packing considerations, was confirmed by a general
comparison of the observed and calculated intensities
of a limited number of Akl reflections. This work was
not claimed to give atomic parameters accurately,
however, the structure being essentially an ‘ideal’ one.

No other analyses of mica structures appear to have
been made since that of Jackson & West; and indeed
it is only recently that structure analyses have been
made of any layer-lattice silicates. Of these analyses
the most accurate work is that on vermiculite by
Mathieson & Walker (1954), and by Mathieson (1958).
Less precise analyses have also been reported of
amesite (Steinfink & Brunton, 1956), dickite (Newn-
ham & Brindley, 1956), chloritoid (Harrison & Brind-
ley, 1957), prochlorite (Steinfink, 1958a) and corundo-
phillite (Steinfink, 1958b).

The ideal muscovite structure of Jackson & West
(1930) leaves several problems unsolved, viz.:

* The structural features of micas are adequately described
by Bragg (1937).

lattice silicates (e.g. muscovite) do not agree with
the ideal angles, f=cos=1(—a/3c).

(¢) There is & known misfit between the dimensions
of a ‘free’ tetrahedral Si-O (or a SizAl;-0) layer
and a ‘free’ octahedral Al-O layer, and this misfit
must somehow be accommodated in muscovite.

(@) as

of
12-
coordinated.

(¢) In the tetrahedral layers the four cation sites are
occupied by 3 Si and 1 Al ion; are these in an
ordered arrangement ?

(f) Hendricks & Jefferson (1939), and later Levinson
(1953) and others, have demonstrated extensive
polymorphism amongst the micas, whilst Smith
& Yoder (1956) have recently suggested a theory
to predict possible polymorphs. Some of these
are either rare or not yet observed, but there
appears to be no satisfactory explanation either
of this or of the relative abundance of the common
polymorphs.

Hendricks & Jefferson (1939) suggested that musco-
vite is unique among the micas in possessing only one
form, the two-layer monoclinic form (2M;) studied by
Jackson & West (1930). This is no longer accepted,
but since the 2M; polymorph is the most common it
is the one chosen for the present re-examination of the
muscovite structure. Yoder & FEugster (1955) give
cell dimensions for a synthetic 2M; muscovite as

a=>5-189 + 0-010, b=8-995 + 0-020,
¢=20-097+0:005 A, §=95°11"+5'".

This contains four formula units, KAlz(SisAl)O10(OH)e.
The systematically absent reflections are consistent
with either the space-group C2/¢ or the non-centro-
symmetric equivalent, Cc¢; and in absence of evidence
for asymmetry Jackson & West chose O2/c. (Pabst
(1955) has recently proposed that the one-layer micas
are best described as C2/m, not Cm). The density is
2-83; g.cm. 3, calculated from the unit-cell dimensions
and molecular weight.
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Experimental

The sample of muscovite studied was from the Spotted
Tiger Mine, Central Australia. The hand specimen
consists of felspar crystals and of hexagonal muscovite
books, 3 to 4 em. across, which had grown into a
cority. The muscovite is attached to the felspar, which
is corroded in places. The books are clear at the edges,
but show greenish iron stains in cleavage planes
toward the centre. A suitable flake (0-4 x 0-5 % 0-1 mm.
approx.) was cut parallel to the true a-axis, from the
edge of one book; the orientation was checked by the
interfacial angles on the book, by percussion figures,
and by Laue photographs. The true a-axis may be
chosen optically and is confirmed by an oscillation
photo after aligning the crystal about ¢, normal to
the flake. (A 5° tilt towards —a gives layer-lines for a
20 A c-axis, but a tilt towards a pseudo a-axis gives
layer-lines for a 60 A spacing, given by the larger
orthorhombic cell).
The refractive indices have the values

=1-594 +0-001, ¢»=1-598 +0-001
Y

which suggests a fairly pure muscovite. A chemical
analysis on a powdered sample, obtained by filing a
mica book, gave the results in Table 1.

Table 1. Chemical analysis of muscovite from
Harts Range, Central Australia

No. of No. of Metal ions*

% metal ions  oxygens (22 oxygens)
K,0 10-91 0-2316 0-1158 1-872 } 087
Na,O 0-44 0:0142 0-0071 0-115
Si0, 46-20 07675 1-5350 6-220 8-000
Al O;  34-28 0-6722 1-0083 5-450 I
Fe,O4 2-29 0-0288 00432 0237 4.018
MgO 0-60 0-0149 0-0149 0121
H,0 5-0 4

99-72

Analyst: R. Bond, Division of Soils, C.8.I.R.O., Adelaide.

* (alculated on the basis of 22 oxygens in the unit cell,

g H,0. The ent of 5 is dif t to

ince there is rke ria across mica
due to the iron stains. An estimate of 2:6%, Fe,O; was formed
from the value of the refractive indices. Fluorescent X-ray

tro y on the o g 2., t

es 1-59%, to 2 on nn a

of mica with a fine beam.

It is quite difficult to prepare a small muscovite
crystal which is free from distortion or attached
ments, and it is not possible (due to the m
cleavage) to grind such a crystal to an ideal shape.
The crystal used is sufficiently small, however, for the

P no ry seriously for ent reflec-
g radiation for ulo=48
).
n f
( t

erg photographs were taken on a Nonius
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integrating goniometer about the a-axis (zero to 7th
layer lines), b-axis (zero, 1st, 3rd, and 5th) and ¢c-axis
(zero layer). On these photographs about 900 inde-
pendent reflections are permissible for space group
C2/c, of which 550 were observed. About 200 of these
were measured on both a- and b-axis photographs.
The integrated intensities were measured using a
microphotometer in which the slits were adjusted tc
be than the flat pl  u of density on

int reflections; the f density is then

portional to the integrated intensity. Two independent
measurements of the 0kl intensities, some weeks apart.
gave agreement to better than 10%; a pack of threc
films, interleaved with tin foil, was used for eack
photograph. The ¢-axis photographs were correlated
using the b-axis photographs, though due to the
systematic absences the Okl reflections could only be
correlated by taking a combined 0kl and 1kl photo:
graph, with a wide slot in the layer-line screen. The
Lorentz and polarization corrections were applied tc
the correlated intensities graphically. Since the
weakest reflections were hard to measure after inte
gration the a-axis photographs were repeated using
long exposures, without integration, from which re
flections could be assessed as ‘weak-but-present’ or a
absent. The systematic absences were therefore con
firmed; no Akl reflections of the kind (A4-%) odd ar
observed. A powdered sample of the Spotted Tige
muscovite, mixed with a standard quartz sample
was photographed on a carefully calibrated 19 cm
vacuum powder camera, for comparison with the
unit-cell dimensions rep sy tic mus  te
The b- and c-axes were ed 096 + 0 /
and 20-096 + 0-02 A respectively, assuming f=95° 11’

N(Z)
06 -

-~ = - :
Centric . = ~Acentric

Fig. 1. Wilson’s N(2) test for centrosymmetry,
applied to one zone of general reflections for muscovite.

Two statistical tests for centrosymmetry due t
Wilson were applied to some general Akl reflections
For two such zones containing many reflections th

Wilson ratio, (F)2/F2, was 0-507 and 0-455. Whils
this is not good agreement with the theoretical valu
for centrosymmetry (0-637), these figures are sti
further removed from the acentric value (0-785). 1
was hoped to avoid effects due to hypersymmetry i
the N(Z) test (Steinfink & Brunton, 1956) by a

it to one zone of general (rather than 0kl)
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(Fig. 1). Though the departure from the theoretical
curve at high values of sin? §/12 may indicate some
effect of hypersymmetry the results show that musco-
vite is probably centrosymmetric. The intensities
were placed on an absolute scale by Wilson’s method,
the factor being adjusted in later calculations.

Calculations

Jackson & West (1930) proposed that the space
group of muscovite is (2/c, though they pointed out
that the symmetry must be lower than this if the
tetrahedral cations are fully ordered. The possibilities
then are either Cc or P2/c, of which Cc¢ is acentric
and P2/c would allow all hkl reflections, contrary
“observation. The maximum order possible in the
tetrahedral ions for 02/c (assumed correct) is 2 SiyAly
2 8i.* There are eight general positions in
space group, related by the symmetry opera-
of face-centring, a glide of ¢/2 after reflection
the plane at y=0, and a centre of symmetry
the origin. A suggested system of nomenclature
each atom is illustrated (for Si;) in Table 2.

Table 2. System of nomenclature

System of nomenclature for atoms

(000) x Y z Si; (0g0) x ¥y -z

(00c) A Y z 8i; (0gc) x Yy itz

(f00) 34z 3+y =z Si; (f90) t—= i+y 3—2

(fOe) t—=z 4—y 2z Bip (fge) t+x t—y i+z
Atoms in special positions

(000) 0 gy 1 K (f00) 0 i+y }

(00c) 0 ¥y -1 K (foe) 0 -y —3%

Atomic scattering factors were obtained from the
curves of Bragg & West (1929) for silicate
modified somewhat by the data of Viervoll
Pgrim (1949). These factors were tabulated before
more recent data of MacGillavry et al. (1955)
published, and a change to the latter data is
and not warranted at this stage. The effective
o tempe ctors were: Al and Si, B=
-3 Az, =15 K, B=0-4 A2 The value
B for potassium is obviously too low, as is shown
the final difference maps. The curves of Bragg &
est do not correspond to fully ionised atoms, and
Verhoogen (1958) has suggested that alumino-
can be considered as largely ionic the present
k would be capable of further refinement by using
data for K+, Sit+, A3+ and O2-, allowing

anisotropic temp. factors if necessary.
Values of the atomic scattering factors at the points
(tabulated graphically from the appropriate re-
nets) were transferred to punched tape as the

* Complete ordering within C2/c is possible if the unit cell
doubled in size with some kind of disorder present; but no
reflections indicating this have been observed.
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input for a structure-factor programme on WREDAC, *
for which an additional short tape specified para-
meters at each cycle. The parameters of Jackson &
West were used as a trial structure and refinement
proceeded by means of two-dimensional and bounded
Fourier and difference syntheses. Bounded projections
were partially summed by hand to reduce them to the
standard two-dimensional Fourier programme on

SILLIAC.+
The di ty in the structure an  is of any
layer-1 sil is the lack of resolu in two-

dimensional projections. In the (0%kl) projection two

was achieved in several refinements. The A0l projec-
tion shows Si; and Siz, and Op and Og, and O4, Op
and OH. as superimposed, and the z-coordinate of the
Al atom is difficult to determine. The k0 projection
shows very poor resolution. For these reasons it was
necessary to use the following methods.

Bounded Fourier projections
i un
( p.
or
projections along [100] and [010]) to restrict the
labour of computation. (Only the 0kl, 01, 1k1, 3%I, 5k
and 7kl data were needed to divide the cell into slabs
a/2 and b2 ) alcomp  ionswereatl
of the uni e ; thep groups of b
projections differ from those of the two-dimensional
projections.

b

Fig. 2. Bounded Fourier projection along the a-axis for the
slab between planes at x=a/2 and z=a. Contours plotted
at intervals of 4 e.A——zero contour broken.

p

c
R. Byron-Scott.
1 Digital computer, University of Sydney.
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have an ionic diameter of 2:8 A compared with a slab
thickness of 26 A. These overlapping atoms do not
superimpose on atoms within the slab, except for a
portion of an Siz atom, which partially masks the
Op atom (Fig. 2). The position of a related Siz atom
is established elsewhere in the projection, and by
subtracting a reasonable fraction of the full electron
density from the composite peak fairly circular con-
tours are obtained for Op.

The overlap of atoms between 0 and 5/2 into the
slab from /2 to b is less but is far more serious since
separate x-coordinates cannot be immediately deduced
for 04, Op and OH (Fig. 4). Furthermore there are
two symmetry-related Al atoms, Al(f00) and Al(00c),
which superimpose to give a pseudo-centre of sym-
metry at x=}a, z=0. If Al(000) has coordinates very
near (1, y, 0) then these composite contour lines are
practically circular, and the z and z parameters can
hardly be determined. The projection from 3b/4 to b/4
was, however, fairly rapidly calculated from the data
for /2 to b, and in this projection AlL(000) is com-
pletely resolved.

The progress of refinement was followed by cal-
R=XY |—|FJ||/2|F, for the r ns
observ  after the second cycle of ed

projections this was 0-25. At this stage the bond
lengths for the tetrahedral 8i;—O and Si>-O groups
suggested that there may be ordering of the kind
SijAly in Si; positions and Si in Siz positions.

Difference, or (F,—F.), syntheses

The parameters of the cations were now sufficiently
near their final positions for difference 0kl syntheses
to be used to improve the y and z parameters, with
much less computation. The R-factor, after four
cycles, was 0-12. One 20l erence synt
puted, for which the E-f r was 0:19,
it was obvious that the z-parameters of 0405 and OH
(which are superimposed) needed adjustment. This
adjustment could not be made from a difference syn-
thesis of the hk0 data which was difficult to interpret
because of the direct superposition of Op on Siz, and
close overlap of O4, O¢ and Sis.

Most of the interatomic distances and bond lengths
were reasonable, except Al-O,, Al-Op and Al-OH,
but these could be improved by adjusting the z-para-
meters for 04, Op and OH. These could not be easily
adjusted otherwise, and nothing is assumed about the
tetrahedral bonds by this. At the same time the
0-Si-O tetrahedral bond angles all assumed more
reasonable values.

Final syntheses

The following projections were computed as the final
Fourier syntheses:

(1) A bounded projection along the a-axis, between
planes at 2 =0a/2 and x=a (Fig. 2).

THE STRUCTURE OF MUSCOVITE, KAL(Si,Al)O,(0H),

(2) An (F,—F.) two-dimensional projection along the
a-axis (Fig. 3).
(3) A bounded projection along the b-axis, between
planes at x=>5/2 and x=0b (Fig. 4).
(4) A bounded (F,— F.) projection along the b-axis,
between planes at x=>5/2 and =0 (Fig. 5).

th |
to

th |
satisfactorily high, though due to the partial projection
of these atoms out of the slab (and also to the some-
what unsatisfactory scattering and temperature fac-
tors) the peak values of electron density cannot be
discussed in detail. It should be noted that in Fig. 2

b b
4 4

Fig. 3. Two-dimensional (F,— F¢) map, projected along a-axis.
Contours at 1 e.A—2—negative levels broken.

the centre of the K+ ion lies in the face of the slab,
and therefore the K+ peak is only at half-height
When Fig. 2 is considered in relation to Fig. 3 it i
seen that the K and Al ions are correctly placed but
probably need larger temperature factors; that the
oxygen atoms are correctly placed, being on flat areas

|

On)

0

Fig. 4. Bounded Fourier projection along the b-axis for th
slab between planes at y=>5/2 and y=>b. Contours plotte
at intervals of 4 e,A~2—zero contour broken.
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Table 3. Observed and calculated structure factors

F, mki  F, F, hki F, F, wt F, F,
+810 12 18% 0 116 138 —117 7 57 —47
+50 13 18* -8 7 62 -7 8 10% 21
—70 14 78 —90 8 23 +19 9 29% —26
+181 15 —11 9 10% —27 10 10%  +18
+174 16 111  —106 10 26 +26 11 -5
—229 17 37 +26 1T 49 -35 12 29*  —45
+52 18 18 +32 12 28 142 13 —15
+ 87 19 28 —24 13 28 +25 14 29% 441
+126 20 49 - 58 14 59 —58 15 10 —17
+16 21 +13 15 52 ~58
+84 22 80 - 86 16 19*  +35 151 38 —25
+89 17 58 —35 2 38  +36
+63 080  18* -9 18 10 420 3 8+ 21
—16 1 1% +3 19 20« 31 4 128 —126
2 50 —46 20 20 430 5 38% 430
+23 3 43 — 56 21 +17 6 81 +79
+31 4 18% 18 22 38% _42 7 +5
+60 5 44 +52 23 48 57 8 8* +1
+106 6 18 —15 9 19  —50
+113 7 18% -8 130 50 +40 10 8* —36
~146 8 18% 112 1 191 —212 11 —18
—23 9 18* 12 2 18 +13 12 51 —-50
+52 10 —12 3 142 —127 13 38 —20
+6 4 —10 4 77  +76
+17 0,811 18 _21 5 197 —150 5 72 —48
+31 12 +3 6 +13 16 —~40
+8 13 64 +175 7 59 —38 .
+34 8 31 —18 1,517 19% 33
—86 0,100 18* +9 9 202 —206 18 10* —12
—10 1 —10 10 37 +25 19 10* -5
+46 2 27 —23 11 109 —68
+34 3 -3 12 -2 170 30 +31
—12 4 64 + 69 13 67 +56 1 41 + 486
+32 5 9% 423 14 +7 2 14% 427
+1 6 18* 113 15 69 +20 3 105 —84
+36 7 9% +26 16 —-17 4 179 —83
8 18% 4+35 17 141  —150 5 77 +83
—42 9 —25 18 +13 6 10* 423
—45 10 37%  +34 7 —5
+61 11 —4 131 140 +114 8 19* 454
+43 12 81 +91 2 15 +7 9 29 —13
—89 3 143 4109 10 14* 25
—389 110 68 —53 i 2 +1 11 +15
—48 1 47 —38 5 70 —74 12 10 —19
—44 2 36 —39 6 30 +21 13 106 108
—44 3 34 +36 7 170 —127 14 38*  +53
+16 4 161 +137 8 49 —29 B
—42 5 157 —123 171 116 +92
+52 6 80 —81 139 151  +139 2 38 —45
—~133 70100 +11 I0 15% 430 3 82 +84
- 87 8 —11 11T 197 —183 4 10* —18
+43 9 10* -—18 12 27 +4 5 —2
+26 10 —4 I3 246 —218 6 38*% 146
~19 11 10%  —21 T4 24% 11 7 93 +101
+36 12 61 +49 15 60 —32 8 -7
—33 13 54 —69 16 41 —18 9 0
—26 14 55 —67 17 49 +40 10 -3
—26 15 10+ —12 18 44 +25 11 +27
16 9% -3 19 144 —144 12 —15
—258 17 45  —36 20 —18 13 20 —35
+57 18 —1 2T 30 —13
—44 19 0 93 27 -3 190 60 +53
+4 20 32 429 23 49 131 166 485
+ 14 21 592 —52 2 —11
+2 22 49 —57 150 38 +40 3 106 +107
—65 1 38 —10 4 14% 0
—16 11T 110 —95 2 +14 5 +2
—126 2 0 3 58 —52 6 —24
+51 3 110 —105 4 82 —176 7 —16
+76 4 134 <4121 5 61 —53 8 19% 445
—33 5 51 +44 6 76 +176 9 116*% +137
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Table 3 (cont.)

Bl P, F, i F, F, Wl P, F, Rkl F, F,
10 10* —38 9 89 —91 i1 +11 11 -1
11 14* 438 10 +17 12 —16 12 41 —52
12 10% —8 11 42 -2 13 -3
12 40 +12 14 31*  +47 511 ¢ —19
191 67 —55 13 95 4100 2 1 +3
2 20% 28 14 +6 370 10%* 418 3 fF —14
- 15 135 +122 1 10% 414 i t +21
193 14* —28 16 41* —24 p 18 5t +20
i 10* +1 17  81* —34 5 78 —384 6 44  —43
5 68 +83 18  10* 418 4 2% _34 7 50 —45
6 —14 19 67 +70 5 -7 8 10 +30
7 38% 447 20 -5 6 —9 9 14 —15
8 38%  +39 21 92  +8l 10 14* 417
9 10+ —30 - 11 44  —23
0 24%  —45 33T 263  +281 S | 12 10+ +23
11 57 68 3 38 +1 5 ol =2 13 14% -6
12 +5 3 54  +53 o 12 T4 48 44
3 77 +86 i -1 Wl o i 15 58* —63
[

e o 12 3% —31
310 ¢ —15 § 10* +5 530 10% —21
29  —27 7 67 +73 B 1 30 —25
2 85 —87 8 —13 371 +7 2 +5
3 82 +96 9 146 +132 2 +2 3 70 —62
4 117  +112 10 31 +29 3 +21 4 —2
5 22 +7 11 96 —101 4 46 28 5 74 =11
6 10* —14 12 15* —14 5 94 —175 6 10% +6
7 15 +8 13 15  —4 6 31 +43 7 36 132
8 38 —31 14 -3 7 +3 8 10* —10
9 35 +47 15 106 +84 8 +22 9 58 —86
10 +3 16 —4 9 —39 10 +8
11 90 4179 17 122 —102 10 —31 11 109 —97
12 65 +65 18 +13 11 66 —40 12 —6
13 —22 19 20* —33 12 —9 13 61 —43
14 46  —49 30 —14 13 8 87 14 +14
15 31 +35 21 74 +173 14 31*  +45 15 53 +52
16 +6 15 31* +25 16 —-11
17 48 +26 3,3,22 +7 17 63 —80
23 89 +84 390  31*  +42 18 +1

31T+ —10 34 -3 115  —10 [

2 35 +27 35 40 +40 2 -1 537 64 +84
3 80 +40 3 15% -9 | 2 20 +21
i 29 +24 350 +2 4 +9 3 88 —90
5 124 483 1 +17 5 15% —38 1 —2
6 78 —86 2 99 4101 6 15%  —26 5 99 —95
7 +2 3 31* 435 775 —82 3 —6
8 35  +35 4 121 —106 8 31*  +36 7 —18
3 60 +57 5  10* —12 9 +9 8 -5
10 -7 6 +18 10 —15 9 10* 11
1T 31* 424 7  31* —18 _ 10 14* 420
12 31* +24 8 59 +44 391 97 116 11 147 —166
13 15% 452 9 10* 428 2 3l —34 19 —17
4 59  —57 10 —5 3 46%  —43 13 41 —32
3 31* —15 11 81*  +20 4 20* —4 14 +0
16 +15 12 56 —73 5 31*  +28 15 43 +30
7 15% 417 13 43 +16 6 31* -2 186 —1

18 21* +5 14 61 +55 7 —37
15 36%* +26 § 46% +29 550 14% —27

3,1,19 +16 16 10 —19 9 120 112 L 10* —15
20 1 17  26% +28 10 61%* —53 2 36 + 46
2T 15% 441 18 —4 3 25 —16
§§ 60 — 60 _ 510 14%* —27 4 25 —30

35T 46 +8 1 10%  —15 5 15%  —14
330 32 —21 2 57 —43 2 36 +46 6  10% —4
1 78 145 3 108  +66 3 25 —16 759 —40
2 +0 4 —17 4 25 —30 8 +0
3 10* —23 5 171 +50 5 15%  —14 9 70 —29
4 —10 5 78 +75 6 10% —4 10 47 +48
5 46 438 7 31% 417 7 59 —40 11 -1
6 31 +22 8 52 —57 8 +0 12 41 —52
7 163  +126 9 81* +16 9 70 —29
8 36 —24 0 10 +26 10 47 +48 55T  24* —2
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Table 3 (cont.)

Wkl B, F, hlel F, 7,
2 % +5 500 29%  +30
3 30 +6 1 19% 414
i 27 —28 2 -1
5 10* +1
6 40  +44 591  39% —43
7 39 —17 2 58% —42
8 —18 3 02 +85
9 34 —33 4 +13

10 —14 5 69 +59
11 47 —17
12 20 —22 730 —3
13 66 —23 1 68 + 65
14 60 +56 2 -3
15 46 —36 3 +5
16 34 —52 4 —6
5 —4

570 +6 6 +16
1 178 +80 7 4 +93
2 39 +28
3 43 —28 731 90 +96
4 39% 34 2 +14
5 19* 439 3 42 — 56
6 14* —17 i -12
7 52 +26 5 +25
8 19* 421 6 +4

7 78 +65

571  39%  +35 8 -1
2 19% —26 9 +24
3 +21 10 +9
! +6 7311 43 —48
5 —12 12 -11
6 39% 429 13 &7 +173
7 64 +57 14 +6

15 45 +49

hkl  F, P, hkl  F, F,
200 119 10 20% +3
2 123 116 12 10* —30
4 56 —15 14 —1
6 140 —146 16 80 4101
8 125 4111
10 161 —192 402 122 —121
12 224 —211 4 +17
14 73 —43 6 117 +98
16 56 +56 8 46 +35
18 95 —129 10 83 —88
20 30 —15 12 142  +142
22 47 +31 14 128 +119
24 40 +11 16 47 +42
26 88 —103 18 10* —18
_ 20 95 4106
202 194 —190 92 41 +25
i 119 —100 24 10 —17
6 181 —161
8 70 —64 600 52 —43
10 218 —222 2 47 +30
12 98 —89 4 -8
14 52 +45 6 117 —119
16 173 +51 8 30*% 457
18 142 —150 10 10* +3
20 +31 12 73 —84
22 45 +20
24 83 —88 602 115 —141
i -7
400 153 4186 6 20+ —35
2 128 4137 8 47 —36
4 10 433 10 83 —90
6 20% 425 12 +33
8 153 4175 14 10* +9
16 33 —45

* Thosgo rofloctions aro visually estimated since they are too weak for satisfactory measurement.

T These reflections were not photographed.

of Fig. 3 th (and poss Siz) n of
<0-012 pa in the + nd — n)
together with some adjustment of the temperature
factor.

Fig. 4 does not. completely resolve the octahedral
oxygens, nor does it separate two related octahedral
Al ions which are practically superimposed in this
projection. These Al ions and the K ion are only

Fig. 5. Bounded (F,—¥;) map, projected along b-axis for the
en planes b/2 and y=b. g plotted
sof 1 eA gative levels b

partly within this slab, and symmetry related atoms
to O4 and OH partly project Op. All lled
peaks >4 e.A-2 are due to whose lie
outside the slab. The peaks of the atoms are satis-
factorily high, except for Siz which is sharp but shows
a low lectron den

Fig a scale of 1 -2, suggests that very small
adjustments in certain parameters may help further.
In particular it bad not been possible from any
previous map—either the bounded electron-density or
the A0l difference map—to determine which z-para-
meters for O4, Op and OH needed adjustment. Fig. 5,
however, shows quite clearly that (O4+ OH) lie on a
flat part of this (Fo—F.) map; and they cannot
therefore contribute at all (through the parily protrud-
ing symmetry related atoms) to the difference density
in the region of Op. The bounded difference map
that the x-coor te for Op should
ut 0-04 A. The ahedral oxygens

tly placed, but Si; and Siz may

(of <0012 A along slope).

to be
small

Results

The observed and the calculated structure factors
(Fo and F;) suitably scaled, are given in Table 3,
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Table 4. Initial and final atomic paramelers

(as decimal fractions of unit-cell dimensions)

Jackson & West Final coordinates Shift (A)
Atom x y z z y z | 62| | 8y| | 6z|
Al{000) 250 083 000 2484 0871 0016 0-008 0-036 0-032
04(000) 438 917 055 4650 9450 0527 0-140 0-252 0-046
0p(000) 438 250 055 4250 2600 0542 0-016 0-090 0-016
OH(000) 438 583 058 4530 5580 0520 0-078 0-225 0-120
8i,(000) 467 917 135 4625 9242 1372 0-023 0-065 0-044
Siy(000) 467 250 135 4593 2550 1365 0-040 0-045 0-030
O¢(000) 480 083 164 4080 0960 1680 0-374 0-117 0-080
0Op(000) 228 833 164 2450 8020 1620 0-088 0-279 0-040
Og(000) 228 333 164 2629 3713 1674 0-181 0-344 0-068
K(000) 000 083 250 0000 1016 2500 0 0-167 0
from which it is seen that these agree satisfactorily. Table 5 (cont.)
The I?-factors (measured intensities only) have the 8i,-Oc—Si,  129° 227 Si,-Op-8i, 135° 24’
following values: R(0kl)=0-12; R(R0l)=0-13; R (all Si,-Op-Si, 128°42°
measured reflections)=0-17. Mean=131° 9’
The final values of the atomic parameters, together
with the ‘ideal’ parameters, are given in Table 4, and (2) Octahedral groups
the bond lengths, interatomic distances and bond angles Al-O4 1.93; A Al-O4 194, A
are recorded in Table 5. The Si;-O bond lengths Al-Op 1.93, Al-Op 2 0dg
Al-OH 1-93, Al-OH 193,
Table 5. Bond lengths, interatomic distances and Mean=1-95, A
bond angles Avound Al
(1) Tetrahedral groups 0404 2.30, A 0H-04 2.73, A
8i,—O¢ 1-69; A 8i,-Oc¢ 1-59, A 04-Og 2:90, OH-Op 2-80,
8i,-Op 168, Si,~Op 1.58, 04-Op 2:92, OH-Op 304
Si,—Op 1-68, 8i,—Op 1-62, 04-0p 284, OH-Op 268,
(Mean = 1-69;) (Mean =1-60,) 04-0OH 2:73, OH-OH 2'511:
$i,-04* 171, Siy Op*  1-64, 04-OH 288, Op-0s 2764

Mean=1:69; A Mean=1-61, A

* Apical oxygens.

Around 8i;
0¢-Op 2:77; A 0.4*-O¢ 2:74, A
Oc-Opg 2:734 04*0p 2-87,
Op—Og 274, 04*0f 274,
Mean=2-76, A
* Apical oxygens.
Around 8i,
0c-Op 2:58, A Op*—O¢ 2-74, A
0c-Of 2-58; Op*-0p 2:80,
Op-Og 259, Op*-Of 273,
(Mean = 2-58,) (Mean =2-76)

Mean=2-67, A

* Apical oxygens.
O¢-Ni,-Op  110° 24/ 04-8i;-0O¢  106° 16’
Oc-8i;-Og  108° 15’ 04-Ni;-Op 115° 33/
Op-8i,-Og  111° 527 04-8i,-0Og 107° 22/

Mean =109° 58°
O¢-8iy,-Op  107° 147 Op-8iz—0¢ 114° 357
Oc¢-8i,—Op 107° 3’ 0p-8i,-0Op 109° 8’
Op-8Si,-Og  107° 497 Op-Si,—Og 109° 32’

(Mean = 107° 22%)
Mean =109° 13”

Mean=2-76, A

* These oxygen—oxygen distances correspond to shared
edges of neighbouring octahedra.

(3) Interlayer cation

K-O¢ 2:79, A K-O¢ 335, A
K-Op 277 K-Op 3-51,
K-Og 2:86, K-Op 3:30,

Mean=2-81, A Mean=3-39, A
(mean=1-695 A) are clearly t from the
bonds (mean=1-61, A); and each tetrah
the bond to the apical oxygen, within the layer, is
rather larger than the others. The difference is possibly
significant for Siz-Op (where 0l/o=2-2) and may
reflect the ditferent coordination and therefore dif-
ferent ionic radius of the apical oxygens. The K-O

Iso o

K-

the ;
tions bring the total oxygen group around the K+
to 12. For the O-O interatomic distances (fixed by
packing) nd the hedral groups the six dis-
tances ar Siy are to the mean value, 2:76¢ A,
as are the O-0O distances from the apical oxygen to
the three basal oxygens around Sis. The three 0O-0O
distances in the base of the Siz group, however, have
values very close to their mean, 2-58;; and the corre-
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sponding bond angles are consistent with this. There
s more variation in the interatomic O-O and O-OH

The O—S,i—O angles are all close to the tetrahedral
angle of 109° 28’.

Accuracy

accuracy of the positional parameters and certain

lengths determined in this analysis has been

puted as recommended by Lipson & Cochran

), using the final go bounded projections and the

(Fo— F.) projection. The standard deviations of

bond-lengths have been used to determine the

of bond length differences between the two

tetrahedral groups, as suggested by Cruickshank

949). The standard deviations o¢(z,) have been
Table 6. Accuracy of atomic parameters and

bond lengths

p ~Cn(e.A~%)  o(2) (4)
K 7-0 1036 0-0048 A
Al 77 740 0-0067
8i; 75 585 0-0085
Si, 75 720 0-0069
O4 6:5 260 0-0192
Op 6-0 288 0-0173
Oc¢ 4-5 171 0-0292
Op 7-0 294 0-0170
Og 5:5 264 0-0189
OH 65 300 0-0166

Mean g(z) for oxygens=0-0197 A
6 (p) over whole unit cell=1-15 e. A2

lengths
6(81,-0¢) = 0-030 A 6(81,-0¢) = 0:030 A
0(8i;—Op) = 0-019 o(8iy,—Op) = 0-018

)
0(8i,-0g) = 0-021 0(8i,-0g) = 0-020
)

o(8i;-04) = 0:021 o(8i;-Op) = 0-019
¢ Mean o(8i,—0) = 0-022 A
o(Al-0) = 0019 A Mean ¢(K-0) = 0-020 &

o
(
(
(Si— 0) = 0023 A
(
(O-

o 0-028 A

)

I

deviations of mean bond lengths

(mean = 0012 A o (mean )y =001 A
(mean = 0012 A o (mean =001 A
around Si,

the difference between the mean 8i;—-O and mean 8i,—O
bond lengths
68l =>5-19 (highly significant)

the difference between the mean 8i;-O and SizAly-O=
1-69+0-015
0l]a=0-20 (not significant)
the difference between the mean Si,—O and Si-O=
1-60+0-01
Sl o="0-54 (not significant)
the difference between the mean 8i,—O = 1:60; and
r=164,
dlj o0 =2-22 (possibly significant)
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computed over the whole unit cell, which is a slight
over-estimate of error; computational errors are not
allowed for. Since there is little evidence of asymmetry
(except possibly for the K atom) the standard devia-
tions have been assumed equal in all directions. The
values of the curvatures and o (z,) are given in Table 6,
together with the standard deviations of bond lengths
and mean bond lengths. The significance test shows
that the bond lengths in the two silicon tetrahedra are
significantly different; and the standard deviations of
the mean Si;—0O and Si>—O bond lengths are consistent
with the hypothesis that Siz is fully occupied by silicon,
Sit is o by SiyAly, within the limits of
’s (1954)

Discussion

The present analysis has yielded new atomic para-
meters which depart significantly from the ‘ideal’
coordinates of Jackson & West (1931, 1933). Certain
of these ‘distortions’ appear to be a common feature
of the layer-lattice silicates, and will be discussed in
the next section in relation to other recently published
structures. Some of the difficulties of the ideal musco-
vite structure can now be resolved as follows.

(@) Forbidden reflections

Reflections of the kind 06/, I odd are no longer for-
bidden since the actual y parameters in muscovite
are not multiples of 5/12 (Table 4). The departures
from ideal parameters account for the observed inten-
sities.

(b) Monoclinic angle

The monoclinic angle for the various layer silicates
can be predicted theoretically by considering the
packing of the octahedral O and OH sheets, together
with the packing of the O and OH surface layers in
minerals such as the kaolins (Brindley, 1951). The
monoelinic angle for a number of idealized structures
is given by f=cos~1(—a/3¢c), even though the number
of layers and their type varies from structure to
structure. The —a/3 shift for 1 M muscovite is across
the octahedral layer, the surface layers packing
together without stagger. For the ideal 2M; muscovite
each octahedral layer shows a shift of —a/3, but this
is now at +60° to the a-axis—a net shift of —a/3,
so that f=94° 55" theoretically. Direct superposition
of one layer on the next is assumed, the K+ ions
being symmetrically placed in the hexagonal ‘holes’
in the oxygen surface sheet.

A diagrammatic projection normal to the a-b plane
clearly shows that this is not so. The K+ ion is no
longer at the geometric centre of the oxygen network,
but is displaced from it, towards the unfilled octahedral
sites above and below the K+ ion; this displacement

ge  tric ce of the o s is in the
Tec on the osite side 10 A layer.
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If we assume that f=95°11" then the interlayer
K-K vectors (Smith & Yoder, 1956) are at +63° 36’
to the a-axis, rather than + 60°. The displacement of
the K+ ion from the geometric centre of the oxygens
is

th
in
8 th ¢
R so 1
{ a o

Si-Si vectors, but 2-04 A for the K-K vector, which
confirms that the O-K-O sheets (as well as the octa-
hedral layers) contribute to the observed monoclinic
angle.

(¢} Distortion and (ilt of surface oxygen mnetwork from
hexagonal

In the ideal triphormic layer silicate structures the
surface of each layer consists of an open hexagonal
network of basal oxygen atoms of the 8i-O tetrahedra.
In several structures examined recently this hexagonal
network has been shown to be distorted, usually to an
approximately ditrigonal configuration, as in croci-
dolite (Whittaker, 1949), Mg-vermiculite (Mathieson
& Walker, 1954), dickite (Newnham & Brindley, 1956),
amesite (Steinfink & Brunton, 1956) and prochlorite
(Steinfink, 1958a). Mathieson & Walker described the
distortion in vermiculite as the net effect of rotations
of whole Si—O tetrahedra of about +51°. A similar
distortion is evident in muscovite, but appears to be
greater than for the minerals previously examined,
since the basal triads in muscovite have rotated about
13° from the ideal positions, compared with 4°-6° for
other minerals. The six oxygens of any hexagon are
now at the corners of two interpenetrating triangles
which are approx. and ¢ with
39 Aand 51 Ar . The thus
a marked ditrigonal rather than hexagonal symmetry.
The octahedral layer is less distorted from the ideal
hexagonal packing; ‘shared edges’ of octahedra are
shortened in conformity with Pauling’s Rules.

Several hypotheses have been advanced to account
for this apparently characteristic distortion of the
hexagonal layer-lattice silicate surface. Mathieson &
Walker (1954) suggested the presence of residual
charges on surface oxygens and octahedral cations
which, if present, would produce a torque in the right
direction. Whittaker (1956) pointed out that this
explanation cannot apply to clino-chrysotile, due to
the distortion alternating in direction in this two-layer
structure. Newnham & Brindley (1956) explain the
distortion in dickite as due to the considerable misfit
between the tetrahedral and octahedral layers.
Bradley (1957) has discussed the possible relationships
(for layer silicates) between the ‘free’ dimensions of
the tetrahedral and octahedral layers, the decrease in
these dimensions achieved either by ordering or by
the rotation of the tetrahedral groups through small

THE STRUCTURE OF MUSCOVITE, KAl(Si;Al)O, (0H),

angles, and the thickness of the octahedral layer
relation to the strain imposed on it.

In the case of the micas the distortions in the
network are apparently primarily due to misfit
tween the tetrahedral and octahedral layers. Brindley
& MacEwan (1953) have proposed formulae for cal-
culating the b-axes of ‘free’ tetrahedral and octahedral

with various cationic s (The b-
sion only need be cons a=b/y3
rly.) For a yer all sit
by Si the b 91 ut for
Si:Al = 3: is 9-27
(9-30 4 0-06, h &Y 1 The g  ite,
Al(OH)s, b-a 864 A. us e* (b=8 A

there must be a considerable contraction of the
tetrahedral layer to fit the octahedral layer, which
must be correspondingly stretched. Bradley (1957) has
pointed out that a stretched octahedral layer probably
reduces in thickness; for gibbsite the layer thicknes:
is 2:53 A, but the octahedral layer in muscovite is
approximately 2:12 A thick.

A rotation of the tetrahedra of about 13°—which is
quite feasible—allows the necessary contraction of the
silicate layer. This fitting together of different sizec
layers does not, however, dictate the direction ir
which any given tetrahedra will rotate. It may be thas
small residual charges on the surface oxygens anc
octahedral aluminiums govern the direction of rota
tion. (Such attractive forces would, it is to be noted
initiate rotations in the directions observed).

The parameters (Table 4) show that the Si-(
tetrahedra in muscovite are slightly tilted, this bein;
seen more readily in a normal projection on to the
a-b face. The tilt of the triad of basal oxygens i
matched by the displacement of the apical oxygens
04 and Op from vertically below Si; and Sia respec
tively. The oxygen O4 (and Op) is ideally sited equi
distant from three possible octahedral cation positions
The displacement of O4 (and of Og) is away from thi
unoccupied, and towards the two occupied Al sites
as expected. Gatineau & Mering (1958) in a one
dimensional structural analysis of muscovite (usin
27 000 terms(!)) proposed a ‘static disorder of th
oxygen network in the c¢-direction’. It would appea
that for such data the effect of temperature an
statistical disorder would be difficult to differentiate
The present parameters do not agree with their data
nor does their hypothesis of complete ordering of 3 &
and 1 Al fit the accepted space group, C2/c.

(d) Oxygen configuration around tnterlayer cation

In the ideal muscovite structure the K+ ion is I
12-coordination with equidistant oxygens, six abov
and six (symmetry-related) below the K+ plane. I
the real structure the K+ is still on a two-fold axis
but the six independent oxygens are no longer equi

* For 2M, mu

o the b-axis of the separate 10 A layes
is still 8:995 A a
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distant (Fig. 6). Fig. 6 also clearly shows the K+ jon

suggests a lower K+ coordination than 12. These sur-
‘ace oxygens appear to be so displaced from hexagonal
symmetry by the straing in the structure that the
hole’ left for the K+ is too small for this ion to fit
nto completely. It therefore holds the layers slightly
wpart, and this is confirmed by the interatomic

oxy (across the K+ layer)
the ected O-O distance is
b
Ot
K
0 a

Fig. 6. Normal projection on to the a—b face of some of the
atoms in muscovite. This clearly shows the di-trigonal char-
acter of the oxygen network, the inner ring of six oxygens
around K+, and the rotation of the tetrahedra from the
ideal structure.

The six outer oxygens around the K+ are still at
reasonable distances, except possibly the pair at 3-51 A
away from the K+ ion; the latter may have little
effective bonding to the K+,

(e) Silicon—aluminium ordering

Ordering of Si and Al atoms—either partial or
complete—in tetrahedral ‘Si’ sites has been observed
recently for a number of silicate structures (e.g.
felspars). Ordering is usually established by a com-
parison of observed bondlengths with the data, sum-
marized by Smith (1954), showing the essentially
linear increase in ‘Si'~O bondlength as the average Al
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occupancy of the tetrahedral sites is increased. For the
pure Si-O bond the distance is close to 1-60 A; the
bondl is rat S8 -es shed as
A. The engths SCO (T 5) show
that the tetrahedral positions are partially ordered,
the ‘Siy’ sites being almost fully occupied by Si atoms,
and the ‘Si; Sij Aly atoms on the average.
The Sig-Op 2) may be larger than 1-60 A
because Op is an apical oxygen, whereas the short
0-0 distance in the Siz tetrahedral base reflects the
Si occupancy of this site. This is the maximum ordering
possible within the space group (C2/c) requirements,
and no evidence of lower symmetry—allowing higher
ordering—has been found. Further ordering would no
doubt cause sufficient displacements of the oxygen
atoms to give additional reflections. Nevertheless the
result is a little surprising in view of the number of
reliable muscovite analyses in which there are exactly
three Si and three Al atoms per unit cell; complete
ordering might be expected as a possible structural
mechanism to ensure this exact 3:1 ratio of Si to Al
tetrahedrally.

A satisfying explanation of the ordering of Si and Al
in these structures has not been found. Since the
tetrahedral cations all have equivalent octahedral
configurations in their neighbourhood ordering can
hardly be due to muscovite being dioctahedral. Tt
appears, however, that one, or possibly two, oxygens
in any surface hexagon are sufficient  istant from
the K+ ion (3-51 A, and 336 A) to some local
lack of charge balance. Though this may aid any order-
ing process it is difficult to see how such charge un-
balance could cause the trigonal symmetry shown by
the alternation of Si and SijAl, sites around the hex-
agons.

(f) Polymorphism of muscovite

rphism in mi arises bec an a3
st the octah Ire of each 1 layer is
combined with the (ideal) hexagonal symmetry of the
surface oxygen network. Smith & Yoder (1956), in a
discussion of mica polymorphism both theoretically
and experimentally, predicted that six simple poly-
morphs should be observed. For muscovite only the
1M, 2M;, and (less commonly) 3T polymorphs have
been found; but the 2Ms polymorph has also been
observed (for lepidolites) though 20 and 6H micas
have yet to be found. Radoslovich (1959) has sug-
gested that the reason for this lies in the trigonal
rather than hexagonal symmetry of the actual layer
surfaces of micas. Such surfaces can fit together most
readily in ways which correspond to no rotation, or to
rotations which are multiples of 120°, between layers.
Those polymorphs which correspond to rotations
between layers which are multiples of 60° (20, 2M»
and 6H) should only be observed in micas showing
little or no distortion of the oxygen network.
This hypothesis—if substantiated by several struc-
tural analyses—explains the abundance of the 1M,
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2M, and 3T micas, but does not suggest why 3T occurs
less frequently than 2M;, to which it is converted at
high temperature (Smith & Yoder, 1956). For the
following discussion of a possible ‘mechanism’ of
structural control it is assumed that

(i) the trigonal symmetry precludes 180° rotations
between layers;
(ii) the K+ ion is displaced from the centre of the
oxygen network by some small force;
(iii) the two potassium ions on opposite sides of one
layer tend to move as far apart as possible.

Now suppose that Ki at the top of layer 4 is acted
on by a small force in one direction (away from Op?)
within its surrounding oxygen network. In the 1M
structure the same Kji experiences an opposing force
from the bottom of layer B (Fig. 7(a)). A more stable
state may be reached, however, if these two forces
act as nearly as possible in the same direction. The
nearest permissible approach to this, because of the
trigonal symmetry, is at 60° to each other; and the
resultant force on Kji will lie between the two
(Fig. 7(b)). The force on KF at the top of layer B is

B sotTom K: RESULTANT BTop
A K3 A
(@)
B Crop BOTTOM
K Resuuranr % K} K, RESULTANT
7 AL T
~
c - ToP ToP
- (CTop)
+ 4 |
Ky l
RESULTANT |
V+
K 2z
B Top B rop BOTTOM
(b) ©

Fig. 7. (a) Forces on the Kt ions in the 1M structure, from
sucecessive layers A and B. (b) Forces on the K7 ions in the
2M, structure, from successive layers 4, B and C. (c) ditto
in 3T structure.

then at 120° to that on Ki at the top of layer 4.
If layer C also rotates relative to B (to likewise reach
a more stable position) then this rotation may be
either a further +120° or else —120°. Of these the
latter results in a net force on, and displacement of,
Ky which is directly opposite the resultant force on Xi.
If agsumption (iii) is correct then this is the more stable
arrangement; and it is seen that the net effect is an
alternating + 120° rotation between layers, as required
for the 2M; structure (Fig.7(d)). The alternative
position of layer C (Fig. 7(c)) corresponds to the 3T
structure. This does not remove Kj as far as possible
from Ki, and would not be so likely to occur as the
2M; arrangement.
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:
|
Other layer silicate structures—some hypotheses}

The above conclusions lead to interesting speculations!
concerning structures related to 2M; muscovite.

(@) Structure of 1M muscovite

10 |
is \

+63° 36" to the a-axis of the 2 unit cell and using
the observed K+ parameters. This will also be the
p-angle of 1M muscovite if this has a closely similar
layer structure but differs in the stacking of the layers.
The observed value of f is 101°35'+5', and the
theoretical value is 100° 0’; so that we may conclude
that the 1M structure is very similar to one layer of
the 2M structure. Bradley (1957) has also deduced
a similar monoclinic angle for 1M muscovite, from a
hypothetical ordering, based on packing considera-
tions, of the tetrahedral Si and Al ions. His arrange-
ment, however, predicts that the K displacement will
be at approx. 15° to the 1M a-axis, and requires com-
plete ordering of Si and Al. Neither suggestion is per-
missible within the space group C2/m suggested by
Pabst (1955) for 1M micas since the K+ ion is at
0, £,0 and the Si and Al must be completely dis-
ordered. (There can only be one, not four, general
positions in the unit cell for all the tetrahedral ions).
The present hypothesis sets the additional K+ dis-
placement along the b-axis direction, as required for
C2/m.

The writer suggests that the unit cell for 1M
muscovite as proposed for 1M micas by Pabst (1955)
should be shifted by ¢/2, for convenience in comparing
1M and 2M; micas. This places the K+ at 0, 4,
instead of 0, , 0, but these special positions are com-
parable in C2/m. For 2M; muscovite (C2/c) the K+ is
at 0, y, 1, the counterpart of 0, 1, 1 in the larger cell.
whereas there is no counterpart of 0, §, 0, which does
not fix .

If the space group proposed recently by Pabst (1955
for the 1M structure is correct then the tetrahedra
sites must be completely disordered (i.e. four SigAl,
sites) since there are eight tetrahedral cations and only
eight general positions in the unit cell for C2/m. Fo
the five other simple polymorphs (Smith & Yoder
1956) there are twice as many general positions as
there are tetrahedral cations. Hence partial ordering
up to (SiyAly and Si) is the maximum possible, if these
space groups are correct.

(b) Trioctahedral layer silicates

For the trioctahedral micas there is less misfi
between the tetrahedral and octahedral layers than fo:
dioctahedral micas, due to their larger octahedra
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this and the octahedral layer dimensions will vary with
ionic substitutions in the latter. The absence of 061

is consistent with this. Lepidolite should therefore
show little distortion of the hexagonal layer surface;
and Levinson (1953) has reported the gradual dis-
appearance of the sensitive 06/ reflections with [ odd
as the lithium content of muscovite increases.

The analogous structure, pyrophyllite,

Al2814016(0OH)s ,
which ains no Li* oct al
has a b of 890 A, an ther be

to show moderate rotations of the Si-O tetrahedra.

ng some com ion of the Mg-0, ctahedral
(b=9-36 A ox.). The silica in talc is
therefore probably fully extended and undistorted.

(¢) Brittle micas
In the brittle micas

(e.g. margarite, CaAls. AlaSi2010(OH)s)

are less common than normal micas, the Si: Al

of 1:1 in the tetrahedral layer implies a ‘natural’
axis for this layer of 9-58+0-06 A (Brindley &
1953). There must be considerable strain

this the octahedral layer, and since

=892 A (M in, 1928) even greater rotation of
tetrahedra would be expected than for muscovite

d) Paragonite structure

t the K+ of muscovite could be removed
collapsed without pronounced changes
the latter. An approximate calculation shows that
monovalent ion with radius less than 0-93 A could be
the six inner ox
at ion has a of 0:95 A, and
aAlg(SizAl)010(OH)s, is the sodium analogue of
with closely similar a- and b-axes, and
ving 06!, [ reflec . ag
1928 A, a  fmus e el
that the paragonite layers have a closely
structure to muscovite, but that the layers are
contact about the (smaller) Na+ ion. The f-angle
paragonite is 94° 05’, approximately—not too dif-
t from muscovite for this hypothesis
Pyrophyllite, Alz8i4010(OH)a, with no interlayer ion
has a smaller c-axis (18-55 A) than muscovite.
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(e) Prochlorite and corundophillite

Steinfink (1958a, b) has discussed certain features of
the prochlorite and corundophillite structures on the
basis of layer dimensions, but the arguments appear
to be inconsistent. It appears incorrect to state (Stein-
fink, 1958b) that ‘the dimensions of the octahedral
talc layer in the monoclinic polymorph are larger than
in the triclinic structure, and the tetrahedral layer has
to undergo a larger distortion to fit itself to its octa-
hedral neighbour. The larger value of b, in prochlorite
also reflects this expansion of the octahedral talc layer’.
The implication is that the tetrahedral layer is dis-
torted because it is smaller than the octahedral talc
layer. But if we compute ‘free’ layer dimensions by
Brindley & MacEwan’s approximate formulae (1953),
we find

(1) for an Si;Al;-O tetrahedral layer, b=9-58 + 0-06;
(2) for the brucite layer in prochlorite, b=9-06;
(3) for the tale layer in prochlorite, b =9-50.

In the talc layer, therefore, there should be practi-
cally no misfit between the octahedral and tetrahedral
layers. It is the brucite layer which controls the pro-
chlorite b-axis, because there is a limit to the amount
which it can be stretched. The tetrahedral distortion
occurs to allow the talc layer to contract somewhat

e

t

e
(14:36 + 0-02) may be significantly greater than in
prochlorite (14-25+40-02) for this reason, and the
B-angle of prochlorite may depart from the theoretical
value because of the stretching of the brucite layer.
It seems unlikely that ordering in these minerals can
be due to the very slight dimensional difference be-
tween a network of, sgy, 3 Si-0 and 1 Al-O tetrahedra,
and of 4 8igAl;-O tetrahedra. The explanation more
probably depends on some local balance-of-charge
effect (as proposed for albeites by Ferguson et al.
(1968)) consequent upon distortion of the lattice.

A detailed structure analysis of the layer silicates
should explain any departure of the observed mono-
clinic angle from the theoretical values, and it is there-
fore surprising to note some discrepancy in the data for
prochlorite. Brindley, Oughton & Robinson (1950)
obtained a theoretical angle of 97°8' 42", and a
measured angle of 97°6’ for monoclinic chlorite.
Steinfink (1958a), however, gives data for a monoclinic
chlorite from which S(observed)=96°17 +10' but
B(theoretical)=cos~1 —a/3/c=97°13".

The observed f=97°22"+6" and the theoretical
B =97° 8’ for triclinic chlorite (Steinfink, 1958b) are in
reasonable agreement, however.

Conclusion

These speculations concerning mica structures can
only be tested by precise structure analyses of some or
all of these minerals. For this purpose it is important
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to apply adequate significance tests (Lipson & Cochran,
1953, p. 309) to bondlengths, especially if detailed
interpretations are given to results obtained from few
data (as, e.g. in the prochlorite analysis). The present
discussion suggests that trial structures for layer
silicates may now be proposed which include some
degree of distortion, the amount depending on the
calculated misfit of the layers, and the direction on
the attractive forces due to assumed residual charges.

The mica specimen was kindly supplied by Dr
A. W. Kleeman, the refractive indices determined by
Dr E. R. Segnit, both of the Department of Geology,
University of Adelaide. It is a pleasure to acknowledge
helpful discussions with Dr K. Norrish and other
colleagues during this work.
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Crystal Structures of Coexisting
Muscovile and Paragonite
Charles W. Burnham and E. W. Radoslovich

Sound explanations of structural con-
trol over polymorphism and isomorphism
in the micas are of considerable impor-
tance to the metamorphic petrologist.
Very few micas have been sufficiently
studied by modern crystallographic meth-
ods to allow detailed analysis of structural
parameters. Since one of the better known
mica structures is that of muscovite
(Radoslovich, 1960), we thought that an
analysis of paragonite, the sodium ana-
logue of muscovite, would provide signifi-
cant insight into the structural changes
accompanying isomorphous replacement
in sheet silicates.

CARNBGIE INSTITUTION

’?QFEV' IS

Last year one of us reported that
excellent single crystals of 2M; paragonite
had been obtained from a kyanite schist
from Alpe Sponda, Switzerland. Since this
specimen also contains 2M; muscovite,
presumably formed in equilibrium with
paragonite, we considered it worth while
to carry out full three-dimensional refine-
ments of both structures. This would
provide the first known structural analy-
sis of two similar coexisting minerals from
the same hand specimen and would, we
hoped, allow detailed evaluation of any
variations in tetrahedral aluminum-sili-
con distribution resulting from the change
of K/Na ratio in the interlayer cation
positions. Reexamination of the musco-
vite structure assumed critical importance
after Gatineau (1963) presented results,
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30. Leas ares refin
tropic th 1 models

A tial ele
of b mica

Muscovite

a, & 5.174 4 0 001
b, A 8.976 =+ 0 001
¢, A 19.875 =+ 0 003
] 95 590 = 0 006

* Values determined by lea
of precision Weissenberg film

" The expected value
le
8

of a -
d the -

be an
potas

f sting
e 6)y
*

Paragonite

5 134 + 0 001
8 907 & 0 001
19 376 % 0 002
94 625 + 0 006

lysia
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calcium, and aluminum wag
undertaken by J. V. Smith. His p
nary results show the paragonite to con-
tain 1.80 to 1.85 weight per cent K,O and
the muscovite to contain approximately
7.8 weight per cent K,0, with no appreci-
ca p nt (J. V. Smith,
onal un  jon). Assuming ideal
Al/Si ratios, these results correspond to
the formulas

Paragonite (Ko.15Na0.8) Al:(51;A1)0,0(0H),
Muscovite (I{ 0. esNa o_as)Alz (SiaAl) Ol O(OH)Z

Our refinements were carried through to
the final stages assuming incorrect com-
positions corresponding to Muy; for
paragonite and Muy for muscovite.
During the final stage of e ,
the occupancy of the i
positions was allowed to vary, subject to
the restriction that the total occupancy
of the positions is 100 per cent. The
refinements converged to ocecupancies
corresponding to Xo.,5Na9.s5 = 0.02 for
paragonite and KgeNag.aq = 0.02 for
muscovite,

Comparison of the final atomic coordi-
nates shows that the two crystallograph-
ically independent tetrahedral cations are
coplanar in both structures. The two

al oxygen  ms, O, Oy, are

anar in b structu Two of
three atoms (O, making up
the b d of each hedron are

coplanar, whereas t
nate of third
basal p of e
tilted slightly. The equivalent isotropic
t fact B, are rema ly
8 for m in the two c-
tures, and the equality of temperature
factors for all four tetrahedral cations
(0.65, 0.65, 0.62, 0.63) immediately sug-
gests that the aluminum-silicon distribu-
tion is identical in all four positions.
Important interatomic distances are
listed in table 31. The T3-O and T:-0
distances demonstrate conclusively that
the distribution of tetrahedral cations is

. disordered and the same in both tetra-

hedra in both structures. In muscovite
the two crystallographically distinct tet-
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TABLE 31. 1
Muscovite

Atom Pair

T, tetrahedron
o (npical)
d

Mean T,-0

0,-0,
0,-04
040,
0,04
0,0,
040,

Mean 0-0

T, tetrahedron
» (apical)
d

Mean T>-O

00,
04-04
0 b‘oo
Oc‘od
0.-0,
04-0,

Mean 0-0

Al octahedron
Al-QO,
Al-O,’
Al-Q,
Al-Oy’
Al-OH
Al-OH’

Mean Al-Q
Mean of 9

mic
and

Muscovite

1 =% 0.004
1. =+ 0.004
1. =+ 0.004
1. =+ 0.004
1.645

2.694 =+ 0.005
2.725 4 0.005
2.701 + 0.005
2.696 + 0.005
2.654 & 0.005
2.639 =+ 0.005

2.685

1 +0.
1. =+ 0.
1. +0.
1. +0.
1.

2,702 = 0.005
2.726 = 0.005
2.699 == 0.005
2.647 + 0.005
2.647 -+ 0.005
2.695 - 0.005

2.686

1.943 + 0.004
1.920 3= 0.004
1.917 & 0,004
1.946 + 0.004
1.907 == 0.004
1.907 + 0.004

1.923

unshared 0-0O 2,824

Mean of 3
shared O-O

Interlayer cation

K,Na-0,
K,Na-04
K,Na-0,

2.420

2.762 + 0.004
2.823 4= 0.004
2.795 <+ 0.004

Mean K,Na-O 2.793

(Burnham and Radeoslovich

1963)

(&) in 2M,
e (Muw)

Paragonite

1.648 4= 0.002
1.655 4= 0.004
1.642 + 0.004
1.664 =+ 0.003

1.652

2.706 = 0.004
2.720 £ 0.004
2.709 =+ 0.004
2.707 £ 0.005
2.685 =+ 0.005
2.656 < 0.005

2.697

1 +0.
1. + 0.
1. +0.
1. =+ 0.
1.

2.709 = 0.005
2.726 = 0.005
2.707 £ 0.005
2.677 % 0.005
2.650 + 0.005
2.709 =+ 0.005

2.696

1,933 -+ 0.002
1.914 =+ 0.002
1.906 == 0.004
1.938 -+ 0.004
1.891 = 0.004
1.899 + 0.004

1.913
2.807
2.417

2.531 +0. 004
2.726 +0. 004
2.668 4-0. 004

2.641

2
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TRANSPARENT PACKING MODELS OF LAYER-

LATTICE SILICATES BASED ON THE OBSERVED
STRUCTURE OF MUSCOVITE
By E. W. RADOSLOVICH
Division of Soils, C.S.I.R.O., Adclaide, Australia
and J. B. Jongs
Department of Geology, University of Adelaide, Australia
[Received 29th May, 1961]

ABSTRACT
A simple jig is described for the construction of a model of the mus-
covite structure in which the distorted hexagonal, i.e., ditrigonal, ar-
rangement of the basal oxygens of the tetrahedra is accurately
represented. The model is of the packing kind as opposed to the ball-
and-spoke kind and demonstrates the advantages of this type of model,
which would be more generally used if transparent plastic balls were
available commercially.
INTRODUCTION

Whilst the majority of atomic structure models used both for
teaching and research purposes are of the ball-and-spoke kind,
packing models may be far more realistic for teaching and may assist
considerably in research. This has been emphasised previously by
Hatch, Comeforo and Pace (1952), who also described techniques
for making models of hollow, transparent, tinted plastic balls, and
pointed out the several notable advantages of such models.

Previous models of the ideal mica structure (Jackson and West,
1930) have necessitated the use of enlarged octahedral ions (in order
to make this layer close-packed whilst allowing the surface oxygens
of the tetrahedral layer to remain in a hexagonal network) together
with enlarged potassium ions to produce the deduced separation
between layers.

A detailed determination of the structure of muscovite (Rado-
slovich, 1960) shows that (a) the octahedral anions are not in contact
with each other, (b) the layer surfaces are not hexagonal but ditri-
gonal due to rotation of the tetrahedra, and (c) the holes so produced
are smaller than the diameter of the potassium ion. Other micas
are probably similar in some of these respects (Radoslovich, 1961).

J16 rorR CONSTRUCTING MUSCOVITE MODEL

A simple jig allows the rapid construction of a muscovite model

having such features. Suppose the scale is 4 in.=1A, the oxygen
318
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diameter being 2:6 A,  For bos=9:0A and by —9-3A the
tetrahedral rotation, a=134" (Radoslovich, 1961). In the ideal

. . . . 2
structure the silicon ions are on a hexagonal grid of side 2:6 x— A

£3°7
. . - 2:6_90_ 2 .
which becomes in the ditrigonal model - A9‘3 A%_l-45 in.
The jig consists of a piece of wood with paper attached inscribed
with a hexagonal grid, sides 1-45 in. The tetrahedral cations will
lie vertically above the centres of some of these hexagons; and where

this is so a nail (¥, Fig. 1) with a } in. diameter head is partly driven

& L
@

&
®

® ®
® ®

® ]

FiG. 1—Diagram of jig for constructing muscovite model. ILarge circles are
oxygens; X,Y,Z are basal and V, W apical. Shaded circle is hydroxyl, spotted
circles are octahedral aluminium; tetrahedral silicon not shown. Solid spots
are nails and brads.

in, The height of the nail is adjusted until a tetrahedron constructed
of oxygen balls will just sit on its base (X, Y and Z, Fig. 1) over the
nail, without wobbling or movement other than rotation. The twist
of 134" is set out with a protractor at a number of these nail points,
and thin brads (B, Fig. 1) are fixed so that when a tetrahedral group
is placed over the nail the brad lies between two oxygens, Y and Z,
to give the group its twist. In fact three brads will fix one ditri-
gonal ring (Fig. 1), and all other tetrahedra will, with careful con-
struction, adjust themselves to make the whole model ditrigonal.
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The hydroxyls (U, Fig. 1) are situated above the centres of the
ditrigonal holes, but not touching X, Y, and Z, so that they must be
supported by being glued to the octahedral cations only, which are
in turn glued to the apical oxygens, V, W, etc. Thin nails are there-
fore fixed at the centres of the ditrigons, and covered with lumps
of plasticine, on to which the hydroxyls are pressed until they are level
with V and W. The octahedral cations may now be inserted and
glued, after which the whole layer may be lifted free of the jig. A
second tetrahedral layer is then constructed on the same jig.

At this point one must decide how the model is to be dissected,
if at all. Our model can be split at the octahedral layer because the

FiG. 2—FEdge view of muscovite model.

hydroxyls for the top tetrahedral layer have been glued on the top
of the previously constructed layer; thus, they are correctly at-
tached to the octahedral cations. The second tetrahedral layer
fits this Jayer readily because of the gaps between neighbouring
octahedral anions. The model is completed by glueing (or loosely
positioning) tinted spheres for the potassiums (Fig. 2).

This model and jig may be used for other structures quite readily.
Thus, for kaolinite loose hydroxyls can be added to the layer con-
structed first and for chlorite the inter-layer potassium ions are
omitted and replaced by a brucite layer (Fig. 3). In constructing the
brucite layer the second tetrahedral layer should begin using oxygen
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triads only; when this triad sheet has been glued it forms a jig on
which to place hydroxyls for the construction of brucite, on the same
scale as muscovite. Other micas, such as trioctahedral micas, can
obviously be formed using extra cations, and micas with different
twists can be made by changing a in the above.

DisCUSSION

These models effectively illustrate several features of the mica
structures. (a) The rotations in the tetrahedral layer force the
interlayer potassium out of the surface (Fig. 2) sufficiently to keep
successive muscovite layers clearly separated (Radoslovich, 1960).

F1G. 3—Edge view of chlorite model.

(b) Larger octahedral cations will increase the space between the
anions, thereby expanding this layer and untwisting the tetrahedral
layers (Radoslovich, 1961). (c¢) The ditrigonal symmetry of the
surface networks is obvious (Figs. 1 and 4) and this can be related to
mica polymorphism (Radoslovich, 1959) by superimposing layers
across the interlayer region. These figures should be compared with
those of Hatch, Comeforo and Pace (1952).

NEED FOR A SOURCE OF SPHERES
The construction of silicate models would be much easier if hollow
spheres (or hemispheres) of diameter 1-3 in., as described above,
were available commercially. The present model requires 300-400
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oxygen balls which also serve (when tinted) as hydroxyls, fluorines,
potassiums or bariums; with the scale adjusted they would represent
sulphurs in sulphide models. Making these balls takes the major
part of the construction time; the smaller opaque balls present little
difficulty. It is therefore suggested, in support of the plea by Hatch,
Comeforo and Pace (1952), that, if the demand were sufficient,*

Fic. 4—Face view of tetrahedral layer of muscovite model, showing ditrigonal
network of oxygens.

some manufacturer of plastics should produce clear transparent
spheres of this one size at a moderate cost; on a minimum order
of 10,000 spheres (which is a very small order for injection moulding
of perspex) an appropriate cost of eightpence, sterling, each has
been quoted to the authors.

Acknowledgements.—The thanks of the authors are due to Mr R. Welfare and
Mr R. B. Major for technical assistance in the construction of the models.
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In several of the analyses of layer silicates reported during
recent years, it is claimed that small departures from the
high symmetry of the ‘ideal’ structures have been
demonstrated. In addition to displacements of atoms,

* Chemical Research Laboratories, Melbourne.
1 Division of Soils, Adelaide.

1 Oct.

OH

Tet

C sin
O,0H

variations in the filling of, or substitution in, tetrahedral
and octahedral sites have been inferred.

In order to justify these claims, diffraction data which
are sufficiently accurate and extensive both in angular
(0) and amplitude (F') range are an essential prerequisite,
for minor details of the final stage of the refinement can
hardly be considered significant unless the number of
structure amplitudes measured is considerably in excess

@ b

®

Fig. 1. (a) An extended reproduction of the (0%) projection of Steinfink’s paper with dashed lines superimposed at y=§, } and

2=0-072. A refers to atom OH,.
the b axis is on the same scale as Fig. 1(a).

() An extended reproduction of the (kk0) projection of Steinfink’s paper, adjusted so that
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of the number of parameters deduced.* Extensive overlap
of atoms in the two-dimensional projections generally
used and the high symmetry of the ‘ideal’ structures
require that deviations from special positions be sup-
ported by unambiguous evidence. The methods currently
employed for assessing the accuracy of the electron-
density distributions, atomic parameters and the signi-
ficance of differences in bond lengths at each stage of the
refinement (Lipson & Cochran, 19563; Jeffrey & Cruick-
shank, 1953) are hence of particular importance in the
analysis of layer silicates. Where no recourse to these
criteria has been made, plausible but unwarranted struc-
tural features have been proposed.

As an obvious example of the effects of inadequate
data, the recent analysis of a chlorite by Steinfinlt (1958)
may be cited. In this analysis, 51 positional parameters,
as well as hidden parameters involved in loading the
atomic scattering curves, are claimed to have been derived
from 28 hk0 and 50 Okl structure amplitudes, with an
a ¢y, imp by the ussion, of co erably
b than 05 A, no actual ts are
quoted. The suspect nature of the atomic parameters and
inter-atomic distances derived from these data is im-
mediately apparent from a comparison of the tabulated
atomic parameters (Table 2 of the paper) with the
contoured electron-density maps (Figs. 1 and 2 of the
paper). In our Fig. 1, we have placed in juxtaposition
extended reproductions of Steinfink’s (0kl) and (hkO)
electron-density projections. Inspection reveals the fol-
lowing, more obvious, points of criticism:

(i) The displacement of atoms OH, and OH, (Fig.1(a))
from ‘ideal’ positions is justified by Steinfink on the basis
of the asymmetry of their peak distributions. Atom O,,
however, which shows equally marked asymmetry of
distribution, is assigned an ‘ideal’ position.

(ii) No account is taken of the ridge extending from Oy
in the z-direction, while a displacement of the y-para-

* Because it is implicit in the Fourier technique of structure
refinement using date of the normal measured accuracy e.g.
by eye-estimation, this condition should be self-evident;
however, its significance appears to be frequently overlooked
or under-estimated.

SHORT COMMUNICATIONS

meter of this atom is held to be significant. The latter
displacement involves a shift of Ay =0-333-0-328 =
0-046 A.

(iii) The selected y parameter of atom OH,, as indicated
in the (hk0) projection at 4 (Fig. 1(b)) is clearly in-
congistent with the observed peak distribution in the
more reliable (0kl) projection* (Fig. 1(a)). In this con-
nection, it should be pointed out that the projection
corresponding to the (kk0) contour map is inherently
extremely complex due to overlap. With typical peak
heights of individual octahedral, tetrahedral and oxygen
sites of the order of 46, 50 and 20 e.A—2 respectively
(derived from Mathieson, 1958), it is evident that this
projection is so crowded by the heavier scattering units
that exact deduclions regarding oxygen positions vannol
be expected from 28 structure amplitudes.

These considerations lead us to the conclusion that the
probable errors in this analysis are much greater than
would be required to substantiate a real deviation from
the ‘ideal’ structure and hence, to support the subsequent
detailed argument put forward by Steinfink.

In view of the increasing interest presently being shown
in the analysis of layer silicates, we are of the opinion
that a general plea for caution in the interpretation of
minor details in such analyses is called for, more par-
ticularly in the interests of those not fully conversant
with the methods of structure analysis and hence unable
to judge the strength of the evidence presented.
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Structural Control of Polymorphism in
Micas
THE ox po own to
the mica Is and Je

been confirmed by a number of workers in more
recont years%?®. Polymorphism similarly has been
clearly demonstrated for other layer lattice silicates,
for for the chlorites by Brindley, Oughton
and n :
It is woll known that micaceous minerals can form
polymorphs principally because the surfaces of the
individual silicate layers are composed of oxygen
atoms arranged in hexagonal networks. Thus the
successive layers can be superimposed. or stacked in a
number of different ways, in each of which the two
hexagonal layer surfaces pack together identically,

n to ox s but th fferent
ng can rise to ent sy
unit cells in the total structure. The successive layers
m re t
re ro
m ly

successive layers along either the a-axis or the
b-axis or both. (The concept of rotations between
layers is geometrically simpler, but that of translations
may be more acceptable physically.)

on
of

and 240° angles, 37 (three-layer trigonal) on 120°,
20 (two-layer orthorhombic) on 180°, 2M , on altern-
g 60° an °, and 6H (si he ) on
angles. e Smith and di the
possible factors governing the growth of wvarious
polymorphs (including forces due to distortions of the
al ox ks) it was possible to

on ce then able, their

observed relative abundance. It was noted, however,
that only the 1M, 2M,, and 37 polymorphs are

-
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common in Nature, and that 20 and 6H specimens
had not been found at all. Lepidolite specimens

di ork exists in
ortions is to

as fin 8),
ments on

rotations of these tetrahedra in dickite to the misfit
of the ‘oversize’ tetrahedral layer on to the smaller
The
-for-sili b



satisfactorily by an accurate analysis of the 2M,
lepidolite structure.

For micas other than lepidolites and brittle micas
the tetrahedral layer has cation composition Sig ,Aly;,,
and this network, according to Smith and Yoder?,
should have b-dimensions of 9-30 + 0-06 A. There
will be little distortion of the oxygen hexagons in
those micas having a b-axis close to this value (for
example, phlogopites and some biotites). If the
above argument is valid then the 20, 2M, and 6H
polymorphs may occur among these micas.

E. W. RADOSLOVICH

Division of Soils,
Commonwealth Scientific and
Industrial Research Organization,

Adelaide.
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“HYDROMUSCOVITE WITH THE 2M. STRUCTURE—A CRITICISM”

E. W. RaposrovicH, Division of Soils, Commonwealth Scientific and
Industrial Research Organization, Adelaide, Australia.

A recent paper by Threadgold (1959) has reported chemical, differ-
ential thermal and x-ray diffraction data on a hydromuscovite from Mt.
Lyell in Tasmania. Threadgold gives data which are claimed to show
that this hydromuscovite has the 2M, structure, a mica polymorph pre-
viously only found amongst the lepidolites (Levinson, 1953). Radoslovich
(1959) has recently suggested, however, that the theoretical polymorphs
20, 2M; and 6H, which are based on 60° rotations between layers (Smith
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and Yoder, 1956) may be expected to be rare or non-existent among the
muscovites, because of the markedly ditrigonal symmetry of the oxygen
network (Radoslovich, 1960, in press).

Since this specimen is the first reported 2M, mica other than lepidolite
it was decided to re-examine it. A careful survey did not reveal any ma-
terial sufficiently coarse-grained for single crystal methods, so that
powder diffraction techniques must be used. For this purpose a 19 cm.
diameter evacuated powder camera was used to record consecutively
(under the same conditions) the diffraction patterns of various poly-
morphs and mixtures of polymorphs. The camera is equipped with
knife-edges, and has been carefully calibrated using a quartz standard.
A Hilger film-measuring rule was used for obtaining 6 values, and the
corresponding d spacings were determined by extrapolation from the
table published by Rose (1957).

The following mica specimens were photographed under standard con-
ditions.

(a) Hydromuscovite from Lyell Comstock Mine, Mt. Lyell, Tasmania; kindly supplied

by I. Threadgold, C.S.I.R.O., Melbourne.
(b) 1M muscovite from Iron Monarch quarries, Sth. Australia; kindly supplied by
E. R. Segnit, University of Adelaide.

(c) 2M, muscovite from Spotted Tiger Mine, Central Australia as studied by Rados-
lovich (in press, 1960).

(d) A 2:1 mixture of (b) and (c).

(e) 2M; lepidolite from the Brown Derby pegmatite, Gunnison County, Colorado,

described as #3505 by Levinson (1953); kindly supplied by Prof. E. Wm. Heinrich,
Univ. of Michigan.

The d spacings for each of these micas are given in Table 1, with the
visually estimated intensities.! By direct comparison of the photo-
graphs—which show high resolution—it is clear that the Mt. Lyell
hydromuscovite is not identical with the 2M; lepidolite spccimen, but in
fact shows considerably better agreement with the 2:1 mixture of 1M
and 2M; polymorphs. These are, of course, subtle variations in relative
line intensities, but these are not unexpected in layer-silicates, both be-
cause of orientation effects and because the hydromuscovite differs a
little chemically from the 1M and 2M; specimens. A print of the photo-
graphs of specimens (a), (d) and (e) is given in Fig. 1; the detail does not
reproduce well.

In view of the slight intensity discrepancies between the Mt. Lyell
hydromuscovite and the authentic muscovite polymorphs examined it
cannot be claimed categorically that this hydromuscovite is a mixture

! Victor (1957) has also given data for a mixture of 709 2M, and 309, 1M muscovite.
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TABLE 1 (continued)

b [3 d
1.5594 w 1.5531 w-m . 1.5491  vvw
1.5406
1.5377  vw (br)
5228 w-m 1.5225 wvw
5065 vw
1.4947 s 4978 wvs (br) 4959 vs 1.4955 s 1.4985
4791 w 4804 vvw 1.4794 w
4678  vvw
4465 vvw 4521 w
4220 w (v.ibr) 1.4299 vw 4289 vw
1.423¢  vw 3938 vvw
1.3746  w (br) L3712 vvw 1.3722  w. band
3483 w 1.3405 w (br) .3516 m
3346 vw .3374 w-m 1.3377  w (br.)
3220 wvw 1.3293 vvw 3206 vw band 3123 w (v.br.)
1.2972 2923 m band 1 2947} 2957 m-s
w 1.2880 W 12868f W
vw band 2760 w
2707w band
2463 1.2484 2459  w-m 1.2436 w ban
w-m 1.2414} vw 2369 w-m
. 2181  w (br.) 1.2173  w band
1.1878
1.1624} vw
1694
1173 wm
1.1118 vvw 1118 w (br.)
1.1015  vw 1017w (br)
1.0923 w(vbr)
w
1.0124 1.0136
1.0085 VW 1.0087} vw

of 1M and 2M; polymorphs, though the diffraction data are in better
agreement with this mixture than with 2M, lepidolite. It should be
further remarked that the pattern of a 2M, muscovite (when found)
will not necessarily be identical with the observed pattern of 2M, lepido-
lite. This re-examination therefore clearly shows that the Mt. Lyell
hydromuscovite has not been proved to be a 2M, polymorph. Indeed it
will be very difficult to demonstrate conclusively that the 2M, poly-
morph of muscovites exists at all, by powder methods. For this reason
it will, in the writer’s opinion, first be necessary to find a 2M, muscovite
(if such exists) by single crystal methods, in order to provide standard
2M; muscovite powder data, against which unknown polymorphs can be
compared with certainty.

F1e. 1. X-ray powder photographs. (Above) 2:1 mixture of 1M muscovite and 2M;
muscovite, (d). (Middle) Hydromuscovite from Mt. Lyell, Tasmania, (a). 2M. lepid-
olite (e).
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Surface Sy ry and Cell ensions
of Lattice Silic

tetrahe sheets to contract to the dimensions of

the oct ral sheets.

kn . 8 of wgpye. for a la of 1

lat sl structures show t all t
als e or less ditri surface net-
, fo o for micas = °

(2) The substitution of aluminium for silicon in the



of bgp ayer K+ has a gr effect
octahe 1 for micas. This ical co

dioctahedral and trioctahedral types. For example,
the unusual brittle mica xanthophyllite has bops, =
9-01° and bege, = 9016, whereas earlier formule

Norrish of this Division, with whom I have had very
profitable discussions of this work.
E. W. RADOSLOVICH
Division of Soils,
Commonwealth Scientific and
Industrial Research Organization,

Adelaide.
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Cell Dimensions and Interatomic Forces
““in Layer Lattice Silicates

TuE factors which control the sheet dimensions of
the layer lattice silicates have been carefully re-
examined recently!, both from a structural point of
view?, and by the methods of multiple regression
analysis?. This has led to a new, more explicit
geometrical model?® for the octahedral layers of these
minerals, and thence to a detailed study of the
balance of forces which must be involved. The results
of the latter are outlined here.

Megaw, Kempster and Radoslovich’ have attemp-
ted to understand the felspar structure, anorthite, by
treating the network of bonds and bond-angles rather
as a problem in statics, comparable with the design of
bridge trusses. The same kind of approach is profit-
able for the layer lattice silicates, with the following
general conclusions.

(1) The primary control of all three dimensions,
a, b and ¢, is vested in the octahedral layer. In this
layer the highly charged cations are only partly
shielded electrostatically from each other across the
shared octahedral edges. There is a strong mutual
repulsion which is balanced by the limit of stretching
of the cation-anion bonds, and. the limit of compres-
sion towards each other of pairs of anions in these
shortened shared edges (in accordance with Pauling’s
rules).

(2) Other factors exert control at a secondary level,
or in extreme cases in an over-riding fashion. These
factors include: (a) interlayer cation-surface oxygen
bonds; (b) net surface charge (for example, cation
exchange capacity effects); (c¢) net octahedral layer
charge; (d) polarization of anions, particularly
surface hydroxyls; (e) interlayer hydrogen bonding;
(f) surface hydroxyl-hydroxyl bonding; (g) limita-
tions of tetrahedral deformation, governed by bond-
lengths and anion—anion compression. I believe that
detailed examples of each may be found in various
layer silicate structures already determined accu-
rately.




(8) For soveral quite accurate structures the repor-
ted minor variations in bond-lengths—both within
one structure, and between structures—appear to be
consistent with these general concepts. The varia-
tions apparently may be ‘explained’ by treating these
minerals as essentially ionic structures and then
considering the effects on the bonds of small but known
variations in effective electrostatic valency. Very
similar arguments have been used by other authors in
discussing several rather unrelated inorganic struc-
tures determined with notable precision rocently.

(4) If these ideas are substantially correct then they:
will allow much better prediction of trial structures of
layerlattice silicates; should give convincing explana-
tions for observed. composition limits for the naturally
occurring minerals®; cause considerable rethinking
about the forces governing the morphology of kaolins
and serpentines’; and have real bearing on the
relative stability under weathering, and on the
observed polymorphism, of the micas.

I thank Dr. K. Norrish, Division of Soils, and Mr.
L. G. Veitch, Division of Mathematical Statistics,
C.8.L.R.O., for their assistance.

E. W. RaposrovicH
Division of Soils,
Commonwealth Scientific and
Industrial Research Organization,
Adelaide.
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THE CELL DIMENSIONS AND SYMMETRY OF LAYER-
LATTICE SILICATES

I. SOME STRUCTURAL CONSIDERATIONS

E. W. Ravosrovica aND K. Noxrrisa, Division of Soils, Common-
wealth Scientific and Industrial Research Organisation,
Adelaide, Ausiralia.

ABSTRACT

The theoretical basis underlying accepted b-axis formulae (giving the sheet dimensions
of layer-lattice silicates in terms of composition) has been re-examined. It is now proposed
that in general the b-axis is determined by the octahedral layer together with (for micas)
the interlayer cation. As a consequence of this most layer silicates will have ditrigonal, not
hexagonal, surface networks; and the surface rotations may be easily calculated from
bovs and the known Al-for-Si substitution tetrahedrally. These ideas have implications
for all layer structures; these implications are examined in detail for the micas and brittle
micas.

INTRODUCTION

Various attempts have been made to predict the unit cell dimensions of
the layer silicates, especially the & axes, from certain observations and
assumptions about their structures, allowing for the expected differences
due to different ionic radii. Cell sizes calculated from recent formulae
generally agree well with experimental values; there are, however, some
notable anomalies, especially among the micas and brittle micas.

A detailed analysis of the muscovite structure (Radoslovich, 1960),
and other data, suggest that the previous b-axis formulae have been
wrongly based for the micas, and also that the accepted “ideal’” mica
structure may usefully be modified (Radoslovich, 1961). New b-axis
formulae for all the layer silicates, including the micas, are presented in
Part 11

The most recent attempt to set up general formulae relating lattice
parameters to composition in layer silicates appears to be that of Brindley
and MacEwan (1953), who also summarize earlier work. Their semi-
empirical formulae are based on the observed increase in the cell dimen-

(with change of cation) of the hydroxides, AI(OH); Fe(OH)s,,
(OH): and Fe(OH)s, though similar results may also be obtained by
ionic radii, Brindley and MacEwan give several different

ormulae, viz.

(a) for the expected b dimensions of various tetrahedral networks, if they were not

constrained.

(b) for the expected b dimensions of various di-octahedral and tri-octahedral layers, if

they were not constrained.

(c) for the b axis of the unit cell, by considering the combined tetrahedral and octa-

hedral layers.

599
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TasBLE 1
b dimension (A) Celadonite! Xanthophyllite?
Tetrahedral, calculated? 9.20 9 84
Octahedral, calculated 9.19 9 19
Overall, calculated? 9.14 9 49
Observed 9.02 9 00

! pide Zviagin, 1957.
2 yide Takéuchi and Sadanaga, 1959.
s Adjusted to the values, Si-0=1.60 A, ALO=1.78 A (Smith, 1954)

When (c) is applied to some representative minerals (Table 2, Brindley
and MacEwan) the results are surprisingly good; and more recent studies
(e.g. Faust, 1957) have confirmed the general applicability of the for-
mulae, within the limits of their premises. Recently, however, there has
been increased interest in applying (a) and (b) to various minerals as a
means of predicting strains betwcen the layers, since such strains will
cause departures from ideal structures and may account partially for ob-
served properties such as polymorphism and morphology. When detail
of this kind is sought some factors omitted by Brindley and MacEwan
become important. In their formulation, for example,

(1

(2) ne .

3) nc r
th

4) io

c
e
octahedral cations, or differ in octahedral charge, or both
(5) the three octah sites (per one-layer cell) are treated as similar, whereas the
accepted space ps imply that they are crystallographically distinct for the
common mica polymorphs.

The inadequacyof these formulae formicas is clearly shown by celadon-
ite and xanthophyllite, for both of which the calculated tetrahedral,
octahedral and overall b dimensions are each considerably larger than
the observed b axis (Table 1).

pres  p w -
ce by  pl at s
fo ae; ic 0s e

alterations imply a number of changes in the current ideas of the mica
structures especially, which are therefore discussed in the latter part of
this paper.
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Adequate b-axis formulae consistent with the new model have been

CALCULATION OF THE ROTATION OF ““S1Lics” TETRAHEDRA IN
LAYER SILICATES

For most of the layer silicate structures now known in some detail the

The aver  tetra ation from hexagonal symmetry, a, may be
predicted f the b axis and known Al-for-Si substitution
lly. Let the actual ‘Si’-O bond have an ave th X in
along ¢* (Fig. 1). The hexagon of ‘Si’ atoms =280/
=2\ cos «, it is easily shown that the observed b axis, bops, is t
times this | h, i.e. 6 cos a.. The value of b for the same tetrahe

ayer with zero rotations would be by, = O\, whence

& = arc cos (bobs/btetr) (1)
This e on applies to all si es; the only assump are that
‘he te dra are approxi y lar, and that contr n occurs
iimply by tetrahedral rotation. Calculated and observed values of o are
liscussed for micas and in Part II for other silicates.

It is no hy that calculated rotations of < prox. are uncom-
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by
S Si
™ ation

Si
yeen

T1c. 1. Calculations of angle, a, of Fic. 2. Calculation of layer separation.

rotation of tetrahedra.

Oapex‘T'ObasBl angle, then
by = 61 = 6 (1.60 + ) sin (180 — ) = (9.60 + 0.18x) sin 7 @)

which becomes, for the ideal value of 7= 109°28/,
bete = (9.051 + 0.254x) (2a)
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FacTors CONTROLLING THE H-AXIS DiMENSTON IN LAVER-LATTICE
SiLicATES

Recent structural analyses of micas strongly suggest that the tetra-
hedral layers play a secondary role in determining the & axis, not the
dominant role previously assumed (e.g. Smith and Yoder, 1956). The cell
dimensions of micas appear to be controlled largely by the octahedral
layer and the interlayer actions, though micas for which the tetrahedral
layer is smaller than the octahedral layer form (rare) exceptions to this.
The surface configuration, however, depends primarily on the size of the
“free” tetrahedral layer relative to the actual b axis,

Note that if the octahedral layer of a mica tends to be much smaller
‘han the tetrahedral layer the tetrahedra may rotate beyond this point
‘¢); normal bond-lengths from the surface oxygens to the interlayer cat-
on are then attained by the latter being held with its center slightly
ibove the top of the oxygen layer, i.e. the oxygen surfaces are no longer in
‘ontact, e.g. muscovite (Radoslovich 1960).

The separate parts of this hypothesis may be supported as follows:

.) The inclusion of a tetrahedral term in t formulae

rig  y (e.g. n, 1951, p. 160) by ng b for

89 andm te (9.00 A). This n by

vise comp yllite with par layer

on is the i tor in both cas le to
mineral pair which differ only in tut the

ecessity for c e balance re ch rin

he octahedral ons or interl nu the

etrahedral layer may be inferred, however, if it is accepted that Li
ctahedrally does not increase b. Muscovite and polylithionite, both with
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b A, ly er only in tetra  ral composition; and
li for ka  ite, both with & 92 A. In neither case

tively increase b at all, except possibly for the montmorillonites.

a ) it
of tice
oc er ¢
a en
c g ye
t es vi

is discussed further in Part IL.

Bradley’s di ion of o ral layer thick es appears t
be valid only u rat cial ¢ tances,if thep  nthypothesi
is correct.

) tos is
bo for e,
ha tal c

remainder being so great that these oxygens effectively are not bonded t
the interlayer cation (Table 2).

Tapik 2. INTERLAYER CATION—OXYGEN BoND LENGTHS

Muscovite, K-Ot 2 799 775 2 86, 335 3.51 3 30,
Celadonite, K-O 271 2 85 277 327 3.27 3 34
Xanthophyllite, Ca-O* 2 35 39 239 349 3.49 352

1 A reasonable value for the K-O bond is 2.81 A, and for the Ca-O bond 2.35 A.



LAVER-LATTICE SILICATES I 605

Takéuchi and Donnay (1959) have shown that in the hexagonal frame-
work str CaAl s and BaAl the networks are 1
with the Ca-0O s=2.39 A ( ct distance for the y
six-fold co-ordination); the rotation in a—BaAl,Si,Oz is less than in
CaAl,Siz05, because Ba is larger than Ca.

SEPARATION OF SUCCESSIVE LAYERS IN MICAS

It is possible to use the calculated « to make plausible predictions about
the separation of the layers and/or the value of the O-T-O angle for in-
dividual micas as follows.

Let the interlayer cation-oxygen bond have length r (= CO, in Fig. 1)
in projection along ¢*, for an oxygen in contact with the cation, irrespec-
tive of whether the latter has its center at the surface of the oxygen layer
or not. Then

r=CO" — 5= (Si0 cot 30°) — 8 = (btetr/6)(+/3 cOS @ — sin ) 3)

For the general case (Fig. 2) the separation of the basal planes of succes-
sive layers will be

n = 2MO = 2(CO® — CM?)'/? = 2((cation-oxygen bond)? — r2)1/2 4)

Though equation (4) gives reasonable values of n for some micas it
leads to an impossibly close approach of successive layers for other micas
if the O-T-O angle is required to be 109°28’ and the interlayer cation in
contact with six oxygens. Where this occurs it may reasonably be assumed
that the O-T-O angle changes and the layers are in contact, since the
oxygen sheets can only interleave about 0.06 A for a=10°, and for larger
rotations than this the normal interlayer cations prevent any appreciable
interleaving. On this basis new values of b, o, and 7 are derived. From
(1) and (3),

3 2 1/2
Diorr = [36(%* bobs — l‘) + b0b52] (5)

in which r is given by (4) with n=0. Corrected values of « and 7 are then
given by (1) and (2).

Tue “IDEAL” MIicA STRUCTURE

The observed layer silicate structures are usually discussed in relation
to an “ideal” structure in which the surface oxygen configuration has
hexagonal symmetry, e.g. the muscovite structure proposed by Jackson
and West (1930) for which the y parameters are all multiples of 4/12. In
their classic work on the polymorphism of micas Hendricks and Jefferson
(1939) pointed out that 2M; muscovite departs considerably from this
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-

i
2

Fic. 3. Non-appearance of 06}, ! odd reflections with tetrahedral rotations only

ar ment b se th I odd ns h are thereby for-
bi with sp roup ) are o thi been confirmed by
Radoslovich (1960).

The erroneous implication, however, has been that two-layer micas for
which the 06l, I odd reflections are nof observed must have approxi

g le cu 0
t h a h
f o re e

that the tetrahedral centers are not displaced from their y =nb/12 posi
tions.

In the ideal hexagonal network (Fig. 3) any triad of oxygens consists o
two atoms, Op and Og on thel inpr  tion joining two
cons lie at +£60° to the & axis, ether h O¢ on such a
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parallel to the & axis. It is assumed that all triads are equal in size, and
that their centers remain at y=nb/12 when 4 is decreased by tetrahedral
rotations. The parameters of Op and Og before and after rotation are:

Op, x,y,z—x+ 6x,y + 0y,zand Og, x + 3, ¥, z—x + % + 6x,y — by, z.

The y parameter of O¢ remains at y=nb/12, since Si; and Si, also main-
tain y=nb/12; and hence the 06/, I odd reflections are solely due to Op
and Og. For space group C2/c, the geometrical structure factor is

A = — 8 sin 2xlz{sin 2xk(y — 8y) + sin 2nk(y + oy)}
16 sin 27lz-sin 2nky -sin 27k - 8y -

Ofork =6andy = 2
12

For the 1M polymorph, spacegroup C2/m, these reflections may be pres-
ent for all y=nb/12.

It appears probable that the tetrahedral networks in layer silicates may
readily contract to a ditrigonal symmetry. Radoslovich (1961) has there-
fore suggested that the “ideal” mica structure be redefined as having di-
trigonal surface symmetry, with the tetrahedral cations having y
=nb/12; a hexagonal network is thus a special case of this structure.
Muscovite is then a ‘“distorted” structure because of tetrahedral dis-
placements (due to the parily-filled octahedral layer).

APPLICATION TO VARIOUS MIcas

Calculated values of the rotation, @, and the expected interlayer sepa-
ration % are given in Table 3; for several minerals average experimental
values of @ and 7 are also available for comparison. Since 7,1, depends on
the assumed bond length from the interlayer cation to the near oxygens,
this is given in column 10, with the known observed average values in
column 11.

(a) Biotites (no. 1-24), and phlogopites (no. 25-29)

It is noteworthy that ac.i, varies between the narrow limits of 7-91°
approx., for these biotites having a considerable composition range
(Table 4). Likewise the calculated separation % lies between 2.5 and
2.9 A, suggesting that successive layers are generally in contact—in con-
trast with muscovites and lepidolites. This cannot be tested experi-
mentally, however, because # cannot be estimated from d(001), and the
tetrahedral and octahedral thickness, since the latter is not precisely
known for biotites and phlogopites. The substitution of F~ for OH™ intro-
duces a further difficulty because Yoder and Eugster (1954) have shown



TABLE 3. TETRAHEDRAT, ROTATIONS AND INTERLAYER DISTANCES 1N SOME Micas

93 o 24 Cation-oxygen A
No Mineral obs tetr obs calc obs cale
: ! Obs,  Assume
1 Biotite, J-56-1 9 265% 9 355 70377 2.65 2 81
2 Biotite, J-56-1b 9.247% 9,355 8042/ 2 81 2.81
3 Biotite, J-56-5 9.268% 9 350 7°367 2.68 2 81
4 Biotite, J-56-9 9 251% 9 320 7° 0/ 2.64 2 81
5 Biotite, J-36-10 9.201*% 9.358 8°15/ 2.75 2.81
6 Biotite, J-56-11 9.251% 9 305 6°12/ 2 55 2.81
7 Biotite, J-56-11b 9 257%  9.305 50487 2.51 2 81
8 Biotite, J-36-11by 9.225%  9.305 7°307 272 2.81
Biotite, J-56-12 9.254* 9,391 948’ 2.91 2.81
10 Biotite, J-56-12b 9 265% 9 391 99247 2.80 2 81
11 Biotite, J-56-13 9 262*% 9.360 8°18 276 2 81
12 Biotite, J-56-13b 9.206%  9.360 10°24/ 2 93 2.81
13 Biotite, J-56-20 9 308% 9 410 821’ 2.72 2.81
14 Biotite, J-56-21 9 246% 9,371 9022/ 2.87 2 81
15 Biotite, J-56-21b 9.255%  9.371 9° 1’ 2 83 2.81
16 Biotite, J-56-22 9.253*% 9 353 823’ 2.67 2.81
17 Biotite, J-36-22b 9 215% 9 333 99537 2.99 2 81
18 Biotite, J-56-23 9 328% 9,360 4°517 2 31 2.81
Forn=2 60,7 =108°41’ 9.328%  9.41 7°21" 2 60 2.81
19 Biotite, EL-38-134 9.266% 9 353 7°48’ 2.63 2.81
20 Biotite, EL-38-167 9 300% 9 307 20127 2.00 2 81
TFory=2.60,7=10819" 9 300% 9.37 7°41/ 2 60 2.81
21 Biotite, EL-38-265 9.323%  9.305
Fory=2.60,=107°49’ 9.323%  9.40 7°19/ 2 60 2.81
22 Biotite, EL-230 9 260% 9 335 70167 2 66 2.81
23 Biotite, SLR-138 9.271% 9,360 7954’ 2.71 2 81
24 Biotite, Ra 135 9.265%  9.301 50 2/ 2 41 2.81
TFory=2 60,7 =109°2" 9.265% 9 33 69467 2 60 2.81
25 Phlogopite, J-56-14 9.241% 9 292 6° 0/ 2.54 2.81
26 Phlogopite 9 22 9 30 7°307 2.72 2.81
27 Phlogopite 9.204 9.305 8287 2.83 2 81
28  Fluorophlogopite 9.195 9.395 8°48 2 86 2 81
29  TFluorophlogopite 9 188 9 30 8°547 2.88 2.81
30 Muscovite 8 995% 9 30 13.7°  14°427 337 3.49 2.81 2.81
31 Tron-muscovite 9 06 9.24 11° 3/ 317 2 81
32 Paragonite 8.90 9.30 16°527 2.34 2 42
TForn=2.60,7=106°51" 8 90 9.45 19°367 2 60 2.42
33 Lepidolite 9.006% 9 16 10°25° 3.16 2.81
34 Lepidolite 8 97 9.25 14°367 3.31 2.81
35 Celadonite 9.02 9.12 12.0° 833’ 330 3.12 2.78 2 81
Forrohs =107°07 9.02 9.28 12 0°  13°43/ 330 3.30 278
36 Celadonite 9.05 9 05 0° 2.07 2.81
Tory=2.60,7=108°58’ 9 05 9.08 4°30” 2.60 2.81
37 Celadonite 9 06 9.09 4°147 2.55 2.81
38 Celadonite 9.08 9.09 2042/ 2.36 2.81
Fory=2 60,7 =109°33" 9.08 9.11 4°54/ 2.60 2 81
39 Zinnwaldite 9 12 923 9° 8’ 2.97 2.81
40 Zinnwaldite 9 06 9.19 9°31’ 3.04 2.81
41 Lithium biotite 9.21 9.32 8%44” 2.81 2.81
42 Lithium biotite 9 09 9.29 10°407 3.08 2.81
43 Giimbelite 9 04 9 25 12°147 3.28 2.81
44 Lepidomelane 929 9.41 9°10” 2.82 2.81
435 Margarite 8.92 9.56 21° 4/ 2.57 2.38
46  Ephesite 8.896%  9.57 21°367 2.78 2.42
47 Xanthophyllite 9 00 9 80 23.2°  23°19’ 2.69 2.72 2 38 2.38
48 Xanthophyllite 9.01 9.77 220457 2.66 2.38
49  Xanthophyllite 9.00 9.76 22°46" 2.72 2.38
50  Xanthophyllite 9 02 977 22°36’ 2.65 2.38
51 Bityite 8 713% 9 225 19°10° 2.55 2.38
52 Bityite 8.67 9.455 23°307 2.93 2.38

# Original data, obtained using CoKa radiation, quartz internal standard, 19 cm diam. camera

This table contains data on a few representative specimens of each of the micas, except for the biotites fo
which Dr. Jones supplied excellent data on twenty five specimens All these data are included, partly to allov
a discussion of interlayer separation, and partly because the same data are used subsequently in a regressioi
analysis (Part II).
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that this titution in ph decreases ), and Jones (1958)
has sugge that similarly titution of 0% and I~ for OH~

Fe?t + 0.853Fe?t + 0.455Mg + 0.43Ti

Alwt,rahedml
layer the incr te 1 n for e layers apart.
Thereisal vi c this for nea1e. The separation,

should be valid for these micas.)

(b) Muscovite, Fe-muscovite, paragonite (no. 30-32)
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tation than ideal; and 7ca10=106°51", close to Tobs=107°0" for celadonite
(Zviagin, 1957).
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Megaw (1934) has studied gibbsite in detail, and gives the layer thickness
as 2.12 A, which is the same as that in muscovite. This, of course, is to be
expected on the present hypothesis, that the tetrahedral layer exerts very
little stretching force on the octahedral layer in micas. The b axis of gibbs-
ite is shorter than that of muscovite because the surface OH-OH bonds
result in a small contraction of the Al-O bonds (by 0.06 A) and of the
vacant site (“site”’—0 distance less by 0.05 A);and these contractions in
bond length shorten the b axis withoul thickening the layer.

(¢) Lepidolite (no. 33)

This lepidolite is a 2M, polymorph (Levinson, 1953) which is surpris-
ing since a=10%°, and ditrigonal surfaces should not allow this poly-

h, .
d rly hexa 2°8"), if the layers in
d O bonds A; then r=111°54’ ch

is reasonable. But this lepidolite has the same ¢* as 2M, muscovite, so
that the layers are probably separated by a similarly large distance.
Crystallization in the 2M, form is therefore very surprising; and a struc-
tural analysis of this is now being undertaken.

(d) Celadonite (no. 35)

The observed and calculated values of « and 5 do not agree well.
Zviagin’s structural analysis, however, shows that the O-T-O angle,
r=107°0', instead of 109°28’, which gives aeac= 13°43’, in better agree-
ment with aons=12° (aver. of 13.3°, 13° and 10°). Using aons and the ob-
served K-O bond of 2.78 A gives a calculated separation of layers of
3.30°, as observed.

This structure shows several unusual features for which tentative ex-
planations may now be offered, viz:

(1) the observed octahedral layer thickness is 2.48 A, compared with
2.12 A for muscovite and 2.10 A for brucite, Mg(OH),. This layer
in celadonite is deficient in cationic charge, however, and can there-
fore more readily increase in thickness than other micas. This in-
creased thickness completely accommodates the increase in octa-
hedral cation-oxygen bonds in passing from muscovite to celadon-
ite, by changing the bond angles; and the isomorphous replace-
ment of Fert, Mgt and Fe*t for Al** does nol therefore increase
the b axis in this case.

(2) the O-T-O angle is 107°, rather than 109°28’. The oxygen surfaces
are separated (as in muscovite); this may possibly be a conse-
quence of some mutual repulsion due to the Kt charge being satis-
fied by the octahedral oxygens. For the nearer oxygens to maintain
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TABLE 5. INTERATOMIC DISTANCES, OCTAHEDRAL CATION SITE TO OXYGENS

Celadonite 2M; Muscovite
Fe; 7 Mg, -0 2.06,2.12,2.15 A Al-O 1.93;, 1.93,, 1.93,
(two sites) (two sites) 1.94,, 2.044, 1.93,
Mgy 2+-0 211,214,214 A vacant-O 2.284, 2,235, 2.09

contact with the K+ ion the tetrahedra must “over-rotate,” which
requires the basal triads to be enlarged; and since hond angles are
changed more readily than bond lengths the tetrahedra “flatten
out” by reducing 7 to 107°0".

(3) the B angle of celadonite is 100°6’, nearly equal to B=-cos~
(—a/3c)=99°44’, and therefore contrasting with 1M muscovite
for which Bops=101°30" and Beaie= 100°0’. This is surprising since
both structures are dioctahedral, with similar tetrahedral rota-
tions (12° and 143°). In celadonite, however, the octahedral sites
are similar in size, whereas in 1M muscovite (by deduction from
2M; muscovite) the unoccupied site is significantly larger than the
other two (Table 5). This leads to asymmetry in muscovite, i.e. to
displacement of K+ (and Si) from y=nb/12. The K+ displacement
contributes to the departure of 8 from theoretical for the 1M poly-
morph in muscovite, but does not occur in celadonite.

(e) Celadonite (no. 36)

having a=0 may be expected to occur amongst the end-member celadon-
if at all; and this en suggests that micas with hexagonal
ces do not occur in

(f) Margarite, no. 45

The value of 9.1, can be confirmed by comparison with muscovite and
xanthophyllite for which structural data is available. The layers of mar-
garite and xanthophyllite have the same thickness (9.56 and 9.59 A);and
the octahedral layer of margarite, CaAly(SizAly)O10(OH)s, should be
c arable with vite, KAla(SisAl)O1(OH)y, i.e. 2.12 A, which is
c to that of x hyllite 2.20 A. Hence the interlayer distances of
margarite and thophyllite should be comparable, which they are,
viz. 2.57 and 2.
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(g) Ephesite, no. 46

The re  ssion yses (Part IT) s sted ginal value of
b (=881 was oo small, and it note a) (=8.95A)
was rather larger. An ephesite specimen from Postmasburg (U.S.N.M.
104815, kindly donated by the U. S. National Museum) was found to
have b=28.896 A, using a 19 cm camera.

(h) Xanthophyllite, nos. 47-50

Even hophyllite has an cationic char tah ly,
the oct r is nevertheless er (2.20 A) in ite
(2.10 A). This confirms the dominant role of the interlayer cation-oxygen
bonds in determining & axes in micas—in this case the Ca-O bonds ap-
parently shorten the b axis to the extent of compressing and slightly
thickening the octahedral layer against its excess charge effects.

(1) Bityite, nos. 51-52

Although the Be-O bond length in a layer-lattice silicate is not accu-
ly kn this ed by Wyckoff ( ) O, which has
tetra al co as 1.64 A. As an T ion, then, Be

is treated as equivalent to Si in calculating b For bityite no. 51
(“bowleyite”) successive layers are in contact. For no. 52 the data suggest
a small separation across the interlayer region. Strunz (1956) used a 5.73
cm diam. camera, however, and bq,s may easily be in error. A value of
8.77 A, e.g., makes «=22°and n=2.75 A, and it is noteworthy that all the
other brittle micas (nos. 45-51) are virtually in contact across the inter-
layer region. It is also interesting that the tetrahedral rotations are
about 20° for each of the brittle micas, as would be expected because of
their greater tetrahedral Al, and the dominating influence of Ca. The
latter is illustrated by bityite in which the Ca contracts the octahedral

lay i he ge ts t
lay ra nt yll
wh i m 0 so e

interlayer Ca.

SUMMARY

The hypotheses on which b-axis formulae for layer-lattice silicates have
previously been based have been modified in ways suggested by the re-
sults of recent structure analyses. The new hypothesis carries structur.l
im s for all these minerals; these are discussed in detail the
mi hypothesis also allows new b-axis formulae to be prop (in
Part II) which remove several anomalies, especially for the brittle micas.

More than ten structures are now known in which the tetrahedral
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layers contract by the rotation of individual tetrahedra. The simple for-
mula, a=arc cos (bobs/bretr) predicts the average rotation satisfactorily,
though uncertainties arise in by when the O-Si-O angle departs from
109°28’.

It is proposed that the sheet dimensions of layer-lattice silicates are
controlled by the octahedral layer, and (for micas) the interlayer cation,
except for those few minerals for which the tetrahedral layer is unduly
stretched. Evidence is accumulating that the tetrahedral dimensions
merely govern the surface configuration of these minerals.

A tentative formula is suggested for the separation of successive layers
of micas across the interlayer region, and some evidence given for its gen-
eral correctness,

A new ideal mica structure is proposed which has ditrigonal surface
symmetry; this is consistent with the accepted space groups.

The new hypothesis is discussed in detail in relation to the micas and
brittle micas, for which there are sufficient data to test its validity in some
detail. A number of anomalies are explained thereby. It is emphasized,
however, that the full validity of the model can be assessed only by com-
parison with the detailed analyses of key structures in the future.
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THE CELL DIMENSIONS AND SYMMETRY OF LAYER-
LATTICE SILICATES

II. REGRESSION RELATIONS

E. W. Raposvrovicn, Division of Soils, Commonwealth Scientific and
Industrial Research Organisation, Adelaide, Australia.

ABSTRACT

New formulae connecting the sheet dimensions (b axes) of layer-silicates with their
chemical composition are proposed; the thegretical basis for these was described earlier
(Part T). The new formulae are obtained by the multiple regression analysis of unit cell
z-ray data and ionic proportions as given by the structural formulae. Kaolinite and serpen-
tine minerals, chlorites, micas and montmorillonites are treated as separate groups.
Tetrahedral aluminum does not increase b for kaolin and serpentine minerals, chlorites
and micas, and only slightly increases b for the montmorillonites. The interlayer cation
has a major effect on the cell dimensions of micas. The present b-axis formulae appears to
be sufficiently precise to allow a number of conclusions to be drawn about individual
mineral structures, and also to suggest errors in some older data in the literature.

INTRODUCTION

It has long been apparent that a close relationship exists between cell
dimensions and composition for the layer-lattice silicates. In particular
the sheet dimensions, b (or a=b/+/3), apparently depend in a simple way
on composition, so that many “b-axis” formulae have appeared in the
literature. These have been shown in Part I (Radoslovich and Norrish,
1962) to be based on partially incorrect hypotheses. New formulae con-
sistent with the new hypotheses were established satisfactorily by trial-
and-error methods. However, it was also highly desirable to establish the
significance or non-significance of certain coefficients in the formulae. For
this reason the best available data have been analysed statistically (by
multiple regression analysis), and new formulae for predicting “&”’ from
composition were derived on this basis. Since it is now obvious that micas
must be treated independently, because of the interlayer cation, it was de-
cided to keep separate all four groups, viz. kaolin and serpentine minerals,
micas, chlorites and montmorillonites.

Although the theoretical predictions in Part I indicated that tetra-
hedral Al should not appear in the formulae it was considered essential to
insert the Al figures to check that the contribution made by Al in the
tetrahedral sites is effectively zero. For each group of minerals the varia-
tion of b with composition was computed as a multiple regression equa-
tion,

b=bo+ X aix,
where a; are the required regression coefficients for cations 1,2, . . .i .. .
and x; are the ionic proportions of the various substituting cations in the
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onl octahedrally and only Si tetrahedrally coordinated.
r co on is, of course, unnecessary if Al makes no contribu
as is now known to be true for very many minerals.)

i se dis-
a it is
1 er in b.

etc.)! though a structural discontinuity has been claimed here by Nelson

d ne 0
p in n
c for h
layers were uncon the octahedral layer may or not contract
before the tetrahe r expands. For this reason th a used in the
reg on analyses did not include those minerals for which s

wry b minerals were merely compared with the results obtai

This is discussed later in relation to the saponites and serpentines.

KaoLrins!
a dto
n Al
a tion
! There is no ccepted clature yet which conci the lin
minerals and the dral ana for the sake of br , the ds “ in,

kaolins” will be used in this paper to refer to all these minerals collectively.
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TaBLE I. REGRESSION COEFFICIENTS FOR KAOLINS, CHLORITES,
Micas AND MONTMORILLONITES

No. of . Regression Standard  Significance
2
Group Specimens R bo Variate Coefficient  Deviation Level %,

Kaolins 12 0.994 8.9226 Mg 0.1248 +0.0053

AlzSi05(OH)4 Fezt 0.2290 +0.0078
Fest 0.0794 +0.0099

Chlorites | 21 0.765 9.23 Fezt 0.03 +0.0035 0.1

ALSisO10(0OH)s

Micas 45 0.941 8.9245 K 0.0992 +0.0344 1

Na Ca —0.0685 +0.0335 5
Mg 0.0621 +0.0062 0.1
Trez+ 0.1160 +0.0094 0.1
Fest 0.0976 +0.0127 0.1
Ti 0.1655 +0.0563 1

Montmorillonites 30 0.987 8.9442 Mg 0.0957 +0.0062 0.1

ALSisO10(OH): Fest 0.0957 +0.0048 0.1
Altetr 0.0367 +0.0118 1.0

gave a non-significant regression coefficient for Alse:., so that the assump-
tion that Ali, does not affect “6” for these minerals is fully justified. The
regression analysis was therefore recalculated omitting this variate
(Table 1). The very high value of the square of the multiple regression co-
efficient, R%2(=0.994), confirms that the variations in “4”’ are almost com-
pletely explained by the regression of “4” on the ionic substitutions.!

It is assumed that the regression coefficients are linearly proportional
to the difference between the ionic radii r; and the hole filled ry, by the sub-
stituting cations, i.e. (r;—ry)=k-a; where for Mg, for example, (0.65
—11) =k-0.125. Aleast squares determination of k also yields values for ry
(Table 2), which are highly self consistent, and close to the ionic radius of
Al On the strong probability that Mn and Ti will bchave similarly regres-
sion coefficients may be predicted from their ionic radii as follows:

Mn 0.80 — 0.52 = 0.995a whence a = 0.28
Ti 0.69 — 0.52 = 0.995a whence a =017

A regression analysis which also included the two antigorites and groves-
ite in Table 4 gave a coefficient for Mn of 0.269 with R2=0.996. The
mica analysis gives a Ti coefficient of 0.165 with k= 1.18=1. These pre-
dicted coefficients are therefore reasonable.

The recommended regression equation to be used for predicting b axes
for kaolin minerals is given in Table 3, and in Table 4 the observed values
of b are compared with values calculated by this equation. Minerals in-

! See any textbook on mathematical statistics, e.g. “Regression Analysis,” by E. J.
Williams, John Wiley & Sons, N. Y., 1959, p. 25.
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TaBLE 2. RELATIONS BETWEEN REGRESSION COEFFICIENTS AND JoNIC RADIT

(ri—r) =k a
Group Variate Radius, r; Coeflicient,a; ““Hole, 1y k
Kaolins Mg 0.65 0.125 0 521)
Fert 0.75 0.229 0 522 0.995
Fedt 0.60 0.079 0 526
Al 0.50 0 50
Micas K 133 0 099 1130 2.03
Ca 099 —0 069 1 130
Mg 0 65 0 062 0 535 1 86
Fe?* 075 0 116 0 535/
Fes+ 0 60 0 098 0 484 1.18
Ti 0 68 0 166 0 484
Al 0 50 0 50
Montmorillonites Mg 0 65 0.096 0 554 Put k=1
TFedt 0 60 0 096 0 504 Put k=1
Al 0 50 0 50
Si 0.41 0.41
Alere 0.50 0 074! 0.43 Put k=1

1 For a valid comparison with the other a; this coefficient has been doubled because
there are two tetrahedral layers per cell.

cluded in the first part of Table 4 were those used to compute the regres-
sion coefficients; the remaining dons were simply compared with the re-
gression relation. Table 4 also gives the calculated and available ob-
served values of the tetrahedral twist, a (see Part I), except where bous
exceeds i, when the twist is assumed to be zero. The agreement for the
two kaolinites is excellent.

Certain minerals in Table 4 merit further discussion. For dickite
Newnham (1960) gives the Si-O bonds as 1.62 A, rather than 1.60 A,

TaBLE 3. RECOMMENDED PREDICTION RELATIONS FOR CALCULATING b

. b=(8.92340.125 Mg+0.229 Fe?+4-0.079 Fe?*+4-0.28 Mn?"+0.17 Ti)
Kaolins 10014 A

Chlorites b=(9.2340.03 Fe>*)+0.03 A

Micas b=(8.925+0.099 K—0.069 Ca+0.062 Mg+0.116 Fe?' +0.098 Fe3!
40.166 Ti) £0.03 A

Montmorillonites b= (8.944-+0.096 Mg+0.096 Fe?"+0.037 Alier ) £0.012 A



Mineral

Kaolinite
Dickite
Halloysite
Dickite
Nacrite
Serpentine
Serpentine
Amesite
Amesite
Chamosite
Chamosite
Chamosite

Antigorite
Grovesite
Antigorite
Hydroamesite
Greenalite
Cronstedite
Cronstedite
Chrysotile
Lizardite
Colerainite
Kaolinite
Kaolinite

Pyrophyllite
Talc
Minnesotaite

! Assuming Fes* tetrahedrally does not contribute to beale, by analogy with Al tetrahedrally 2Ti. 3Mn. 4Ca,

TaBLE 4. CELL DIMENSIONS AND TETRAHEDRAL ROTATIONS FOR KAOLINS

Reference

Author

Author

Author

Newnham (1961)
Brammall ez al. (1937)
Gillery (1959)

Gillery (1959)
Steinfink & Brunton (1956)
Brindley et al. (1951)
Brindley (1951)
Brindley ef al. (1953)
Brindley ef al. (1953)

Brindley ef al. (1954)
Bannister et al. (1955)
Zussman ef al. (1957)
Erdelyi e al. (1959)
Gruner (1936)
Hendricks (1939)
Gossner (1935)
Zussman el al, (1957)
Zussman et al. (1957)
AS.T M. index
Zviagin (1960)

Drits and Kashaev (1960)

19 cm camera
19 cm camera
Gruner (1944)
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which should increase aops relative to aee; but the average 0-5i-O angle,
7 is 111.9° approx., which rather more than compensates for the larger
bond length. Detailed data for r are not quoted for amesite, for which
there is a larger discrepancy between aons and ceate.

The values of « for the two serpentines are interesting when compared
with their symmetries. One serpentine, with =0, is a one-layer ortho-
serpentine, the other, with a=12°54', is a six-layer orthoserpentine. It is
tempting to suppose that it is the regular surface network of the former
which allows this serpentine to form an orthohexagonal cell repeating
through only one layer, rather than three or six.

Grovesite and antigorite (Zussman ef al. 1957) are examples of kaolins
in which the tetrahedral layer appears to have stretched to the limit
without effectively contracting the octahedral layer; this is shown by the
close agreement between bea1e and bops. The angle 7 is 106°50’ for grovesite
and 106°32 for the antigorite, 4.e. at the apparent lower limit of 1063—
107° for this angle. The other “antigorite” (Brindley et al., 1954) is

c in the rahe ha
b A icea less o=
T to the rahe to

this specimen was later called an orthoserpentine. There is, indeed, some
evidence suggesting that antigorites have b determined by the octahedral
layer, and chrysotiles have b determined by the tetrahedral layer;! the
chrysotile and lizardite specimens are consistent with this.

The rotation a=18° for cronstedite can only be roughly calculated
since the increase in tetrahedral dimensions due to Fe¥t- for -Si substitu-
tion is not known precisely. The rotation will certainly exceed that for
most other kaolins.

The data on greenalite are unsatisfactory. Gruner (1936) gives b=2
%9.3 A, though Brindley and MacEwan (1953) used another spacing of
Gruner’s data giving b= 9.56. Neither of these can be accepted in relation
to the quoted structural formula since for the tetrahedral layer to stretch
even to 9.32 A 7 drops to 104;°. However if the tetrahedral composition
were (Siyzs Feoss*t) and 7=107° then beetr will be about 9.3 A. Gruner
pointed out the considerable difficulty in obtaining a satisfactory analysis
of greenalite, and data on this mineral obviously need revision.

Pyrophyllite, talc and minnesotaite may be expected to conform to the
kaolin b-axis formula, since these layers carry no charge. The calculated
and observed values of & for pyr ite agree precisely. For talc,
ever, b corresponds to two S5i-O with Si-O bonds of 1.60 A
=107°27', the minimum expected value for r when fwo tetrahedral layers

11t is hoped to discuss these results, in relation to kaolin morphology, in a later paper
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are fully stretched by one al layer, which is itself contracted from
9.29 A t0 9.16 A. The m te data are probably wrong, since the
tetrahedral layer could hardly stretch to A. Gruner (1
lines at 1.567 A (intensity 1.0) and 1.514  ntensity 0.5),
by these hypotheses the latter is the 060 line, i.e. 5=9.08 A. That is, the
octahedral layer is greatly contracted, from 9.45 to 9.08 A. This is not
impossible (sauconite contracts a comparable amount octahedrally), and
the layers of minnesotaite are 9.55 A thick, compared with 9.26 A for
talc which is similarly compressed and thickened. This mineral also re-
quires re-investigation.

CHLORITE GROUP

Six variates were used initially to compute the regression of b when
substitutions occur in AlSis010(OH)s, viz. Al** and Cr?t tetrahedrally,
and Mg*t, Fe?t, Fe*t and Cr** octahedrally. Of these only the coefficient
for Fe* was significant, and the overall fit was considerably less satis-
factory than for the kaolins. Several two-variate relations were then
computed, but the best relation obtainable from the present data is

b = 9.23 4 0.03Fe** + 0.0285 (1)

This should be compared with the regression relation proposed by Hey
(1954), viz.
b = 9.202 + 0.028Fe(total) + 0.047Mn?2+

The available published data on manganiferous chlorites are not suffi-
ciently extensive or reliable to include Mn?* as a variate in (1) above, but
when such a term can be computed the coefficient should exceed that for
Fe**, because of the larger ionic radius. The present analysis disagrees
with Hey’s result in that Fe®t at no stage showed a significant regression
coefficient. A comparison of ripidolite and thuringite data (Table 5 Nos. 1
and 3) confirms that Fe** and Fe *+ have quite different effects on b, and
suggests that Fe* (not total Fe) should be used, as in (1).

The relative independence of the 4-dimension of chlorites with respect
to the smaller cations is rather less surprising when considered in relation
to their structures and composition range. Normal chlorites (e.g. as de-
fined by contain te proportions of + ius
0.65A) a = (0.60 A) Cr*+ (0.64 A). Th  al by
Steinfink (1958) of the prochlorite and corundophillite structures suggest
that the various octahedral cations may well be ordered between the two
octahedral layers of normal chlorites generally. Hence it is quite possible
that even in chlorites with moderate Al content one octahedral layer may
contain very little Al If so then the presence of Al (0.50 A) in the other
layer would not necessarily lead to a smaller overall b axis. That is, the
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presence of fwo octahedral layers and some Mg or Fe**in chlorites effec-
tively buffers the & axis nst variations, t those due to stitu-
tions by much larger ca s such as Fe?* A) and Mn2t 0A);
Brindley and Gillery (1956) have put forward similar arguments.

Calculated and observed b values are compared in Table 5, which also
gives the calculated tetrahedral rotations, a. The observed average rota
tion is given for prochlorite and corundophillite, from a plot of Stein-
fink’s parameters. Though the agreement between aons and aea1e 15 only
moderate the calculated prochlorite angle exceeds the corundophillite
angle as observed. Steinfink reported the O-5i-O angle for prochlorite to
be 110.8°, however, and this increases deae t0 91° close to agns=10°; the
same angle is not given for corundophillite.

The unusual ‘“‘chlorite” mineral, cookeite (Norrish, 1952), cannot be
considered according to the regression relation above for normal chlorites,
since it does not contain Fe?+ or Mg. Tt is therefore the more interesting
that for cookeite b= 8.918 (Table 5) which is very close to b for kaolins
and micas (Table 1). This is certainly to be expected since Li behaves
much as Al in the variation of b with composition.

Several papers have recently reported dioctahedral chlorites, though
with insufficient data for inclusion in this regression analysis. Bailey and
Tyler (1960) have noted a dioctahedral chlorite for which no analy51s is
yet available, but which contains some magnesium. The 4 axis, 9.03 A, is
consistent with the present hypotheses. This suggests that if enough data
on dioctahedral chlorites eventually become available, then the variation
in b for all chlorites may be described by a regression relation closely
similar to that for the kaolins. As a crude test of this the kaolin relation
was applied to the chlorites in Table 5, assuming that the octahedral cat-
ions are equally divided between the two octahedral layers. The values
of b calculated in this way (Table 5) are sufficiently close to beys to give
considerable weight to the suggestion above.

Micas

The following conditions were imposed on the final regression analysis,
as a result of extensive preliminary studies.

1. The analysis was computed to give the increase in b when K and Ca,
and Mg, Fert, Fe¥ and Ti are substituted in the paragonite composition,
NaAly(Si;Al)O1(OH),. Micas must contain an interlayer cation, and co-
efficients for both Na and K cannot be satisfactorily determined because
these cations are very highly correlated. The early studies had confirmed
that tetrahedral Al does not have a significant coefficient, and this variate
was omitted.

2. The data were chosen to be sufficiently representative and numerous
to give satisfactory average values of the coefficients for prediction pur-



Mineral

Ripidolite
Bavalite
Thuringite
Grochanite
Diabantite
Kammererite
Sheridanite
Chrome Chlorites
Mg-Chamosite
Pennantite
Thuringite
Thuringite
Bavalite
Diabantite

Daphnite
Chamosite

Thuringite
Corundophillite
Prochlorite
Chamosite

Leuchtenbergite
Sheridanite
Chlorite
Prochlorite
Cookeite
Chrome Chlorite

TaBLE 5. CELL DIMENSIONS AND TETRAHEDRAL ROTATIONS

Reference

Gillery (A.5.T.M. index)
Gillery (A.S T.M. index)
Gillery (A.S T.M. index)
Gillery (A.S.T.M. index)
Gillery (A.S.T.M. index)
Gillery (A.S.T.M. index)
Gillery (A.S.T.M. index)
Lapham (1958) .
Bannister & Whittard (1945)
Structure Reports, 10, 157.
Structure Reports, 10, 157.
Structure Reports, 10, 157.
Structure Reports, 10, 157,
Bannister & Whittard (1945)

Bannister & Whittard (1945)
Bannister & Whittard (1945)

Bannister & Whittard (1945)
Steinfink (1958)

Steinfink- (1958a)

von Wolff (1942)

McMurchy (1934)
McMurchy (1934)
McMurchy (1934)
McMurchy (1934)
Norrish (1952)

Brown and Bailey (1960)

Composition
Mg
2.8 17 1.3 .2
0.4 4.2 1.5 4
2.2 0.7 1.4 1.2 .5
4.2 0 22 1.22 .4
2.9 2.2 0.2 0.7 .1
5.1 0.2 0.2 0.63 0.9
43 0.1 16 1.5
Eight similar analyses and #-ray data
1 84 2.82 1.21 1.12
0.25 0 37 1.18 3.824 1.38
0.70 370 075 0 85 1.60
3 85 075 1.40 1.30

0.35 475 0 05 0.80 1.75
2 33 216 018 0.76 0.125 0.58
btetr, =9.20; tetr. layer stretched, <109°28’
0.92 ' 3.37 ] 018 | 1.35  0.040 1.29
0.75 3.23 0.56 112 1.01
bretr =9.31; 0-Si-0 <109°28”
072 3.68 0.76 0.83 1.58
4.9. 0.07 0.17 0.75 018 1.4
2.6 0.2 1.5 1.2 1.8
0.75 3.35| 0.6 | 1.3 0.9
bletr =9.28; 0-Si-O <109°28"

2 0 82 11

6 0.02 0.10 1.30 1.4

9 0.70 1.40 1.4

7 2.3 1.01 1.58

79 1.368  0.85

05 011 0.04 0.17 0.713  0.97

(SIS

1 Assuming a coefficient for Mn =0.033. 2 Assuming same coefficient for Cr as for Mg, # Cr. ¢ Mn. 6 Ca. 6 Li.
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TaBLE 6. CELL DIMENSIONS FOR MIcas

Mineral Not  bobs  beal  Pkaolin Mineral Nol  bobs  beale  Pkaolin
Biotite 1 9.265 9.261 9.39 Biotite 24 9271 9 40
Biotite 2 9.247 9.238 9.19 Phlogopite 25 9.185 9.34
Biotite 3 9 268 9.249 9.37 Phlogopite 26 9.195 9.31
Biotite 4 9.251 9.220 9.33 Phlogopite 27 9210 9.30
Biotite M 9.261 9.257 9.36 Fluorophlogopite 28 9.210 9.30
Biotite 6 9.251 9 266 9.41 Fluorophlogopite 29 9 208 9.30
Biotite 7 9.257 9.260 9.37 Muscovite 30 9.034 8.94
Biotite 8 9.225 9.248 9.27 Iron Muscovite 31 9.077 9.01
Biotite 9 9254 9.249 9.35 Paragonite 32 8.925 8.92
Biotite 10 9.265 9.226 9.16 Lepidolite 33 9.008 8.94
Biotite 11 9.262 9 274 9 39 Lepidolite 34 9.024 8.94
Biotite 12 9.206 9.252 9.20 Zinnwaldite 39 9.094 9.07
Biotite 13 9.308 9.298 9.42 Zinnwaldite 40 9.063 9.02
Biotite 14 9.246 9.253 9.36 Lithium Dbiotite 41 9.155 9.21
Biotite 15 9.255 9 231 9.20 Lithium biotite 42 9 088 9.09
Biotite 16 9 253 9.258 9.38 Gitmbelite 43 9.017 8.97
Biotite 17 9.215 9.234 9.20 Lepidomelane 44 9.288 9 41
Biotite 18 9.328 9 284 9 43 Margarite 45 8.925 8.92
Biotite 19 9 266 9.258 9.35 Xanthophyllite 47 8.984 9.20
Biotite 20 9 300 9.330 9.49 Xanthophyllite 48 9.004 9 20
Biotite 21 9.323 9.303 9 45 Xanthophyllite 49 9 005 ©9.22
Biotite 22 9.260 9 262 9.37 Xanthophyllite 50 9.003 9.21
Biotite 23 9.271 9.234 9 37
Celadonite 35 9.02 9.185 9.12 Celadonite 38 9 08 9.192 9.21
Celadonite 36 9.05 9.188 9.15 Ephestite 46 8.896 8.926 8 93
Celadonite 37 9.06 9.106 9.08 Bityite 51 8.713 8.856 8.92

Bityite 52 8 67 8.859 8.93

1 These numbers correspond with those in Table 4 of Part I, in which the structural formulae are listed.

poses. This is important because the linear model cannot be completely
obeyed by all cations for all micas, and in particular the interlayer cations
will sometimes increase b (e.g. muscovite ¢f. paragonite) and sometimes
decrease b (e.g. xanthophyllite). The regression coefficients therefore will
depend somewhat on the data analysed; the exclusion of all dioctahedral
micas, for example, would probably considerably decrease the coefficient
for K*. Likewise the coefficients for the octahedral cations are not inde-
pendent of the effects of the interlayer cations, and their values will not
be as precise for the micas as for the kaolins.

3. The micas ephesite, bityite and celadonite were not included in the
analysis, and data on these minerals (Table 6) were simply checked
against the prediction relation. The new value of b for ephesite (Part I)
was not available in time to include in the analysis. No precise account
can be taken for Be tetrahedrally, so that bityite was omitted. Celadon-
ites are also excluded, because the octahedral layer of this mineral is
charge deficient, and it is therefore probably disproportionately thick.
The preliminary regression analyses showed a marked improvement in
R? when nos. 35-38 were omitted. No. 37 (Table 6), which has an appre-
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ciable amount of Al octahedrally and probably should not be named a
celadonite, may be expected to conform more readily to the model. For
this mineral and deaie by less than two s ard e but for
nos. 35, 36 38 this nce is between 4 6 sta errors.
Lepidolites (which also are charge deficient octahedrally) conform to the
regression relation simply because beq1.= by, i.e. the Lit does not effec-
tively increase the volume of their octahedral layers.

The regression analysis of 45 micas (Table 6) yielded coefficients show-

ing al interesting fea (Table 1). The su ingly high value of
R? that condition 2 ve) was observed. value of b, is effec-
tively identical with that for the kaolins, which suggests that Na+ neither
increases nor ases the dimensions se dioctahedral Al 1
(This is consi with the discussion of ite, Part I.) The
u e at 0A)in
s a ph  edata,
t a .
s s sof p ty
w e s equ le
T e t d the d

valent octahedral cations were analysed separately, since there is con-

decreases b (2., above), and hence k is high. Tt appears probable that
of divalent cations occupy mainly the un

e , s larger amounts (<2.0) tend to occupy the

symmetry-related sites. (In muscovite the former is vacant and con-
rably larger than the A d sites.) of this kind, which
er some circumstances dtoani nt model for the di-

e.

h

n

k

phlogopites and biotites the K+ apparently contracts b, in these min-
erals. But the high iron biotites, before and after heating to convert Fe+
to Fe**, now form an interesting group. For nos. 2, 10 and 15 bxaotin
<bgns, and se the b axes of 10 and 15 represent a sl in  se
of 2 only a small decrease relative to & for the un ed «d
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interlayer K decreases b slightly, or has no effect, but for the very unusual
“biotites,” nos. 10 and 15, K is increasing b; this again indicates the vary-
ing role of the interlayer cations.

MONTMORILLONITES

The interpretation of chemical analyses of montmorillonites is much
more difficult than of kaolins and micas, as Kelley (1945) has especially

ut. Th of Os S
ow the lly pu -
which the m t

structural formulae must be viewed cautiously. Errors in these formulae
may therefore occur due to impurities, or else to more systematic errors
inherent in the chemical techniques.

The final regression analysis for montmorillonites was computed to

a s
t s
S t

which can be included in the regression analysis, a serious disadvantage
statistically. Ferrous iron occurs in insignificant proportions in mont-
morillonite formulae, of course; but montmorillonites high in Mg, Fe',
Mn, Zn and r larger cations equ must be excluded. For
montmorillon the overall composi ensures that bieir <obs
which is not permitted (v. introduction). It is, however, reasonable to
se that vermi es will ve in a closely similar to mont-
onites, and se | have included to widen the e of com-
positions analysed for multiple reg on.
The results of the regression an s of the minerals in Table 7a (ex:
C ni 1,
T in an
t ry ue
variations in “d’ for these data are almost completely explained by the re
se T
m S
te el
are more nearly trioctahedral; it is an artifact that the relation canno
cover more trioctahedral minerals.
1t is immediately obvious that the coeflicient for tetrahedral Al 1
significant, contrary to prediction. This may be regarded in two ways



TasrE 7. A. CELL DIMENSIONS AND TETRAHEDRAL ROTATIONS FOR MONTMORILLONITES

N . Ref Composition (cations only) _ i b i b knolin”
1nera. eference obs ale b i
AVT  Fer  Fet Mg Zn Si AV Fe- e fotr A
Montmorillonites:
Santa Rita, N.M. .460 0.059 0.487 4.00 8.993 8.996 9.051 8.989
.D L350 0213 0.232 3 804 0 196 8.993 8.994 9.101 & 969
2513 0271 0231 3776 0 224 9.000 9.000 9.108 8.973
.583 0180 0 254 3866 0 117 0.017 9.001 8 991 9.087 8.969
465 0 0cO  0.489 4.000 9.002 8.997 9.051 8.989
458 0.181 0.310 3.912 088 9.004 8 994 9.074 8.976
Utah .418 0 187 0.406 3.877 077  0.046 9.011 9.006 9.083 8.989
. .281 0.062 0 705 4.000 9.014 9.018 9.051 9 016
k. 507 0.307 0.201 3.799 0 201 8.996 9.000 9.102 8.985
z. .374 0 192  0.465 3.846 0.154 9.004 9.013 9.090 8.996
.55 0 20 0.25 3 90 0.10 8.9971 8 991 9.076 8 970
B Fourche, 5.D  Foster (1953) .57 02 0.18 023 3.91 0.09 8.988L 8.989 9.074 8.971
L n, Miss. Foster (1951) 435 01 016 0.44 3.89 0.11 9.0191 9.008 9.079 8.993
Foster (1933) .55 0.06 0.39 3.97 0.03 8.9941 8.988 9.059 8 976
37 012 0 30 3.99 0.01 8.9971 8.985 9.054 8.968
Utah is 0) 45 0 58 0.162  4.00 8.979 8.999 9.051 8.996
(1 77 0 03 0.20 3.74 026 9.00 8.976 9.117 8 930
[ (1 96 0 04 3.46 0 54 8.94 8 950 9.188 8.926
o .98 0 02 0.01 3.48 0 52 8.978t 8 966 9.183 8.926
Kerr el al. (1950) 003 02 0.005 .50 0.50 g 155t 9.145 .178 9.083
Kerr et al. (1950) 0.05 93 012 50 0.50 9 1751 9 159 .178 9.090
Nagelschmidt (1938) 0.08 84 0.08 72 0.28 9 12 9.139 .122 9.078
Nagelschmidt (1938) 0 08 0.04 79 0.08 57 0.43 9 13 9.141 .160 9.084
55) 0.33 2 64 299 101 9.22 235 9.308 9.253
4) 0.45 0.15 0.69 1.50 0.123  3.09 0.91 920 207 9.283 9.200
1.56 0.11 0.39 3.88 0.12 8 988 .996 9 080 8.980
( ) Walker 0.16 0 48 2 36 2.73 1.27 9.262! 264 9.373 9.256
1954

Walker (1961} 0.22 0 08 0 46 192 0114 2.72 1.28 9.2220 239 9.376 9.236
Walker (1961) 0170 0023 0232 2239 2 837 1.163 9 2441 226 9.348 9.226
Walker (1961) 0037 0365 2 238 0.056* 2 853 1.024 0 123 9.2531 247 9.312 9.250
te Weiss el al (1954) 0.40 0 38 0 82 0.355 3 82 01 8.94 .119 9.097 9 099
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Mineral

Saponite
Saponite
Saponite
Saponite
Saponite
Saponite
Griffithite
Sauconite
Sauconite
Sauconite
Sauconite
Sauconite
Sauconite
Hectorite
Stevensite
Talc

Talc
Hectorite

1 Original data, obtained using CoKa radiation,

TasLE 7. B.

Reference

Faust (1957)

Cahoon (1954)

Weiss et al. (1955)
Schmidt and Heystek (1953)
Mackenzie (1957)
Midgley and Gross (1956}
Faust (1957)

Ross (1946)

Ross (1946)

Ross (1946)

Ross (1946)

Ross (1946)

Ross (1946)

Kerr et al. (1950)

Faust (1957)

Stemple & Brindley (1960)
Author

Nagelschmidt (1938}

AVt

[=3 =]

D00 O 0O C OO

.04

03

15
05
04
79
78
12
04
17
22

CeLr DIMENSIONS FOR SAPONITES, SAUCONITES, HECTORITES ETC.

Composition (cations only)

Fert Fei*t Mg Zn si AlY
0.26 0.45 2.29 3.19 0.73
0.01 2.85 3.70  0.30
0.02 95 3.38 0.62
0.01 99 363 0.37
0.04 92 0.0056 3.495
0 05 91 3.38 0.52
0.52 0.44 88 319 0.81
002 0.14 1.85 3.30 0.70
0.23 0.15 1.54 3.39 0.61
0.13 0.11 2.64 3.27 0.73
0.02 0.10 2.89 0016 3.35 0.65
0.58 0.12 1.95 3.39  0.61
0.17 0 18 2.40 3.47 0.53
2.71 342 4,00
0.02 2.88 028 4.00
3.0 40
3.0 4.0
2.73 0.332 3.89 0.05

calibrated 19 cm diam. camera. ?Li. 3Ca. 4Ti. 5Cr. Mn.

Fest

0.06

dobs ;\

R -JY R Y R R B = BV St - B BB - - = -

.238
L1651

218
198
178
1971
246

228t

220t
L2511

247
259t
2528

beale A

268
230
253
246
251
.255
.264

R-JR-JRr- - IR -

.204
221
230
230
208

O O Vv

btetrj&

.259
127
209
145
179
20

256
229
.206
237
216
206
186
051
051
051
L0351
.064

OOV OOV O VYOV Y VYV YO NYO

b *kaolin” A

OO0 OO0 OOV WY VWYY VY

.304

280
293
298
293
298
312

.366

313
552
599
430
509
262
290

.298
.298
.264

0-5i-0
angle

109°28
108°127
109°28’
108°31’
109°28
109°28”
109°28’
109°307
109°14’
109°14”
108°567
108°30”
108°167
108°12’
107°30”
1070307
107°127
107°177

0¢9

HOIAOTSOQVY "M "d
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viz. (1) as real for these data, but that the data are systematically errone-
ous, or (2) as real for montmorillonites. As stated above, the first possibil-
ity cannot be entirely dismissed for montmorillonites; and in fact the b-
axis formula for kaolins works very well for most minerals in Table 7a. It
requires only small changes in certain structural formulae to make the
Alietr coefficient non-significant.

The tetrahedral Al may really increase b for montmorillonites, how-
ever. The value of the coefficient then is very reasonable, and such an in-
crease is not entirely incompatible with the non-significant coefficient
found for Al for kaolins and micas. Suppose that in all the layer sili-
cates the tetrahedral layers exert a very small expansive force (when
a>0). In kaolins there is only one tetrahedral layer per octahedral layer,
and in micas the interlayer cation dominates the tetrahedral twist. But
in montmorillonites the small forces due to fwo tetrahedral layers per
octahedral layer may just have a noticeable effect. In this case the co-
efficient will be small for tetrahedral Al; and in fact the observed co-
efficient is rather smaller than that suggested by the difference in ionic
radii of Si and Al (Table 2).

The coefficients for Mg and Fe*t are identical, and assuming a propor-
tionality constant k=1 for these two octahedral cations then the “hole”
for Mg, 0.554, is larger than that for Fe$*, 0.504, which is very close to the
Al radius, 0.50. This again suggests, as for the micas, the possibility of
ordering in the way in which divalent Mg and Fe®+ enter the octahedral
sites.

If the coefficient for Alse, is real, then the base constant for montmoril-
lonites will be slightly greater than for kaolins and micas (as observed),
since montmorillonites always contain some Mg, Fe and/or Alg.

It is worth noting that nontronites have rather smaller tetrahedral
twists than montmorillonites. For vermiculite o, =5%° (Mathieson and
Walker, 1954) compared with 1= 8°42". Their paper quotes 5=9.18 A,
and v/32=9.23 A; from a 19 cm powder photograph =9.262 A, giving
a=_8%42’. The Si-O bonds to the basal oxygens are shorter than predicted
from Smith’s (1954) curve, accounting for the smaller actual a.

The omission of volchonskoite raised R? for the regression analysis from
0.8 approx. to 0.987, confirming the doubts felt about the data for this
mineral, which is very rarely pure. The value of b, seems far too low.

Table 7b gives b-axis data on montmorillonites for which Bietr K bops. It
is assumed that biao1in is close to the dimension which the octahedral
layers of these minerals would have if free.

Considering the saponite data first, these clearly suggest that the byp,.
values are determined by the dimensions of the tetrahedral layers, to
which the octahedral layers contract; dops = it < booy, Tor four out of the
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six saponites. This contrasts with the serpentines; the saponites are 2:1
minerals, compared with the 1:1 serpentines.

The tetrahedral layers of sauconites are somewhat stretched, which de-
creases the 0-Si-O angle to about 1083°. The octahedral layers are con-
siderably contracted (by 0.20 to 0.25 A) to meet the tetrahedral dimen-
sions. Contractions in this layer will occur primarily by changes in the
oxygen-cation-oxygen bond angles, and such changes will occur more
easily as the radius ratio, cation/oxygen, increases. This ratio for Zn is
0.53 (¢f. 0.46 for Mgand 0.36 for Al), so that octahedral layers of saucon-
ites can contract further if necessary than those of, say, hectorites.

Hectorite, stevensite and talc are 2: 1 minerals in which a fully siliceous
tetrahedral layer is stretched to its limit by a fully magnesic octahedral
layer. The O-Si-O angle is reduced to 1073° or slightly less. The chryso-
tiles, which are the 1:1 analogue, do not show a comparable octahedral
contraction. The presence of only one tetrahedral layer allows the strain
between octahedral and tetrahedral sheets to be relieved by curling and
by adopting non-stoichiometric compositions.

Di1scussioN

The b-axis formulae proposed in this paper as a result of the multiple
regression analyses of kaolin, chlorite, mica and montmorillonite data
separately appear to be more soundly based theoretically (see Part I) and
to yield better predictions in practice than previous formulae.

There are few minerals which do not conform to the model implicit in
these formulae, viz. (1) chrysotiles for which boc, so exceeds bietr that the
latter takes control; (2) celadonite, with excess octahedral layer charge;
(3) dioctahedral chlorites, for which there are insufficient data to adjust
the regression relations suitably; and (4) trioctahedral montmorillonites
and talc, for which the tetrahedral layers again take control.

The availability of considerably more and better data in the future may
alter the basis for calculating these relationships in only one major way.
If many data become available on dioctahedral chlorites, then their inclu-
sion may change the present equation to one closely similar to the kaolin
relation. However, the coefficient for tetrahedral Al for montmorillonites
may no longer be significant when more good data can be analysed. If so,
then the prediction relations for kaolins, chlorites and montmorillonites
may be sufficiently close to each other so that one relationship will serve to
predict b axes for all these minerals. The micas, however, not only require
additional terms for the interlayer cations but these cations may be in-
directly affecting the coefficients for octahedral cations, so preventing the
proposal of one total prediction relationship for all layer silicates.

A prediction relation for minerals for which the tetrahedral Jayers are
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hexagonal (a=0) can scarcely be proposed because of the variety of
mechanisms involved in adjusting the layer dimensions to each other.

It is instructive to reconsider the pairs of minerals from which the co-
efficients have been derived for previous -axis formulae.

a) Pyrophyllite-muscovite. MacEwan (1951) and Brown (1951) both
considered this pair in order to arrive at a contribution for tetrahedral Al.
As ed in Part Titis equ to consider pyr lite agon-
ite, gives a zero coeffic efore it is not to uce a
coefficient for tetrahedral Al in this way.

b) Pyrophyllite-talc. MacEwan (1951) and Brown (1951) deduced a
coefficient for Mg from this pair of minerals, and coefficients for other

then taken as propor tot nic radii; This is very likely

lid since the & axis of det ned solely by the maximum
limit to which a purely Si-O tetrahedral layer can be stretched (by a de-
crease in the O-Si-O angles).

c¢) Gibbsite-brucite-Fe(OH),. Brindley and MacEwan (1953) "based
their coefficients on the & dimensions of the hydroxides. Bernal and
Megaw (1935), who studied the metallic hydroxides in detail, pointed out

ions with the polarizin of Al and h in oxyl

on the surface of their ides, with a sh ffect
on the b axis. It is therefore invalid 'to deduce coefficients for b-axis
formulae by considering the pair gibbsite-brucite.

d) Si-O bond lengths. Brindley and MacEwan (1953) based their
tetrahedral term on the known Si-O and Al-O bond lengths, but this has
now been shown to be irrevelant to the b dimension.

Previous b-axis formulae (e.g. Brown, 1951) have omitted a term for
Li because better agreement with & is obt by ing Li, radius
0.60 A, as if it were Al, radius 0.50 . Thei dre has been that
since Li is more readily polarized it may be squeezed more easily into a
small site. This cannot, however, be readily settled since Li does not
occur in moderate ionic proportions except in hectorite, cookeite,
lepidolite and zinnwaldite. No information is obtainable from hectorite
in which beps=9.16 A is determined by the tetrahedral layer which is
stretched to the limit. Nor can deductions be made from cookeite, which
is probably comparable structurally to kaolinite and dickite. In the latter
the vacant site is much bigger than the Al sites, and is sufficiently large to
accommodate the Li ion, so that deductions about the Li coefficient can-
not be soundly based on cookeite alone.

S uments ot seem to a to lepidolites high in Li, yet
the ons of 1 lites vary su ingly little from 9.00 A. This
sug Li notincr e b, but it w be interest know

the le inalepi ite. Thetwo waldites in 6 also



634 E. W. RADOSLOVICH

give good agreement between bops and beale when Li is equated to Al
White ef al. (1960) have claimed to have inserted Li into the muscovite
structure experimentally and state that this does not increase b. The
vacant site is, of course, quite large enough to accept Li (0.60 A) readily
(Radoslovich, 1960).
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ABSTRACT

The 3n octahedral sites in the unit cells of the layer silicates are accepted as being topo-
logically distinct from each other, and the octahedral cations are known to be largely
ordered for several published structures. The present study sought to determine quantita-
tively any differences between divalent and trivalent octahedral sites, by a suitable form
of regression analysis of dimensional and composition data; and with this there is the impli-
cation of widespread ordering. Certain difficulties inherent in this statistical analysis of
clay mineral data have thereby become obvious. Moreover the initial results made it
essential to reconsider the model by which regression coefficients commonly have been
related to ionic radii in unit cell formulae. .

It has been necessary to abandon the simplest geometrical model (which assumes that
the octahedra remain essentially regular) for one in which the expansion due to the subsi-
tution of larger ions is several-fold greater in the direction normal to the layers than it is
in the a-b plane. The new regression analyses confirm the results of the previous study and
lead to simpler prediction relations for unit cell dimensions.

The new geometrical model is readily justified physically by considering several struc-
tures already accurately determined.

INTRODUCTION

Layer silicates are classified as trioctahedral or dioctahedral according
to whether nearly all, or only two-thirds of the possible sites for cations in
the octahedral layer are occupied. The unit cell of such a mineral may
contain 6n (n=integer) sites per unit cell, but the overall symmetry
generally reduces the number of octahedral sites in the asymmetric unit
to three. Of these, two sites are generally symmetry-releted or at least
topologically equivalent, and the third site is distinct. For example, in
2M; muscovite (Radoslovich, 1960) the two octahedral aluminum cations
(hereafter AIVT) are in symmetry-related sites, whereas the larger and
vacant third site is a center of symmetry for the structure as a whole.

As the layer structures have become increasingly well understood the
evidence has grown that ordering of the octahedral cations according to
valency and radius may be widespread, and fairly complete in many
minerals. Evidence for such ordering is in general only circumstantial,
but the structural analysis of several layer silicates has already shown
that ordering exists, at least in those minerals—for example celadonite
(Zviagin, 1957), prochlorite (Steinfink, 1958), xanthophyllite (Takéuchi
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and Sadanaga, 1959), muscovite (Radoslovich, 1960), kaolinite (Drits
and Kashaev, 1960) and dickite (Newnham, 1961).

The general hypothesis, however, seemed worthwhile testing statisti-
cally over a wide range of minerals if possible, without determining each
structure in detail. As the simplest initial hypothesis it is supposed that
there are two kinds of octahedral sites, A and B, such that A is smaller
than B, and that there are either two A sites and one B site, or vice versa,
for each three octahedral sites. It is further supposed that the trivalent
(and quadrivalent) cations tend to occupy A sites and the divalent (and
monovalent) cations tend to be in the B sites. This is obviously an ap-
proximation to the actual structural characteristics of these minerals. For
example, the two small (A) sites in dioctahedral minerals may differ from
the single small site in the trioctahedral minerals. Furthermore, some
trioctahedral minerals cannot obey this model strictly, e.g. phlogopites. If
such minerals nevertheless are assumed to have (2B+41A) sites then the
excess of divalent cations (over 2.00) must occupy a ‘“wrong”’ A site. For
the purposes of this statistical analysis the excess of divalent cations is
“transferred” to the trivalent group, smallest cations first,

Our previous study of the variation of sheet dimensions with composi-
tion (Radoslovich, 1962; hereafter Part IT) suggested the possibility of
establishing (by suitable statistical methods) whether there are two dif-
ferent kinds of octahedral sites into which cations substitute. Of the four
major mineral groups the micas are the most amenable to analysis of this
kind. The chlorites cannot be studied this way because there are two
octahedral layers in the stacking unit, and ordering may also occur be-
lween these. The montmorillonites are difficult to study, not only because
of uncertainties in the structural formulae (Part II), but also because of
unsuspected complexities in these structures (Cowley and Goswani,
1961). Furthermore, most of the trioctahedral montmorillonites must be
excluded because they follow a different model (Part II). This severely
restricts the range of values for the b-axis and ionic proportions, increas-
ing the difficulties statistically. The available data in the literature for the
kaolin minerals are likewise restricted. In addition some of the more
reliable data (Part II) have been obtained from synthetic or heated
specimens, and there is some doubt whether these can have reached an
equilibrium state of ordering in laboratory times. The importance of
some of these restrictions only became apparent as the analysis pro-
ceeded. .

A further major difficulty—with implications beyond the present study
—has become increasingly obvious. For any expression connecting sheet
dimensions and ionic proportions (e.g. Part II) each coefficient should be
related to the appropriate ionic radius by a factor depending explicitly on
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the geometry of the structures. Brindley and MacEwan (1953), and
Brown (1951), implied this in stating that ‘“‘very similar results (to the
empirical coefficients) are obtained if the argument is based on ionic
radii.” The form of regression analysis used (see below) may not only test
for two significantly different “hole sizes” but yield estimates of the geo-
metrical factor. The values obtained for this factor should agree, within
their fiducial limits, with the theoretical value for the model used.

In the simplest model for the octahedral layers of these minerals the
octahedra are assumed on the average to remain geometrically regular in
shape. The anions may only be in mutual contact when the cation is
sufficiently small; when larger cations are substituted the anions move
apart, but the bond angles for a regular octahedron are preserved. Under
these conditions the increase in b for an increase in cation radius from r; to
T;is

db = /2 (r; — ri)x; 1.1

where x;=1onic proportions, of jt" atoms, in three sites—i.e. as expressed
in most structural formulae (e.g. Part IT). The relation between the re-
gression coefficients, by and the ionic radii, r; is, therefore,

by = /2 (r; — 13) 1.2

and the predicted geometrical factor is g=+/2, where (for convenience in
writing) g is the inverse of the constant k as discussed in Part II, and the
a;in that paper have been re-named b;.

Even in the preliminary calculations the statistical value of this factor
was considerably less than /2. As the analysis was refined it became
clear that the value statistically is close to half this figure. This required
the formulation of the more general geomefrical model—i.e. with less
severe restraints—which is developed below. The new choice of restraints
is then justified by some simple physical arguments from known struc-
tures and the statistical analysis follows.

The development of a satisfactory geometrical model, and the physical
justification of this in general terms, has led to a detailed re-examination
of the interatomic forces in layer silicates. These are to be discussed in
‘Part IV, in which it is shown that the earlier hypotheses (Parts T and II)
and the present model of the octahedral layers follow as reasonable con-
sequences of the total balance of interatomic forces in these minerals.

NEW GEOMETRICAL MODEL FOR THE OCTAHEDRAL LAYERS

Restrainis

The preservation of completely regular octahedra has been abandoned
in favor of the following set of restraints:
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(1) centers of octahedral cations lie in a plane,

(2) there are two A sites for each B site,!

(3) centers of anions lie in two planes parallel to the cation plane, and distant t/2
above and below it,

(4) anions are constrained to remain on the surfaces of spheres about the cations as
centers,

(5) the radius of such a sphere is the accepted cation-anion bondlength, i.e., either
Iy or Ip,

(6) the network of cation sites is hexagonal.

As a corollary of these restraints it follows that only two kinds of cat-
ions (z.e. for A and for B sites ) may be accepted by an ideal structure. In
actual structures both A and B sites accept cations of several different
radii; the most probable compromise is in condition (3).

When substitutions of various cations occur in A and B sites the bond-
lengths change by amounts of di, and dlg respectively, and the thickness
t by dt. It is then assumed that:

(7) dt=xdb where A is some proportionality “constant.”

This is simply for descriptive convenience, and X is only a “constant”
in the sense of having some average value over many minerals. Assump-
tion (7) implies that these layers may become thicker at some rate dis-
proportionate to their increase in sheet dimensions.

Calculation of the b-axis of unit cell (by)

From (6) the b-axis is three times any cation-cation distance. From (2),
(3) and (6) the cation-anion bondlengths must have a common value, 14,
for both A sites. If such an octahedral layer is projected on to a plane
through the cations (Fig. 1) then the common value for [, means that the
anions around B have, in projection, hexagonal symmetry and hence
BCD is an equilateral triangle (Fig. 1). [The upper equilateral triad of
anions around an A site is, however, rotated relative to the corresponding
lower equilateral triad.] From (5) the spheres around A and B sites have
radii l4 and Ip; let the same spheres cut the anion planes in circles of radii
pa and pp respectively. Then it follows that

t2 1/2 t2 1/2
PA=<1A—Z =AC: pp= 13—* = BC
pBZ 1/2 PBZ 1/2
)
pa’ 1 + [ pn 4

whence the b-axis dimension becomes
3t2 1/2 3 3 2 1/2
= — [41A — ly2—— \/ [IB — ] 2.1

1 All subsequent formulae hold good by interchanging A and B for the cases where the
ratio is 2B sites for each A site.
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Fic. 1. Schematic drawing of a geometrically ideal octahedral layer, showing two small
A sites for each large B site. Note triads of oxygens above (unshaded) and below (shaded)
cations. These triads are counter-rotated about any A site, but have hexagonal symmetry,
in projection, about any B site. Cations A and B are also on a hexagonal grid in this model.

Average values for muscovite (Radoslovich, 1960) are 14=1.95, 13
=2.20, t=2.12 from which be.1c=8.99s compared with bgys. = 8.99, A.
The agreement is fortuitously close, since not all the conditions (1) to (7)
are fulfilled precisely; nevertheless equation 2.1 seems to be a very good
approximation for real octahedral layers.

Variations in by as la, Iy and [ vary

Totally differentiating equation 2.1 with respect to 1a, 1p and t gives

3t2 —-1/2
dby = 6l (41A2 —In? ~ 1—) dls

3B T( L B\ ] 3y
- . — 41 2 2 -
T B[(B 4 N/S(A N 4) :I °

3v3 32\ 12 oy 12
- QSL t [\/2 (41,\2 — oy — T) + (132 - Z) ]dt. 2.2

The earlier model, in which the octahedra remain regular, has the special
conditions that

dt = ;1a = 1g = 1;and t = 21/4/3.

Substitution in equation 2.2 gives
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dby = /2 (2dly -+ dls)
or, assuming that the anion radius is constant,
dbU = ‘\/2 (drA + drB)

for the three octahedra in an asymmetric unit. Taking the average, as
required by the definition of the x;, gives

db = '\/? Z dI‘ij 2.3

which is, in fact, equation 1.1,

Dioctahedral micas
Substituting muscovite data in equation 2.2,
dby = 4.422d1s + 1.718dIs — 1.616dt
and if condition (7) is obeyed then
dby = (0.4523 + 0.73097)~12d1s -+ (0.5821 + 0.9406)\)~dIp 24

Triocltahedral micas

No accurate determinations of t are yet published, but trioctahedral
micas may reasonably be assumed to have regular octahedra initially, if
cell dimensions are considered in relation to ionic radii. That is,

3 343
dby = —= (2dl la) — ——dt
U ) (2dlp + dla) 23 d
or
dby = (0.4714 + 0.8661))"1(2dls + dla) 2.5

Relation belween geometrical constant g and M

Consider the dependence of the separate geometrical constants on X for
the two extreme cases immediately above. From the calculated factors in
Table 1 it is clear that, provided ) remains the same for the total suite of
micas, the geometrical factor g does not vary seriously between A and B
sites or between di- and trioctahedral minerals. This produces a consider-
able simplification in the model for statistical analysis.

PHYSICAL PLAUSIBILITY OF NEW GEOMETRICAL MODEL

It is sufficient, for a valid discussion of the present statistical analysis,
to show that the geometrical model now adopted is readily acceptable
physically. In the following paper the interatomic forces are considered in
more detail; and again the conclusions support this model. Of the seven
restraints listed previously, several may be regarded as axiomatic, viz.
(1), (3), (4), (5), and these are seen to be quite closely obeyed by struc-
tures already accurately determined. The second restraint, (2), is in fact
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TABLE 1. SEPARATE GEOMETRICAL FACTORS! AT A AND B SItES 1IN Micas, CALCULATED
FOR A RANGE OF VALUES OF A\

Dioctahedral Trioctahedral

A

A sites B siles A sites B sites
02 167 1.298! 1 551t 1 551t
04 1 343 1.043 1 223 1223
06 1123 0.872 1 009 1 009
08 0 964 0.749 0 859 0 859
10 0 845 0.657 0 748 0 748
12 0 752 0.585 0 662 0 662
14 0 678 0.527 0 594 0 594

! The factors in columns 2-5 correspond to the coelficients of 2d1,, diy, 2d1g and d1, in
equations 2.4 and 2.5.

the postulated characteristic which the statistical analysis was designed
to test.

Implicit in restraints (1) to (6), taken together, is the requirement that
if there are two kinds of sites (as in (2)) then they are in an ordered ar-
rangement. It is emphasized again that this analysis tests for different
hole sizes only; but in so far as this geometrical model appears to conform
to real structures (e.g. in leading to geometrical factors consistent with
experimental data) it lends support to the hypothesis of ordering. The
restraint (6) is, in any case, fairly closely followed by known structures. It
is a highly probable consequence of the controlling forces in the layer
silicates. Again, the counter-rotation of triads around A sites—deduced
as a consequence of (2), (3) and (6)—is observed experimentally; for
example, in kaolinite (Drits and Kashaev, 1960) the upper and lower
triads around Al sites rotate +6%° and —4° respectively.

The final restraint (7) needs rather more discussion. The concept of
octahedral layers varying in thickness according to externally applied
constraints is not entirely new (e.g. Bradley, 1957). The writers, however,
are not aware of any attempt to calculate an average rate by which the
thickness varies with sheet dimensions, over a wide range of minerals,
using valid statistical methods.

A simple comparison of observed sheet dimensions with those calcu-
lated on the assumption of three equal and regular octahedral sites (Table
2) shows the necessity for some moderately large factor, \. Taking the
micas particularly, case 3 shows that many Fe?* biotites may have ap-
proximately regular octahedral layers. For these beps.~9.3 A, and Lhe
radius of Fe?* (0.75 A) is not too different from 0.79 A. There are no data
yet available for t, but their octahedral layers must be considerably
thicker than that of muscovite (2.12 A), since the tolal layer thickness is



LAYER-LATTICE SILICATES 69

TABLE 2. OCTAHEDRAL DIMENSIONS! FOR VaRI0US IoNIC RADII, 1

Case 1 Case 2 Case 3
riin A 0.58 0.70 079
tin A 2.29 2.42 253
bin A 8.4 8.91 93

1 Assuming regular, and equal, octahedra; and that the anion radius is constant at
1.40 A (Ahrens, 1952).

very similar (d(001)=10.0 A for each) yet muscovite alone should have
(Part I) a large interlayer separation (~0.6 A). An observed t=2.53 A
would, therefore, be expected.

The dioctahedral micas have sheet dimensions comparable with case 2,
yet the radius of the cations is nearer 0.50 than 0.70, and the thickness
will typically be about 2.1 A (muscovite 2.12 &) rather than 2.42 A. For
the micas, then, we may predict that b increases from 8.9 to 9.3 as t goes
from 2.1 to 2.5, 7.e. if dt=2Ndbd then A= 1.0. Since b=:4.5t this means that
the percentage increase in thickness is, on the average, more than four
times the percentage increase in sheet dimensions. This is confirmed by
the analysis which follows.

Less definite information is available for the kaolins and montmoril-
lonites, but for both groups it is known that 8.9 and 9.3 are the lower
and upper limits to b, and that for the farmer dimension r; is much less
than 0.7 and for the latter r; is near 0.79. Moreover dickite has a thick-
ness t=2.06 A, i.e. much less than 2.42 A. Gibbsite, AI(OH); (Megaw,
1934) is much thinner (2.12 A) than an array of regular octahedra with
the same b(=8.64 A).

Case 1 shows that oxygens of radius 1.40 A can be close packed
(i.e., 0-0 distances=2.80 A) to form regularly-shaped octahedral layers
with interstices easily large enough (0.58 A) to accommodate Al ions
(0.50 A). In three aluminum-bearing minerals average 0-0 distances in
the planes of the sheets are 2.93 A (gibbsite), 2.997 A (dickite) and 2.99,
A (muscovite).

It is concluded that for the micas, kaolins and montmorillonites at
least, the dioctahedral layers are noticeably stretched and thin, but that
the corresponding trioctahedral layers are more nearly regular. That is,
restraint (7) appears acceptable physically.

STATISTICAL ANALYSIS FOR Two DisTINCT KINDS
oF OCTAHEDRAL SITES
The regression coefficients of Part IT are expressed as

by = gi(r; — i) 4.1
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where

r;=characteristic radius of the ith site

g;=geometrical factor for the ith site (=1/k in Part II)
rj=radius of the cation substituting in that site

bj= corresponding regression coefficient (=a; in Part IT).

The subscript i, which typically refers to octahedral sites, may if neces-
sary refer to interlayer and tetrahedral sites. The average sheet dimen-
sions which are given by

»
b =ho+ 2 bix; 4.2
j=1

for an average proportion x; substituting in ith sites, then becomes

pi pi
b=Dby+ 2 [gi 2 TG — BT 2 X 43
i j=1 i=1

where p;=number of different cations substituting in the ith site.

PL p;
Denote D rix; by uiy and 2 x, by uy
j=1 )=l
Then the regression coefficient of uy; estimates the geometrical factor g;
at the ith site, and the regression coefficient of uy; estimates (—g;r;) from
which the characteristic radius r; is obtained.
Let

i=1 for interlayer sites

i=2 for larger octahedral sites (B), occupied by R**.
i=3 for smaller octahedral sites (A), occupied by R?*t,
1=4 for tetrahedral sites.

The first geometrical model and physical considerations (Part IT) led
us to expect that gi=1.5, ga=g3=+/2, g4=0 except for the montmoril-
lonites possibly, 1,=0.95 A, ry>r; 1,=0.65 A, r;=0.50 A, and r,=0.41
X0.88=0.36 A. The actual results contradicted some of these expecta-
tions so strongly that the model based on effectively regular octahedra
has been discarded.

In the following analyses an excess over 2.00 of x; at B sites has been
arbitrarily transferred to A sites. This may introduce errors into the u
variates which would cause the regression coefficients to bias towards
zero. If, however, g, is made equal to g; the appropriate variate to be
used for estimating a common gg is (us=4-uy), which is independent of
such transfers,

Mica minerals

A set of 39 micas was used initially, which involved 12 different cat-
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lons. Since a preliminary analysis had indicated that g, was not signif-
icantly different from gs the restrictfon was imposed of a common
g=go at both kinds of octahedral sites. The appropriate variates are
given in Table 3, in which us owes its form to the fact that in the struc-
tural formulae (xa1'v+xgi) =4 always, so that there is effectively only
one variate and this depends on the difference ry;—rg;=0.09 A. The ex-

TaBLE 3. ForMS OF VARIATES USED FOR DIFFERENT CALCULATIONS

1. Set of 39 micas
= 1.33xx40.95xN5,+0.99x ¢,
u; = (uptuy) = 0.75XF62++0.65XMZ+0.60XL1+0.SOXMH+O.68XT'[+0.SOXA1+0.65}(];\15
U4 =0.09XA11V
Ug1=XK+XNaFXCa
Uge = XFe2++X Mg+ XLiTXttn
Ugg = Xpet++X1i +XA1+XHig

2. Set of 15 kaolin and serpentine minerals
U12=0.08xnMn+0.65xmg+0.75x g2+ +0.60x 55 3+
u13="0.50x414-0.60x 53 5+ +0.65% §i ,+0.75xps 8+
u =uptug
Uge = Xntn+X Mgt XFa2t+Xrest
Ugg = XA1+XFedt++Xmp -+ xpézt

3. Set of 28 monimorillonite minerals
u =0.75XF92++0.65XME+0.60XU+0.60XFe3++0.68XT-.—}-0.50XA1+0.65XMg
4 =0.09XA11V
Uz =Xre2++XMg+X1i
Ugs = Xpedt-FX1i+Xa1+XME

The accent T refers to proportions of various cations which have been transferred as
discussed in the Introduction.

pected non-significance of us (Parts I and II) was confirmed and this
variate then omitted in obtaining the final regression relation (Table 4).

The least squares estimates of ry and r3 are 0.62 A and 0.54 A respec-
tively. Although these values are encouragingly close to the predicted
“hole sizes,” and also the value for go=0.811 corresponds to A~ 1.0 and
seems reasonable, th re less c ause the other values,
viz. g1=0.285, ri=1 A str expected values, in-
dicating the possibility that the interlayer cations in such a set of micas
behave heterogeneously (Parts T and II). Hence a subset of 23 triocta-
hedral micas was studied. For these the interlayer cation should have
little effect, or at least behave homogeneously. The results (Table 4)
show that the interlayer cations do not affect the b-axis; this confirms
the earlier hypotheses (Parts I and II) and proves the heterogeneity of
the first set of 39 micas. However, a new difficulty arises because the



TABLE 4. REGRESSION RELATIONS AND CORRESPONDING ANALYSES OF VARIANCE

Set of 39 micas

*okk *kk ook

b=9.1144-0.2849( £0.03789)uy,-40.8106( -0.0493)u; — 0.4207 (£ 0.06405) u1zy

ek Hokk
—0.5003(4:0.04315)us—0.4402( +0.04385)uss
Variation D.F S.S. M.S. V.R. R2
due to regression 5 0.594167 0.118833 231.64 0.9723
due to residuals 33 0.016945 0.000513
Total 38 0.611112

Subsel of 23 lrioctaliedral micas

N.S. ek N.S.
b=8.927—0.2017(+0.1596)u11+0.7034( +-0.08393)u; +-0.1128( +£0.2163)ux
TJ.S. kakok

—0.2603( £0.3739)ugs—0.4221(£0.05583) uzs

2.1 Prediction velation, from subset of 23 triociahedral micas
Hokk Hkck

b=8.24440.7071( +£0.08728)u;—0.4116( +:0.05716)ugs

Variation D.F. S.S. M.S. V.R. R2
due to regression 2 0.0212019 0.0106009 32.88 0.7668
due to residuals 20 0.0064487 0.0003224

Total 22 0.0276506
3. Sel of 15 kaolin and ser penline minerals

Hkekok *kk Fdok

5=9.012+40.9197(£0.05335)u; —0.4892( +0 04176)us, —0.5042( +0.03875) uz

Variation D.F. S.S. M.S. V.R. R?
due to regression 3 0.839569 0.279856 874.55 0.9958
due to residuals 11 0.003521 0.000320

Total 14 0.843090
4. Set of 28 montmorillonite and vermiculite minerals
ook skokk *kk
5=9.114+0.8375(+0.07761)u; +0.6664 ( £0.1548)u,—0.5170( £ 0.06439) uze
ek
—0.5068(+£0.06213)uzs

Variation D.F S.S. M.S. V.R. R?

due to regression 4 0.336929 0.084232 427.57 0.9867
due to residuals 23 0.004528 0.000197
Total 27 0.341457

1Tn table 4 the number of asterisks refers to the statistical significance (3, 2 and 1
refer to 0.1%, 1% and 5%, levels respectively, N.S.=not significant at 5%). The numbers
in brackets are the standard errors of the regression coefficients. D.F.=degrees of {reedom,
S.S.=sums of squares, M.S.=mean square, V.R.=Variance ratio F, R*=square of multi-
ple correlation coefficient (Part II).
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variate u has a very nearly constant value of 2.0 in such a set, so that it
is not possible to estimate ry (i.e. rg). The estimation of r, requires a
suitable set of dioctahedral micas which unfortunately is not available.

The best relation to use for predicting b-axes for trioctahedral micas
is also given in Table 4. This result, with an s? (= mean square due to
residuals) of 0.00032, is appreciably better than for the analysis of 45
micas in Part II, in which s?=0.00091. The improvement reflects the
choice of a more homogeneous set of micas. The value for ko=0.707 is

ly sig y di t from the earlier prediction that go=+/2.

least esti of 1;=0.58 A is somewhat higher than ex-
pected. The low b= 8.244 is due to the fact that the variation in ug does
produce a real physical effect, but its value is virtually fixed at 2.0 by
the choice of data. [For example, putting the value of —0.5003 for the
regression coefficient of ux (i.e., from set of 39 micas) changes b to
9.244.]

It has not been possible to select a homogeneous set of micas which
will give satisfactory estimates of both r, and r3 or even of ry above.
Hence it cannot be shown statistically whether r, is significantly dif-
ferent from r;.

Kaolin and serpentine minerals

The variates (Table 3) and regression relations (Table 4) refer to a set
of 15 minerals selected from Part II. Since g, and gs were shown not to
differ significantly a common g, was estimated by combining uy; and
uiz; at go=0.92 it is highly significantly different from +/2. The least
squares estimates of r; and r; are 0.53 A and 0.54 A, so that ordering is
not proven. The possibility of heterogeneous behavior cannot be ex-
cluded, but no satisfactory subset could be chosen.

A subset of 11 minerals in Part IT (Mg, Fe®* and Fe** substituting
for Al) gave a value for s? of 0.000271, slightly better than 0.000320 ob-
tained here.

Monimorillonite minerals

The choice of minerals is severely restricted (see Introduction) lead-
ing to a very high correlation between u;, and uy; the reasonable re-
striction, as in 3.3 and 3.4, that gy=gy=g¢ (4.e. u;=up-+uy, Table 3)
overcame this difficulty. The results (Table 4) confirm the significant
contribution of AV, shown in Part II. Again go(=0.84) is much less
than \/2 and the least squares estimates of r, and rs, viz. 0.62 A and
0.61 A, are inconclusive. The value of s2=0.000197 is slightly higher
than 0.000153 obtained in Part II.
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DI1SCcUsSION

The results over the three sets of minerals indicate that for studies of
this kind the problem of obtaining statistically adequate sets of data
which behave in a homogeneous manner within a set has considerable
difficulties. In addition the montmorillonite data suffered from very
high correlation between determining variates which gives results un-
duly sensitive to small sampling differences; and the mica subset did not
have an adequate range of variation in the determining variates.

Only in the kaolin data was it possible to show that g, was not signif-
icantly different from gy, and there still remains some doubt about the
physical homogeneity of a set containing heated and synthetic minerals.

Statistically the strong results of the analysis are to show that:

(1) go is about 0.8 for the three sets, highly different from V2,

(2) the regression coefficients of the octahedral cations can be use-

fully and simply approximated to
b; = 0.8(r; — C)
where C=0.55 to 0.60.

Although the values of gy do not differ significantly from each other
for the micas, kaolins and montmorillonites,' their differences are self-
consistent with the regression coefficients in Part II. The b-axes of the
Al-dioctahedral minerals (e.g., paragonite, kaolinite and Al mont-

TABLE 5. REGRESSION COEFFICIENTS IN RELATION TO GEOMETRICAL CONSTANTS

g Mg! Fe2t Tes+
Kaolins 0.92 0 125 0.229 0 079
Montmorillonites 0.84 0 096 0 096
Micas 0.811 0 062 0.116 0 096

1 These values for the regression coefficients are taken from Table 1, Part IT.

morillonite) are all close to 8.92. The largest individual regression
coefficients b; should, therefore, be found for the mineral group in which
the sheet thickness increases least rapidly, i.e. X is smallest, or g is
greatest. The regression coefficients for Mg, Fe** and Fe** (taken from
Part II) are given in Table 5. The coefficients for Mg and Fe** are con-
sistent with the relative size of g for these three groups. The coefficient
for Fest for the kaolins is anomalously low. This coefficient depends en-
tirely on the data (Part 1) for a heated Fe**-chamosite, and may well

1 To test the homogeneity of the estimates of go between the three groups we used the
procedure given by Williams (1959, pp. 131-2) which resulted in a value for F on 2 and 54
degr ff dom being equal to 2.62. This icts h eity at a level be
59, 10 4.e. the level is not quite sig The t contribution to
heterogeneity comes from the mica estimate.
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be suspect. A value of about 0.1 seems more consistent. It is interesting
that the ‘“‘hole size” for Fe®* (Table 2, Part II) is then 0.50, as for Al,
again hinting at ordering of the octahedral cations in this group.

If the differences in g (4.e. N\) are indeed real then the external con-
straints resisting marked expansion in the a-b planes are strongest in
micas and weakest in the kaolins. This is discusseéd further in the fol-
lowing paper on the interatomic forces.

The postulate (2) that there are two hole sizes, A and B, is not proven
statistically primarily because of insurmountable limitations in the
published—and probably in the potentially available—data. However,
the present explicit geometrical model seems to be essentially correct.
In so far as this is true octahedral ordering follows as a consequence.
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ABSTRACT

The relative importance of different kinds of interatomic forces in controlling the
layer silicate structures has been roughly assessed, from a review of bond lengths and
angles in published structures. This has lead to some simple rules, consistent with current
ideas in structural inorganic chemistry, from which detailed explanations may be deduced
of many observed variations in bond lengths and angles from the expected values.

The main postulates are that bond angles are more readily changed under stress than
bond lengths, that bond lengths vary inversely as electrostatic bond strengths, and that
forces due to cation-cation repulsion across shared octahedral edges are of comparable
importance to the stronger bonds in these structures.

It is deduced in general that forces within the octahedral layers control major features
of the layer silicate structures, that these forces tend to produce ordering of the octahedral
cations, and that individual octahedra cannot be geometrically regular. Tetrahedral layers
may be distorted ‘o limits set by O—O approach distances rather than by 0—Si—O0 bond
angles in the tetrahedral groups. The importance of bonds between interlayer cations
and surface oxygens is greater than is usually recognized.

The specific postulates are applied firstly to some simple structures containing octa-
hedral groups, thereby explaining several apparent anomalies in earlier data. The pub-
lished dickite and the 2M,; muscovite structures are then critically reviewed, and satis-
factory reasons proposed for many observed variations in bond lengths and angles, in
terms of local forces on particular atoms. Some less accurately determined layer silicate
structures are briefly reviewed in a similar way.

The successful application of these rules to known structures gives the author confi-
dence that the atomic parameters for other layer silicate structures can now be predicted
much more closely than previous “ideal structures” for these minerals allowed. The
detailed understanding of local stresses in accurately known structures is beginning to
suggest means of structural control over properties such as polymorphism. The probability
of extensive ordering of octahedral cations should be noted in considering the limits of
composition, and other physical properties of these minerals.

INTRODUCTION

The surface oxygen networks of layer silicates often have approxi-
mately ditrigonal rather than hexagonal symmetry, a characteristic
which Radoslovich and Norrish (1962)! have recognized in proposing
that the sheet dimensions of micas are controlled largely by the octa-
hedral layers and the interlayer cations. Radoslovich (1962a)* has con-
firmed this suggestion by showing the negligible effect of Al—for—Si
substitution tetrahedrally in new ‘b-axis formulae” computed by

1 Hereafter Part 1.
2 Hereafter Part IT.

76
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multiple regression analysis. Veitch and Radoslovich (1962)! subse-
quently proposed an explicit geometrical model of the octahedral layers
in these minerals, during an investigation into the possible degree of
ordering of the octahedral cations. These studies together have led to
the following more detailed examination of the forces within the sheets
of the layer silicates, the broad conclusions of which have already been
reported (Radoslovich, 1962b). The present study has sought an un-
derstanding about which forces dominate in the layer silicate structures,
and which forces generally have a secondary effect only. Such an anal-
ysis cannot begin until highly accurate parameters have have been
published for several comparable structures, a situation only just reached
for this mineral group; future accurate structural analyses should en-
able the refinement of the present ideas. Though very few layer silicate
structures currently have been published the general concepts developed
should of course be consistent with, or applicable to, other allied struc-
tures such as the feldspars to which passing reference is made. The
mental approach is similar to that successfully adopted for anorthite
and other feldspars in which Megaw et al. (1962) have considered the
structures effectively as a network of forces comparable to the “Theory of
Frames” used in designing bridge trusses.

TERMS OF REFERENCE, LIMITATIONS, RESTRICTIONS

Standard deviations in bond lengths. Standard deviations in bond lengths,
o, have been adequately calculated for the structures of vermiculite,
dickite and muscovite, but scarcely for any other relevant structures.
It is, moreover, clearly necessary to make inferences from reported
bond length differences which the known (or unknown) ¢ do not strictly
allow—a severe limitation. Such inferences can be supported in part,
however, by observing that a number of previous anomalies disappear
and that the concepts developed are at least in the right direction for
the reported differences. It is essential that, where the minerals studied
allow, future structure analyses be of a high, known and stated ac-
curacy (Mathieson ef al. 1959).

Tonic and covalent bonds. The length of a given cation——anion bond de-
pends on whether it is fully ionic, fully covalent or has some of both
characteristics. In discussing individual structures (below) it is assumed
that reported differences in the electrostatic strength of individual bonds
can be corre rea h obs var in bond len
Although thi res ity of cha the “ionic v

! Hereafter Part IIT.



78 E. W. RADOSLOVICH

covalent” character of a given bond this is tolerable provided that small
variations in strictly comparable bonds alone are involved.

what different from that for Al'Y—O bonds, “due to the higher polarizing

power t
If, h r ed which have simil —
Si sub $ o compare the cat en

bond lengths in relation to the charge available at the oxygens to form
such a bond.

t e
co h e
as T e
in t c

anyway. This is, of course, the customary way of treating complex
silicate minerals.

Electrostatic bond strengths and shortening of bonds. Although there are

r nd len
i length
n tructu
lengths are here ass to be oximately inversely
1 to actual electrostat d stren (e.g. Burnham and
1961; Buerger, Jones T 1961).
Petch et al. ) and rs explicitly pointed out, however,
is d to be a strong
i iv ticular cts may
i di e bond s low or
ble; several ex of such fortuitously s b are men-
below. Possib anisms of bond short g increased

electrostatic bond strength are not relevant here.

Local charge balance and stability. The stab y of the fe  ars has
examined recently in terms of the local b nce of cha  structu

on a ,
eo f e
of , i

electrostatic forces, and for other reasons.
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Although departures from local charge balance will be briefly dis-
cussed it is not possible or desirable at present to consider the relative
stabilities of the layer silicates in these or similar terms.

Pauling’s rules. It is assumed that for these structures Pauling’s Rules
are widely applicable and indeed they appear to be obeyed in detail in
most cases. In particular the Electrostatic Valence Rule (or an equi-
valent rule for partly covalent bonds, Pauling, 1960, p. 547) is satisfied,
and deviations exceeding +1/6 seem rare for layer silicates, as for other
minerals. In so far as steric effects will allow, the shared edges between
polyhedra are shortened, as they should be in ionic structures.

Tetrahedral Si—O and Al—O bond lengths. The expected lengths for
Si——0 and Al—O bonds in tetrahedral groups have been discussed by
Smith (1954) and Smith and Bailey (1962). These values are important
for layer lattice silicate structures, not only in estimating the amount
of Si—Al ordering during the initial structure determination, but in
assessing the magnitude of other efiects (below) when the parameters
are known.

Smith and Bailey (1962) suggest values of 1.614 A for Si—0 and 1.75 A
for AI—O for the framework structures, plus 0.01 to 0.02 & for layer
silicates. Values of 1.62 A for Si—O bonds with an electrostatic bond
strength of one, and 1.77 A for Al-—0 bonds with an electrostatic bond
strength of 0.75 may therefore be anticipated for the layer silicates.!
Though these figures may be slightly adjusted later, this paper is largely
limited to a comparison of tetrahedral bond lengths within the group of
layer lattice silicates only and these comparisons should remain valid.

GENERAL THEORY 0F LAYER LATTICE SILICATE STRUCTURES

“Balance of forces” rather than “packing structures.”’ Pauling (1960),
Bragg (1937) and many others have commented that the scale of various
silicate structures is mainly determined by the packing together of the
large anions, notably oxygen, whereas electrical neutrality is maintained
by cations of suitable size and charge in the interstices. Alternatively,
the silicates can be classified according to the types of linkage adopted
by the tetrahedral groups.

Although these are still very useful gencralisations their too ready
application forms barriers to a detailed understanding of any particular
mineral group. Thus the layer silicates are not simply close packed layers
of anions, with cations of the right size stuffed in the interstices, rather
passively maintaining neutrality. Each mineral, indeed, represents a

! The AL-O bond length is less precisely defined and values as high as 1.80 A have been
reported for recent structures.
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“stable” equilibrium, at the lowest possible internal energy, of bonds
under “tension” or “compression,” of atoms pushed into close proximity

t mutual re  ion, and (i e ) of d ed bonds
“ n.” Interst are of the > for ¢ n cations
only in the s with those cations ent the increased ns in
the other bo nces and angles do lead to obvious i ility.

Structural elements in layer silicales. The assumptions on which the later
d ion of particular structures is to be based ¢ be r ro

) , but they appear to be valid generally for lexi ¢
mineral) structures. They are:

out the formation of detectable homopolar bonds.”

)
e
e 1
dominant forces in layer es. )
(7) Adjacent anions valencies are not fully satisfied by immediate bonds will
mutually repel each other, to their ¢
(8) The charges on silic  layers and layer cations cannot be too far separated,

due to increased Coulomb energy.

Oclahedral layers.* The cell dimensions of such a layer correspond to an
equilibrium between three different kinds of forces, viz. (i) cation—ca-
tion repulsion across shared octahedral edges, (ii) anion—anion repulsion
along shared edges and (iii) cation—anion bonds within octahedra (Fig.
1). On all the available evidence these forces result in severe deformation
of all octahedral layers, except for minerals in which they are opposed by
additional and strong external forces. That is, the balance of forces
within the octahedral layer usually dominates in layer silicates.

Of these forces the cation—cation repulsion is the most influential
in causing individual departures from ideal structures, for several reasons.
The octahedral cations are only partly shielded from each other elec-

1 These arguments apply equally to separate octahedral layers, as in the metal hydrox-
ides, or to octahedral layers combined with tetrahedral layers, as in the clay minerals.
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trostatically, they vary considerably in environment, valency and size,
and the undirected nature of the cation—anion bonds allows wide varia-
tions in the shapes of individual octahedral layers.

If an octahedron in such a layer be viewed as an upper and lower triad
of oxygens around the cation then the shortening of O-—0 edges shared
with neighbouring octahedra results in the counter-rotation of these

+3 +3

on

Fi6. 1. Deformation of unconstrained octahedral layers to some equilibrium between
(i) cation-anion bonds, (ii) cation-cation repulsion, and (iii) anion-anion mutual compres-
sion, across shared edges (diagrammatic),

triads (Part IIT). The operation of a “cation avoidance rule’—due to
their mutual repulsion—has several implications, viz:

(i) Dioctahedral structures will show strong tendencies toward regular hexagonal

(iii) In trioctahedral minerals containing =2.0 R?* and some R+ the R2* cations tend to
n

(iv) e
n
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sible very rapidly. Again, this minimum distance is not always attained, due to {orces
exlernal to some layers.

Tetrahedral layers. Unperturbed tetrahedra in the layer silicates seem to
have T—O lengths close to values to be predicted from their average
cation occupancy, T;individual bonds, however, can be slightly stretched
under severe external stress. The T—O bonds also appear to vary sys-
tematically with the net charge available at the anion, after allowing
for the bond strengths from that anion to other cations. If, for example,

en oxygen has less than one of its cha s satisfied by other cations

that Si—O bond will be correspo ngly stronger and hence
shorter than the expected 1.62 A approx.

Although the Si—O bonds are partly covalent the O—T—O0 angles
appear to depart readily from the ideal 109°28’ to limits which are set by
the minimum O—O approach along tetrahedral edges rather than by any
directed nature of the T—0 bonds. A review of these distances and angles
in recent accurate analyses of felspar structures confirms this (e.g.

K 62). s
al tol
ys —in a

be deformed fairly easily until edge lengths approach 2.55 A. Donnay
et al. (1959), Jones and Taylor (1961) and others have previously noted
that tetrahedra need not be perfectly regular.

In layer silicates tetrahedra share corners only. This, combined with
the low radius ratio Si/O, ensures fairly good electrostatic shielding of
Si’s from each other—at least when compared with octahedral cations.
The T-—-O—T angles are therefore among the most compliant elements
of the layer structures as of the felspars aw el al. 1962). More
generally they may increase from the av 138° to at least 160°
(Liebau, 1961).

Interlayer calions; nel surface charges. Important details of the layer
structures are actively controlled by the bonds between interlayer ca-
tions and surface oxygens; the common concept that ‘“cations of the

r t occupy t intai -all neutrality’”” under
t r ence. I , the bonds appear to be i
by s a
int d n
to c €

with high exchange capacities.

It is noteworthy that a given interlayer cation (e.g. K*) can produce
opposing structural effects in two micas having appreciably different
octahedral layers.
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SoME OCTAHEDRAL LAYERS CONTROLLED BY EXTERNAL FORCES

sions.
men very small in ariso h compa dioctahedral layers,
1.e.; A as against 8 , for ple. The n for this is that no

Diaspore,” A10.OH This can be viewed as a stack of infinite ribbons two

a els, 's suggested long h en
e red is suggests the exis of
, ond

! See, e.g., Bragg, 1937, p. 93.
? See, e.g., Wells, 1962, p. 556.
3 Note that Or in B. and L.=Or in B. and M.; and vice versa.
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self-consistent, viz.

Os .
pr 0 A, and O1 1 A.
( O1 h refore of § h  sto3 Als,

1
strengths 3.

These bond lengths, Al—O and Al-—OH, in diaspore may then be com-

andalusite (Burnham and Buerger, 1961) provides a check with values
1.82, 1.82, 1.82, 1.86, 1.88 A. The observed values (Table 1) are more

TasLe 1 ExpECTED AND OBSERVED Al—QO BoNDs IN D1ASPORE

Al—O bond lengths in relation to Diaspore
bond strengths!
03-O11 bond proposed Observed
i (Busing and
Type Strength  Length None Hydroxyl Levy, 1938)
033 1994  AlLOit 1.977 A
Octah. 0 50 191 Al-O; and Our
5-coord 0 60 1 86
0 66 183 Al-Oy 1.854 A
Tetrah. 075 178

1 These average values are proposed from an empirical consideration of a number of
other structures.

2 That is, with no hydrogen bonding the expected Al-Ory bond length will be 1.99 A,

closely comparable with values p ed on the assumption of no
Or-On; bond. The angle of 12.1° Onr—H makes with Onr—O0Or

with occupied octahedra—analogous to corundum.

et ) d
iscu
ndu p

hedral layers alternate with two different octahedral layers, one of
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which is closely similar to, and has very nearly the same dimensions as
an octahedral layers in corundum.

dral layer have expa arkedly in the triads of
an the unoc sites (see , if unconstrained ex-
ternally. In chloritoid, however, these triads are also the base triads of
the separate tetrahedral groups, above and below (Fig. 2, Harrison and
Brindley, 1957). Their maximum size is therefore fixed, and this in

(i) )
Q g
Jos 1 - /% |
r ”~
I
|
0
L .
\Y] i)
© OH at4-3A O 0at72A + of 2nd
S
Directed O-F bonds from First layer surfice Aydroxyls.
F16. 2. Six of pl  gthe n over yl layer .6, N,
bu the erred io the O also sho

fact allows practically no octahedral expansion. The octahedral sheet
di ions in toid and cor m closely compa -
tr respect by neighbou tet dral faces and 1

faces shared with the vacant octahedra.
The other octahedral layer in chloritoid is of course constrained to
short dimensions, despite being trioctahedral and containing

cations.

Ha nd Brindley (1957) have argued that the t dimensions
of chl (viz. a=9.52 A) exceed those of micas with lar Fe?t con-
tent because, they imply, the discontinuous tetrahedral layers allows

ly he
in r m)

iat 0 8.
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not 9.52 A; and this is very much smaller than the b-axes of biotites, due
to the overriding restraints exerted by the discontinuous tetrahedral
layers!

Gibbsite, Al(OH);. Bernal and Megaw (1935) clearly demonstrated the
cxistence of hydroxyl bonds, both between sheets and also along the
surfaces of sheets a u ied sites. They cally stated that
these OH—OH bo ec the sheet dime to 8.624 A (ie.
“g’"). These bonds are not very strong, and only modify the octahedral
strains as a secondary effect. Thus the average O—O distances in triads
cu site, 3.20 A, are larger than surface
oc ed sites, 2.79 A w, 1934). (The diff
is still larger in dickite and muscovite which lack the OH—OH bonds.)

Dioclahedral kaolins and micas. In these minerals dioctahedral Al—layers
r to have dimensions virtu unaffected by constr from the
ure as a whole, viz. 5=8.9 94 A. Dickite, a kaol lymorph,

is discussed below. The interlayer Na in paragonite probably does not

perturb the b-axis set by its edral 1 (Parts I, IT). Interl K

in muscovite (5.2) is the e on, in vely increasing the all

dimensions to 8.995 A.

longer M bonds all g— Mg repulsion to extend the s to
9.44 A, g than for t all other trioctahedral layer la sili-
cates. That is, most such layers—except brucite—have some constraint
ap the
ph the
bo ve g

ACCURATELY DETERMINED LAYER STRUCTURES!

Dickile, Al,Si,05(0OH)s. Newnham, 1961* Newnham’s highly accurate
data fully confirm the concepts stated earlier, just as these enable his
careful discussion of the dickite structure to be extended or amended at
some points.

The very short shared octahedral edges (2.37 A), which Newnham

1 Tn standard texts, e.g. Wells, 1962.
2 In this section references are, for brevity, given to tables and figures in the original
papers, e.g. “Table 1, N.”
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noted, result from the uninhibited Al—Al repulsion which produces, in
dickite, a maximum expansion for such a layer. Average O—O distances
in one anion layer are much larger around unoccupied sites (3.43 A) than
occupied sites (2.78 A). The corresponding counter-rotation of the
octahedral triads (Part IIT) is —3° and +8°, as Brindley and Nakahira
(1958) observed.

The average Al—“O” bonds also fall into two groups, viz. Al—(sur-
face) OH=1.85; A and Al—(interior), O, OH=1.94;5 A ; the Al—“0”—Al
angles are consistent with this difference. Both distances should be com-
pared with an expected 1.91 A, and with an observed mean in muscovite
of 1.93; A (omitting Al—Op=2.04; A). Newnham commented on the
closer approach of the Al’s to the surface hydroxyls, but he has appar-
ently misunderstood the diaspore structure in quoting diaspore and
dickite as “very similar” in this respect. The relevant bonds are in direct
contrast (Table 2). In dickite the surface hydroxyls form long hydrogen
bonds to tetrahedral oxygens on the adjacent surfaces (Newnham,

TABLE 2. AVERAGE Al-“0” BoNDs 1N DIASPORE AND DICKITE, IN A

Diaspore! Dickite?
Al;-Oy1 (i.e. OH) 1.98, A Al;-OH (surface) 1854
Al-O1r (i.e. OH) 1.97, Al;-OH (surface) 186
Al;-Ox 855 Al-(20, OH) 1.96
Al-Ox 85, Al,-(20, OH) 94

! Busing and Levy, 1958
? Newnham, 1961.

1961). This bond formation is assisted by the high polarization induced
in each OH by the two Al** to which it is bonded internally. Thus the
protons of the OH’s are strongly directed away from the Al’s, so that in
each OH

(i) the O—H bond shows a marked tendency to be coplanar with the two AI—OH bonds

(see below), and

(ii) there is considerable asymmetry of charge, with increased negative charge towards
the Al’s.

As a result of (ii) the electrostatic strength of the Al-—OH bonds signif-
icantly exceeds the expected 3, and these bonds are shortened from
1.91 A to 1.86 A; from Table 1 the strengths are about 0.6-0.65.

The excess strength of the Al—OH bonds is confirmed by their marked
contraction despite the strong Al—Al and O—O repulsions with which
they are in equilibrium. In diaspore, however, each AIOH bond has an
expected strength of § (see above) and should, according to Bernal and
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Megaw (1933), cause relatively little OH polarization; their Jength of
1.98 A agrees with this,

If the valency of the Al** is to be closely satisfied in dickite the re-
maining bonds must have strengths <3, which the average Al--0O, OH
distances of 1.95 A, rather than 1.91 A, confirm. In diaspore, however,
the expected Al—O bond strength is 3; (i.e.>3) and three such bonds
to each oxygen will inhibit any further bonding to the opposing OH’s.
Vor further comparison the surface OH—OH bonding in gibbsite
(Megaw, 1934) ensures a strength near § in all AlI—OH bonds, and the
average bondlength of 1.89 A is close to an expected 1.91 A.

The Al distribution determines the pattern of counter rotations in the
octahedral layer (Part IIT). The directions of the required tetrahedral
rotations (Parts I and II) are therefore set by the octahedral layers so
that basal oxygens are matched to surface hydroxyls (N., 1961) to
shorten the 0—H—0 bonds to 2.94, 2.97 and 3.14 A. These rotations are
less than ideal (Part II) because the tetrahedra are “contracted in the
oxygen basal plane and elongated along ¢.*”” This basal compression,
which Newnham attributed to general misfit, may be explained in detail
by observing that ’

(1) the Si—0 and O—H—O honds are not very compliant,

(i) the O—H honds are strongly directed, at an angle inclined to ¢* (sec above), and
(iii) the O—Si—O angles are quite compliant.

It follows from (i) and (ii) that although the basal oxygens of one layer
arc bound at about 3 A from the opposing OH’s they will not be ver-
tically above them (see Fig. 3, N.). The directed O—H—0 bonds are act-
ing to reduce the size of the tetrahedral basc triads, which is achieved—
in agreement with (i) and (iii)—by 7 increasing from 109°28’ to an
average 111.8° (Table 2, N.). The final tetrahedral configuration is a
balance between the Si—O bond lengths, the inclined and directed
O—H-—0 bonds, and the O—O compression in the basal triads, shown by
0:—0;=2.58 A and 0,—0;>0,—0,=2.59 A,

This is linked with the buckles in dickite surfaces whereby OHj pro-
trudes from the layers and O is depressed into them. Newnham’s ex-
planation in terms of tetrahedral tilting (by the apex oxygens, O, and Os)
is inadequate in view of the high compliance of tetrahedral angles.
Rather, the directed bonds from OH, and OH, largely fix the positions of
O, and O, whereas Oy—which is above an unoccupied octahedral site—
is pushed into its own layer by the compression along O,—0; and O;—0s.
This depression of Oy stretches OHy— Oy, but only to 3.12 13;, because
OHj; can be (and is) clevated above OH, and OH,. The shortness of the
shared edge OHy—OH, is easily maintained since OH; (unlike the corre-
sponding Oy and O;) is not firmly held by the rest of the structure.
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The elevation of OH; fully explains other variations observed by
Newnham, viz.

AL—O, =193 1 Al—0O, = 1984
AL—OQ; = 2.01 Al—0; = 1.94
AL—OH; = 1.93 AlL—OH, = 1.90

The bonds to OH, should have strength 3 because the OH; charge is
satisfied, and their lengths are close to the predicted 1.91 A. Each Al
now has four bonds to OH’s with a total strength of about (3X0.6+40.5)
= 2.3 approx., leaving only 0.7 as the combined strengths for the two
Al—O bonds in each case. The observed lengths are consistent with
strengths <4, with one bond of each pair noticeably longer than the
other. IFrom Fig. 3, N, it is obvious that the long bonds, Al;—O; and
Aly—Oy4are the bonds directly opposite the bonds Ali—OHj; and Aly—OH;
in their respective octahedra, whereas Al;—0O, and Aly—O; are at about
90° to the Al—OH; bonds. On the understanding (above) that the over-
all structure holds the O, O fairly firmly then clearly the elevation of
the OH; (and the strong AI—OH; bonds) mainly stretches Al;—Os and
Aly— Oy, as observed. Moreover the OH; are attracted to Os’s in such a
way (Fig. 3, N.) that Ali—Os should exceed Aly,—O,, and Al; should be
lifted relative to Aly; both these consequences are observed.

In both tetrahedra the external distribution of bond strengths should
lead to Si—Opasar bonds of strengths <1.0 (due to interlayer O—H—0)
and Si—QOapex bonds >1.0 (due to asymmetric A0, OH groups). The
mean 1.619 A agrees with Smith and Bailey’s (1962) predictions for an
Si—O group with external bonds exactly balancing to strength 4, as

expected. It is, ho , se to be expected that wilhin each

the Siy—04 and S would be rather shorter than the
three, and the lack of any such trend in the observed bonds is a little
surprising.

There appears to be no alternative explanation for the tetrahedral
distortion, for the lack of direct superposition of O on OH, and for the
small tetrahedral twists, other than the directed nature of the O—H—0
bonds. This surface property obviously bears on the polymorphism of
the kaolins and its recognition allows Newnham’s detailed discussion
to be both simplified and extended. The six ways of placing the oxygen
surface over the hydroxyl surface (Fig. 6, N.) are no longer equivalent,
if O—H bonds’are directed (Fig. 2). Although all six ways lead to some
torsion of these bonds the strains involved in (ii) and (v) are less than in
(1), (iv) and (vi), whilst (iii) is quite unlikely to occur at all.

Amongst the single layer structures in Table 7, N.; the most probable
are therefore nos. 7 and 25—the same conclusion, but a more explicit
argument than that from the Coulomb energy. The two layer structures
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in Table 8, N., must now (a) minimise the Coulomb energy, (b) satisfy
the pucker conditions and (c) minimise the angular strain in the O—H
bonds. The sequence 11, 27, 11, 27 ... (superpositions ii, v) is more
likely to occur as a stable mineral than 20, 36, 20, 36 . . . (superpositions
iv, vi). That is, the abundance of dickite (11, 27, 11, 27 . . .) relative to
nacrite (20, 36, 20, 36 . .. ) is at least consistent with, if not explained
by, control exerted by the directed O—H bonds.

These directed bonds are discussed further in relation to kaolinite
(below) and kaolin morphology (Radoslovich, 1963b).

Muscovite, K Al(Si3A1)Ov(OH)s* Radoslovich, 1960. The previous dis-
cussion (R., 1960) can now be carried further.? Extension of the octa-
hedral layer occurs mainly around the vacant site (3.3.2). For coplanar
O’s around these sites O—0=23.34; A aver. and (Vacant Site)—O=2.20,
A aver. whereas for the two occupied sites O—0=2.82, A aver. and
Al—0=1.95, A aver. Shared octahedral edges are shortened, but not
equally so (Table 5, R.). One edge, O4—O0x=2.39 A, close to the 2.37 A
in dickite. Another, OH-—OH=2.51, A, possibly a little longer due to
OH—OH repulsion following their polarization (below). The third
edge Op—Op=2.765 A is apparently not shortened at all, but this is
quite misleading. In fact all bonds to Op are severely stretched (see
below) and Op—Op edges are shortened, but only as far as the strong
Sig—Os bonds will allow. The Si, are firmly held by the three bonds to
Oc, Op and Og, aver. 1.60, A, whereas Siy—Op=1.645 A. The differences
between edges of 2.39, 2.51; and 2.765 A are quite real, and the octa-
hedral anions are not strictly coplanar (Part IIT). The Si;,—Op bonds
hold the Og’s above the plane of the O’s and OH’s, and also help to
stretch one Al—Op bond to 2.045 A. The average Al—0=1.93; for the
remaining five bonds still exceeds the calculated 1.91 A3 In muscovite
the K+ stretches the sheet dimensions (Part I) beyond the 8.92-8.94 A
set by the octahedral layer. Since two shared edges are held larger than
the three edges in dickite (with b=8.94 A) the Al—O bonds must ex-
tend, as observed.

! These arguments become clearer from a true model (e.g Radoslovich and Jones, 1961).

2 Note that Radoslovich studied the 2Af; structure. In fact the detailed differences
between the probable or known structures of the various polymorphs now have become
more obvious and some structural factors controlling mica polymorphism will be described
in a subsequent paper.

8 In occupied octahedra in muscovite, therefore, several strong forces are in equilibrium,
and it is not surprising to find that about 809 of these octahedra must be occupied by

AP* in particular, in order to maintain a slable muscovite-type structure (Radoslovich,
1963a).
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The two tetrahedral sites (““Siy” and “Si;””) which alternate through-
out the layer appear to contain, respectively, no Al'Y and—on the aver-
age—Siyp Alyjp. is shown by the mean bon hs, Si;—0=1.61,
A and Si,—-0= A. This ordering of cations that neither the
octahedral nor the surface anions can form fully coplanar networks, nor
can both tetrahedra remain perfectly regular in shape—with the smaller
(Siy) tetrahedra showing the greater strains. The whole structure, how-
ever, adjusts to the mismatch of tetrahedral sizes—by “waves” in the
planes of ns, by the tilting of both tetrahedra, and by the g
of Si, gro along ¢* with a very slight flattening of Si; gr

elongation is wn by the basal ed Siy, ¢ ed to 2.58,,
2.58z and 2.5 , together with the ond, s to 1.645 A:
by contrast the six edges ar Siy are normal di s,
mean 2.76, A. The s at Si, rm this, with Si, al

=107°22" (mean) but Opasar —Sis—Ouapex=111°5’ (mean).

The disproportionate deformation of Siy rather than Si, groups is due
to the overall control ex jointly by the o dral la and
interlayer K+, Within the dral layer alone it d seem er to
flatten Si, groups a little more and thereby strain Siy groups less severely.,
This would immediately increase by, which the octahedral and inter-
layer forces totally prevent. /

The forces in 2M; muscovite are best discussed by comparing the ob-
served atomic positions with the “ideal’” positions of Jackson and West
(1933). The configuration of the octahedral layers means that all Op—Osg
shared octahedral edges are (in a projection along the c-axis) parallel to
the g-axis, and all O,—0a and OH—OH edges are at +120° to this.
Moreover the lack of bonds from Os, Os and OH towards the vacant
octahedral sites allows the anions to be pulled away from their “ideal”’
positions as the shared edges are shortened. Of the two kinds of apex
oxygens each Oa, attached to the larger tetrahedra, can and does move
much more freely than each Ogs. The shift of Oy is directly away from
Op. The Si; groups adjust themselves a little by tilting (see below) and
Sir—O04=1.71 is slightly longer than Si;—Oc¢ b &; but the primary de-
formation is an increase in angle i—Op from 1093° to 1154° (i.e.
Oa—Op up to 2.87 A), in agreem th the earlier postulates.

Each K+ is sur ed by six O’s at 2.81, A (aver.) six at 3.39,
A (aver.) and 2 at 3.98; A, so that effectively e are direct
K—0 bonds only to the six nearest oxygens which are approximately
octahedrally arranged around it. These oygens can only form bonds of
strength §, since they already have bonds to Si, and Si, of strength
and 1. The sum of the K and O radii is 2.73, given for six-coordination
which implies a strength of §. The expected bondlengths for six bonds of
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st glh § should be e to 2.73%X1.04=2.84 A, where 1.04  a corrcc-
ti  factor for eight rdination. The mean of 2.81 A refle  the gen-
eral compression of these weak bonds (Part I, and this paper) by the
rest of the structure.

Each K+ is hardly shiclded at all electrostatically from Oy’s, Op’s and
OH’s, above and below. The Ox’s carry an unsatisfied charge of about
—1 and the K+ of +2/8. To a first approximation each K* is attracted
towards, and its charge largely satisfied by, one O from cach layer. For
K’s at the ¢/4 level these attractions give a resultant force which moves
cach K directly along +&; at the 3¢/4 level each K is moved along —b.
The separate K—O, attractions through the 2M, cell are in fact dis-
posed just as shown in Fig. 7b, R., and these attractions clearly are the
unknown forces postulated by Radoslovich (1960) as a possible “mech-
anism’’ for forming the 2M; polymorph, and explaining the observed .

This nel attraction, e.g. towards —b, makes the K—Oc¢ pr bonds
unsymmetrical. The total arrangement is such that the K is pulled
towards an Op, above and below, and away from an Og, above and
below. Thus K—Op=2.77; A is really an ideal (weak) bond of 2.83—
2.84 A under compression, and this assists the depression of Op. By
contrast K——Op=2.86. A is a similar bond under tension; Og is re-
strained by Siy—Op=1.623 A (Siz—Op=1.59; and Siz—0c=1.58;) and
ultimately by the bonds from Si; through Og to the Al network. The
tension in K— Oy and Si—Og explains why the Si, move a little in the
same direction as an associated K.

The attraction and movement of K+ by O, compresses the bonds
Siy—0c=1.59; A and Siy—Op=1.58 A for which Smith and Bailey
(1962) would predict 1.62 A. At the same time Siy—Op is being severely
stretched. This appears to redistribute the bond strengths in the Si.
etrahedra a little, so that O is left with a slight negative charge to be
satisfied by the K+. This would account for a movement of Op towards
K (even t h this /e ens the shared oc ral edge Op—
and would ectly exp why one Al-—Ogp (2.045 A) islo  r
than the other (1.93, A). This movement of Op raises Op—Siy—Oc
from 109%° 1o 1145°.

The O—H bonds in muscovite, as in dickite, should be directed at an
expected inclination of about 65-70° to the sheets. Infrared studies (e.g.
Serratosa, and Bradley 1958) point to an angle of ~=20° which is a likely
compromise between the directed nature of the O—H bonds and the
repulsion of the proton by the K* directly above. The shortening of the
OH—OH edge further separates the proton from the K+,

In 2M; muscovite the interlayer K+ is held in place by six bonds
under compression, on the average. In detail, the K* occupies an
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equilibrium position determined by a complex balanced system of in-
terlocking strong bonds reaching right through the adjacent layers to
K’s at the next level, above and below. This system of bonds is a direct
consequence of 2My muscovite being a dioctahedral mineral with 2 Al3+
octahedrally, and with an ordered arrangement of 2 Si and 2 Siy, Alys
tetrahedrally. It is hardly surprising that this polymorph is one of the
most stable micas under natural weathering. This view of the role of K+
in muscovite is far removed from the early concepts of an ion of the
right charge flopping into a hole of comfortable size!

These two accurate structures illustrate in detail the factors previously
discussed as general postulates.

LAYER SI1LicATE STRUCTURES LESS PRECISELY DESCRIBED

For several published structures the tables of bond lengths and angles
are incomplete, or the accuracy is low, and only a brief comment is
warranted in support of these ideas.

Vermiculile, (Mg2.36F63+0_4gAl(),16) (All,2aS’L'2_72>Olo(OH)2'4.32 }]20 Since
Mathieson and Walker (1954) and Mathieson (1958) were primarily
interested in the interlayer water they did not look for octahedral order-
ing or compute all individual bond lengths within the layers. The struc-
ture shows several anomalies. The T—O bonds are 1.6340.02 A, whereas
Smith and. Bailey (1962) would have predicted 1.67 A; such a discrep-
ancy may possibly mean that the actual crystal has a composition dif-
fering from the bulk analysis. The octahedral layers are thin (i.e.
stretched) but the shared edges are not short, 2.76 A. The angles Oupex—
T—Oasa1=10842" (mean) and the b-axis is longer than 5=9.18 A for
pite K Mg; Si; Al Oy (OH),. Note the error in b for vermiculite,
is more nearly 9.26 A, Part II.

These apparent contradictions are removed by applying the concepts
in the earlier section and by noting that (a) the net tetrahedral charge
is divided between octahedral and intercalated ions, and (b) “direct
electrostatic interaction between cations and surface oxygens is unim-
portant” (Mathieson and Walker, 1954, p. 254). It is then reasonable
that:

(1) T——Ouaear bonds have excess strength and are noticeably shortened because their sur-
face charge is not satisfied by direct bonds, as in micas. But Oapex should contribute
excess charge to the octahedral bonds, if anything, and T—0upex=1.67+0.01 is
nearer prediction.

(ii) All surface oxygens mutually repel each other because of their net negative charge.
This explains why Oapex—T—Onnear=108°42" (<1094°). Moreover this repulsion will

tend to untwist the surface ditrigonal network, so that the substitution of Al'Y—for—
Si increases b in vermiculites—but ot because of the larger radius of APV! The
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shortening of T—O and decrease of r to 108°42’ gives an aee=4°42", c.f. crobs. =53°
and oate. =8°42" (Part II). The lack of K—O bonds allows (ii) to increase b for ver-
miculite to values>b for phlogopite, even though the octahedral cations would sug-
gest the reverse.

(ii) The apex oxygens carry a net negative charge which should shorten the bonds to the
octahedral cations and prevent the shortening of shared edges; the latter is observed.
The bonds havc a length of 2.07 A against an expected 2.05 A, so that any shortening
is balanced by an overall stretching from the tetrahedral layers.

Celadonite, Kos(Mgo.1Fer ) (Aly.4S13.6)010(0H)y (Zviagin, 1957). The
key to this unusual structure is found in the fact that about half the
Ko.st charge is satisfied tetrahedrally and half octahedrally. The ob-
served K—O bondlengths (Fig. 7, Z.) show that these bonds are (at
2.78 A, mean) under compression due to the strong negative charge
on the octahedral layer. The tetrahedra confirm this by being flattened
(to 7=107°0") to a limit set by the limited expansion possible in the
octahedral layer. Thus the T-——Opuar bonds are strongly compressed
and—as for Si, groups in muscovite—this appears to redistribute the
tetrabedral charge to contract T—Opasa1 to 1.60-1.61 A and lengthen
T—Oupex to 1.71 A, both from an expected 1.63-1.64 A.

The apex oxygens carry the large net octahedral charge, plus a further
charge due to this redistribution, all satisfied by the distant interlayer
K+. They therefore mutually repel each other strongly, so that shared
edges are lengthened to about 3 A and the octahedral layer is very thick,
2.48 A (against 2.12 A). (The distribution of charges on apex oxygens
also ensures that celadonite is a 1M polymorph with Bons=Biaca). In
agreement with previous sections the octahedral cations fill two out of
three sites and leave only 0.1 Mg in the third site.

The final structure is an equilibrium between the strong O—O repul-
sion octahedrally the stretched (Mg, Fe)—O bonds octahedrally
(mean of 2.11 A, against an expected 2.05 A), the compressed and
flattened tetrahedra, and the strong K—Oppex attraction. The result is
a structure with three regular octahedra, one empty, with an abnormally
thick octahedral layer, and with an otherwise unexpected interlayer
separation and ditrigonal surface (Part I).

Xanthophyllite, Ca(MgsAl)(SiAly)01(OH),. Each Ca is six-coordinated
with sur y Takéuchi Sa ga, 1959) and its charge is
fully sat y . The obse C bonds=2.38 A, very close
to an expected 2.39 A. This means that the real bond strength of T—Onasa1
is 0.843 instead of 0.813 and it is understood that these bonds are tend-
ing to be a little shorter than ideal in the refinement now in progress.

Lepidolites. No structural information is available but the fact that the
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charge resides octahedrally should give comparable structural effects to
celadonites. The short d-axis and apparently large interlayer separation
have already been noted (Part I).

Kaolinite (Zviagin, 1960; Drits and Kashaev, 1960). These analyses are
admittedly imprecise, especially when compared with the more crystal-
line polymorph, dickite. The results show comparable features to dickite,
e.g. (a) shorten shared octahedral edges and counter-rotations of oc-
tahedral triads (viz.4+3°, —5°; 46.5°, —4°), (b) O—H—0 bonds of about
3 A, (c) shortened Al~~OH,y 100 bonds, and (d) one OH raised out of
surface. Some contrasts may be highly significant, when related to the
directed interlayer bonds discussed for dickite. Thus the c-axis is bigger
and the b-axis is smaller than in dickite, and the surface oxygen is elevated
from the layer, not depressed into it. The accuracy of the kaolinite anal-
yses do not justify further discussion of these interesting observations
here.

Amesite (Mg AL)(Si Al) Os (OH)y (Steinfink and Brunton, 1956). This
kaolin-type mineral has excess charge on the octahedral cations, which
results in longer T—O,pex bonds (=1.7140.03 A) and shorter T-—Opacal
bonds (=1.6740.02 A). These latter account for an observed a= 113°
but a calculated a=16° (Part II).

Trioclahedral micas. No structures have been published, but the b-axis of
phlogopite (=9.22 A) versus brucite (=9.44 A) shows how the K—0O
bonds act to inhibit the octahedral expansion. Bassett (1960) has pro-
posed a repulsion of Kt by the vertically directed OH proton in phlogo-
pite. The smaller 5=9.188 and smaller thickness of fluorophlogopite
(with d (003) = 3.329 against 3.387 in phlogopite) are consistent with this.
In phlogopite such a repulsion would increase ¢, and also shorten OH—
OH shared edges, i.e. increase b.

Chlorites. Although these concepts should apply in full to chlorite struc-
tures it seems wise to await a really accurate analysis, in view of the com-
plications caused by the additional octahedral layers.

Montmorillonite group. No structural data are available but some obser-
vations connected with Part IT are pertinent. Thus the octahedral layers
of saponites and hectorites can certainly conform to the smaller dimen-
sions set by their tetrahedral layers, especially since only Mg2t—Mg?+
repulsion is involved.

Beidellites and nontronites are unique amongst this group in that their
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cation exchange capacity originates from tetrahedral substitutions almost
entirely. That is, the surface oxygens themselves carry most of the net
negative charge for these layers. In both cases there should be a com-
parable surface O—O repulsion to that postulated for vermiculite; and it
is very inleresting that these montmorillonites appear to have anoma-
lous and high values for b (Table 7A, Part IT). It is also notable that there
appears Lo be a complete series between nontronites and beidellites (Mac-
Fwan, 1961) whereas nontronites and montmorillonites have separate
composition fields (e.g. Radoslovich, 1963a):

OTHER STRUCTURES

The general concepts of this paper should apply to other minerals than
layer lattice silicates, and they were therefore tested against a few com-
parable structures, as recorded very briefly below.

Lilhiophorite (Al, Li) MnO; (OH)y (Wadsley, 1952). Although O—
H——O bonds undoubtedly exist between the two octahedral layers they
are not, as Wadsley suggested, the classical hydroxyl bonds of Bernal and
Megaw (1935) between two OH’s. In the Al, Li layer the (Alg.gs Lip.go)—
OH bond strength is ideally 0.393, and predicted bondlength therefore
1.966, compared with ohserved bonds of 1.93 and 1.95 A. In the Mn layer
the ideal (Mng 72" Mnygt)—O bond strength is 0.603, giving a pre-
dicted 1.96 A against an observed 1.93 and 1.97 A. Moreover the hydrox-
yls can be fairly readily polarized, and hence 1.93 and 1.95 are
both < 1.966 A. Tt is simply this polarization of the hydroxyls (¢.f. dickite)
which sets up O—H——0 bonds of 2.76 A between the layers. The bond
strengths are too low (0.39<4) to tetrahedrally polarize the OH’s, and
the matching surface is an oxygen, not an hydroxyl surface, as in gibbsite.

Sanbornile, Ba Si:0; (Douglass, 1958). The four different Si—O bond-
lengths are directly related to the Ba—O bonds and the Si—S8i repulsion
across shared tetrahedral edges. Ieach Or, O and Oyg has one Ba—O bond
of strength about § and therefore two Si—O bonds of strength §. Each
Orr has three Ba—O bonds of strength # each and hence one Si—Oyyg
bond of strength 2. Hence Si—Omr=1.60, 7.e. less than an expected
1.62-1.63 A, and Si—Op=1.64 and 1.65, greater than 1.62-1.63. The
combined Si—Si repulsion and Si—Ory attraction act together to stretch

still further the weakened Si—O; bonds and these are even greater than
Si—On, viz. 1.68 A. '

Cumminglonite (Mgs.os Fesso Mnou Caoss)(Sivg Alp.1)Own (OH)s. Tt is
unnecessary to invoke a rather unlikely covalent I'e?™—O bonding as
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proposed by Ghose (1961) to explain the short bond of 2.04 A between
M,—Oy (Fig. 1, G.) The bond strengths from O, are about 1.0 to Siy, £ to
M,, and hence § to My which is I'eq 7% Mgo.e5. The expected length for an
(Feg.zs®t Mgoos)—0O bond of strength 2 is around 2.02 A, close to the
observed 2.04 A. This distribution of bond strengths is the reason for the
high proportion of Fe" in this site. If My were occupied by Mg entirely
for example, then these strong bonds would bring oxygens in neighbouring
chains much closer together than 2.97 A, and this is not tolerable.

These three examples help to confirm the general application of the
present concepts, and suggest that a more critical look at bond strengths
and lengths in accurate structure analyses of complex ionic minerals often
would be profitable.

In this connection the structure of tilleyite (Smith, 1953) appears
markedly to disobey Pauling’s Valency Rule if due allowance is made for
the totally covalent nature of the bonds in the carbonate radical (e.g.
Wells, 1962). Perhaps thisis to be expected for ionic structures containing
such radicals, however,

Discussion or CONSEQUENCES 0F THEORY

It must be re-emphasised that, although the present concepts appear to
be applicable with marked success to published data, it is most desirable
that they he tested against further precisely determined structures as
soon as possible. Any implications in other studies on clay minerals
should be viewed with considerable reservations at present. Nevertheless
some of thesc will be of wide interest.

It follows from the “cation avoidance rule” (above) that octahedral
cations will tend to be largely ordered, in the way that Veitch and Rado-
slovich have sought to establish (Part IIT). Likewise the geometrical
model adopted in that analysis is fully consistent with present theories
about the actual structures—at least in as much as it is a geometrical
model. The varying role of the interlayer cations, and the various re-
straints on the p-axis expansion (Parts I, IT, III) also are fully consistent
with present hypotheses. In particular the positive regression coefficient
for AI'Y for montmorillonites is now thought to be understood, and is
not due simply to the larger radius of AI'™ than Si. From Table 7A, Part
IT it is seen by comparing bons and biaeiin that the coefficient for AI'Y has
gained most weight from the beidcllite, nontronite and vermiculite sam-
ples. In each of these minerals the tetrahedral location of the charge
results in an expansion of the sheets, and is of course proportional to the
Al—for—Si substitution. On this basis the coefficient for AI' is real but is
of quite different origin from the other coefficients.

Problems of mica stability under weathering are so complex that they
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must await some trioctahedral mica structures, but at least the position
of K* in muscovite (the most resistant mica) is now seen to be unique in
several significant ways.

The discussion of 2M; muscovite has clearly linked that polymorph and
its “distorted” structure with asymmetric forces between the K+ and the
apex oxygens, and also with the distribution of octahedral cations. The
writer has already guessed at similar forces distributed rather differently
which appear to control the formation of other mica polymorphs gener-
ally, and this subject is at present under more intensive study.
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ABSTRACT

The reported limits of stability (from synthesis studies) and also the observed ranges
of compositions for natural specimens may be used as independent checks on the validity
of current theoretical models of these structures. These models (Parts I-IV) allow broad
Jimits to be set to the strains from preferred lengths and shapes which different structural
components (bonds, polyhedral groups) can reasonably tolerate in adjusting to some local
dimensional misfit. The formation of micas in which such strains should far exceed these
limits should not be possible, even in the laboratory. Micas in which the strains would
need to be unusually large may be expected to adjust their compositions rapidly, as soon
as their environment allowed any change. They may therefore be synthesized but should—
for at least this reason—be rare as natural specimens. It is not yet possible, of course, to
predict precise composition limits for micas on structural grounds.

An examination of the detailed published composition limits for micas shows that the
present structural models are not at all incompatible with these, nor is there any dis-
crepancy with the rather less well defined limits of other layer silicates.

INTRODUCTION

A preliminary attempt has been made to relate recent theoretical
models of structures of the layer silicates! to their reported limits of
chemical composition. Although at this stage several severe restrictions
must be observed it is still useful to review the structural concepts in rela-
tion to observed limits of composition for at least two reasons. Firstly, if
the structural concepts are essentially correct then no minerals (natural
or synthetic) should be found for which the internal stresses would ap-
pear to be totally incompatible with even a metastable existence at room
temperature. The observance of such a “forbidden” structure would re-
quire re-appraisal of the structure models. Secondly, it now seems possible
to suggest at what compositions the internal stresses and strains (due to
increasing misfit within these structures) should start to become large. It
seems reasonable to assume that minerals existing metastably but with
very large internal stresses would undergo some change as soon as any
factor in the local environment becomes at all conducive to change. That
is, the probability of such minerals being found naturally should be
small for this reason alone, in addition to any other controlling factors.
Natural composition limits (e.g. those of Foster 1956, 1960 a, b, ¢) are not
likely to include minerals for which large internal stresses would be pre-
dicted structurally. Again this is mainly a test of the compatibility of

1 Discussed in Parts I-IV, i.e. Radoslovich and Norrish (1962), Radoslovich (1962a),
Veitch and Radoslovich (1962), and Radoslovich (1962b).
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present structural concepts with observed composition limits. There may,
however, be some instance where there is no other acceptable explanation
for an observed restriction of composition, and the suggested structural
restraint then merits further study.

Since the studies defining composition limits have been of at least two
distinct kinds it is necessary to set certain restrictions on the present dis-
cussion.

Foster (1956; 1960 a, b, ¢) has very carcfully assessed the probable
composition limits for naturally occurring micas from a critical review of
published chemical analyses, essentially of specimens found by geologists
exploring the earth’s surface. Nothing is thereby implied about the pos-
sibilities for forming micas of more extreme composition either in the
laboratory or in some quite unusual geological environment. The ob-
served limits of natural micas include those imposed by the requirements
that a given mica must exist at least metastably under near surface
conditions (e.g. of temperature, pressure and chemical environment) for a
sufficient period after formation, so that there can be a small but real
probability of a specimen being found somewhere.

Yoder (1959) and others have, as an entirely different approach,
studied experimentally the stability fields for the layer silicates for vary-
ing temperatures, pressures, known melt compositions and other param-
eters. Such laboratory studies not only define the appropriate stability
fields, but also confirm that many layer silicates formed stably at ele-
vated temperatures and pressures can be quenched and retained for in-
definite periods metastably at atmospheric conditions. However, the
stability fields of natural micas are probably more restricted, because
more elements are available under geologic conditions (allowing alterna-
tive minerals to crystallize) and because the natural abundance of the ele-
ments may not be favorable for the formation of certain micas. Further-
more their formation temperatures and pressures may differ considerably
from those at which the experimental studies have been made, e. g. by
having a smaller range.

Any discussion of observed composition limits in relation to structural
ideas must therefore take note of the nature of those reported limits.
Moreover, there may well be no direct relation between structure and
composition limits in many cases. For example a mica of a certain un-
usual composition may never be found naturally simply because nature
never provides the right physical and chemical conditions of formation.
Again, such a mica may not persist metastably at normal temperatures
even though natural conditions have existed suitable for its formation;
or if it persisted through quenching then it may break down extremely
rapidly for physico-chemical rather than specifically structural reasons.
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It is equally difficult to use the available structural data to predict an
acceptable stability field for some unusual theoretical mica. Even if the
available structure analyses permit sensible estimates of the internal
stresses such a mineral would have at room temperature they do not
allow satisfactory extrapolation of these estimates to the conditions of
rock formation. There are virtually no direct studies of the variation of
given bondlengths with temperature, except unpublished data by Young
(1962) which show—within the moderate errors involved—mno significant
change in the Si-O bonds in quartz up to 600° C.

From the empirical study (Part IV) of various interatomic forces in the
layer silicates it seems that micas should be rare whose compositions
would contravene one or more of the following restraints.

(1) In the interlayer region structural adjustments should be possible
which allow each cation to approach approximately to within con-
tact distance (sum of ionic radii for the requisite coordination)
with at least six surface oxygens (Part I). Also, two interlayer cat-
ions which would strongly influence the layers of a structure in op-
posing directions are unlikely to be found together in one mineral;
the local strains would be too severe.

(2) For the tetrahedral layers there are limits to the stretching (in
their own plane) which may be imposed by the rest of the struc-
ture. Any such stretching should not require the basal oxygens to
approach intolerably close (aver. O-O not less than 2.55 A) to the
apex oxygens along tetrahedral edges.’

(3) For the octahedral layers there are limits both of dimensions and
(probably) of arrangement. Such layers tend to be as large in the
a-b plane as the shortening of shared octahedral edges to about
2.35 A (with some slight lengthening of bonds) will allow (Part IV),
but can be no larger. Conversely a contraction can be imposed on
the a-b dimensions of octahedral layers, by lengthening shared
edges, giving a closer approach of octahedral cations. Clearly the
mutual repulsion of the cations will rise rapidly as they come closer
together, especially since the intervening (and partially shielding)
anions must move apart along shared edges at the same time. Thus
any contraction which a given octahedral layer must undergo to fit
into some hypothetical structure will be effectively limited by this
increasing cation-cation repulsion.

The apparently general tendency towards the ordering of
octahedral cations of different valency and size (Parts IIT and IV)
implies further possible structural restraints on composition limits.

1 This is discussed further in Part VI (Radoslovich, 1962c).
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Foster’s studies (1956, 1960a, b, ¢), which also summarize much
other work, have shown that the layer compositions of micas are
best discussed under the following headings:

Dioctahedral micas: muscovites, celadonites.

Trioctahedral micas: phlogopites, biotites, siderophyllites
Lithium micas: lithium muscovites, lepidolites, siderophyllites

SoME OBSERVED COMPOSITION LIMITS

Muscovile-paragonite. Eugster and Yoder (1955) studied the stability
limits of solid solution between muscovite and paragonite. Their pre-
liminary phase diagram for the subsolidus region of this join shows very
limited solid solution at normal temperatures (about 3%, paragonite in
muscovite and vice versa) with a steady rise in solid solution with tem-
perature. These results appear to be explained by the very different situ-
ation of K in muscovite and Na in paragonite (Parts I and TV). In 2M,
muscovite the K actively increases the sheet dimensions which the octa-
hedral layers would otherwise adopt, and also props successive layers far
apart. The average twist tetrahedrally is 13.7° and half the tetrahedra
are forced to be elongated along ¢*. In paragonite Na should affect neither
the & nor ¢ dimensions, but possibly causes a flattening of tetrahedra
along ¢*, along with rotations of about 193°. Opposing tetrahedral sur-
faces (of oxygen) also should be in contact.

If isolated Na ions are to replace m e then the lar
b-axis (8.995 A) will req rther tetr al ing and rotat
around these Na jons beyond that predicted for paragonite (6=8.90 A).
The difference in layer separation (n=3.37 A observed for muscovite and
n=2.6 A predicted for paragonite, Part I) is especially important here.
That is, the local strains and stresses around “impurity’’ Na ions would
appear to be extremely severe; and excess of Na during muscovite forma-
tion should certainly lead to a mixture containing some paragonite, Like-
wise the amount of, say, Na tolerated by muscovite would be expected to
rise with temperature as the increased thermal motions allow the musco-
vite structure to accommodate local strains more readily.

Sodium micas. Sodium analogues of the trioctahedral micas are not com-
patible with the proposed restraints. The most favorable hypothetical
case in Na-phlogopite. If we allow the octahedral layer (which is 9.4 A in
brucite, Part 1V) to be as short as 9.1 A it is still impossible to establish
six Na-O distances under 2.5 A. To do so would require grossly flattened
tetrahedra (7 about 99°, well below the limit of 106°, Part IT) and a high
rotation, «, of 22°,

Similar calculations show that in any hypothetical Na-lepidolite the
weak Na-O bonds must grossly distort the tetrahedra (i.e. aver. r <106°)
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and also contract the octahedral layers to some value below b=28.8 A.
Even if such a structure could be synthesized it should be very rare
naturally.

On the other hand the additional AI'V in ephesite, Na;.11Cag.10 (Ali.g0
- Feg.eee® Lig.ao B/Igo.m 1\’Ig0.04 1\/Ig0.04 Feo.oz”) (Sil.% A12.05) Oo.es(OH)2.34 To.04
taken with the short b axis set by the dioctahedral layer ensures a high
rotation (a=21°36’, Part I) which permits the appropriate Na-O con-
tacts. This rare brittle mica, together with paragonite, seem to represent
the only reasonable Na-mica compositions from a structural viewpoint.

Turning to the potassium trioctahedral micas, Foster (1960b) has
critically examined the published analyses of more than 200 natural
specimens, drawing detailed conclusions about their observed composi-
tion limits. Her results are summarized in Fig. 1, the two main areas of
which are discussed below.

Trioclahedral micas very high in Fe**. The absence of such micas naturally
is at least compatible with the marked contraction required in their
octahedral layers. For example annite, K Fez?t (SisAl)O1(OH)2 has not
been observed naturally (Foster, 1960b) but has been studied extensively
as a synthetic product (Eugster and Wones, 1962). It can, of course, only
be assumed that annites synthesized in the presence of iron oxide at con-

EXPLANAT ON
Phog pi
Mg biot
bia e
Mg b

Siderophyllites and
Iepidomelanss

F1c. 1. Relation between Mg, et (Mn2*) and R* (Al Fe** and Ti) in tri-
octahedral micas, from Foster (1960b).
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ditions of high hydrogen fugacity represent a close approach to the ideal
formula. Assuming also that the kaolin regression relation gives a usable
estimate of the “unconstrained” octahedral dimensions (Parts II to IV)
then ot is around 9.6 A, The required contraction to boys (=9.348 A) is
then quite large. Moreover, with e, = 9.31 A the tetrahedral layer must
expand and rotate to establish K-O contact distances (=~ 2.8 A); the esti-
mated average O-Si-O angle 7=107°10" and rotation =286’ (Part I).

The analogue, ferri-annite, K Fe?t (SisFe?t)01(OH), has also been
synthesized, and cell dimensions determined by Donnay and Kingman
(1958). This, too, should have flattened and slightly rotated tetrahedra,
with 7 about 1072° and a=8°, if K-O bonds around 2.8 A are to be estab-
lished.! In both these synthetic high Fe?t micas the tetrahedra and octa-
hedra must be severely distorted from their preferred shapes in layer
structures, in order to fit together with each other and with the desired
interlayer distances. Under most natural conditions a little Al, Fe* or
Mg will be available, and it seems very likely that smaller cations such as
these will enter the octahedral sites also, rather than Fe?* cations alone,
giving the naturally occurring siderophyllites, lepidomelanes and high
iron biotites. Very little unit. cell data are available on such minerals, but
the regression relations (Parts T, IT) may be used to estimate roughly the
tetrahedral and octahedral distortions required to assemble such micas
allowing six K-O bonds around 2.8 A. Three specimens for which Foster
(1960a) gives explicit structural formulae are particularly high in Fe?*,
and for these

boct bcalc btetr boct - bcnlc T a
siderophyliite, no. 132 9.44 929 9.31 0.15A 1084° 7°
lepidomelane, no. 126 9.48 9 33 9.32 0.15 107% 73
biotite, no. 36 9.46 9 30 9.37 0.16 109% 7

where (boet— beato) is an estimated octahedral contraction, r measures the
tetrahedral flattening (aver. O-Si-O,,ix angle), and « is the angle of tetra-
hedral rotation.

For each of these natural high Fe?t micas the (estimated) octahedral
contraction from the expected (usual) dimensions should not lead to un-
duly long shared edges octahedrally. Likewise the predicted tetrahedral
adjustments are readily made, especially for the biotites which tend to
have>1.00 AI'Y (nearer 1.25 Al Foster, 1960b)—for these a simple
tetrahedral rotation is sufficient.

These data obviously allow no rigorous conclusions, but suggest that

1 The structure analysis in progress (Morimoto and Donnay, 1962) shows a small but
definite tetrahedral rotation.
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the structural strains will exceed tolerable limits for natural biotites at
about those composition limits drawn in the high Fe?" region by Foster
(1960b).

Trioctahedral micas high in R*r. Most biotites appear to be 1M poly-
morphs and presumably belong to space group C2/m (Smith and Yoder,
1956), in which one octahedral site is at a center of symmetry, and the
remaining two are symmetry-related. Tt is believed that under these
symmetry conditions for trioctahedral micas the R* (and R*") cations
tend to substitute into the phlogopite structure mainly in the unique site.
This hypothesis of considerable ordering was studied statistically in Part
III, and has an acceptable physical basis in terms of interatomic forces
(Part IV). If the substitution were 1R* for 1R** and entirely as above
then the limit would be clearly 1.00 R* in the trioctahedral mica struc-
tures. In fact, as Foster points out, the charge relations mean that as little
as 0.67 R3t substitutes for 1R?*t) and also some R** will, on the average,
be found in the symmetry-related sites. Most biotites high in R*t are
therefore likely to be somewhat deficient in all three octahedral sites.
Nevertheless Foster (1960 b) has shown conclusively that in the triocta-
hedral micas the essential upper limit to the number of R*" and R**
cations octahedrally is 1.00 (R34 R*¥) per three sites. A strong correla-
tion with cation ordering structurally may reasonably be deduced.

There is, as yet, no direct structural evidence for ordering amongst the
octahedral positions of biotites. Takéuchi and Sadanga (1959) have pub-
lished a preliminary analysis of the xanthophyllite structure (space
group C2/m) in which they place the Al 7 octahedrally at x,y, z=0, 3, 3
and the Mgy 13 mainly at x, y, z=%, 0.328, 7 and 3, 0.672, 3.

Toster also showed that the total occupancy octahedrally falls from
three to about 2.6! as (R¥*++4R#H) rises from zero to one, The lower limit of
(1.6R*+1.0R*") implies, however, that the corresponding trioctahedral
mica structures require approximately 0.75 to 0.8 R*" in each of the two
symmetry related sites. This lower limit of, say, 0.75 R?* in each related
site cannot be predicted structurally, but in view of the necessary balance
of forces octahedrally (Part IV) it is at least to be expected that a major-
ity of sites should be occupied in specimens persisting naturally—as
TFoster has observed.

Muscovile—lrioctahedral micas. It is well known that there is very little
solid solution of muscovite towards the trioctahedral micas (e.g. Foster,
1960 b; Yoder, 1959); muscovite departs only slightly from dioctahedral
status, by the addition or substitution of R*" and R*" octahedrally. In

1 The criticism by Eugster and Wones (1962) implying that the octahedral occupancy
is usually nearer 3.0 strengthens the present discussion.
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discussing the possible solid solution of muscovite and phlogopite, biotite
and siderophyllite the latter minerals impose the conditions that Al'V lies
between 1.00-1.50 cations and K between 0.90-1.00 cations per formula
unit (Foster, 1960 b). A dioctahedral mica with Al'Y<1.00 lies in the
muscovite—celadonite join, discussed later. By considering two extreme
cases it then becomes clear that the maximum octahedral occupancy in
the muscovite structure (excepting Li-muscovite) is effectively <2.2 per
three sites.

(1) Suppose that the structure retains 2.00 Al octahedrally but accepts R*" or R%*
into the vacant and larger octahedral site. Then to maintain charge balance Al'Y increases

at the rate of 2n AllY substituted for 2n Si, for each n R*2 added octahedrally; and this is
more favorable than the addition of R#*. For example the hypothetical muscovite

(Alzl\lgo 15) (Si2 10AlL 30)010(0H)2K1‘00

is a typical biotite tetrahedrally and in K content; but the additional 0.3 AI'Y would

ly ureasf  ws. The 0.15 ould ly fit into nt
wi 5=9.0  Then by, =9 a= 4 and 9= A
(Part I); i.e. the ased tetrahedral ns should re successive layers to be
far out of contact beyond the obse covite sep n, n=23.37 A. The stresses

in the interlayer region obviously are becoming critical very rapidly compared with the
small increase in octahedral occupancy from 2.00 Al to 2.15 (Al-+R?*).

(2) The interlayer stresses are not increased if the tetrahedral composition is held con-
stant at SizAl and R2** (or less favourably R3+) substitutes for Al chemically. There ap-
pears, however, to be a lower limit to the amount of Al**—or possibly (APT+R*)—
required to maintain a stable muscovite structure. In a survey by the writer of 40 good
muscovite analyses in the literature the total number of octahedral cations ranged from
1.9 to 2.2 and the minimum number of Al was 1.7 per three sites. Studies on Li-muscovites
(below) also suggest a minimum of 1.7 Al octahedrally, for a stable muscovite structure.

It should be noted that in the 2M; muscovite structure (Radoslovich,
1960) the occupied sites are symmetry related and the unoccupied site is
crystall  ap distinct, 1; and the ge Al-O bond is 1.95 A but
the ave ef 7 of the vacant site A. These facts support the
proposed ordering of octahedral cations (Part IIT) by which the larger
divalent ions (and Li) “substitute’ for Al mainly into this distinct site
rather than directly into the Al sites. The lower limit of 1.7 Al is equiv-
alent to 85%, of the occupied sites retaining Al in a stable muscovite
structure, which at least is not surprising when the appropriate forces are
considered in detail (Part IV). Below this level of R** occupancy (or with
excessive replacement of Al directly by the larger Fe®t) the muscovite
structure is either unstable or open to rapid attack. This is interesting in
relation to the similar level of occupancy by R ions (about 75%) in the
same sites, proposed above for trioctahedral micas.

If an effective limit of 1.6 cations octahedrally is accepted for Al (or
possibly Al+Fe#t) then this implies a maximum of 0.60 R*" to maintain
charge balance, and a total of 2.20 cations octahedrally.
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These two extremes both lead to the conclusion that muscovites
should not exceed approximately 2.20 cations octahedrally; and of course
most muscovites will generally be nearer 2.00. The conclusion is still valid
for the majority of specimens which simultaneously show some excess
AI'Y and some deficiency of AIY!. Muscovites therefore can show very
little solid solution with the trioctahedral micas.

Muscovite-celadonile. Foster (1956) has studied the structural formulas
and charge relations for the complete composition range of natural dioc-
tahedral micas from muscovite, KAL(Si;Al)O;s (OH); to celadonite,
K (Mg, Fe)Siy O1(OH)s. Throughout this range the layer charge and
potassium content remain effectively constant,; the major change is in the
shift of the charge from the tetrahedral to the octahedral layers. This
suite of micas also remains strictly dioctahedral.
Yoder and Eugster (1955) have discussed four possible substitution

schemes in muscovite, viz.

(a) Si— KAl (c) MgSi— 24l

(b) (H;0)* — K (d) 2Mg — KAl

and have plotted (Fig. 2) the observed composition ranges of natural min-
erals. They point out that (a) is unlikely because ““on Morey’s evidence a
given leaching of K,O implies a six-fold loss of SiOq;”” and (d) which leads
towards the trioctahedral micas is only possible to a limited extent.

Geladonite K Mg Fe Siy 0, (OH),
Al-Celadonite K Mg Al Si, O, (OH),

Muscovite K AI2 (Si! Al 0)0 (OH)2 Pyrophyilite Alz Si, O (()H)2

Fe-Muscovite K Fe, (Siy Al O, (OH), Fe-Pyrophyliite Fe, Si, 0Oy (OH),

F16. 2. Plot of tetrahedral R*" and octahedral R3 in atom proportions of dioctahedral
micas and related minerals; from Yoder and Eugster (1955).



LAYER-LATTICE SILICATES 357

Yoder and Eugster suggested that some synthetic muscovites lie close to
the muscovite-oxonium muscovite join, rather than the muscovite-
montmorillonite join (substitution (b)). Substitution (c) leads to high-
silica sericites, an observed solid solution effect.

Both of the hypothetical substitution schemes, Si—KAIV and 2Mg
—KAIY, seem unlikely to occur to any extent when the bonding of K in
muscovite is considered in detail (Part IV). Both substitutions result in
fewer and weaker direct bonds between the remaining K and their six
nearest anions. At the same time the surface anions around unoccupied K
sites no longer have their valence charge fully satisfied by immediate
bonds, and this should result in some anion-anion repulsion between
layers at those sites. That is, although these substitutions preserve over-
all neutrality they appear to weaken the effective K-O bonds and to in-
duce localised repulsions between layers at unoccupied cation sites. The
net effect would seem to be that K-rich regions will hold any incoming K
and K-poor regions are more readily able to lose their remaining K. (Such
effects are masked in vermiculites because the intercalated ions are sur-
rounded by hydration shells and do not form direct bonds in six-coordina-
tion.) The substitutions Si—KAl and 2Mg—KAl, which both lead to
low-K muscovites, should be of very limited occurrence in unique struc-
tures for this reason alone; but the substitution HsOt—K should be
rather more possible because in this case K+ is simply replaced by (H;0)*,
with the same charge and similar size.

The substitution MgSi—2Al is not of course limited in this way, and
high-silica sericites (i.e. phengites) are well known. There is a limit to this
substitution, however, which will be set by the lower limit of AIVI re-
quired for the stable muscovite structure (see above), viz.

Rf;Mgo.d(Sia.dAlo.(i)Olo(OH) 2K1.0.

This is in fact a composition on the muscovite-celadonite join at the ex-
treme limit of the high-silica sericites towards glauconites (Fig. 2). In the
series of structural formulae quoted by Foster (1956) the Al-dominant
micas with the least AI'V are successively:

Phengite Xo,95(A11.50Fe$?5Fe$i7Mgo 25) (Sis.40Al 60) O10(OH)

KU 83

Metasericite Xo oa(AlL g 5Mgo 5) (Sis 57Alp.45)010(OH)
K(] 82

Alurgite X1 01(AlL2sFeq.0Mny 04F6$%1Mg0 61) (Siz.59Alp 41)O10(OH)
KO 96

Whereas phengites are known which have a unique structure it is possible
that metasericite may refer only to mixed structures or mixtures, as
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uniaxial and biaxial material.
The celadonite structure (Zviagin, 1957) is different in important re-
s t IV) from the ovite st e, itisa mica
( 56) with space C2/m. n a ‘“‘ce nite”’
of composition
(Ifey sMgo 7)(Sig 6ATp.4)O010(0OH) 2K 5

in which the 1.4 Fe is all Fe** (by implication, to keep the charges bal-

). Al gh the three al sites are of equal size the two re-

sites ain (1.4 Fe¥t ) and the unique site only 0.1 Mg. If
the size of the “hole” available to the octahedral cations was the main
factor in controlling their occupancy then for this celadonite an equal dis-
tribution of two cations between the three sites of equal size would be ex-
pected; this further supports the discussion in Part IV. The cation dis-
tribution for Foster’s end member celadonite

Ko.es(Alo 07F€[3)23F€?)24NIg0 77)Si4 00010(0H)2

is not known but seems just as likely to include a practically vacant third
octahedral site, with the implication that celadonite is stable with only
0.5 Fed3t in the (related) sites.

TFoster ( ) has observed that celadon co n Fe** rather
than Al indeed the theoretical end m er Yoder, 1959)

leads to a need for octahedral bonds to be as long as possible at the
celadonite end.

of

an al

de 80
nt.” Yoder and Eugster (1 and 1959) also have e

that most “illites’ are m es o layer structures,
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‘““can be regarded only as composed of two or more phases.” It is now
shown that dioctahedral micas near to the muscovite composition cannot
be expected to have single unigue structures if they are K-deficient, ex-
cept for the replacement, (H;O)*—K*. The region “illites and hydro-
micas” on Fig. 2 must therefore represent mixed structures or mixtures,
since a pure (H30) Al, (SizAl) O10(OH)2 mica would be plotted coincident
with muscovite in this diagram. A “structural compositional diagram”
matching Fig. 2 may be drawn tentatively as in Fig. 3, in which the
names refer to “structure type” specifically.

This further implies that mixed layer structures with dioctahedral
mica layers as components must have the interlayer sites between succes-
sive mica layers largely occupied by K. Equally there should be little K
between the remaining layers, except as loosely held exchangeable K.
Hence it seems desirable to reserve the name ‘“hydromica’ for single
phase minerals with the three-dimensional muscovite type of structure,
in which an approximately 1:1 replacement of K+ by (H;0)* can be
shown to have occurred.

Muscovite-lepidolite. Micas with compositions between muscovite and
polylithionite have been extensively studied, e.g. Stevens (1938), by
Levinson (1953) who particularly studied lepidolite polymorphism, and
by Foster (1960 ¢) who has also discussed the relations between structural
type and composition,

Celadonite K Mg Fe Si, 0,, (0H),

N
\©
o
20
- a Q Q
o % ) . > %

TETRAHEDRAL R*’

Muscovite K AL (SiyAl) O, OH), Pyrophyllite Al Siy 0 (0H)

F16. 3. Same plot as Fig. 2, showing suggested limits for various “‘structure types.”
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Foster (1960 ¢) has considered in detail chemically the ways in which
i can substitute for Al in muscovite, and has set composition limits by
examining the structural formulae of 80 naturally-occurring aluminum
lithium micas. It has been realized for some time that the trioctahedral
lepidolite structures are quite distinct from the dioctahedral muscovite
structures. Foster has therefore restated earlier work about their struc-
tural composition limits, reaching the conclusion that “both the com-
posit and structural cont  ty of the alu thium series is
brok the point in which ch e of structure ce, and the iso-
morphous series that starts with muscovite extends only to an octahedral
occupancy of about 2.45 sites and a Li occupancy just short of 1.00 octa-
hedral site.” Levinson (1953) suggested that the maximum Li occupancy

co ut 3.39%, Li,O
sp Li up to 4.3
(1. “lithian mus
structure.

Lithium can substitute for AI'Tin muscovite in all proportions from the
s ea ion o the vacant site d to a ratio of 1 Li for 1 Al
( er, 0c). 4 shows that na 1 micas may only slightly

exceed the replacement ratio of 3 Li:1 AIV! for specimens low in Li, and
otherwise not at all. This is due to the position of K in the muscovite

(and p bly in the lepidolite) structure V). higher 0s

—e.g. addition of T.i in the vacant si e ne ty forc  ge

halance requires that Al'Y increases and Si!V decreases. This means

greater twists, e, and fore even greater separation, 7, than in

muscovite; such struc should be readily ed, if they are formed
at all.

On the other hand the substitution of Li in natural muscovites would

y induce a disproport te se in AIlY than in AlY

this would shift the r to the oct 1 layer for a

mica with essentially the muscovite structure. The theoretical mica

replacement ratio 5:1. This keeps the layer charge lar edral
which is very rea ble structurally for the muscovite nt of
octahedral cations.

It was suggested above that the muscovite structure required about
0.8 Al in two sites. It is probable that such a muscovite could accept, on
the average, a further 0.8-0.9 Li in the Jarger vacant site; and this leads
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I'16. 4. Relation between octahedral sites occupied by Li and vacated by Al
in aluminum lithium micas; after Foster (1960c).

to an acceptable decrease in AlI'Y of 0.35, slightly smaller than the de-
crease in AIVT of 0.40, viz.

(Al goLio.s5) (Sis s5Alg 65)010(OH) K1 00

The lower limit to AIT appears to set a lower limit to ALY, 4.e. an upper
limit to Li, which is consistent, moreover with the structural require-
ments. This mica should represent about the maximum octahedral
occupancy for muscoviles; and the sum of the octahedral cations, 2.45, is
the same as Foster’s observed limit,

Lepidolites near polylithionite, K(Al Lis) Siy O19 (OH)s, in composition
will probably have highly ordered octahedral layers, with the Al in the
unique site and the 2 Li in the symmetry related sites. Foster (1960 c)
noted however that lepidolite structures may contain as much as 1.4 AIV!
(implied e.g. in Fig. 4) with an ideal composition,

(Aly 4oLy, 40) (Siz.c0Aly 10)O10(OH) 2K} oo

Although partial octahedral ordering of the above type may still remain
the AIYI obviously must occupy some of the symmetry-related sites. At
present it can only be noted that such structures occur naturally, and
that lepidolite structures show little-understood peculiarities in this as in
some other aspects (Part T).

Trioctahedral micas-lepidolites. Foster (1960 c) has examined about 45
ferrous lithium micas ranging in composition between siderophyllites and
lepidolites (Fig. 5). She also records data on taeniolite, ideally (Mg, Li)
Sis O10 (OH) K, and on three Li-biotites; these data have been inserted as
nos. 1-4 on Fig. 6. Foster comments:

“The prototype, siderophyllite, is structurally trioctahedral, and, as replacement tends to
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EXPLANATION

*
1desl end members

Lithian muscovites and
transilion mucas

.

Lithian muscovites and transilion
micas whose siruclure has
been siudied

)
Siderophylites, aluminian lepidomelanes.
and lerrous lithiurm micas

a

Lepidoliles

a

Lepidolites whose slruclure hay

L pdol of bee ded

2 oo w2
s rde boundary
* @
o, © N o 2 Id es
o 00(@

Lithlan muscovites

Sderophyid  nd
m epidom

F1G. 5. Relation between Li, R** (FFe**, Mn2t, Mg) and octahedral R*" (Al,
TFe*t)+Ti*" in lithium micas; from Foster (1960c).

increase octahedral occupancy, the ferrous lithium micas are also trioctahedral and no
structural adjustments are necessary. The ferrous lithium mica series is, therefore, not
broken as is the aluminium lithium mica series.”

On this basis a “structural composition diagram’” is now proposed (Fig.
6) in which the trioctahedral and dioctahedral areas each correspond to
continuous structural series. These composition limits are reasonable in
terms of the structures involved, as follows. Taeniolite represents the
maximum Li substitution possible in phlogopite to maintain charge bal-
lance. Approximate sheet dimensions and other data for this and its iron
analogue may be calculated (Part TI) to be:

Composition beate et T new bietr o
(Mg2Li)Si{010(0OH):K 9.14 9.05 107° 9.18 5024’
(Feg?tLi) Sis010(OH),K 9.26 9.05 105.7° 9.32 6°42’

That is, in taeniolite (which is rare) the stretching required in the tetra-
hedral layers to meet the expected sheet dimensions is just within the ac-
ceptable limits (r=1063°). In the ferrous analogue the misfit is excessive,
and if such a mica were formed the octahedral layer would have to be
quite unu t hick fora f . Structurally thiss s
unlikely t d even less li ist naturally. Taen e
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is reported to have the 1M structure (Foster, 1960 c) with which on
ordered octahedral arrangement would be consistent. Similar arguments
show that the present structural concepts are compatible with the other
limits sketched for biotites (Fig. 6). Normal micas cannot of course have
compositions in the blank upper right portion of this diagram where there
would be an inherent lack of charge balance. The discontinuity between
muscovite and siderophyllite was discussed earlier.

The join siderophyllite-lepidolite (Fig. 5) appears to be continuous
from chemical data (Foster, 1960 c) which may be expected from struc-
tural considerations also. Foster gives as average formulae:

siderophyllite (R{"sFer t6)(Siz s5A11.15)010(OH)sK 1.0

zinnwaldite  (RinsFeqiLis 00) (Siz 55Al0.65)O010(OH, F)2K; g0

lepidolite (R} osFep 5Lix.z0) (Sis s1Alo.30)Or0(F, OH)oK; g9
(ferroan)

The octahedral layer is probably largely ordered throughout this range,
with the Ry.0s*" mainly in the unique site. The two related sites are then
largely occupied by Fe* in siderophyllites and by Li in polylithionite;
t.e. structurally the Li ions replace Fe?t jons directly. (An interesting
consequence is that the role of K changes continously from contracting
phyllite 1 to expand  lepi layers and propping
) Though isasyetn  rect ural evidence the likel
of octahedral ordering (Parts III, IV), and Foster’s chemical data both
strongly support this hypothesis. In the ferrous lithium micas “the octa-

Li
[ [ 10
80
7
Polylithionite ° 30
40
Taenlolite
30 70
Li-Mu
80
[ ]
Muscovite Phiogopites
00 80 70 00 80 40 30 10
OCTAHEDRAL R* R*?

F16. 6. Same plot as Fig. 5, showing suggested limits fo. various dioctahedral
and trioctahedral structural series.
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hedral R** content is remarkably constant over a range in Li,O content of
from 1.59 Lo 4.8%; ‘“‘suggesting that these cations are not involved in the
addition of Li.” But a study of the Li-Ie** relation shows an approxi-
mately linear decrease in Fe?* with increase in Li “which is suggestive of
replacement.” The replacement ratio is about 1.3:1 rather than 1:1 be-
cause of other adjustments made in the number of vacant sites and in
layer charge distribution. Chemically the range of R%" for minerals be-
tween siderophyllites and lepidolites is (1.15+0.10)R*" approx., sug-
gesting that most of the R*" ions are in a particular octahedral site
throughout this series.

Olher clay mineral groups. At present the other clay mineral groups are
generally less well defined chemically and structurally than the micas,
and considerable restraint is needed in extending the present discussion
of composition and structure to them. However, the study of interatomic
forces (Part 1V) and of the probable ordering of octahedral cations
(Part ITI) applies to the layer silicate structures generally. It may there-
fore at least be noted here that these structural concepts are compatible
with several broad conclusions about composition ranges in these other
minerals. In particular a discontinuity between dioctahedral and tri-
octahedral minerals may be expected in other groups (as in micas) if octa-
hedral ordering of cations is fairly widespread. The discontinuities will be
more obvious if there are lower limits to the number of symmetry-related
sites which must be occupied by certain cations (as discussed above for
the micas).

MacEwan (1961) has noted that amongst the naturally occurring min-
erals in the montmorillonite group “there are two distinct series (diocta-
hedral and trioctahedral) with very limited solid solution.” In diocta-
hedral montmorillonites there are between 2.0 and 2.2 cations per three
sites. In the trioctahedral analogues Mg ranges from 1.8 to 3.0; or in the
sauconites Zn ranges from 1.5 to 2.5 (Ross, 1946) with a total cation occu-
pancy of 2.7 to 3.0. The present ideas about octahedral ordering are en-
tirely consistent with these figures.!

1 Roy and Roy (1955) have studied the system MgO-Al,03-Si0,-H,O extensively. They
state that due to considerable experimental difficulties ““the present study appears to be
fairly conclusive only insofar as it shows the existence of relatively pure “single” phase
montmorillonites extending about 10 molar per cent into the diagram from each of the
ternary systems” (i.e. from talc and pyrophyllite). It is also to be noted that their “ideally”
stable montmorillonite has an octahedral composition of approximately (Mgg 754l 5),
which is within the proposed structural limitations. If the present concept of octahedral
ordering is widely applicable, then their assumption of a continuous series of montmoril-

lonites (made “to greatly simplify the representation of the phase relations”) is not in
fact valid.
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Nelson and Roy (1958) have argued strongly that there is a clear
structural discontinuity between dioctahedral kaolins and their tri-
octahedral analogues, adding that “the crystal chemistry of kaolins ad-
mits no isomorphous substitutions in the ideal formula.” The structure
analysis of dickite (Newnham, 1961) and kaolinite (Zviagin, 1960) show
no sign of Alin the third site, from which we may conclude that in these
minerals the appropriate octahedral sites must be occupied and the
arrangement a fully ordered one. In view of the tight network of octa-
hedral forces, at least in dickite (Part IV), perhaps it is not too surprising
that defects in the form of substituted ions of larger radius, or 51mp1y of
occasionally unoccupied sites are not readily tolerated.

With the chlorites the additional octahedral layer per unit cell allows
many more variations in cation ordering, and it is hardly possible to con-
sider the observed composition ranges (Foster, 1962) until several struc-
ture analyses have been published. However the high degree of octa-
hedral ordering in prochlorite (Steinfink, 1958) may be noted with inter-
est. In the refinement of Mg-vermiculite Mathieson (1958) made no at-
tempt to distinguish between the occupancy of the three crystallographi-
cally distinct sites. The Cr-chlorite structure recently determined by
Brown and Bailey (1963) is fully ordered octahedrally in the sense pre-
dicted in Part ITI. All three sites in the talc layer are occupied by Mg;
and in the brucite layer the unique site, 1, contains (Cro.7Alp.2 Mgy.1) and
the related sites are occupied by Mg.

DiscussionN

The internal strains which the layer silicates can tolerate—in the form
of stretched bonds and highly distorted polyhedra—are limited, and
some broad physical limits can be suggested from the previous empirical
study of their interatomic forces (Part IV). On this basis we may con-
clude that certain hypothetical micas are structurally prohibited (e.g.
Na-biotites) or highly unlikely to be synthesized (e.g. Na and K equally
in muscovite). In other cases it seems that should the particular struc-
ture be formed naturally then it would at least have large internal stresses
at surface conditions (e.g. annite). It may be inferred that these minerals
would be rather readily altered if a new environment favors any change,
and natural specimens should be rare for this reason alone.

A review of observed composition limits for natural micas shows that
the present structural ideas are at least compatible with these limits. Tt is
not, of course, to be implied that the structural factors necessarily have
controlled any of the observed limits because of the known importance of
other factors during formation.
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The need for detailed studies of bond lengths in known structures at
elevated temperatures is again obvious.
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ABSTRACT

As a consequence of the hypotheses developed in earlier papers in this series the stresses
between tetrahedral and octahedral layers in serpentines can be more precisely expressed
in terms of bond lengths and bond angles. It is shown that the sheet dimensions of serpen-
tines are compatible with a tetrahedral layer stretched, by changes in bond angles, to the
maximum possible structurally. It is suggested that octahedral layers in chrysotiles must
contract under constraints rather more than these layers in antigorites, and that the two
groups may be separated on this basis. If the same hypotheses are right then endellite
sheets do not curl because of forces due to misfit between the tetrahedral and octahedral
layers, since these are negligible. Attention is drawn to earlier work on the surface hydroxyl
bonds in basic hydroxide layer structures, and to the peculiarly sensitive position of the Al
ion in the kaolin minerals.

The morphology of the serpentine minerals and kaolin minerals has
been studied in many laboratories by techniques which include electron
microscopy, electron diffraction, x-ray powder diffraction, single crystal
structure analysis, chemical analysis, hydrothermal synthesis and infra-
red spectroscopy. The literature is extensive (e.g. the references here-
with) but the explanations for the observed phenomena are still more
often tentative rather than rigorous. In particular the dimensional misfit
of various sheet structures is only discussed qualitatively in most pub-
lished work.

It is widely agreed that both serpentines and kaolins adopt various
morphological forms because of a misfit between the tetrahedral layer
and the octahedral layer which together make up these 1:1 layer-lattice
silicates. As a broad generalisation this “explains’ the observed plates,
plates with rolled edges, tubes and fibrils, and also the structural types
such as rectified and alternating wave structures, orthohexagonal cells,
etc. Bates (1959) has discussed this misfit in detail, suggesting the adop-
tion of a ‘morphological index, “M” ) but this seems to the writer to be
defined in a rather arbitrary manner. Moreover “M” is not explicitly
related to the physical quantities which really determine the degree of
misfit, »iz. the average bond lengths and bond angles in the two layers
thought to be under stress.

Different kinds of stress in layer structures are very probably relieved
by several distinct structural adjustments. Hypotheses about the nature
of these adjustments have been proposed recently by Radoslovich and
Norrish (1962; hereafter Part I), by Veitch and Radoslovich (1963; i.e.

368



LAYER-LATTICE SILICATES 369

Part I1II) and by Radoslovich (1963a; i.e. Part IV). Confirmatory evi-
dence has been obtained by the multiple regression analysis of sheet
dimensions and composition <.e. d-axis data and structural formulae
(Radoslovich 1962; hereafter Part IT). These hypotheses are further sup-
ported by the fact that they may be satisfactorily correlated with the
observed composition limits for the micas and possibly other minerals
(Radoslovich 1963b; hereafter Part V).

If these ideas are essentially correct, and the present values of ionic
radii, bond lengths and bond angles are reliable, then for the serpentines
the limits of strain may be stated more clearly in structural terms and
these limits should correspond to observed changes in morphology. On
the other hand if the same ideas are right then the currently accepted ex-
planation for curled and tubular morphology amongst the kaolins is
only superficially correct and should at least be reviewed carefully. This
short paper does not aim to explain all facets of serpentine and kaolin
morphology, but merely to draw attention to several factors with which
any rigorous theory eventually must be consistent.

SERPENTINE MINERALS

Several writers have compared the morphology and crystal symmetry
of synthetic serpentines of varying composition with that observed for
natural serpentine minerals, Some caution is necessary, however, be-
cause the hypotheses in Part 1 imply that there are considerable differ-
ences in the surface symmetry (and also in the kind of layer misfit) be-
tween certain synthetic and natural serpentines.

Mg-Ge synthetic serpentine. Roy and Roy (1954) synthesised a serpentine
wherein Ge fully replaces Si in the tetrahedral layer and for which
Zussman and Brindley (1957) have given detailed x-ray data, including
cell dimensions. Because of the larger ionic radius of Ge (0.53 A) com-
pared with either Si (0.41 A) or Al (0.50 A) the tetrahedral layer will be
quite large. Although the exact Ge-O bondlength for such a layer is not
known a value of 1.84 A seems reasonable,! so that by (Part I) =10.4 A.
The octahedral dimensions, if unconstrained, may be calculated by the
kaolin regression relation (Part IT) as beee=9.3 A. Then cos a=0.894 and
a=263°. Although tetrahedral rotations as high as this are possible, the
theoretical maximum is 30° and it is not surprising to find the octahedral
layer stretching a little to 9.415 A (Zussman and Brindley, 1957). For
bobs=9.415 A and beoer=10.4 A, a=25°,

This synthetic serpentine is therefore markedly ditrigonal in surface

! See International Tabellen zur Bestimmung von Kristallstrukturen, Vol, I, p. 610. G.
Bell, London, 1935 (Pauling’s values of radii).
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symmetry, more than almost all other lattice silicates (Parts I, II, V). It
should tend to crystallise in an orthogonal unit cell which is 3n layers
thick in the ¢ direction (Radoslovich, 1959). Gillery (1959) has pointed
out that this Mg-Ge serpentine is a six-layer orthohexagonal structure
which approximates to a two-layer cell; this is apparently the basic unit
which then may be built up in a similar way to the 3T micas (Smith and
Yoder, 1956).

It is quite evident that in surface properties, including the stacking of
layers, this serpentine is notably different from natural serpentines in
which the tetrahedral layer is invariably untwisted (¢=0°) and often
severely stretched. Zussman and Brindley (1957) confirmed that the
Unst orthoserpentine has a six-layer cell by comparing its powder pat-
tern with that of MgsGesO10(OH)s. Though their independent evidence
establishes a six-layer orthohexagonal cell and though the patterns are
quite similar it is hardly valid to compare these minerals without qualifi-
cation; the mechanism of forming six-layer polymorphs may be con-
siderably different in the two minerals.

This synthetic serpentine is platey because the tetrahedral layer
contracts by rotations to the octahedral layer with practically no resistance
to deformation.

Mg-Al synthetic serpentines. Gillery (1959) has synthesised a range of
such minerals with the general formula (Sis—x Aly)(Mge—x Alc)O10(OI)s,
and for x from 0 to 2.50. He observed that when x=0.75 a platey one-
layer orthoserpentine is formed, and when x=1.50 a platey six-layer
orthoserpentine is formed. The first decreases and the second increases as
x goes from 0.75 to 1,50. In Part T it was shown that «=0° and 124° re-
respectively, and this suggested that the Mg-Al serpentine higher in Al
would most readily form an orthogonal cell through 3n layers. Gillery
(1959) mentions that it approximates to a 3-layer cell. The increase in
proportion of 6-layer structure with increasing Al—which Gillery could
not explain at that time—therefore seems to be a direct result of the in-
creasing tetrahedral rotation, «, as Al increases.

The morphology of these Mg-Al serpentines was shown by Gillery to
be platey, except for a fibrous morphology when x<0.25, e.g. x=0. The
above calculations show that there is no unrelieved stress between tetra-
hedral and octahedral layers for x>0.75 at least, and hence these struc-
tures are platey.

Composition limils between platey and fibrous struclures. In all natural ser-
pentines the sheet dimensions of the octahedral layer would exceed those
of the tetrahedral layer, if both were unconstrained. These structures re-
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main platey, however, until those compositions are reached where the
octahedral layer is excessively larger than the tetrahedral.

It seems reasonable to assume that dimensional adjustments are made
largely by changes in bond angles rather than bond lengths. For example,
the O-Si-O angles in an ideal tetrahedral layer are 109°28’, Tf such a layer
is stretched the main effect probably will be to expand the basal triads of
oxygens by decreasing the angles 7= Oppex-Si-Opgsar (Parts I, 1T, 1V, V).
Even though the individual angles r are not known for a given structure
the average value for 7 should reach some fairly definite minimum for
those tetrahedral layers which have been stretched as far as possible for
a layer silicate.

It has been assumed (Parts I, IT, V) that average values of 7 do not fall
below 1063° to 107°, and empirically all the calculated values of 7 appear
to equal or exceed this lower limit. This may also be supported theo-
retically as follows. The radius ratio of Si:O is too high (0.293) for the
four oxygens to be in contact with each other (which implies a radius
ratio=0.225). Presumably the angles + may be decreased easily until the
basal oxygens Op “touch” the apex oxygen O, when the resistance to
further change in 7 should increase very rapidly (Part IV). The average
interatomic distances Oa—Opg are given in Table 1 for a range of angles T,
assuming Si-O bonds of 1.615 A (Smith and Bailey, 1962). These dis-

TABLE 1, INTERATOMIC D1STANCES O4—Op ¥OR VARIOUS O-Si-O ANGLES

7 in degrees 105 105.5 106 106.5 107 107.5 108
04-Op in A 2.563 2.5M1 2.580 2.587 2.596 2.605 2.613

tances are to be compared with the effective oxygen radius lowards an-
other oxygen, for the particular type of co-ordination involved. In the
present case this is neither the ionic radius nor the van der Waal radius.
Moreover tables of ionic radii are given for ions in six-fold co-ordination
and the exact correction to be applied to Q4 and Og is not clearly evident,
In such a distorted tetrahedra the oxygens will certainly approach closer
than an oxygen diameter, 2.80 A. But they will not approach as closely
as twice the effective radius of the oxygens towards the silicons, viz.
2X1.40X0.88=2.46 A (where 0.88 is the co-ordination correction for 4.2
co-ordination, Internationale Tabellen, loc. c¢it.). This short distance
would require quite unusual compressive forces if it is to be the average
tetrahedral edge throughout the sheets. Some value around 2.58-2.60 A
is therefore quite reasonable, though a precise figure cannot of course be
calculated. This estimate is supported, for example, by the 48 inde-
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pendent O-O distances around Si tetrahedra in anorthite (Megaw, e/ al.
1962). The shortesi (even under stress) are 2.486, 2.518, 2.519, 2.520,
2.525,2.535,2.537 and 2.540 A— and the other 40 are longer. A minimum
average angle of 7> 106.5° approximately therefore seems quite accept-
able. This limit may eventually need slight adjustment when more precise
data on bond lengths and angles under strain have appeared in the litera-
ture. The limit will vary somewhat with the substitution of Al for Si
tetrahedrally, but this substitution is quite restricted for natural ser-
pentines.

As a useful check on these ideas interatomic distances were calculated
for the clino-chrysotile structure which has been determined with moder-
ate accuracy by Whittaker (1956). Using his preferred x parameter of
0.145 for Ox the “0,—0p” distances are approximately 2.62, 2.63, and
2.63 A, for Si-O bonds of about 1.57, 1.63 and 1.63 A. This confirms,
within the limits of accuracy involved, that the basal oxygens are “touch-
ing” the apex oxygens of a fully stretched tetrahedral layer.

The detailed regression analysis of sheet dimensions and composition
(Part IT) strongly suggested that for the 1:1 minerals the tetrahedral
layer will stretch until 7=107°, before the octahedral layer shows any
significant contraction. Beyond this degree of misfit the stretched tetra-
hedral layer (with 7=107°) fixes the overall sheet dimensions and the
octahedral layer must contract somewhat; z.e. very roughly, if &
= beete X (sin 7/sin 109°28”) then

b,(ctr = boct = Dkavlin = bobe for r > 107°
bons = U tetr < boct (= bkaolin) for r = 107°

where biotr and boe are the unconstrained dimensions, and bigetin is the &
axis as calculated by the kaolin regression relation.

The limit between platey and tubular serpentines may now be defined
in terms of the above hypothesis and observations.

Serpentines whose composition leads to values of r clearly greater than
107° should show very little stress due to misfit between the layers and
therefore be platey. Serpentines whose composition leads to values of 7
clearly less than 1063°—as calculated (Part I) from (9.60+40.27x) sin
7= boot (1.€. brao1in)—must have very considerable stresses due to misfit be-
tween layers and therefore show strong tendencies to be fibrous or
tubular, with an accompanying contraction octahedrally. Serpentines
with 7 around 1061°—whether calculated from dops OF boer-—must be under
various degrees of stress. These specimens should show quite variable
morphology between plates and tubes, and possibly even show variations
between different areas of the one specimen, due to subtle changes in
chemistry.



LAYER-LATTICE SILICATES 373

These limits should apply quite generally, irrespective of the par-
ticular substitutions or deficiencies in the tetrahedral and octahedral
layers. For example, in his study of the Mg-Al synthetic serpentines
(Siix Aly) (Mge—x Aly) O1 (OH)s Gillery (1959) concluded that these
minerals are fibrous for x <0.25, and cited evidence by Nagy and Faust
(1956) to support a limit at x>0.2. Olsen (1961) has argued that “the
break point between fibrous and platey polytypes might more properly
lie around x=0.1 R.0;.” For these limits the corresponding angles r are

x =01 0.2 0.25
r = 105° 106° 1061°

so that the higher value of x is more acceptable.

Chrysotile, lizardiles, antigorites. Zussman el al. (1957) have summarized
electron microscope data on the morphology of serpentines, concluding
that chrysotiles are either tubes or laths, antigorites are plates or broad
laths (with various super-lattice parameters), and lizardites are plates. As
Bates (1959) has pointed out in discussing his morphological index “M”
all the serpentines are so closely similar that a clear-cut division at some
value of “M” would not be expected, though some trend should be ob-
served which distinguishes platey from tubular morphology. Further-
more the strength of the hydrogen bonds between the layers will certainly
influence the particular morphology by which misfit stresses are relieved
in a given specimen. Nevertheless the preceding discussion suggests that
chrysotiles should tend to have lower values of 7 than antigorites when 7
is calculated from (9.6040.27x) sin 7= boet. In view of the known stresses
in antigorites—resulting in a non-stoichiometric wave structure (Zuss-
man, 1954)—the expected values of 7 should be somewhat less than the
lower limit of 106%°, which corresponds to relatively little octahedral com-
pression. '

It is difficult to test this in detail because there are not many good
analyses of chrysotiles and antigorites in the literature, and even some of
these have been made on specimens inadequately characterised by x-ray
analysis (Whittaker and Zussman, 1956). Moreover there is, at present,
no agreed method for calculating structural formulae from serpentine
assays. For this reason the values of 7 in Table 2 have mostly been calcu-
lated from the structural formulae given by Bates (1959), since these are
all computed by the same method and should at least provide a suitable
basis for comparison. In several cases which were checked the alternative
formulae of other workers lead to very similar 7 to those in Table 2.
(Some of Bates’ platey serpentine specimens which have been criticized
by others are omitted.)

It seems fair to conclude from Table 2 that = for chrysotiles does in
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fact tend to be lower than for the platey minerals, especially when the
average analyses are compared, i.e. for C-5 (25 chrysotiles ) 7=105° but
for P-5 (14 antigorites) r=106°,

It is notable that natural chrysotiles have practically no substitution
tetrahedrally, so that their d-axes should all be close to $=9.60 x sin
1065 =9.20 A, Whittaker and Zussman (1956) have given accurate d
values for four chrysotiles and nine lizardites (which are found with
chrysotiles, but not with antigorites) and these lie between 6=9.186 and
9.222 A. Antigorites, wh ay 0 Al, have average
b-axes of 9.241 A, These sc t ments.

The notion of a “strain-free” layer in tubular chrysotile structures
(e.g. Whittaker, 1957) is misleading since it is probably only a layer of
minimal strain which is involved. For smaller radii of curvature the octa-
hedral strains (in bond angles) should increase sharply, and for larger
radii of curvature the tetrahedral strains (i.e. smaller ) should do like-
wise; but no layer will be “strain-free.”

TABLE 2. AVERAGE Onpex—S1—Oposat ANGLES, 7, CALCULATED FOR SOME SERPENTINES

Specimen Locality (from 7/DBraotin) (from 7/Dobs)

c—n Quebec 104°42/

C—2¢ Delaware Co., Pa. 104°43’

c—3t Aboutville, N. Y. 104°46’

CcC—4t Montville, N. J. 105°5

C—5t Aver. of 29 chrys. 105°

c—6t Gila Co., Ariz. 105°

c—n Transvaal 105°15’

c—8t Woodsreef, N.S.W 105°14/

P—5 Aver. of 14 antig. 106°2’

P—ot Val Antigorio. 106°16 107°12’

P—8t Mikonni, N. Z. 105°2/ 106°10

P—ot Caracas 105°7’ 106°22/

P—12t “Deweylite” 105°217

P—13t “Williamsite” 105°17

P—14t “Baltimoreite” 105°55/

p—15t “Yu Yen Stone” 104°50
Lizardite? Kennack Cove 105°16 106°36’
6-layer orthohexagonal ~ Unst? 105°15/ 106°44/
6-layer orthohexagonal  Quebec? 107°9’ 107050

1 9. Bates (1959).

% 9. Zussman, Brindley and Comer (1957).

3 9. Olsen (1961).

Col. 3 gives 7 assuming no octahedral layer contraction, whereas col. 4 gives 7 allowing
for any such contraction.
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Kaolin minerals. Since Bates, ef al. (1950) first reported tubular mor-
phology amongst endellites it has become increasingly evident that the
kaolin minerals are not clearly divided into two distinct morphological
groups. In fact Bates and Comer (1957) have proposed a continuous
transition between good plates and good tubes. As Bates (1959) has
pointed out, however, there is an extremely close similarity in Si:Al
ratio for kaolinites and endellites, and these two minerals may in fact
only differ significantly in H,O content.

Bates, et al. (1950), and also Bates (1959), have explicitly discussed
the curvature of endellite in terms of a supposed misfit between a larger
tetrahedral layer and a smaller octahedral layer. They also have roughly
calculated an expected radius of curvature from an assumed difference in
dimensions between the tetrahedral and octahedral surfaces. This con-
cept has been widely accepted since then, but cannot (in the author’s
opinion) be reconciled in detail with our current understanding of the
layer silicate structures.

The hypothesis has now been put forward (Parts I, I, and IV) that if
the tetrahedral layer of a layer silicate would, on its own, exceed the
dimensions of the neighbouring octahedral layer then the former may
contract, very readily and quite markedly, simply by tetrahedral rota-
tions leading to ditrigonal rather than hexagonal surface symmetry for
many such minerals. It is not claimed that these T-O-T angles (T =tetra-
hedral cations) can be varied without any resistance to deformation at
all; but it is strongly suggested that any such force is of an appreciably
lower order of magnitude than other stresses in these structures. That is,
by comparison the resistance to deformation of T-O-T angles is much
smaller than papers on kaolin morphology generally imply. The consider-
able amount of detailed evidence for this is discussed in Part IV.

This has two obvious implications with respect to kaolin morphology,
vig.:

(a) The curvature of endellite cannot be explained satisfactorily solely in terms of a
misfit in dimensions between the tetrahedral and octahedral layers, or their surfaces, as
Bates (1959) discusses. If a tetrahedral layer can so readily reduce its sheet dimensions by
becoming more ditrigonal then there either will be no mismatch with adjacent octahedral
dimensions, or at least the stresses due to any mismatch will be of very secondary impor-
tance, and inadequate to explain the tubular morphology of endellites.

(b) The morphology of different kaolin minerals is unlikely to be directly related to
subtle differences in Si/Al ratio, as Bates (1959) has sought to establish. An increase in Al
substitution tetrahedrally will result primarily in slightly greater rotations in the already
ditrigonal tetrahedral network—but again this should not lead to a more tubular morphol-
ogy. [A change in Si/Al ratio may, however, affect the OH content and/or interlayer bond-
ing (as Bates (1959) has already noted) and therefore be rather indirectly related to mor-
phological changes.]
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Nevertheless endellites do form tubes, and this does imply unequal
stresses at two different levels in the 7 A kaolin layers. These forces,
moreover, are highly variable and are not oo closely related to the overall
crystallinity (Bates and Comer, 1957). It appears to the writer that a
reasonable guess about the nature of these forces may now be made, con-
sistent with the discussion of interatomic forces in dickite (Part IV). No
attempt has been made to obtain experimental evidence to support these
ideas, which are advanced in a tentative way only.

It appears likely that the unbalanced stresses are

(i) the expansion due to AIVI-AIVT repulsion across shared edges and (ii) a contraction

within the layer of surface hydroxyls, probably by OH-OH bonds in the hydroxyl triads
around vacant octahedral sites.!
In their classical work on the hydroxyl (i.e. OH-OH) bond Bernal and
Megaw (1933) studied the basic and amphoteric hydroxides in detail,
drawing particular attention to gibbsite, AI(OH)s, as compared with the
hydroxides of mono- and di-valent cations. By plotting the calculated
electrostatic energy of the cation-hydroxyl bond against the hydroxyl-
hydroxyl distance Bernal and Megaw showed conclusively that, for cat-
ions arranged in order of increasing polarizing power, Al is the first cat-
ion to induce OH-OH bonds between neighbouring hydroxyls.2 An elec-
trostatic bond strength of at least § is needed to induce the necessary
tetrahedral symmetry of charge distribution in the OH’s,

Although the six Al-OH bonds in an octahedral group have an ideal
strength of § it cannot be assumed that particular bonds in a given struc-
ture also have this strength. This is emphasised by the contrasts between
the diaspore and dickite structures in this respect (Part TV). Indeed it
seems very likely that the polarizing power of Al in these minerals is at a
critically sensitive level, so that quite subtle structural changes may
produce considerable variations in OII polarisation and therefore in any
surface OH-OH bonding. In dickite, for example, the Al-OH surface
bonds apparently have strength around 0.6 (Part IV). Nevertheless the
total configuration of bonds in dickite ensures that virtually all surface
OI’s form long O-HH—O bonds to the adjacent tetrahedral surface. In
the polymorph kaolinite, however, the O-H bonds are considered to be
differently directed in relation to the superimposed oxygen network
(Part TV); and the assumed arrangement is less likely to ensure that all
OH’s form long O-H—O bonds. In endellite the presence of interlayer
water should still further disrupt such direct bonds to the next layer.
Under these conditions the Al-OH bond strengths may be expected to lie
between 0.5 and 0.6, and in the absence of immediate O-H—O bonds a

L Both types of stress ave discussed fully in Part IV.
% See, e.g. Wells, A. F. Structural Inorganic Clemistry, Clarendon Press, Oxford, 1962,
3rd. ed., p. 546 L.
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looser network of OH-OH and OH-H,0O bonds would be formed. (The
surface OH’s should tend towards a tetrahedral charge distribution.)

That is, in endellite there is clearly the possibility of some OH-OH dis-
tances being shortened around unoccupied sites, as in gibbsite (Bernal
and Megaw, 1935). But, contrary to gibbsite, this can happen only on
one side of the octahedral layer. The net result should not, therefore, be a
shortening of the d-axis as in gibbsite, but an unbalanced pair of forces
((1) and (ii) above) leading to a tubular morphology. The relationships
between any such forces, crystal structure, and mineralogical history for
a given kaolin will certainly be very complex. The wide variations in
morphology with respect to crystallinity are not in the least surprising.
The pattern of OH-OH forces may well be systematically related to the
octahedral network in some specimens, so that one direction, e.g. the b-
axis, is a preferred tubular axis.

It is interesting to compare the b-axes of dickite (8,95 A), well-crystal-
lised kaolinite (8.95 A), halloysite (8.92 A) and endellite (8.90 A). The
decrease is consistent with an additional contraction in endellite, e.g. by
OH-OH bonds, rather than an additional expansion, as the misfit of tetra-
hedral layers implies; but this observation cannot be given too much im-
portance, of course.

Tt is not possible at present to obtain direct experimental evidence for
these hypotheses, primarily because the poor crystallinity and small
crystal size of kaolins (especially endellites) severely curtails the accurate
measurement of interatomic distances. Whereas Bernal and Megaw
(1935) confirmed the presence of OH-OH bonds on the surface of gibbsite
by careful structure analysis similar data cannot yet be obtained for
endellite in which such surface bonds have now been proposed. However,
despite this lack of direct proof the indirect evidence to support the sug-
gested out-of-balance forces is quite strong (e.g., see Part IV). It should
likewise be noted that there is, of course, no direct evidence either for the
currently accepted explanation of tubular morphology, in terms of layer
misfit. It is, moreover, fair to comment that the implications of the work
of Bernal and Megaw (1935) on the hydroxyl bond in basic hydroxides
appears to have been largely overlooked in papers on kaolin morphology.
The sensitive position of the Al ion in their scale of polarizing power has
not been generally realized, in the same context. This, together with the
demonstration (Parts I-V) of the apparent ease with which tetrahedral
layers contract, indicates the need for new approaches to problems of
kaolin morphology.
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CELL DIMENSION STUDIES ON LAYER-LATTICE
SILICATES: A SUMMARY

by
E. W. Raposrovicn

Division of Soils, Commonwealth Scientific and Industrial Research Organization
Adelaide, South Australia

ABSTRACT

The statistical techniques of multiple regression analysis have been used to obtain more
veliable formulae relating the cell dimensions (especially the b-axis) of layer-lattice
silicates to their composition or structural formulae. This allowed the significance of each
roefficient to be expressed precisely and so provided rigorous tests for certain structural
30 ts e ctors a di ons.
h h e ut the e ollin

INTRODUCTION
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extreme composition. For example for the unusual brittle mica, xanthophyl-
lite, Ca (Mga Al) (Si Alg) O19 (OH)2, the “unconstrained” tetrahedral and
octahedral dimensions and the calculated b-axis each exceed bopg; i.e.

btetr = 9.84:, boct = 9.19, bca]c = 9.4:9, but bobs = 9.00 A

SURFACE SYMMETRY

, in co with lattice sil c
P roved ead her than 1

theoretical grounds; yet only three are at all commonly observed. These are
based on 120° rotations between layers, and therefore permitted by ditrigona.
surfaces on the layers. The rare or unobserved polymorphs depend on 60°
interlayer rotations, which seem unlikely to occur with such surface symmetry
In several mica structures now published (including muscovite) these
ditrigonal surfaces ensure six- rather than twelve-fold co-ordination around
the interlayer cation, e.g. K+. Indeed a roughly octahedral arrangement
around the cation of siz closest surface oxygens with direct K-O (or Na—C
or Ca-0) bonds may be expected as the normal interlayer configuration
In detail the structural and unit cell data for micas led to the hypothesi:
(Radoslovich and Norrish, 1962) that:
(i) the b-axis is controlled mainly by the octahedral layers and
(i) the interlayer cations exert additional control through their direc
bonds to surface oxygens, whereas
(iii) the tetrahedral layers do not affect the cell dimensions significantl;
but do control the surface configuration, i.e. the degree of “twist™.

REGRESSION RELATIONS

Although satisfactory “b-axis formulae” could have been derived empiric
ally this would not have convincingly shown whether the interlayer cation
and/or tetrahedral Al contribute to the sheet dimensions. A multiple regres
sion analysis of the unit cell data against the compositional data of the micas
however, allowed the statistical significance of each coefficient to be teste
rigorously (Radoslovich, 1962a). The coefficient for K+ was significant an
large, but for tetrahedral Al it was non-significant—as predicted. In simila
regression analyses of data for the kaolins and for the chlorites the coefficien
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for tetrahedral Al was also non-significant; for the vermiculites and diocta-
hedral montmorillonites taken together it was significant but small. The new
b-axis formulae not only can be applied to most minerals with rather extreme
compositions but also provide a better fit for the more common minerals
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structure the observed pattern of layer stacking (Radoslovich, 1962c).
Similar forces will be present in other micas and other polymorphs, and the
main of structural control over mica polymorphism should become
plain oon. |
The morphology of both kaolins and serpentines has been widely studied,
both experimentally and theoretically. The tubular morphology of endellites
is generally explained as due to the tendency of the tetrahedral layers to
exceed the dimensions of the octahedral layers. Although this is no longer
convincing to the author in the light of these studies, other asymmetric
forces now may be postulated which could cause the layers to curl (Rado-
slovich, 1962e). ‘
1 rel ity und of 2M; ¢ must be

cl r to unique K+islo the inter/
layer positions in this particular mica (Radoslovich, 1962¢). This suggests
one direction in which future structures analyses may contribute to the study
of the ¢ b min and st y. |
The ent on of colleagues in
C.8.I.R.O. and in the University of Adelaide is gratefully acknowledged. |
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(iii) The interlayer cations in the micas occupy sites enclosed by two
hexagons of oxygens, so that in these ideal structures these cations
are regarded as 12-coordinated.



4 E. W. RaposLovicn

(e.g. Brindley and MacEwan, 1953) almost always include a term for the
effect of tetrahedral substitutions on the sheet dimensions. Secondly, these
formulae do not include terms for the interlayer cations in the case of the
micas. It has now been shown by Radoslovich and Norrish (1962) and Rado-
slovich (1962) that earlier formulae are unsoundly based on both accounts,
and the fact that they cannot be applied to layer silicates of extreme com-
position is thereby explained, at least iri part.

It is now a matter of observation that the ideal hexagonal network of
oxygens on such tetrahedral surfaces is frequently distorted by the rotation
of the tetrahedra about axes normal to the plane of the sheet. Such rotations
have been reported in the structure analyses of more than ten layer structures,
and vary in amount from 5° to 25°. Alternate tetrahedra rotate in opposing
directions to give a so-called ditrigonal symmetry to the tetrahedral surfaces.
It now seems desirable to discard the hexagonal model, and to formulate a
more general ideal layer structure having a ditrigonal surface configuration,
which may become hexagonal in particular circumstances.

Recent structural analyses of micas strongly suggest that the tetrahedral
layers play a secondary role in determining the b-axis, not the co-equal role
previously assumed. The cell dimensions of micas appear to be controlled
largely by their octahedral layers and by the interlayer cations. The surface
configuration, however, depends primarily on the size of the ““ anconstrained”’
tetrahedral layer relative to the actual b-axis. Radoslovich and Norrish
(1962) have therefore proposed that

(a) In all the layer silicates the “silica’ tetrahedra can rotate fairly freely
to reduce the dimensions of this layer; but the relative rigidity of the tetra-
hedral group prevents any major extension beyond the hexagonal configura-
tion.

(b) In all the layer silicates the octahedral layer can be extended or con-
tracted with somewhat more difficulty, by changes in bond angles rather
than bond lengths, and therefore with accompanying changes in thickness.

(c) For the micas in particular the surface oxygen triads rotate until some
(probably half) of the cation-oxygen bonds have normal bond lengths, i.e. until
half the oxygens “lock’ on to the interlayer cation.

There is strong supporting evidence for each of these hypotheses from
both unit cell data and the detailed structure analyses where these are
available. As a further direct test new ‘‘b-axis formulae” were derived using
the standard statistical techniques of multiple regression analysis. In this
way the effect on the sheet dimensions of Al-for-Si substitutions tetrahedrally
was shown to be non-significant, and the effect of the interlayer cations in
micas was highly significant (Radoslovich, 1962).

During the course of the regression analyses of dimensions against com-
position some further structural restraints became obvious. That is, certain
groups of minerals did not follow the general physical model implying that the
b-axis depends linearly on the ionic radii of the substituting cations. In each
case satisfactory explanations suggest themselves. For example, the sheet
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dimensions of both serpentines, saponites, sauconites, tale and some rare

ud d nee n.
th sl e is then the
o,

CO8 ¢ = bobs/btetr

average geometrical factor between ionic radius and the increase in cell
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hexagonally and (ii) counter-rotations of the upper and lower triads of oxygens
around occupied sites, as shared octahedral edges are shortened. Both effects
are clearly observed in the known structures of gibbsite, dickite and museco-
vite, for example.

In & subsequent study (Radoslovich, 1963a) the simple physical arguments
supporting this geometrical model have been developed extensively into
general statements about the interatomic forces within the layer silicate
structures. Our understanding of these structures can be advanced consider-
ably if we no longer view them primarily as “packing structures”. It is now
better to attempt to assess empirically the stresses and strains in bond lengths
and bond angles, together with the ease of deformation of the supposedly
spherical atoms or ions. Accurate structural data from other silicates (e.g.
feldspars) may be used to postulate which forces will dominate and which
structural elements are most easily deformed in the clay minerals. On this
more realistic view the layer silicates are not simply close-packed layers of
anions, with cations of the right size stuffed in the interstices, rather passively
maintaining neutrality. Fach mineral, indeed, represents a stable equili-
brium, at the lowest possible internal energy, of bonds under tension or com-
pression, of atoms pushed into close proximity against their mutual repulsion,
and (infrequently) of directed bonds under ““torsion’. Interstices are of the
“right size” for certain cations only in the sense that with those cations
present the increased strains in the other bonds, distances and angles do not
lead to obvious instability.

These structures may be discussed in detail on the basis of several explicit
assumptions which appear to be consistent with current structural inorganic
chemistry and to be valid for a wide range of complex ionic structures, viz.

1. Bondlengths in general vary inversely as electrostatic bond strengths.

2. Bonds are effectively non-directional, with occasional O—H bonds as
exceptions.

3. Bonds increase in compliance in the order (Si—O0) — (AIIV—O0) —
(octahedral cation—OQ) — (interlayer cation—O).

4. Bond angles are more compliant than bond lengths, and the T-O-T
angles more than the O-T-0 angles.

5. Mutual repulsion between anions increases very rapidly as interatomic
distances fall below the sum of their ionie radii.

6. The mutual repulsion of multivalent cations only partly shielded from
each other by intervening anions may be of comparable importance with
the strongest bonds.

7. Adjacent anions whose valencies are not fully satisfied by immediate
bonds will mutually repel each other with observable structural effects.

On this basis the cell dimensions of an octahedral layer, either separately
or in a layer silicate, correspond to an equilibrium between three different
kinds of forces. These are (i) cation—cation repulsion across shared octahedral
edges, (ii) anion-anion repulsion along shared edges and (iii) cation—anion
bonds within the octahedra. On the available evidence these forces result in
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(iii) In trioctahedral minerals containing & 2-OR2+ and some R3+ the R2+

o be ed hexagonally around the R3+, to separate adjacent
as p .

(iv) Shared o in 8 with very different cations should be
shortened to a m um distance, below which the anions
b more in e rapidly.

ugh the b are d rtly cov (
bon d readily
8 to
edg

sets a physical limit to the stretching of tetrahedral layers in saponites,
serpentines, talc and similar minerals.
Important details of the mica str
b bet ayer cat an 8
h sur st micas in 1
tendency for the cations to be in six

surface oxygens.)

The reporte lity (from synthesis studies) and also the obger-
ved ranges of natural spe s may be used as in
8 on the val of pre m of these structures

1963b). The ode low
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should far exceed these limits should not be possible, even in the laboratory.
Micas in which the strains would need to be unusually large may be expected
to adjust their compositions rapidly, as soon as their environment allowed any
change. They may therefore be synthesized but should—for at least this
reason—be rare as natural specimens. An examination of the detailed pub-
lished limits for micas shows that the present structural models are not at all
incompatible with these, nor is there any discrepancy with the rather less
well defined limits of other layer silicates.

In the light of the present studies the simplest explanation of halloysite
tubular morphology (i.e. tetrahedral dimensions exceeding octahedral
dimensions) is seen to be inadequate (Radoslovich, 1963c).
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Og si
0, OH

(c)

QO lower K
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layer stagger

Tre. 5 (a) A projection normal to one mica layer showing the K (O), Mg ( ), and
OH (o) ions. The Oa oxygen atoms are at the corncrs of the hexagons. The
thick and thin lines and cireles in this figure and in fig. (c) represent the upper
and lower layers of atoms in the unit. (b) A projection on (010) showing one layer
together with the adjacent parts of the two adjoining layers. The 04 oxygen
atoms overlap with the OT ions. Tho O, and O, oxygen atoms are ub the vertices
of the tetrahedra. The I, Si, Mg, and OH ions may be replaced by other ions. (c)
A projection normal to one mica layer showing only the K (O) and Og atoms. The
Og atoms are at the corners of the hexagons.

(Sruth and Yeder, 1956)
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A construction giving the projection of the point h00 on to the 0kl plane in reciprocal space,
for non-orthogonal axes. By E. W. Rabosrovicr, Crystallographic Laboratory, Cavendish Laboratory, Cam.-

bridge, England

(Received 15 March 1954)

In the course of a three-dimensional structure determina-
tion on a triclinic crystal one frequently wishes to find
the projection of the point A00 on the 0kl plane in recip-
rocal space, in order to use the 0kl reciprocal net as the
hkl net. This point can be marked on the 0kl net by cal-
culating its displacement from the point 000 using well
known formulae (Bunn, 1945). It is, however, interesting
to note that there is a very simple geometrical construc-
tion which gives the same result, as can be shown trigo-
nometrically.

For a net containing b* and ¢*, with angle a* between
them the construction is as follows (see Fig. 1):

C

Fig. 1.

(i) Draw OM at an angle y* to b*; make OM equal to
ha* in length, and draw MN normal to b*.

(ii) Draw OR at an angle #* to c*; make OR equal to
ha* in length, and draw RS normal to c*.

Then the intersection, H, of MN and RS is the projec-
tion of 00 on 0kl. Usually one will put & = 10, say, and
(having found the projection of 10,0,0) then divide the
line OH into ten parts to give the projection of 100,
200, ete.

The fact that this construction does give the correct
projection can be appreciated as follows:

Imagine a cone constructed around b* with apex O,
vertical half-angle y*. Then a* lies in the surface of this
cone. Likewise a* also lies in the surface of a cone con-
structed around c*, apex O, vertical half-angle g*. The
two cones will in general intersect along two straight

pas thr O. These both a*; they -

dto WO of right-h d or left-hande
The point A00 lies at a distance ha* from O along the
intersection of the two cones; we require its projection
on the plane of b* and ¢*. We obtain this projection by
making the sloping sides of the cones of length ha*,
drawing the cones in projection on the plane of b* and c*,
and noting the point H where the projections of their
respective bases intersect.
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Calculation of Geometrical Structure Factors for Space Groups of Low Symmetry. I

By E. W. RaposLovicH AND (IN PART) HELEN D. MEGAw

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 30 August 1954 and in revised form 15 October 1954)

This paper describes a simple calculator for the function cos (hx+ky+Iz). Values of this function
can be read directly from tables of cos hx, provided that the origin of the latter can be shifted an
amount (ky+Ilz) at will. A simple mechanical device to do this is desecribed.

Introduction

The geometrical structure factor for all space groups is
2 cos (ha;+ky;+lz;) +i X sin (ha;+ky;+-lz;)
i i

where the summation is over symmetry-equivalent
atoms. This sum is often rewritten as a product or
sum of products of cosine or sine factors, each in-
volving only one of the coordinates z, y, z, by making
use of any symmetry present; but it can equally well
be calculated in the above form if we have some

device which assists in rapidly tabulating
: i+ The ent
i is

pr WS, ose

that cos (hx+ky-lz) is tabulated for one plane in
reciprocal space at a time, working across the plane,
row by row. That is, ! is kept constant for a large
number of (h, k); and k is kept constant for, say,
h from —15 to +15. If we were reading values of
cos (hx+ ky+1z) from a cosine curve then we would
move a distance [,z from the origin along the abscissa
for all (A, k,1,), and a further distance 4,y for all
(B, k, 1;). From this point (k;y+1,2) we move a distance

* Bunn (1945) has described a slide-rule using the same
basic principle, but with a different mechanical arrangement.

S Cc s c S C

00 100 1 25 00 75 00
06 01 99 51 -99 76 06
13 02 -1 -1 52 -99 77 13
19 03 28 -1 -1 53 -98 78 19
25 04

0 1 In

| N |

(@)

hz, and read off the value of the cosine; this last step
is repeated for successive .

In actual use it would be faster to move the abscissa
scale relative to the cosine curve so that the zero point
on the scale is at the position corresponding to
cos (k,y+12) on the curve. The point Az on the ab-
scissa scale now corresponds to cos (hz+ky+12) on
the curve. If we replace the cosine curve by a table of
values of cosines then it is a simple matter to move the
abscigsa column mechanically, relative to the cosine
column, by any desired amount ;2 or (k;y+0;2). An
immediate practical difficulty is that such a device
would be too long, and therefore in any practicable
design the tables must be broken up. The present
device is described below.

Description

Three kinds of tables are used: (1) tables of angular
intervals, given as decimal fractions of a cycle, at
intervals of 0-01 (i.e. 3-6°) from 0-00 to 0-99; (2) tables
of sines of these angles; (3) tables of cosines of these
angles.

The moving chart consists of a strip of tracing linen
4} in. wide, and about 45 in. long. It carries tables
of sines and cosines, and one table of angular intervals
under the heading ‘ky’ (see Fig. 1{a)). The tables are

Slots
00 25 50 75 7550
01 26 51 76 74 49
02 27 52 77 73 48
03 28
hx) (hx) {hx) (hx) (/z)
1 in
[
(b)

1. (a) Section of movable chart, showing arrangement of sine (S), cosine (C), and ky tables, Values of ky given in decima
fractions of a cycle; sines and cosines to two-figure accuracy, and at 3:6° intervals.

(b) Arrangement of hx and Iz scales on perspex cover
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Fig. 2. Photograph of the device. The perspex cover is removed and placed (with one of the marking pins) alongside the box.

arranged vertically, the spacing between the rows being
1 in., a spacing which can be conveniently set on a
typewriter. The spacing of the columns is given in
Fig. 1(a).

The three tables on the chart are in four blocks,
In the left-hand block the ky table with its corres-
ponding sine and cosine tables runs from 6 = 0 to
6/2n = 1-25; the other three blocks begin at 6/27 =
0-25, 0-50, 075, respectively, and each runs through
1} cycles.

The chart is mounted in a suitable box with a slop-
ing front panel and two winding drums (Fig. 2). The
drums move independently, one being used for for-
ward and one for backward winding. Small fibre
washers prevent them running too freely. A flat metal
plate, curved at the ends, supports the chart close to a
perspex cover, and leads it on to the drums. The box
is designed so that a quarter of a cycle in each column
can be seen, i.e. an area of 44 in. by 7 in., which is a
convenient size. (In fact the sole reason for having
more than one block of tables is to reduce the device
to these dimensions.) Thus a full table of values of
cosines (or sines, or ky) always appears on the visible
area of the chart.

The perspex cover carries fixed scales of angular
intervals, labelled ‘A2’ and ‘Iz’ respectively, on paper
glued to its lower surface (Fig. 1(b)). The hx scale is
typed on four strips equally spaced (3 in. apart, and
$ in. wide). The numbers on these run from top to
bottom, and the strips from left to right. The Iz scale
(on the single wider strip on the right) is similar, but
the numbers run from bottom to top, and from right
to left. Faint horizontal lines have been ruled on the
perspex to guide the eye.

The cover is loosely held by thumbscrews through

horizontal slots in its upper edge, to allow sideways
movement of a little more than 1 in. The clear sections
of the cover, between the Az scales, allow the tables
on the chart to be seen; and the dimensions have been
chosen so that only one set of figures on the chart
(i.e. either the cosine, or the ky, or the sine table)
can be seen at once, depending on the position of the
cover.

Small holes are drilled in the perspex at the position
of each value of ‘Az’, into which can be inserted flat
markers mounted on a short pin. The markers are
numbered 1, 2, 3, ..., corresponding to values of &,
and there are sets, with black and figures on
a white back nd, for 2 and £. A's  ar marker
painted red is used to indicate the origin. These
markers are not essential, but are an aid to quick
reading.

The device is used as follows. Coordinates (z, y, z)
known to any de accu e as
point, and the i al m ,ar
to the same accuracy. These quantltles are then
rounded off to the nearest 0-01. The red (origin)
marker is now placed in the appropriate hole on the
cover, using the ‘iz’ table on the right. Thus if 1,z is

lz
no
ho
the lz scale. Next the ‘A’ markers are placed at the
t
b
h
scales, and the chart is wound on until k,y is at the
or ( k,y on the le to the ri
of e cover is sh  d to expose

cosine table; the values of the cosines opposite the ‘&
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markers are values of cos (hx+ky+1;2) for b =1,
2,3, .... (Likewise the cover can be shifted, if neces-
sary, to expose the corresponding values of
sin (hx+kyy+12).) Once all the values of cos (hx+
kyy+1z) have been written down, the chart is moved
to bring kyy to the origin marker, then kyy, etc. Finally
the whole process is repeated, by shifting the origin
marker, to deal with lz, then Iz, ete.

Discussion

A device of this kind must be judged by considering
(1) simplicity and cheapness of construction, (2) sim-
plicity and directness in use, (3) speed in calculation,
(4) universality, i.e. usefulness for many different
calculations, (5) accuracy.

The present device is simple and cheap to make.
It is also simple and direct to use, for two reasons.
First, the structure-factor formula is evaluated in its
most general, and at the same time most straight-
forward, form; the device simply carries out the cal-
culations in the way represented in the formula,
without prior re-arrangement in some ‘sum-of-
products’ form. Secondly, the only accessory table
needed for each calculation is a table of hx, ky and Iz;

must be slower than more elaborate machines which
deal with atoms in groups. A test of this little box,
however, showed it to be surprisingly speedy to use.
An atom with coordinates x = 0-2777, y = 0-1639 and
z = 05500 was chosen, and cos (hx+ky+1z) was tabu-

l IC - PRI B 45 6,
r ) 3, N tabu-
k lz, for s , was

6 min.; but this is, of course, done only once for each
atom. The time for writing down cos (hx+ky+1z) for
the 220 values of (&, k, I) mentioned above was 16
min.; and this speed could be maintained for a long
period. It seems unlikely that cos (hz+ky+I2) can be
calculated by hand faster than this. (It should be

r, using the
e ted which
h

N
2 cos (ha;+ky;t+lz;)
=1
than cos (hx--ky+1z); it will be described in
IT of this paper.)
The question of speed cannot be discussed without
to the form in which the geometrical struc-
factor is expressed. As mentioned earlier, this
form is often rewritten, where possible, as a
product term for purposes of evaluation. This
convenient for two reasons: (@) it means that one
only need be evaluated for the whole set of
-equivalent atoms, (b) many desk machines

and mathematical tables can more eagily be used to
evaluate a product of cosines than the cosine of a sum.
If, however, the geometrical structure factor can be
expressed only as the sum of two or more product
terms, and the number of symmetry-equivalent atoms
is low, the first advantage is reduced or disappears.
This is notably the case in the triclinic system, where
the sum of four product terms is needed. In this case,
direct evaluation is obviously preferable. In the mono-
clinic system, for a general Akl structure factor, the
sum of two product terms is needed, but each includes
the contribution of two atoms; hence the total number
of terms to be evaluated by either method is the same.
In the orthorhombic and higher systems the direct
evaluation of one term for each atom becomes in-
creasingly inefficient.

It is worth specifically pointing out the universality
of this device, since this is one of the advantages it
has over most strip methods. The box is complete
in itself, and is used as it stands. The use of high
indices in a calculation involves no more preparation
than the tabulation of kz, ky and lz—a few minutes’
work, Thus the labour of any calculation is simply
proportional to the number of reflexions considered,
no matter how large the indices along any axes.
Likewise the extra labour in changing from three-
figure to four-figure accuracy in (z, y, 2) lies only in
the tabulation of Az, ky and Iz, and is trivial.

Inaccuracies in calculations on devices of this kind
arise from three causes: (1) physical inaccuracies in
construction of the device, (2) inaccuracies due to
‘rounding-off’ Az, ky and Iz, (3) inaccuracies due to
finite interval-size in cosine table.

Since the box is not an analogue device no inaccu-
racies arise from its construction, in which, therefore,
there is no necessity for fine tolerances. The other
two sources of error are interdependent. It should first
be noted that the maximum error introduced by the
use of this device into iz, ky and Iz will be no more
than 0-005, whatever the value of A, k& and I. In the
Appendix to this paper a short account of the standard-
deviations of ‘rounding-off’ errors has been given.
This shows that the process of rounding-off Az, ky
and Iz separately before adding (as is done here)
gives about twice the standard error when compared
with rounding off the sum, (hx-ky+Iz); but that both
methods are in general more accurate than using the
product form.

It would be quite practicable to halve the error by
constructing a slightly larger box in which the interval
of the tables was 0-005 cycles, rather than 0-01 cycles,
since the figures on the present tables are quite reason-
ably spaced out. Indeed, a box with tables at 0-002
cycles, and with sines and cosines to three figures,
need not be inconveniently large; but problems re-
quiring subdivision at smaller intervals than 0-005
probably warrant other and more powerful methods
of calculation.

It is believed that this calculating device may be of
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service in laboratories where larger machines are not
readily available; even where they are available it is
proving useful for those exploratory ‘trial-and-error’
calculations which arise at some point or another in
most structure determinations.*

This work has been done during the tenure of a
C.8.LLR.O. Overseas Studentship. The writer has
pleasure in acknowledging helpful discussions with
Dr Helen D. Megaw.

APPENDIX
By HeLEN D. MEGAW

Rounding-off errors

Tt is assumed that angles, expressed in cycles, are
rounded off to two decimal places; where the third
digit is 5, it is rounded off to make the second digit
even. Values of cos § or sin 0 are rounded off to two
decimal places. We require to know the standard
deviation of the geometrical structure factor. Suppose
there are 2p symmetry-related atoms in general posi-
tions in a centrosymmetric structure.

(i) Tf the geometrical structure factor is evaluated
by summing hz, ky, lz, rounding off the sum, and

t t e of p at

8 f ea is 0

e c to is 1
0:01//12 =0  ; the effect of ing-off in
cos 0 itself is igible. For 2p the s.d eir

sum of cosines is 2)/px0-013.
(i) If the terms hz, ky, lz are rounded off before

* Note added in proof.—The device is now manufactured
by Crystal Structures Ltd, 339 Cherryhinton Road, Cambridge,
England.

adding, then for cos (ha+ky) the s.d. is 0-019, for
cos (hx+ky-+1z) it is 0-022; as before, the s.d. for 2p
atoms is proportional to 2)/p.

(iii) If the geometrical structure factor can be ex-
pressed in the form

Qp{c.os}hx.{cos} ky (one index zero)

sin sin

o Jcos cos cos .
Zp{sin}hx.{sin}ky.{sin}lz (no index zero) ,

its s.d. is 2px0-013 or 2p)/(3/2)x0-013 respectively.
If it can be expressed only as the sum of » such terms,
its s.d. is 2p)/nx0-013 or 2p)/n)/(3/2)=0-013 respec-
tively.
The ratio of the s.d.’s resulting from methods (ii)
and (iii) is thus
1

Vipn) "

(B
3pn/  0-13

Where no index is zero, pn is never less than 4, and
method (iil) is therefore less accurate than method (ii).
The same holds good where one index is zero, except
for triclinic crystals and for monoclinic crystals in the
zones hk0 and Okl; here pn is 2, and the methods are
of equal accuracy. The case when two indices are zerc
can be treated similarly, but is not of as muchim-
portance in practice.

or

(one index zero)

or

(no index zero) .

Reference

Bunn, C. W. (1945). Chemical Crystallography, p. 270
Oxford: Clarendon Press.

FR. BAGGES XGL, HOFBOGTRYKKERI
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This instrument (called SUMCOS) assists in the calculation of 3 cos (hw;+ky,+1z;) by hand.

1
It does this by forming cos (hx;+ky;+1z;) separately for ten atoms, and simultaneously presenting
the values of these ten cosines ready for addition for any given (h, &, 7). The final addition must be

done by hand.

The values of cos (hx;+ky;+1z;) are derived from a table of cos hz; by using a simple mechanical
arrangement to shift the origin of this table by (ky;+1z). The values are presented for addition by
switching on a small light behind the particular value of cos hx; on the table, which is written on
translucent material. New values of cos (hw;+ky;+1z;) are presented for successive h simply by
turning to the next position of a 24-position switch.

1. Introduction

I of this paper (Radoslovich & Megaw, 1955)
a device for moving the origin of a table of
by any arbitrary amount (ky+Iz) in order to
cos (hx+ky+lz) from a table of cos hx. It con-
of a box carrying a fixed scale and two tables
a movable chart, so that shifts of origin could be
easily and rapidly. The usefulness of this box in
for triclinic and monoclinic space groups
vas pointed out.

Such a box speeds up calculations dealing with one
atom at a time. In most calculations, however, we are
concerned with several chemically identical but crys-
tallographically distinet atoms, and we are therefore
interested in the quantity

N
2 cos (haj+ by +-1z))
i=0

where the summation is over N chemically similar
atoms. This could be computed rapidly if the values of
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cos (hx;+ky;+1z;) presented separately on N such
boxes could be easily picked out simultaneously,
ready for immediate addition. To achieve this it was
necessary to re-design the box so that a convenient
number of identical units would stack together in one
instrument. A description of one of these units is given
first; the method of combining them follows.

2. Description of instrument
(@) Outline

The new design incorporates the following changes.
The fixed hx scale with its associated marking pins is
replaced by a panel of bulbs. The moving scale, which
is now translucent, is arranged horizontally in front
of these and carries the values of cos fix printed from
left to right. The bulb designated Az is required to
light up when a multiple switch is at position 4; by
doing so it clearly marks the required value of
cos (hx+ky+1z). For this purpose each pole of the
switch is permanently connected to a socket in a panel
behind the lights, and likewise each bulb is connected
to a socket on this panel. The instrument is set up for
calculations with any given set of atomic coordinates
by connecting the switch socket » with the bulb socket
hx, a process corresponding to placing the marking-
pins on the hx scale on the box.

A short subsidiary scale on the chart, reading an-
gular intervals, can be placed so as to label the bulbs
with their values of 2z for the purpose of making the
above connections; it is also used to fix the origin at
a position determined by l,z. By moving k;y on the
main scale up to this new origin we obtain the re-
quired displacement (k;y+I;2) of the origin, and hence
values of cos (hx+ky-+I2). A second subsidiary scale
is available for setting up the instrument to read
values of sin (hx+ky+12).

(b) Tables

The tables of cosines and angular intervals are writ-
ten on a narrow strip of tracing linen. This is held
vertically in a milled channel between two sheets of
perspex, and can be moved to the left or right by hand-
operated drums at each end. The winding drums move
independently, one being used for forward winding
and one for backward winding. Small fibre washers
prevent them running too freely. The lower disc of
each drum, which is of large diameter and knurled,
projects through a slot in the perspex, for winding
purposes.

The tracing linen is 1§ in. deep, and about 8 ft.
long. It contains three blocks of tables, i.e. the main
and the two subsidiary tables mentioned above. The
main table (Table 1) contains eight rows of figures,
i.e. four cosine tables, and four fables of angular
intervals labelled ky. The latter are used only in re-
setting the strip, and so are in light coloured inks,
whereas the cosine figures are in heavy Indian ink,
since they are finally to be read off for addition. Both

E.W.RADOSLOVICH

Table 1. Beginning of main table

The tables are reproduced approximately actual size.
The ky tables are printed in red ink.

100 T00 99 99 99 99 98 9g — 1} cyeles
00 01 02 03 ky
100 100 99 99 99 99 98 98§
75 76 77 78 ky
50 51 52 53 Ry
0 03 06 09 13 16 19
25 26 27 28 ky
0 03 06 09 13 16 19

Table 2. Beginning of setting-up tables

The tables are reproduced approximately actual size. The
tables run for a quarter-cycle each. The /z tables are printed

in red ink.
COSINES
50 51 52 53 hx
00 99 98 97 lz
00 01 02 03 hx
25 24 23 22 lz
50 49 48 47 Iz
25 26 27 28 ha
75 74 73 72 Iz
75 76 77 78 ha
SINES
50 51 52 53 ha
25 24 23 22 Iz
00 01 02 03 ha:
50 49 48 47 Iz
75 74 73 72 Iz
25 26 27 28 hx
00 99 98 97 lz
75 76 77 78 ha

tables are at 0-005 cycle intervals, but as ky is linear
every second figure only is recorded. The reason for
having four rows of cosines (and of ky) is that the
cosine cycle has been folded into a guarter-cycle length
to keep the width of the box reasonable. Thus the
cosine sections begin at § = n, 0, /2 and 37/2 respec-
tively; each section runs through 1% cycles.

The two subsidiary tables (of } cycle length) also|
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have eight rows of figures, every row being in angular
intervals. The first, third, sixth, and eight rows are
labelled Az, and the other four rows Iz (Table 2). In
order to obtain the double shift of origin (k,y+z) it
is necessary to be able to mark the position of /,z on
the front panel of the instrument, when the sub-
sidiary tables are in position. This is done using thin
perspex plates, 4 in.x 1} in., which have a short pin
in their upper edge. A row of holes has been drilled
at } in. intervals (the spacing of the tables) in the
perspex face of the instrument, into which the pin can
be pushed. Each plate has a small white dot painted
on the rear surface at the height of one or other of the
Iz rows of figures, and a particular value of Iz is marked
simply by placing the appropriate plate so that the
dot lies over it. This dot now becomes the ‘origin’ of
the instrument.

(¢) Bulbs

There are four rows of small electric bulbs, 25 in
‘each row. These are mounted in standard ‘screw-in’

vals (though the tables can be set to twice this ac-
curacy). A grid of black paper strips is stuck to the
perspex immediately behind the charts, to leave an
aperture 1 in. square in front of each bulb. Likewise
3 bulb is pa , except  a small area on
| thus any only li up one cosine
figure on the chart. The bulbs are lit by a small 6V.
transformer.

(&) Sockets and switches

" The bulbs are connected vertically in pairs (either
a lst- plus 2nd-row bulb, or a 3rd- plus 4th-row bulb)
and each pair is connected to one socket on the rear

]-tu lb’ 2a: 2[;; 3a; 3[;; e h’

Connections from bulb socket to h socket are
n by a short  d with a wand at eac
two switc each have ano fer on

Wternate positions are joined together and connected

|

|
|
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to a panel light, 1,2, ...,k ... to a white light,
1y, 24, - ., Ay, ... to a red light, the latter marked
with the word ‘TOTAL’. The bulbs light up in vertical
pairs, giving two values of hzx differing by = (i.e. by
0-50 cycle). The top and bottom rows of figures (which
begin at hx = 7 and 37/2 respectively) have strips of
red cellophane fixed behind them so that they appear
against a red background, while the other two rows
are left clear. Thus the two figures illuminated appear
against a white and a red background for the first and
second half-cycles respectively. If ha lies between 0
and 7z, the bulb socket Az is connected to the switch
socket A, (see Fig. 1); the while light then appears on
the panel above the switch to show that the figure
against the white background is the value required.
If hx lies between s and 27r the connection is made to
switch socket k,, and the red panel light indicates the
figure against the red background. Fig. 1 shows the

Bulb -up to ‘24

i BB E

Switch vy 400.: For 0= hx <0:50
sockets E B Y S rorososhe<io

Fig. 1. Rear panel. Scheme of sockets showing connections for
2z = 0-02 and for 4z = 0-78 (i.e. 0-28-0-50).

arrangement. For a given A the connection will be
made either to switch socket &, or A, but not to both.

Thus the two rows of bulb sockets give half the cycle,
and the two switch positions (i.e. two indicating colours)
extend this to the full cycle of cosines. Fxperience
suggests that an instrument half a cycle wide would
not be too cumbersome, and this would not, of course,
require two switch positions for each A.

(e) Combination of several umits tnto one instrument

The description so far has been of one basic unit of
the main instrument. Ten of these units have been
mounted vertically in one frame, as a single device,
with all the winding drums at either side on the same
shaft (Fig. 2). As mentioned above, for any given A
a selection of the ten units will show (white) values of
cos (hx+kyy+1,z) at switch position 2, (but not at k)
and the remainder will show (red) values at the fol-
lowing position %,. These two sets of cosines are added
together, as indicated by the word “TOTAL’ on the
red light.

A standard design of wander-plug is used which
allows several plugs to be inserted into the same
socket. Thus one double row of switch sockets would
suffice for the whole instrument, but only if no value
of hx was repeated for two different values of % for a
given atom. For triclinic space-groups, values of Ax
will not recur very often. This possibility is provided
for, however, by having four double rows of switch
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Fig. 2. Front view of SUMCOS. The sine (and part of cosine) setting-up tables are visible in the top unit
(the white line on the right is for positioning these).

sockets connected to separate wafers of the switches
(which have six wafers in all). Thus these four rows
have independent circuits (see § 3(c)). To avoid the
inconvenience of plugging the remaining six units into
one double row of switch sockets a further four rows,
permanently in parallel, have been connected to an-
other switch wafer. The remaining wafer is required
for the indicating lights.

(f) Dimensions

The overall height of the instrument is 22 in. and
the width 32 in., but the significant area of figures is
only 20 in.x 13 in., which is sufficiently compact for
rapid reading.

3. Use of the instrument
(a) Setting up

The first step is to tabulate hz, ky and Iz, for all
required positive values of A, k and [, using values of
x, ¥, 2, with their maximum known accuracy. (Though
this table is the only essential one it is convenient if
hzx, ky, and lz are also tabulated.) If the quantity to
be calculated is

N
2 cos (ha;+ky;+1z;)
j=1

then the ‘cosine’ setting-up tables are moved into
position. One unit is assigned to each atom, but this
choice cannot be quite arbitrary (see § 3(c)).

Within each unit the bulb sockets are now connected
to the switch sockets, this being done so that when the
switch is at position %, (or k,) the value of kz, rounded
off to two figures, is lit up on the table. This procedure
is quite straightforward. (If the Zx table is copied out
and permanently fixed above the sockets on the rear
panel, it considerably speeds up the wiring process.)
After the connections are made, the successive values
of 2z are lit up simply by rotating the switch, and the
correctness of the connections can therefore be
promptly checked. These connections are not altered
until all calculations with that atom have been com-
pleted.

(b) Use of main table

With the setting-up tables in place the small per-
spex plates are attached so that the origin is placed
at Iz for I = [, in each unit. The charts are now set so.
that ky for k = &, is brought up to the origin in each
unit, thus giving values of cos (hx+k,y+12) (§ 2(a)).
The indices (&, &, ;) are the same in all units and hence
we obtain (

10
2 cos (ha;+ky;+-lz;)

j=1
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by adding the ten cosines presented at the two switch
positions A, and k.

This sum is therefore computed for all (&, &, ) as
h runs through a sequence of values, and the charts
are then reset for the next value of k, e.g. (k;+1).
After computing all (4, k, [;) the charts are moved
back to the cosine setting-up tables, in order to place
the perspex origin markers at mew positions, e.g.
(4 +1)z.

Obviously we could get X sin (hx;+ky;+lz;) by

)

subtracting 0-25 from all values of lz. The ‘sine’ setting-
up table does this conveniently; otherwise the ky,
cosine and hx tables (and hence rear connections) are

used as described.

(¢) Problem of independent circwits and choice of atoms
Because of the limited number of wafers on the

values; but this is not a very stringent condition for
triclinic space groups, where x is rarely a simple frac-
tion. In any case the tables on the instrument have
been called Az, ky and Iz for convenience, and &y or Iz
can equally well be the quantity connected up to the
switches (for all atoms) if Az proves inconvenient to
use.

4. Discussion?®

This machine attempts to fill a gap in the considerable
range of computational aids and machines for struc-
ture factors now available. It is, by contrast with
many techniques, relatively more efficient for the
space groups of lowest symmetry.

The basic design is simple. It is not an analogue
machine and therefore does not demand high precision
in its construction. The few different components used
wre very reliable, so that little maintenance is needed.

* See also the discussion in Part I (Radoslovich & Megaw,
1953).
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(The failure of a bulb is immediately obvious, since
too few cosines will be lit up for a given A.) The cost
of making the machine is probably less than for other
machines (of comparable efficiency) suitable for use
with triclinic or monoclinic space groups.

The accuracy is quite adequate for most problems.
One component (kx) is rounded off to the nearest
0-01 cycle; the other two components (ky and Iz) are
set to the nearest 0-005 cycle. This accuracy is main-
tained however large h, ¥ and ! may become. In
practice one index is limited instrumentally to 23
values in all, but the other two indices can run through
any number of values. The index changed by switching
(i.e. ) may be wired up consecutively, or in some
convenient sequence such as ...,6,4,2,0,2,4, ...
followed by ...,5,3,1,1,3,.... Values of £ and !
can be taken in any order.

Some estimate of speed may be given. Tabulating
hz, ky and lz (20 values of each) for ten atoms took
50 min., and checking for recurring values a further
10 min. The initial connections for a given problem
occupied 12-15 min. per atom. An unskilled assistant
using SUMCOS for the first time computed 300 values
of

2 cos (hx+ky+lz)
4 atoms
for fixed I, with 18 <k <18 and Ah+k+l even,
in 5 hr.; an experienced operator would take rather
less than this. Many problems, however, would not
require such frequent resetting of the charts as this
particular one did.

A device of this kind is useful in various exploratory
calculations during lengthy structure determinations.
It also makes the use of three-dimensional data more
feasible for laboratories without ready access to the

considerably more efficient electronic computers, such
ag EDSAC.

The writer acknowledges with sincere thanks his
indebtedness to Dr W. H. Taylor and Dr H. D.
Megaw, and to the workshop staff of the Crystallo-
graphic Laboratory for their ready cooperation. The
work was done during the tenure of a C.S.I.R.O.
Overseas Studentship.
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This paper describes a simple calculator for functions such as cos (ha+ky).cos lz. Values of these
functions may be readily read off from suitably arranged tables of cos hx.cos lz, after a simple

mechanical shift of origin by an amount ky.

Introduction

A simple mechanical device has previously been
described (Radoslovich & Megaw, 1955) which allows

values of {:g;} (hx+ky+12)* to be read directly from

tables of {sm
COs
Pl and PT, and for certain two-dimensional projec-
tions of the monoclinic space groups. The device has
also been extended (Radoslovich, 1955) to compute
2’ cos (hx+ky-+1z). It would, however, be more useful
when studying monoclinic crystals to be able to
tabulate directly quantities of the kind
{Sm} (har-+ky) - {““‘} (l2) .

COos cos

(hx). This is useful for space groups

This is the form assumed by both 4 and B in the

* l.e. either sin (ha-+ky4-1z) or cos (ha+-ky+I1z), as ve-
quired.

oF o -
e #pmn L
Giisastivs
»
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-
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structure factor expression F' = A+iB for the space
groups nos. 3 to 15 in the International Tables (1952).
The earlier device has been redesigned to permit
such calculations. The tables have been enlarged to
read sm} (hx) _{sm
cos co8

vals of Iz and for integral values of A. These tables can
still be moved mechanically, however, to include the

. sin sin
term Ay in the form {cos} (ha,—|—k_1/)-{um} (l2).

(lz) directly, at suitable inter-

Description

The three angles to be specified (viz. kz, ky and Iz) are
given as decimal fractions of a cycle, at intervals of
0-01 (i.e. 3:6°); values of cosines are given at the same
angular intervals. There are 26 different tables of
K cos hx, where K has values K = coslz, and Iz =
0-00, 0:01...0-25, for successive tables.

The values of hx are set out on four strips of paper

ANE NN E T,

forer

Ee
FAATESEUER

o

\

fig. 1. General view of calculator, with cover removed. This shows the ky scales on the two edges of the chart, and the four
! columns of the hx scale on the cover, with some ‘A’ pins in place. (The block of figures on the right of the cover are for
| use with the cos (hx 4 ky+-12) section of the calculator). The markers are conveniently stored in the top compartment.
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Iz for cos Iz cosChx+ky)
[and coslz. sin (hx +ky)]

25 01 0223 50 25 49 26
Q 7599 76 987 5075 5/ 74
N 00 100 00 100 06 99 13 00 00 00
S Ol 00100 06 99 12 06 00
S 0299 990698 12 /300 0 /2
~
cos lz. cos x
? /7 al-
hx=0-00 hx=0-25

73 25 50 26 49 27 75

Iz for sinlz. cos(hx+ky)
(and sin lz. sin Chx+ky) ']

250024 0 23 75 745/ 73 52 ky
76 9977 98 ¥
00 06 99 /3 00 00 00 00 00 00 25
00 0699 /2 06 00 06 00 06 0 26

99 00 99 06 98 13 0012 0 20227

hx=0-50 hx=0-75

Fig. 2. First section of the movable chart. Arrows point to the table for cos 0:01.cos hwz, which is given four times (see text)
When Iz values are in red (sloping figures here) then cos Iz or sin Iz is negative.

glued to the lower side of a perspex cover carried on
the sloping face of the instrument (Fig. 1). These
strips are correctly spaced to reveal, through the
remaining transparent sections in the perspex cover,
just one at a time of several vertical tables of cosines.
The required table on the chart underneath can be
chosen by moving the cover sideways, up to about two
inches.

Small holes are drilled in the perspex, at the position
of each ‘hx’, into which can be inserted flat markers
mounted on a short pin. The markers are numbered
1,2,3, ..., corresponding to values of 2, and there
are two sets, with black and red figures on a white
background, for A and /. The markers are not essential,
but are an aid to quick reading.

The values of ky and Iz, and the 26 tables of X coshz
are set out (Fig. 2) on a moving chart consisting of a
strip of tracing linen 8 in. wide and about 15 feet long.
The ky values and the cosine tables are arranged
vertically, with one space between each two-figure
column, whilst values of Iz are set out horizontally,
as column headings to the cosine tables. Since it is
impossible to accommodate all the 26 cosine tables in
parallel columns across the chart they have been set
out in five sections on the chart, six tables in each
section, except the last. There is a blank space of
about two inches between sections.

The ky values are set out vertically down the left
hand edge of the chart, beginning at ky = 0-00 and
running through 11 cycles to ky = 1-25 (equivalent
to 0-25). This ky column is duplicated on the right-
hand edge of the chart, but here the values begin at
ky = 0-25 and run to ky = 1-50 (i.e. 0-50). This set-
out of the ky values is repeated in each of the five
sections of the chart mentioned above.

Two values of ky are always visible at the top left

and right corners of the computer. A small bracket at
the upper left corner of the chart area carries the word
‘cos’ and an arrow. This defines the origin with respect
to the left-hand ky scale, to be used when calculating
cos (he+ky) {ilons} (iz). The right-hand bracket defines
sin

cos} (l2).

Now consider the arrangement of one K.cos hx
table, e.g. when K = cos iz for Iz = 0-01. This table
lies in the first section of the chart. It is set out verti-
cally, beginning at a value 0-99 corresponding to
c0s0-01 . coshex for Az = 0-00 and running for 1} cycles
through to Az = 1-25. The dimensions of the perspex
cover of the instrument, however, permit only one
quarter of a cycle to be seen at any one time, and
therefore this K .cos hx table is repeated in three
further columns, beginning at values corresponding to
hx = 0-25, 0-50 and 0-75 (Fig. 2). In this way a full
cycle of one (and one only) K cos hz table is always
visible through the perspex, no matter how that sec-
tion of the chart is moved backwards and forwards
behind it. Values of K.cos hz for which cos kx is
negative are in red. The successive columns of K cosha
tables are not in order of increasing Iz, but are arranged
so that coslyz.cosha and sinlyz. cosha (=cos (0-25—1,z)
xcos hx) are in adjacent columns and hence both
values can be read off with only a slight movement
of the cover. Values of coslz.coshay and coslyz.sinhx
are obviously related by a chart shift of a quarter cycle.

The value of Iz (viz. lz = 0:01) to which this table
corresponds will appear through the clear sections of
the perspex cover at the top of the left-hand K coshx
column. But this table also represents values of
cos 0-99 cos hx, —cos 0-51.cos hx, —cos 0-49 cos Az,
sin 0-26 cos hx, sin 0-24 cos hxr, —sin 0-76 cos Az, and

the origin for calculating sin (ha+ky) {
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—sin 0-74 cos hz. All eight values of lz, (under the
appropriate heading, and in black or red, as the above
products have a positive or negative sign) therefore
appear at the top of the other three columns of this
particular table, cos 0-01.cos kz. It is by this means
that all values of Iz from 0-00 to 1-:00, and all four
sin Iz [sin Ax
cos lz}' {cos hx
the 26 different tables given.

combinations } can be calculated from

ﬁn}k, which will
cos

depend on the sign of both components, is determined
from its colour (black or red) on the table. This choice
is aided by a simple indicator above the perspex,
consisting of a metal bar sliding behind covers. Values

. sin
The sign of {oos} (hx+ky)-{

. sin . . .
of Iz for which o8 lz is negative are shown in red;

and the metal bar is moved to place ‘Iz’ on it opposite
a black or red dot, depending on the colour of iz on
the chart., The + and — signs on the bar then show

whether all black figures (for the quanti’oy{zg;} (ha+Fy)

[sin
x | cos
figures as negative, or vice versa.

A mechanical drive* for moving the chart smoothly
either forwards or backwards is included, though it is
not essential. A small non-reversing electric motor is
mounted on a pivot so that it can be placed in three
positions determined by a standard radio switch. In
the first of these the rubber driving wheel from the
motor engages a knurled wheel on one winding drum,
for forward motion of the chart. The middle position
is neutral; and in the third position the knurled wheel
on the other chart drum is engaged, for reverse motion.
Spring-mounted fibre washers on both winding drums
ensure that the chart is always taut. The chart may
also be moved manually.

The device is used as follows. Coordinates (x, y, z)
known to any desired accuracy can be used as a start-
ing point, and the integral multiples hx, ky and lz are
formed to the same accuracy. These quantities are then
rounded off to the nearest 0-01. The value of Iz for
some particular caleulation (involving either coslz or
sin lz) is then located at the head of one of the five
sections and its colour is set on the sign indicator. The

cover is placed so that this /z is visible through

of the transparent strips in the cover. The chart

now moved within that section so that the required

alue of ky lines up with the arrow, for calculating

cos (hx+ky) or sin (hx+ky). The A markers are

at the tabulated values of Az, and are left in

positions until a further atom is being considered.

values on the chart opposite the markers are
ues for

}(lz)) are to be read as positive and all red

* The computer was constructed (and in part designed)
Messrs. K. Barrow and A. Palm in the workshops of this

h=iL2””(ﬁthm+M%mew,

COS COos

depending on the position of the cover and on which
ky scale is used.

Cos (hx+ky+1iz) section

In order to make one device as useful as possible
two further sections of chart, both for calculating
{2)1;} (hax+ky+1z), are included. One of these is an
exact copy of that described previously (Radoslovich
& Megaw, 1955), but the tables have been more widely
spaced to match the transparent strips on the new
perspex cover. The other section has the same layout,
but the interval used for all the tables is now 0-:005
cycles, so that the accuracy is doubled. This requires
twice as many values of Az, and to accommodate
these the tables are set out in eight columns rather
than four. The perspex cover is replaced by one car-
rying the hx table in eight columns, at 0-0056 cycle
intervals. )

Discussion

The present computer retains the several advantages
of the earlier device, which were discussed in detail
by Radoslovich & Megaw (1955). It is, however, worth
emphasizing that it is now possible to compute
geometrical structure-factors for all of the triclinic and
monoclinic space groups directly from the formulae in
the International Tables (1952), so taking advantage
of any symmetry relations for these space groups.
Contributions of the separate atoms to the geometrical
structure factor can be read off immediately by un-
skilled computers, using no more than a table of Az, by
and lz values to set up the device. The rounding-off
errors are kept to the minimum which is possible
when using trigonometrical tables at 0-01 oycle
intervals.

The following example shows the speed of this
device. Values of cos (hx+1ky).cos lz were calculated
for an atom for which x=0-938, y=0:417 and 2=0-055,
the indices being given values A=20, 18, ..., 18, 20;
kE=0,1,...,6;and ! = 3 and 4. Kight minutes were
needed to set up the A markers, and thereafter 300
values of cos (hax+ky).coslz were tabulated in 23
minutes, i.e. as fast as they could be written down.
Tt was not tiring to use the computer at this speed,
which is considerably faster than can be achieved by
other simple methods of calculating trigonometric
products of this form.
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Anorthite CaAl,Si,O, has the same point group, 1, as a simple felspar, but four times the volume
per lattice point; its unit cell is primitive, with a 14 A c-axis, while that of albite, for comparison,
is ¢ -C c- .An roxi much closely to a C-fac
cell a o er a edc hal4 xig or a primitive
a 7 A c-axis. The work was done in two stages. A synthesis using only main reflections gives elon-
gated peaks or pairs of peaks whose centres of gravity define an ‘average structure’. In the different
subcells, atoms have displacements from the average positions whose magnitude and direction are
given by the elongation (or ‘splitting’) and whose signs are found from the difference reflections
(which also provide a check for magnitude and direction). The Ca peak has the most conspicuous
ation, and be for a he om od of ng the signs of diffe
tions. In t rst , only ‘c diff e refle re used, and th Ac
centred approximation was obtained; a repeated application of the method using ‘b’ and ‘d’ reflec-
tions gave the true primitive structure. The final refinement was done by successive differential

syntheses. dinates of the 52 indepen
A for Ca, 5 A for 8i and Al, 0-0038

1. Introduction

1-1. General approach

Anorthite, CaAlsSiaOs, is a member of the felspar
family. The general features of the felspar structure
have been known since the study of sanidine by Taylor
(1933). Anorthite is one of the commonest and
zeologically most important members of the family,
and it differs from the others in ways which made a
letailed study desirable. Of the felspars whose struc-
bure has previously been studied, it is chemically
most nearly related to celsian, BaAlaSisOs. Crystallo-
yraphically, however, the triclinic symmetry and the
radius of the large cation give it a closer resemblance
50 albite, NaAlSizOs, and the significance of this
relationship is strengthened by the occurrence of an
wpparently continuous series of solid solutions between
she calcium and sodium felspars. It was therefore
~eagonable to take the structure of albite as a starting-
ooint.
! The obvious difference in chemical formula between
\northite and albite does not raise any difficulties in
approach. The scattering factors of Al and Si are
nearly identical that the difference between them
only become important at a very late stage of
We write the felspar formula as A7,0s,
standing for ‘tetrahedral cation’, and make no
ttempt to distinguish the individual 7' cations as
or Al during the analysis.
The present paper deals only with the method by

* Present address: Department of Physics, University of
Adelaide, Australia.
T Present address: Division of Soils, Commonwealth
and Industrial Research Organisation, Adelaide,
ustralia.

atoms are given; their standard deviations are 0-0007
r O.

which the structure was determined, the atomic
coordinates found, and their accuracy. The description
and discussion of the structure is left to a separate
paper (Megaw, Kempster & Radoslovich, 1962). The
nomenclature used throughout for the individual
atoms is that proposed by Megaw (1956).

1-2. Cell dimensions and lattice

The cell dimensions of anorthite are given by Cole,
Segrum & Taylor (1951); they are

a=81768, 6=12-8768, ¢=141690 A;
x=93°10", §=115°51", y=91°13".

The c-axis is thus nearly double that of albite, the
other dimensions being very similar. These authors
also showed that anorthite has a primitive lattice,
while albite is C-face-centred. This means that the
asymmetric unit of anorthite is four times that of
albite, the unit-cell content being 8 CaAlaSi20s. There
is no evidence in the literature suggesting the absence
of a centre of symmetry, and none arose in the course
of this work. (The conclusions which can be drawn
from the statistical distribution of intensities are dis-
cussed in § 2-3.) The space group is taken as PL.

In reciprocal space, anorthite has four times as
many lattice points as albite, classified for convenience
as follows:

‘a’ type: h+k even, [ even
‘0’ type: h+k odd, 1odd
‘¢ type: h+Fkeven, !l odd
‘d’ type: h+k odd, Ieven.

Of these, only the ‘@’ type correspond to possible
reflections of albite. The rest, which arise from dif-
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Fig. 1. Average non-zero |F,| values of four types of reflec-
tions, versus (sin 8/4)%. (The dashed line gives an cstimate
of the lowest experimentally observable value.)

ferences between the subcells, are on the whole very
much weaker (see Fig. 1), indicating that the differ-
ences are small. The analysis of such a structure may
be attempted by a method of successive approxima-
tions.

1-3. Principle of method of solution

It is easiest to understand the method of solution by
considering a hypothetical structure with two subcells
only. This is illustrated in Fig. 2(a), where ¢/2 is
nearly but not exactly a translation vector, so that
corresponding atoms in the two subcells are at slightly
different positions, and the difference gives rise to
weak reflections with odd I. A synthesis of reflections
with even [ will give a superposition of the two sub-
cells, replacing each atom by two ‘half atoms’ (Fig.
2(b)), which in practice will probably appear as an
unresolved elliptical peak (Fig. 2(c)). A synthesis of
odd-! reflections (Fig. 2(d)) has to be added to this
to reproduce the true structure. The mean parameters
(®m, Ym, 2m) give a reference point, shown by a dot,
which is the same in each subcell. The difference
parameters 4+ (dz, dy, 0z) give the displacements of
the actual atoms from this mean position. An illustra-
tion from the actual structure, corresponding to
Figs. 2(¢) and 2(d), is given in Fig. 7.

@ (®) © (@

Fig. 2. Diagram illustrating effects in a hypothetical structure:
(@) different atomic positions in two subecells, (b) ‘average
structure’, showing positions of two ‘half-atoms’ in each
subeell, (¢) Fourier synthesis (F, map) using main reflec-
tions, (d) Fourier synthesis (¥, map) using difference re-
flections. (Dotted lines show negative contours; contours in
(d) are at smaller intervals than in (c).)

THE STRUCTURE OF ANORTHITE, CaAlLSi,04. T

A knowledge of the approximate structure gives
the signs of the even-l reflections only; hence the
synthesis of Fig. 2(c) can be constructed, but not that
of Fig. 2(d). From the former it is possible to deduce,
the mean position of the two half atoms and the

i
|
I

the question is a real one and can only be answered
from the evidence of the difference intensities. The
actual atomic parameters are the algebraic sum of the
mean parameters and the difference parameters with
correct sign. Once they are known the refinement of
the structure as a whole can proceed in the ordinary way.

In principle the method is closely related to one
used by Buerger (1956), but in detail the latter would
have been inapplicable to our work even if we had
known of it at an early stage (cf. Radoslovich, 1955).
Buerger, concerned with differences of atomic occupa-
tion between subcells, takes the actual structure as
made up of ‘substructure’ and ‘complement structure’,
substructure being ‘that part of the electron density
which conforms to the substructure period’. We,
concerned with differences of atomic coordinates, find
a break-up into ‘average structure’ and ‘difference
structure’ much more informative, even though the
electron density over half the volume of the latter i
necessarily represented as negative.

1-4. Application to anorthite

The above is a general method for structures witl
closely similar subcells. The determination of the sign
of the difference parameters, however, remains aI
individual problem for each structure. One exampl
occurred in the structure of celsian (Newnham ¢
Megaw, 1960). In anorthite, there was the advantag
that the Ca atoms were found experimentally to hav
the largest difference parameters, and hence a modifi
cation of the heavy-atom technique could be used
On the other hand, there was the disadvantage tha
the true structure had four subcells, not two, whicl
meant that its derivation from that of albite had t
proceed in two stages. Initially it was assumed tha
the first stage had been completed in Sgrum’s study o
‘body-centred anorthite’ (1951,1953), and thisstructur
was taken as the starting-point for the second stage
This soon proved not to be a good approximation, so
fresh approach was made. In this the average structur
was referred to an albite-type subcell, and the strongest
set of difference reflections, namely the ‘¢’ type (Fig. 1),
was considered first, leaving the ‘0’ and ‘d’ types to
be included at the second stage. This method proved
successful, and the structure could finally be refined
in the ordinary way using all four types of reflection.

It is convenient henceforward to refer to the set o
difference parameters which would be zero if the ‘c
or the ‘b’ reflections were systematically absent as the
‘¢’ splittings or the ‘b’ splittings respectively.
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Since this is a method of successive approximations,
it is desirable to check its progress at every stage.
I'his was done by considering not only the R-factor
(which can be misleading) but also the height and
shape of the peaks on Fourier maps, the amount of
false detail in the background of ¥, syntheses and dif-
ference syntheses, and the relative magnitude of the
atomic shifts in successive syntheses. The continuous

nside a small perspex box a few small untwinned
blocks were obtained. The crystal finally chosen was
f square cross-section, 0:18x 0:18 x 0-32 mm., elon-
sated roughly parallel to the a-axis.

| The lattice constants were taken to be those of
Jole, Serum & Taylor (1951), which are quoted in §1-2.

2. Measurement of intensities

Three-dimensional intensity data were collected
rom equi-inclination Weissenberg photographs, using
iltered Mo K radiation and the standard techniques
if visual estimation with a comparison scale. Correc-
ions were made for spot shape; in the later stages of
efinement revised values were introduced, calculated
yy a modification of the method of Phillips (1954)

Appendix). Some extinction effects were apparent
low-angle reflections; as suggested by Jellinek

958) all reflections in these regions were omitted

difference syntheses, (and elsewhere replaced by
values), and not just the strongest ones
obvious discrepancies. Reflections in the central
of higher layers were also omitted, because for

1007

them the spot-shape correction was very large. In all,
about 189, of the observed reflections were omitted.
No correction was made for absorption, because no
convenient method was available. As a check, the
or 1 wasca for a few dl
ec 8 by the of Albrec 9),
found to vary from 199, to 379%. It was decided that
these differences could be ignored, since accurate
values of the ure factors were not a primary
object of inve

2:3. Gemeral relations between observed infensities

The final F, and F. values have been tabulated
and can be made available on request.

The numbers and proportions of the four types of
reflections are recorded in Table 1. Statistics are also
included for a restricted group of strong structure
factors (>60 on an absolute scale) comprising one
quarter of the observed reflections. The difference
reflections are evidently both weaker and less numer-
ous than the main ‘o’ reflections, and the average
intensities of the classes as a whole are in the order
‘@’ >°c’>b’>‘d’, irrespective of the distance from
the origin of reciprocal space (Fig. 1).

It is clear that the structure of primitive anorthite
approximates more closely to a base-centred (C-face-
centred) structure than to a body-centred structure.
This is a geometrical fact; the physical implications
cannot be discussed till the structure as a whole is
completely described.

%

60

N()

20

0-2 0-4 0-6 0-8 1-0

z
Fig. 3. N(z) test applied to the ‘a’-type Okl reflections
of anorthite.

Table 1. Survey of anorthite structure factors

:a’ £b’ ‘G’ cd’
h4+k even I+ k odd h+k even h+k odd
Type of reflection l even { odd ! odd l even Total
No. observed 1346 478 853 114 2791
48%, 17% 319, 49,
No. of strong reflections 621 4 89 0 714
(> 60 on absolute scale) 87% 19% 129, 0
Percentage of group 27% 719, 48%, 939%, 599,

below least observable
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The older statistical tests for the presence or
absence of a centre of symmetry fail because of the
large proportion of intensities below the observable
limit, characteristic of this type of pseudosymmetric
structure (see Table 1). If the N(z) test is applied to
the ‘a’ reflections of the 0kl zone all but the first few
points follow the acentric curve fairly closely (Fig. 3).
This is probably due to the implicit assumption of an
albite-size unit cell containing incompletely resolved
quarter atoms, which is not in accordance with the
random distribution of spherical atoms required by
Wilson’s (1949) theory. The P(y) test (Ramachandran
& Srinivasan, 1959), on the other hand, can and should
be applied to all the reflections. When this is done, it
speaks conclusively for centrosymmetry.

3. Outline of calculations
3-1. Atomic scattering factors

The scattering curves of Bragg & West (1928)
were used in the early stages, but they were later re-
placed by others based on those of Berghuis, Haan-
appel, Potters, Loopstra, MacGillavry & Veenendaal
(1955), modified by appropriate temperature factors
(see § 3-2). An average between the curves for Al and
Si was used throughout.

3-2. Computing methods

At the time when work on this structure was begun,
no computer programme was available which was
suitable for carrying out Fourier syntheses. Since it
was clear that two-dimensional work would not give
enough resolution, bounded projections were calcu-
lated (cf. Lipson & Cochran, 1953) using a Hollerith
punched-card installation. It was thought initjally
that the unit cell would be covered adequately, with-
out much overlap of atoms, by five slabs, bounded
by the pairs of planes x=0+4, =%+, y=0+,
y=3%1+%4, y=31+ 35 At a later stage thicker slabs with
boundaries x=0+%, =%+ 4%, were found necessary.

Structure factors were computed on Edsac I.

When all the 52 independent atomic peaks had
been individually located, difference syntheses in two
and three dimensions were used for further refinement,
calculated on Edsac I. The three-dimensional syntheses
were computed in two stages, a set of generalized
projections being calculated and used to give the
coefficients for a series of one-dimensional syntheses
scanning the whole volume. The electron-density
differences near each atomic site were plotted out on
a series of pieces of tracing paper representing parallel
sections through the atom.

To calculate atomic shifts from the slopes in a
difference synthesis it is necessary to know the
curvatures of the peaks in the corresponding F,
synthesis, or to estimate these from their p-value and
heights (Lipson & Cochran, 1953). The p-values are
based on the assumption of a Gaussian atom, and to
this approximation they are the same for the peaks

THE STRUCTURE OF ANORTHITE, CaAlSiO4. T

in the bounded projections as in three dimensions,
a fact which allows the peak height for the latter to,
be deduced from the former. The values adopted are
given in Table 6(c). |

Table 2. Scattering factor coefficients

Atom and Scattering factor coefficients
state of

lonization* A B o D E

Cat+t 5-590 1-697 8-061 13-042 4259

Sit+/Al+ 7612 2-857 2249  63-642  2-128

(O 4-463 7-056 3-035  36-845  1-478

* so ‘states of ion’ c try, as
bein pirically reas The [ 1 d  rence

to Fe.

The final stages of refinement were done with a
eyclic program on Edsac IT (Wells, 1961). For this,
the scattering factor curves of Berghuis et al. (1955)
were fitted by expressions of the form

Aexp[—Bs?]|+Cexp [—Ds?]+E,

(Forsyth & Wells, 1959). The coefficients (Table 2)
were evaluated independently because of differences
in the state of ionization assumed. The isotropic
temperature factors were determined from two.
dimensional syntheses and thereafter left unchanged

After rejection of reflections liable to be in erro
because of extinction or spot shape, 2200 remainec
(829% of those observed). These F,’s were stored or
magnetic tape. The F.’s were calculated, and the
F.’s scaled to them by a single scaling factor no
varying through reciprocal space. After calculation o:
an R-factor, reflections for which ||F,|—|F.|| wa
greater than 10 on an absolute scale, or [Fo|/|F.| la3
outside the range 1 to 2, were tabulated and rejected
their number dropped from 70 at the beginning to 4:
at the last cycle. The rest were used to calculate the
values of differential syntheses at each atomic site
and the shifts, and new coordinates, were punched ou
as well as being fed back for a new cycle.

4. Structure analysis

4-1. Preliminary work

including ‘¢’ and ‘d’ reflections.

After two cycles of refinement, the Ca and T pealk
were fairly clear and well defined; but the ‘0’ splitting
were much smaller than those determined by Serum
and. for some of the 7" peaks they differed in directios
from his (though not by appreciably more than the;
changed in the course of his final three-dimensione

The O peaks were lar, of va

as much as 1-5 A their exp
positions. It seemed that some of them might hav
moved outside the limit of the bounded projection
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The Ca and 7' peaks were markedly elongated, as
was expected because of the ‘c’ splittings. The magni-
tudes of these splittings were estimated from the
peak contours by plotting out sections along the major
and minor axes of the peaks; then if each atom has
a cross section like that along the minor axis, the
separation 2dr of two such atoms giving a cross
section like that along the major axis can be found
by trial.

Attempts were made to deduce the signs of the
splittings, following which a synthesis gave fair
agreement for Ca, but inconsistent results for 7.
It had become clear at this stage that the differences
from Serum’s structure were too great to treat it as
a reliable trial structure; if the magnitudes and direc-
tions of its ‘b’ splittings were not close to those of
anorthite, their sighs would be unreliable, and so would
deductions about ‘¢’ splittings which depended on them.
This approach was therefore abandoned.

4-2. Awerage structure from ‘a’ reflections

The new approach started with a trial structure
having an albitoid cell and thus giving ‘@’ reflections
only. Their signs were assumed to be known fairly
accurately from the preliminary work. A complete set
of bounded projections was prepared; the layers at
x=0 and =% are shown in Fig. 4.

TN

0
x=0 b

Fig. 4. First bounded projections: slabs at =0 and x=1}.
Contours at intervals of 7-3 e.A—3; zero contour omitted.
Cation peaks x, anion peaks +. The strong peak near
(1, 0, 0) is Ca. The site of Op(m), which remained missing
till a much later stage, is shown at the top right-hand
corner of the slab at x=14.

As before, the Ca and T peaks were clear, the O

less good. Coordinates were obtained with fair

for 11 of the 13 atoms in the asymmetric

The two remaining O’s, O4(2) and Op(m), did

show up at all; positions were guessed for them
the gaps between the bounded projections.

Of the well-defined peaks the Ca appeared to show
largest splittings but some of the 7' peaks were
appreciably split.

Although each peak in this ‘average structure’

of four quarter atoms, it is necessary at this
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stage to assume that the ‘b’ splittings are negligible
compared with the ‘¢’ splittings, and so to treat each
peak as if it were merely double. With the less im-
portant splittings this may give rise to indeterminacy
or misinterpretation, but if the more important
splittings are correctly interpreted (‘important’ in this
context referring to the scattering factor of the atom
concerned as well as the magnitude of the splitting)
the errors may be expected to remedy themselves
during refinement.

Since Ca, which has the largest splitting, is also the
heaviest atom in the structure, it seemed likely that
a ‘heavy-splitting’ method of solution might be
effective. The fact that the difference reflections
were observable as far out in reciprocal space as the
‘a’ type reflections agreed with the assumption that
Ca made an important contribution to them. The
criterion of the ‘heaviness’ of a heavy atom suggested
by Lipson & Cochran (1953, p.207) is the ratio
(2f2)neavy atoms/(Zf2)otner atoms. For Ca in anorthite,
using the Bragg-West scattering curves, this is 0-3
at low angles and 0-6 near the limit of visible reflec-
tions. If the ratio were 1-0, about 75% of all signs
would be determined by the heavy atom. The effective
‘heaviness’ is expected to be enhanced by the large
gplitting.

4-3. Localion of symmetry centres

In this first-stage n of symmetry, 7A
C-face-centred (albi to 14 A CO-fac red,
half the centres of symmetry are lost, making it
necessary to decide whether those retained are the
set inclu (0,0,0) or the set incl 0,0, %)
(referred he 14 A cell). The contr n of the
Ca atoms must first be calculated for both possibilities.

The eight atoms which were originally equivalent
in the double albite cell have now been divided into
two sets of four, derived from atoms at

(Tm+ 0%, Ym+ 0y, 2m+ 02) and
(Tm— 0%, Ym— 0y, 1 +2m— 62)
by the operation of the centre of symmetry and the
C-face centring. Writing
O = 2n(haxm~+kym+1lzm)
A = 2m(hdx+ kdy+102)
it can be shown that the structure factor contributions
in the two cases are as follows:
centre of symmetry at (0, 0, 0):
8f cos @ cos A,
8f sin @ sin A4
centre of symmetry at (0, 0, 1):

+8fcos @ cos A,
1+ 8f cos @ sin A.

‘e’ reflections
‘¢’ reflections

‘e’ reflections
‘¢’ reflections

The total structure factor is obtained by summing
terms of this form over all the atoms in an asymmetric
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unit of albite. In this initial approximation, however,
all except Ca are assumed to be negligible. Since /
is small compared with @, the factor cos A or sin A
varies slowly in reciprocal space, modulating the
rapidly varying factor cos @ or sin @. The effect on
the inner ‘@’ reflections is very like that of a highly
anisotropic temperature factor, and is independent of
the choice of origin. The ‘¢’ reflections are modulated
by the factor sin /A, which is zero in a plane of reciprocal
space normal to the direction of splitting, and on either
side of it gives a set of parallel plane fringes with
maxima at 4= + x/2. The magnitude of these reflec-
tions depends on either cos @ or sin & as above.

This argument was used to determine the position of
the centres of symmetry. Both @ and A are calculable
for every hkl. Since the contribution of atoms other
than Ca is relatively more important at small reciprocal
radii, low-angle reflections were at first excluded from
the analysis, as were those for which sin /1 was small.
Division of the rest into two groups according to
whether |[sin @| or |cos @| was greater gave no
significant difference of average intensity between the
groups. Inspection of the strongest ‘¢’ reflections proved
more informative, however. Of 73 which were stronger
than the strongest ‘b’ reflection, 59 had |sin @] > [cos @],
showing conclusively that the centre of symmetry was
at (0, 0, 0)—a result confirmed by all subsequent work.
It is interesting that this selective method succeeded
when the comprehensive method including the larger
sample failed.

4-4. T splittings

In the array of intensities of ‘¢’ reflections on the
reciprocal lattice the strong infensities lay con-
spicuously on the fringes where sin A¢, had a max-
imum, but in patches consisting of from 2 to 5 strong
reflections separated by weaker ones. These patches
could often be identified as the intersection of fringes
due to one or more 7' splittings with those due to
the Ca splitting. Though the interpretation along these
lines was not complete, it was sufficiently comprehen-
sive to be very encouraging.

THE STRUCTURE OF ANORTHITE, CaAlSi,O4. I

4-5. Syntheses using ‘a’ and ‘¢’ reflections

The first synthesis of ‘¢’ reflections—a set of bounded
projections—was constructed using only those of
strongest intensity, about one eighth of the total
number observed, with the signs determined from their

came out very strongly in the direction assumed in
caleulating signs. In addition, appreciable slopes
appeared at many of the other peak sites. The general
background was still fairly undulating.

C
4
x=1 b
[
4
* e e ¥ %
o © - (@
[@)
0 x=0

Fig. 5. ‘Partial-¢’ synthesis, using only the strongest ‘¢’ reflec-
tions with signs determined by Ca. Diagram shows slabs
of bounded projection at x=0 and x=#%. Cont
vals of 1'5 e.A~3; zero contour omitted; nega
shown dotted. Cation peaks X, anion peaks 4. The peaks
near (4, 4, 0) are false detail which disappears later.

This synthesis, by its construction, overemphasized
the components of all splittings parallel to that of Ca.
Better estimates of the magnitude and direction of
the splittings were already available for some atoms
from examination of the ellipticity of peaks in the
synthesis of ‘e’ reflections. The ‘¢’ synthesis, however,
gave information about the signs of the difference
parameters which could not be obtained from the
‘@’ synthesis.

Table 3. Proposed c-splittings for anorthite

Initial values

Refined values
(at C-face-centred stage)

Atom ox oy oz O Sy oz
Ca (000) —0:0075 —0:00562 0-0058 —0-0020 —0-0174 00182
T, (0000) 0 0 0 —0-0055 0-0020 -0 0005
T, (m000) 0 0 0 —0-0018 0:0015 —0 0020
T, (0000) —0-0071 —0:0031 —0-0028 — 00076 0-0010 —0 0060
T, (m000) —0-0057 —0-0015 0-0029 0-0032 0-0025 0 0065
04 (1000) 0 0 0 0 —0-002 0 004
Q4 (2000) 0-050 0 —0-017 0-001 0-003 0 001
Opg (0000) 0-004 —0:002 —0-004 —0-024 0-006 —0018
Og (m000) 0-025 —0-003 0-006 0-014 —0-011 0 002
O¢ (0000) 0-003 0 —0:003 0-006 0 0011
O¢ (m000) 0 0 0 —0:020 0-001 0 002
Op (0000) —0-013 0-005 0-004 —0-008 0-003 0011
Op (m000) 0 0 0 0:020 0-012 —0013
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Two of the four 7' atoms now showed measurable
splitting, as did five O atoms; for the other two 1"s
the splitting was small and was taken as zero. The
z parameters determined independently from the =z
and y projections agreed satisfactorily. The signs of
the 7' splittings were checked by calculating their
contributions to a number of F.’s corresponding to
large F,’s. Where the Ca contribution was negligible,
the T contributions were usually large; where both
Ca and 7' contributions were large, they usually had
the same sign. The difference parameters at this stage
are recorded as ‘initial values’ in Table 3.

A second synthesis of the ‘@’ and ‘¢’ reflections
separately was constructed using the revised coor-
dinates. All the peaks in the ‘a’-reflection synthesis
had improved, except Op(m) which was still missing.
The ‘c’-reflection synthesis (Fig. 6) showed much greater
contrast between atomic sites and background, but

“was otherwise very much like the previous cycle,

even at sites where it had been thought unsafe to
attribute the slopes to splitting. This was satisfactory
confirmation of the validity of the procedure. A
further indication was provided by the behaviour
(not illustrated in Fig. 6) of two oxygen atoms for
which large splittings had been deduced: for Op(m)
the splitting was confirmed, whereas for 04(2) it had
disappeared, and in the ‘a’-reflection synthesis the
whole peak came up at one of the two ‘half-atom’

It the mean position of this er
ha by at least 0-5 A in the er
syntheses, and that it had not refined satisfactorily.
<
‘ e
@ < f 0 o
o O O O 0
o
0 x=0 b

Fig. 6. First full ‘¢’ synthesis. Diagram shows slab of bounded
projection at @ =0. Contours as in Fig. 5. Here the site of
04(2), near (0, 4, §), is marked for the first time.
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It s likely that the missing atom O was still
mis by about 0-5 A; a new positi T it was
proposed.

The sum and difference of the ‘e’ and ‘¢’-reflection
syntheses were plotted for each peak, giving the
electron density and atomic coordinates in the two
subcells. Fig. 7 illustrates this procedure.

= Sh6)

. ‘a+ec’ g

[ o 1) Oxygen

~ oD (1) Oxyg

O o

()

0 -’ N

¢’ reflections only
c e gt
2 < (2) Silicon+Oxygen

O
‘e’ reflections only b ‘a’+e ‘at =’

(3) Calcium+Oxygen

Fig. 7. Combination of ‘¢’ and ‘¢’ synthesis by sum and difference.
ram projections . or‘a’
of 6 zero and fir u ; con
‘¢’ at intervals of 3 e.A—2, zero contour omitted. The small
diagrams to the right show the effect of taking the corre-
spondingly-numbered regions of the *a’ synthesis and adding
or subtracting the electron densities in the same regions of
the ‘¢’ synthesis. Cation peaks x, anion peaks +.

Here and throughout the analysis, adjustments to
atomic coordinates were made from the evidence of
the Fourier maps alone, and never from considerations
of interatomic distance; the latter might have speeded
up the refinement process, but might also have
prejudged the bond lengths unwisely.

Next, several cycles of refinement were carried out
using F,, Fe, and (F,—F,) projections down the
z-axis. (The y- and z-axis projections contained
serious overlapping.) The E-factors at this and earlier
stages are given in Table 4.

Table 4. R-factors (as percentages)

Where R-factors were calculated separately for different types of reflections, the types concerned are noted in the first column,
and the separate values recorded in the later columns
From the stage illustrated in Fig. 9 onward, all types were taken together

Stage of work, and type of reflection used

After first ‘e’ + ‘¢’ bounded projections (Fig. 5): ‘a’, ‘¢’
After refinement in projection: ‘a’, ‘¢’

After second ‘e’ + ‘¢’ bounded projections (Fig. 6): ‘a’+“¢’
After first determination of signs of b’: ‘a’+4¢’, ‘b’
After ‘partial-b’ (Fig. 8)

After final bounded projections (Fig. 9)

After two cycles of Fo—F; projections

After first three-dimensional F,— F'; synthesis

After second three-dimensional F,— F, synthesis
After revision of coordinates and ¥F,’s

After 23 cycles of automatic refinement

0kl hOl hiO Overall
53, 80 — —
31, 53 41, 51 45 —

32 37 34
29, 50 —

28-8 28-2 277

22-2 18-6 18-4

15-4 17-2 17-2 18-9
12-8 — 17-1
12:6 — 152
11-2 — 13-5, 12:4*
9-6 (11-1), 10-2*

* These figures refer to about 82%, of the reflections. The valuo in brackets is estimated for all reflections from the calculated

value for the 829,.
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Using the new coordinates of the 26 atoms, and
taking ‘@’ and ‘¢’ reflections together, a third set of
bounded projections was calculated having the new
limits x=0+} and x=%4}. The general appearance
was good, and the missing O atoms, Op(m000) and
Op(mOic), showed up for the first time, fairly close
to their estimated positions. In estimating a new set
of coordinates, rough corrections were made for the
very pronounced diffraction effects.

The final difference parameters at the C-face-centred
stage are given in Table 3. Most of them increased
noticeably as the work progressed, but the x com-
ponents in general decreased, though the peaks con-
tinued to show the marked elongation in the x direc-
tion which had led to the original high estimate of dx.
This was clearly a diffraction effect, due to the
distribution in reciprocal space of the observed data:
the main collection of data was from photographs
about the x axis, and layer lines with 2>8 had not
been included because of the extreme distortion of
spot shape. Once recognized, this natural elongation’
of the peaks could be allowed for, until it was
eliminated by the use of difference maps.

4-6. Second stage: inclusion of ‘U’ and ‘d’ reflections

It had become clear towards the end of the first
stage that one of the principal factors slowing down
the refinement was failure to take account of the
departures from the C-face-centred approximation,
namely the ‘b’ splittings of the 26 peaks. Replacement
of each of these peaks by two half atoms is a possible
first step in the second stage of the structure analysis.
When this was done in the [100] projection it im-
mediately reduced the R-factor by 53%. This approach
was not followed up because of programming diffi-
culties.

An alternative approach started from the obser-
vation that one of the two Ca peaks, Ca (00), was
considerably more elongated than any other, sug-
gesting a repetition of the ‘heavy-splitting’ method
applied to the ‘b’ reflections. (The ‘@’ reflections, which
are few and weak, were omitted till the final stages.)

It was necessary, as previously, to begin by deter-
mining which of the two sets of symmetry centres in
the C-face-centred approximation is retained as such

THE STRUCTURE OF ANORTHITE, CaAlSi,04. I

in the true structure. An analysis like that of §4-3
shows that the ‘@’ and ‘¢’ structure amplitudes are the
same for both choices, since A+ is even, but that the
b’ and ‘d’ structure amplitudes are proportional to sin &
for a centre at (0, 0, 0), to cos @ for a centre at (£, §, 0).
Examination of 183 strong ‘b’ reflections showed that

from Ca if the centre of symmetry was at (0, 0, 0),
and 8 if it was at (4, 1, 0). The centre was therefore
tentatively placed at (0, 0, 0); the correctness of this
choice was established by the successful refinement
of the consequent trial structure.

There were now 13 strong ‘0’ reflections in the Okl
zone whose signs were known from the Ca contribu-
tion, and these were used to construct a ‘partial-b’
x-axis projection. Only for the Ca atoms were the
pairs of peaks related by ‘¢’ splittings sufficiently
resolved in this projection to give clear information
about the ‘0’ splittings.

By assuming that strong ‘b’ reflections arise when
the contributions from Ca atoms and the rest of the
framework are both strong and of the same sign,
it was possible to allocate signs to the ‘0’ splittings of
six T peaks, their magnitudes being estimated from
the final C-face-centred synthesis. (The splittings of
the O peaks were too small for this.) The resulting
set of difference parameters (Table 5) produced large
contributions to all the 16 strong b reflections. A
difference synthesis computed with these parameters
was used to improve the coordinates of the four Ca
atoms.

To check these conclusions, and to extend them to
include the z-parameters, an independent estimate
was made of the three-dimensional splittings for the
atoms of the framework as described in § 4-5 for the
‘¢’ reflections. The contributions of the four Ca atoms
were calculated for the 183 strong ‘b’ reflections. Signs
were indicated for 709 of these reflections, which
were then used to construct a set of ‘partial-b’ bounded
projections (Fig. 8). Comparison with the final bounded
projections of the approximation using ‘a’ and ‘c’ reflec-
tions only—an approximation which now acts as an
average structure—allowed splittings to be derived for

Table 5. Proposed b-splittings for anorthite

Values from
z-projection

Atom oy o0z Sz
Ca(000) —0-011 0-008 —0-012
Ca(z00) —0:004 0-001 —0-005
T,(0000) 0 0 0-004
1,(0200) 0-007 0-005 —0:004
T, (m000) —0-007 0-006 0
T, (mz00) 0-006 —0-008 0
7,(0000) 0-008  —0-004 0
T,(0200) —0:011 0 —0-003
Ty (m000) 0-008 0-005 —0-002
T, (mz00) 0 0 —0-003

Values from first
three-dimensional trial

Final values

Sy oz Oz dy dz
As in 0-0006 -~ 0-0112 0-0066
{ a-projection } —0-0024 —0-0021 0-0008
—0-004 0 0-0056 —0:0046 —0-0041
0-004 0-002 0-0004 0-0021 0-0046
—0-005 0-005 —0-0053 —0-0030 0-0050
0-005 —0-005 —0-0010 0 —0-0042
0-007 0 0-0056 0-0036 0-0004
—0:005 0 —0-0044 —0-0047 —0-0018
0-003 0-001 —0-0058 0-0019 0-0033
—0-003 0 0-0020 0-0042 —0-0014
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each of the eight T' peaks; it also suggested possible
splittings for several of the O peaks, which were
however disregarded for the present. The difference
parameters thus obtained agreed remarkably well
with the two-dimensional set.

c
2
o b
© Qo =« o
S, O
O@ O '
@) -
0 x=0 b

Tig. 8. Partial-b synthesis, using only the strongest b reflec-
tions, with signs determined by Ca. Diagram shows slab

of b d projection at x=0. Contours at intervals of
1-8 zero contour omitted. Cation peaks x, anion
peaks +.
(@ 2
a) 2
O N
[ (&
Lo
o
.
81@)
0 00
, e
0
x=0
c
(b) 2

0

x=0 b
Fig. 9 ’ s; cont
0. A (b) F
con 8 0. A3,

Diagrams show slab of bounded projection at x=0. Com-
pare with Fig. 4. Atoms marked x are T';; atoms at 2=0, §,
are O4(l); atoms at y=1% are O4(2) (not visible in Fig. 4);
the rest are Og.

Combination of these difference parameters with the
of the C-face-centred approximation gave

trial structure with a primitive lattice.
A final set of bounded projections was calculated
the full set of observed reflections using this trial
Separate syntheses were constructed for the
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‘e’ and ‘c’ reflections together, and the ‘0’ and ‘d’ reflec-
tions together. Both were greatly improved (Fig. 9);
the (‘0’+¢d’) synthesis was remarkably similar to the
‘partial-b’ synthesis at peak sites, but had a much
tidier background elsewhere. In particular, several
splittings of O atoms suggested by the earlier synthesis
but not adopted in the trial structure reappeared in
the new synthesis—an effect similar to that observed
with the ‘¢’ splittings (§ 4-5). It seems that deductions
from the partial syntheses were too cautious—an error
on the right side in a structure of this complexity—
and that the use of the Ca splitting as a ‘heavy
splitting’, analogous to that of a heavy atom, has
been fully justified.

A synthesis of the complete structure was obtained by
combining the (‘a’+ ¢’y and (‘b’ 4+ ‘d’) syntheses, and this
gave new coordinates for all the atoms, including all
the O’s. The ‘b’ splittings for Ca were smaller than in
the trial structure, the Ca peaks remaining somewhat
elongated. The R-factors were much improved, but
the calculated intensities of ‘b’ and ‘d’ reflections were
still lower than the observed. There was very con-
siderable scatter of bond lengths within the tetrahedra,
making it impossible to detect any kind of Si/Al
ordering. Nevertheless one could be confident that the
structure was essentially correct and only needed
refinement.

5. Refinement

5-1. Use of difference syntheses

Difference syntheses for the three cardinal projec-
tions were now so much improved that it was worth
while using them for refinement while preparations
were being made for three-dimensional syntheses.
Certain interesting effects were noticed.

Two cycles of refinement of the z-axis projections

Table 6

(@) Isotropic temperature factors
B values in A2
First revised values

from refinement
of x-projection

Effective value in

Atom Bragg—West curves Final values

Ca 0-4 1-0 1.0, 0-3
T 0-3 0-3 02
o) 1-5 07 0-6

(b) Principal axes of thermal ellipsoids
(direction of long axis is close to [110])

Ca(000) 0-75 1-88 0-32
Ca(#i0) 1-00 2:00 0-50
Ca(z0c) 0-40 1-18 050
Ca(0ic) 050 1-72 0-19

(c) p-values and peak heights
Peak height

Atom » (e.A3)
Ca 7-2 80
T 8:3 67
(6] 68 28
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Table 7. Progress of refinement at various stages

(@) Refinement by 3-dimensional (#,— F,) synthesis: Shifts in A

Ca,

Very small
Very small

First cycle
Second cycle

(b) Automatic refinement programme
(dz, 8y, Oz are in fractions of cell edgo x 10%)

Calcium
Cycle O Sy éz  Shift (A) S
17 2-0 1-6 2-6 0-0046 3-8
18 1-4 1-4 1-9 0-0034 2:5
19 11 09 1-3 0-0023 2-1
20
21

reduced the R-factor from 22:29 to 15:49; the b’
splittings for Ca increased towards their original
values, the Ca peaks meanwhile becoming rounder;
and the calculated intensities of ‘b’ reflections increased.
On all these points, therefore, the first complete F,
synthesis had been misleading, simply because more
than 709 of the ‘b’ and more than 909, of the ‘d’ reflec-
tions were too weak to observe (Table 1). The omission
of so many reflections from the (‘b’+°d’) synthesis
meant that the observed slopes at the peak sites were
lower than they should have been, and the deduced
splittings therefore smaller. From this point onward,
therefore, it was necessary to work with difference
syntheses, even in three dimensions.

The first three-dimensional synthesis improved the
coordinates but showed the inadequacy of the tem-
perature factors implicit in the Bragg—West scattering
factors. Revised values (Table 6) were obtained from
two-dimensional work. A second three-dimensional
synthesis gave further changes of atomic coordinates
(Table 7(a)). The temperature factors were still not
perfect, and the Ca peaks showed slight elongation,
in a direction quite different from the previous
splittings, but approximately the same for all four Ca’s.

5-2. Final refinement

For final refinement, new spot-shape corrections
(see Appendix) were used to give an improved set
of F,’s. New techniques of computation had also
become available.

An improved set of temperature factors was derived
from two-dimensional data as follows. First the mag-
nitudes of all temperature factors were adjusted till
the scaling factor was constant and independent of
reciprocal-space radius. Then their relative values
were altered in a series of F,—F.; syntheses in the
usual way. The two pairs of Ca peaks seemed to need
quite different isotropic (mean) temperature factors,
though all four peaks appeared to have the same
elliptical shape, as judged from the z-axis and y-axis

T (0]
—_
Mean Max. Mean Max.
0-021 0-039 0-046 0-085
0-012 0-021 0-028 0-048
I O
Sy Sz Shift (&) Sz Sy 0z Sbift (A)
1-9 1-9 0-0048 4-6 2-2 2-1 0-0056
1-3 1-2 0-0031 3-1 1-8 1-5 0-0034
09 0-7 0-0023 2:5 1-4 1-3 00032
2-0 1-3 1-1 0-0028
1-4 09 0-9 0-0021

projections. These projections were used to estimate
the lengths and orientations of the principal axes of
the thermal ellipsoids (Table 6). The longest axis is
roughly in the [110] direction for all four atoms. No
three-dimensional refinements of these anisotropic
effects has been attempted ; more detailed examination
of absorption effects would be needed hefore they can
be taken as real.

Re-examination of the second three-dimensional
synthesis suggested alterations in the coordinates of
some of the O atoms. These lay at positions of moder-
ate slope, but near regions of much steeper slope in
the z-direction (the direction of slowest refinement).
In the first interpretation of this synthesis, the shifts
had been calculated from the slopes in the immediate
environment of the atoms; the revised shifts were
larger. 1t was noticed that this improved the regularity
of T-0 distances within the same tetrahedron; indeed,
in some cases it was irregularities in the bond distances
which called attention to the significance of features
of the difference map, though irregularities were
never by themselves used as criteria for shifting atoms.

These changes, together with the introduction of
corrected Fo’s, reduced the R-factor from 15:29, to
13-5%.

The revised coordinates and temperature factors
were used as a starting point for the automatic refine-
ment on Edsac II. The R-factor for the reflections
actually used (cf. § 2-2) fell after 23 cycles from 12-49,
to 10-29,, which probably corresponds to about 11-19,
for the total number of observed intensities. The mean
atomic shifts during the later cycles are recorded in
Table 7(b), and the final coordinates in Table 8.

6. Errors

The errors in the coordinates were calculated using
Cruickshank’s formula (Lipson & Cochran (1953),
equation 308:2). The curvature C,, which appears in
this formula, was calculated from the theoretical
f-curve for the atom in question, modified by the
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Table 8. Final coordinates

(In fractions of cell edge x 10%)

Atom z Y z
04(1000) 0276 1234 9957
04(1200) 9814 1237 4808
04(10¢0) 4873 6256 4865
0 4(1230) 5129 6256 9970
04(2000) 5724 9909 1451
04(2200) 5732 9901 6398
04(2020) 0732 4876 6330
0 4(2240) 0755 4925 1363
0Op(0000) 8114 1027 0792
05(0200) 8071 0996 6046
0p(00:0) 3363 5938 6045
0Og(0220) 2912 6036 0819
Og(m000) 8148 8516 1454
Op(mz00) 8090 8510 6018
Opg(m020) 2983 3575 6113
OB(mziO) 3382 3606 1309

Oc(0000) 0120 2780 1351
0¢(0200) 0177 2900 6486
O¢(00:0) 5082 7778 6311
0(0220) 5102 7969 1500
0004 6802 1063

0083 6898 6017

5150 1794 6090

O¢(mzi0) 5067 1947 0974
Op(0000) 1795 1072 1919
0Op(0200) 2153 1057 6862
Op(00:0) 6992 6031 6779
Op(0240) 6921 6014 2000
O p(m000) 2027 8723 2106
Op(mz00) 1754 8557 7170
O p{m020) 6861 3637 7335
Op(mzi0) 6999 3691 1993

appropriate temperature factor, and by a cut-off in

- reciprocal space at the same radius as for the summa-

~tion the The values of so ob ed
were a, 0- A;forT, 0-0015 0,00 A,
The dangers of accepting these values as trustworthy
are: (i) that the method is reliable only when refine-
ment is complete, and provides no internal check to
show that this is so; (ii) that the curvatures are
calculated, not derived empirically from the ¥, map,
and since they are very sensitive to cut-off radius
they could be seriously over-estimated.

It is however possible to check the error estimate
by examining the progress of refinement. If it goes
smoothly, the atomic shifts should become progres-
sively smaller; and the completion of refinement will
be marked by shifts of steady r.m.s. value whose
signs tend to reverse as the atoms move at random
over the small volume characteristic of the random
errors. If refinement is incomplete, it will depend on
the program whether the atom approaches its final
position steadily from one direction or by bracketing it.
In the latter case, the r.m.s. value of the shifts provides
an estimate of accuracy which allows for incomplete
refinement. It can, however, only be safely used if it
is clear that the shifts are reversing in sign; unless
this is tested, there is a danger that the program may

Atom z Y 2
T,(0000) 0099 1584 1043
T,(0200) 0069 1609 6125
T',(00:0) 5061 6567 6033
T,(0270) 4987 6675 1125
T,(m000) 9928 8146 1190
T,{(mz00) 0059 8154 6129
T',(m00) 5078 3154 6212
T, (mz30) 5034 3207 1091
T,(0000) 6841 1134 1512
T,(0200) 6818 1029 6644
T,(0040) 1906 6123 6681
T,(0220) 1714 6062 1504
T,(m000) 6749 8828 1881
T',(mz00) 6799 8717 6715
T, (m0i0) 1759 3802 6744
Ty (mzi0) 1865 3790 1815
Ca(000) 2647 9844 0873
Ca(z00) 2684 0312 5438
Ca(0¢0) 7732 5354 5422
Ca(z10) 7636 5067 0740

be providing too slow an advance to the final position
to allow extrapolation.

Table 7(b) shows that the shifts of atomic positions
are becoming small, but provides no test of their signs.
In practice it was easier to examine the changes in
T-0 bond lengths rather than atomic coordinates.
Before considering these changes some preliminary
comments on the bond lengths are needed.

It was apparent from an early stage of the structure
determination that the tetrahedra fell into two groups
of unequal size. Though it was obvious that these
must contain different proportions of Si and Al, this
fact was never used at any time during the refinement;
here, therefore, we shall simply distinguish the groups
by the subscripts S (small) and L (large). Table 9
gives the variation of the mean bond length of each
group, and their difference, in the final stages of
refinement. The steady increase of the difference is
very striking, and provides evidence that the refine-
ment is meaningful. It is not safe to assume that all
the bonds within a tetrahedron are equal, nor that
all tetrahedral means within a group are equal.
Nevertheless it is of interest to notice (Table 9) that
their r.m.s. deviation from the tetrahedral mean and
the group mean respectively drop during refinement
until a very late stage, when they level off.
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Table 9. Refinement of T—O bond lengths, in A

R.m.s. deviation
from tetrahedral mean

Mean bond length

Cycle Ts-0O T,-0  Difference S
Al 1-635 1-720 0:085 0-044
Bl 1:626 1-729 0-103 0-036

14 1-622 1-739 0-117 0-028
21 1-616 1-746 0-130 0-029
22 1-615 1-748 0-133 0-030
24 1-614 1-749 0135 0-026

Table 10. Changes of bond length with (1) same sign,
(2) opposite sign, in last two steps studied

Zero
(1) (2) changes
S 12 17 3
;
No. of changes { I 3 20 4
R.m.s. value of S 0-0035 A 0-0059 A
changes L 0-0025 A 0-0053 A

The r.m.s. changes of the individual bond lengths
are recorded in the final column of Table 9; they
appear to be approaching a steady low value. This
is not by itself sufficient evidence to show that refine-
ment is approaching completion, for the steps between
the cycles recorded are not necessarily equal. How-
ever, Table 10 shows that the majority of the changes,
particularly of the large ones, reverse sign between
the last two cycles listed. Hence the atoms are
oscillating about final positions; whether or not
refinement is complete, the r.m.s. values of the changes
estimate the overall error.

We may co e these final cha
0-0045 A and 1 A, with the ted
Cruickshank’s formula, 0-0040 A. The agreement is
very satisfactory; even if its closeness is partly
fortuitous, it suggests that the order of magnitude
of the error estimate is trustworthy.

7. Discussion and summary

The lists of bond lengths and bond angles, and dis-
cussion of the structure itself, are left to Paper II.

Two principles have been used in solving the struc-
ture: (1) that omission of difference reflections in
carrying out a Fourier synthesis is equivalent to
averaging over those subcells which contribute to the
difference reflections, (2) that the signs of difference
reflections can be found by a heavy-atom technique.
As a consequence of (1), the elongations of peaks on
an F,-map, or anomalies on a difference map, show the
magnitudes of the difference parameters; as a con-
sequence of (2), the difference reflections can be used
to find the signs of the difference parameters (which
must be opposite in the two subcells), and also, less
accurately, to confirm the information about their
magnitude. Because anorthite has four subcells, the
whole process had to be repeated in two steps, the
pairs of subcells that give rise to the stronger set of

R.m.s. deviation of
tetrahedral mean
from group mean

R.m.s. change of
individual
bond lengths

L N L i L
0-062 0-024 0-013
0-053 0-023 0-016 0:014 0-014
0-046 0-019 0-009 0-021 0-020
0-042 0-009 0-005 0-015 0-016
0-042 0-008 0:005 0-007 0-008
0-036 0-008 0-006 0-0045 0-0041

difference reflections being sorted out in the first step.
It is essentially a method of successive approxima-
tions, and its progress can be, and has been, checked
to make sure that no errors outside the permissible
limits remain at any stage.

Since no assumptions about Si/Al distribution in
the 7T sites, or about equality of 7-0O bonds within a
tetrahedron or between tetrahedral means, have been
made at any point in the analysis, the decrease in
their r.m.s. deviations (Table 9) as refinement proceeds
is independent evidence that no gross errors are being
perpetuated. It can be seen, however, that differences
within tetrahedra in the final structure are still rather
large. The significance of these, and of differences
between tetrahedral means and between groups of
tetrahedra, will be discussed in Paper II.
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for suggesting this problem, and for constant help
and encouragement during the work; to Dr P. Gay
for advice and help in choosing the material; to
Dr Wilkes and Mr Mutch for the facilities of the
Mathematical Laboratory; to Mr M. Wells for devis-
ing the program for the final refinement; and to very
many others who have helped with the computations
over a period of years. One of us (C.J. E. K.} is
indebted to the Department of Secientific and In-
dustrial Research for a Maintenance Grant, and to
the Nuffield Foundation for maintenance during the
completion of the work; and one (E. W. R.) to the
Commonwealth Scientific and Industrial Research
Organisation for an Overseas Studentship.

APPENDIX

Correction for elongation and contraction of spots on
higher layers was particularly important because,
owing to the restricted range of the Weissenberg
camera, many had been recorded on one side of the
film only. Elongated and contracted reflections were
handled separately. For layers A=5 and A=6, the
ratio 2F,/2F, was evaluated over narrow annuli of
reciprocal space, and plotted against the radius, §.
The elongated reflections fitted the Phillips curves
reasonably well; these curves were therefore used for
all layers. The contracted reflections showed discrep-
ancies; if they were fitted to the Phillips curves at
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large & they diverged at small & Hence empirical
curves were drawn through the observed points, and
from the curves for layers 5 and 6 those for the other
layers were deduced. The corrected intensities for
elongated and contracted reflections were scaled in-
dependently, layer by layer, to the calculated structure
factors. When the same reflection occurred in both
sets, agreement was good, and mean values were
finally used.
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Anorthite has a felspar structure with the following particular features: (1) Si and Al tetrahedra
alternate, so that each O atom has one Si and one Al neighbour; there is no Si/Al disorder. (2) Si—O
and Al-O bond lengths show real variations within the same tetrahedron, the average value of each
increasing as the number of Ca neighbours of the O atom increases from zero to 2. (3) There are
4 independent Ca atoms, 8- or 7-coordinated : pairs related (topologically, not exactly) by the C-face-
centring translation have very similar environments, while those related by body-centring or by
z-axis halving are very markedly different. There is no disorder of Ca position. (4) If the tetrahedra
are grouped into the two topologically different types (distinguished conventionally by the sub-
scripts 1 and 2 for their tetrahedral atoms) all tetrahedra of the same type have qualitatively
similar bond-angle strains (i.e. departures from the tetrahedral angle of 109° 28’), independent of
their Si/Al content. Comparison with other felspars shows that the strains are characteristic of the
felspar structure, but are nearly twice as great in the felspars with divalent cations as in those with
monovalent cations. (5) Most of the bond angles at O are in the range 125-145°, but there are some
exceptionally large angles of about 165-170°.

These facts are explained by a model in which the building elements are nearest-neighbour bonds
and bond angles, endowed with elastic moduli, acted on by the only unshielded cation—cation
electrostatic repulsion, namely that acting across the centre of symmetry. The bond-angle strains
at Si and Al are qualitatively predicted by it, and agree with observation. Most of the distortions
of the felspar structure are common (qualitatively) to all felspars, depending on cation charge;
others depend on cation size. In contrast to these, the effects of Si/Al distribution are relatively so
small that discussion of them cannot usefully begin until the other larger effects have been clarified.

1. Introduction

Anorthite, CaAlsSizQs, is an important member of the
felspar family. Other members of the family, whose
structures have been determined in detail, and to

* Present address: Department of Physics, University of
Adelaide, Adelaide, Australia.

1 Present address: Division of Soils, Commonwealth
Scientific and Industrial Research Organisation, Adelaide,
Australia,

which reference will be made here, are listed in Table 1.
It was hoped that detailed comparison of the differ-
ences between members of the family would help our
understanding not only of the felspars as a whole
but also of the general character of three-dimen-
sionally-linked framework structures. This has proved
to be the case, as will be shown in what follows.
The method by which the structure was determined
was described in Paper I (Kempster, Megaw &

30
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THE STRUCTURE

Composition Name
KAI18i,0, Sanidine

Orthoclase

Microcline (intermediate)*
NaAlSi,Oq Low albite

Quenched high albite

OF ANORTHITE, CaAlSi,0,. II

Table 1

Source

Mogok, Burma (Spencer C),
heat-treated

Mogok, Burma (Spencer C)

Kodarma, India (Spencer U)

Ramona, California
(Emmons 29)

Amelia Co., Virginia
(Emmons 31) heat-treated

Reference
Cole, Sprum & Kennard (1949)

Jones & Taylor (1961)
Bailey & Taylor (1955)

Ferguson, Traill & Taylor
(1958)

Ferguson, Traill & Taylor
(1958)

CaAl,Si,O4 A (‘low ite’, Monte S Ttaly r (1957)
ve an ) (B. M. ) paper
BaAlSi,04 Celsian Broken Hill, New South Wales Newnham & Megaw (1960)
(Segnit, 1946)
* A prelim Te on cture of micr E. Brown . W.Ba a in the
of a joint me of Ge and Min Socie ica in No r 1961. r s in th

paper are to intermediate microcline.

Radoslovich, 1962), which includes a table of atomic
coordinates and their standard deviations. No attempt
was made, during that analysis, to distinguish between

Si and Al atoms, which were both given the symbol 7'
(‘tetrahedral atom’),

The space group is P1; the unit cell is primitive,

Ca
& a

Si

2

Fig. 1(a)

Fig. 1. Projection down [010] of parts of structure bounded roughly by the following planes: (a) y= +0-3; (b) y=0-2, 0:8; °
(¢) y=0-1, 0-4. Heavy lines indicate upper part of layer shown. The projection of the corners of the unit cell (origin of co- |
ordinates) are marked with crosses in all diagrams. (Note. This is an ¢nclined projection down [010] on (010). The drawing .
differs very little from an orthogonal projection on the plane normal to [010], but in the latter case the axes = and z would
stick slightly out of the paper.)
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x x ll X
Fig. 1(b)
B(mz0c) B(00
(zm0c) §i1(00/¢)
C(00ic)  Alymz0c) )¢ 9 (00ic)
D(mz0c) l
D(mz (0000)
A 0 C (0000)
Si1(0000) C(mzi (mziO)
B (0000)
X
A1 A(lzic) A (1000)
a
Fig. 1{c)
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with dimensions approximately 8x 13 x 14 A, which
means that the volume per lattice point is four times
that of typical felspars such as albite. Thus the true
cell consists of four subeells, equal in volume and with
closely similar but not identical contents. Each subeell
contains two formula units (CaZ40s) related by a
centre of symmetry; but, relative to an origin at the

corner of the subeell, corresponding atoms in the four
subcells have slightly different coordinates.

It can be seen that atomic positions in subcells
related by the base-centring vector (zi) are more
closely similar than those related by the body-
centring vector (0¢) or the c-axis halving (z0).

Bond lengths and bond angles are given in Table 2

Table 2. Bond lengths and angles
(@) Ca—O bonds in A

Ca(000) Ca(zi0)
04(1000) 2-618 04(12:0) 2471
04(100c) 2-500 0 4(1zic) 2-586
04(2000) 2-279 04(22:0) 2:322
0 4(220¢) 3-491 04(20dc) 3:762
04(200c¢) >4 0 4(2z2¢) 3-746
0g(0000) 3-995 >4
0p5(000c) 2-368 Op(0zic) 2421
0O pg(m00c) 3-836 Op(mzic) 3:247
O¢(020) 3-088 0¢(0000) 3-543
O¢(mzi0) 3:279 O¢(m000)  2-807
Op(0000) 2423 Op(02¢0) 2-391
Op(m000)  2-532 Op(mz:i0) 2-771

Mean  2-544 Mean  2:538

—
i
~

Atoms
Key no. of

tetrahedron T (0} Length
1. T,(0000) 04(1000) 1-647
05(0000) 1-641

0¢(0000) 1-575

Op(0000) 1-589

2. T,(00¢0) 0.4(1040) 1-620
0g(0040) 1-599

0¢(0040) 1-585

Op(0020) 1-661

3 T, (mz0c) 04(1200) 1-618
Op(mz0c) 1-626

Oc(mz0c) 1-617

Op(mz0c) 1-571

4 T, (mzic) 0.4(1240) 1-643
O p(mzic) 1-600

O¢(mzic) 1-623

Op(mzic) 1-637

5 T,(0200) 04(2200) 1-624
Op(0200) 1-589

O¢(m040) 1-629

Op(m00c) 1-611

6. T,(0240) 04(22:0) 1-606
Og(0240) 1-652

O¢(m000) 1-617

Op(mOic) 1-566

7 T'5(m00c) 04(200¢) 1-646
Op(m00c¢) 1-559

O¢(0zic) 1-601

Op(0200) 1:603

8 T'y(m0ic) 0 4(20ic) 1-634
O pg(m0ic) 1-628

0¢(020¢) 1-622

Op(02:0) 1-629

Individual 7—0 bonds, in A

Ca(z0c) Ca(0ic)
0 4(120¢) 2-476 0 4(104c) 2-459
04(1200) 2:720 OA(IOzO) 2-822
0 4(220¢) 2-350 0 4(204c) 2:335
0.4(2000) >4 0 4(2210) >4
04(2200) 3375 04(2040) 3-237
>4 >4
0g(0200) 2464 0Op(0040) 2-413
Op(mz00)  2-491 O g(m040) 2:496
O¢(00ic) 3-824 O¢(020c) 3-798
O¢(m0Oic) 2:565 O¢(mz0c) 2:568
Op(020c) 2-397 Op(00ic) 2-382
Op(mz0c) 31725 O p(m0ic) 3-876
Mean  2-495 Mean 2:496
Atoms
Key no. of
tetrahedron T (6] Length
9. T,(0200) OA(leO) 1-820
0p(0200) 1-755
0¢(0200) 1-701
Op(0200) 1-755
10 T,(0240) 0 4(1220) 1-747
0 p(02i0) 1-733
O¢(0220) 1-708
Op(02:0) 1-796
11 T,{(m00c) OA(IOOO) 1-794
Op(m00c) 1-723
O¢(m00c) 1-735
O p(m00c) 1-754
12 T, (m0ic) 04(1020) 1-757
Opg(m0ic) 1-757
Oc¢(m0ic) 1-755
Op(m0ic) 1-695
13 T,(0000) 04(2000) 1-784
O p(0000) 1-749
O¢(mz20) 1-723
Op(mz0c) 1-730
14. T,(00:0) 0 4(2020) 1-782
0O p(00:0) 1-792
O¢(mz00) 1-745
O p(mzic) 1-692
15 T, (mz0c) 0 4(220¢) 1-754
O p(mz0c) 1-747
O¢(00%c) 1-706
Op(0000) 1-769
16 T, (mzic) O 4(2zic) 1:738
O p(mzic) 1:696
O¢(000c¢) 1-780
Op(0020) 1-792
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(¢) T—0 bonds, tetrahedral means and r.m.s. deviations, in A

Table 2 (cont.)

Key no Atom 7e elr) |r¢-group mean | Key no. Atom 7t e(r)
1. T,(0000) 1-613 0-031 0-001 9. Tl(OzOO) 1-758 0034
2. T,(0020) 1-616 0-029 0-002 10. T',(0240) 1-746 0-032
3. T, (mz0c) 1-608 0-022 0-006 11. T 1 (m00c) 1-752 0-027
4. T, (mzic) 1-626 0-017 0-012 12, Tl(mOw) 1-741 0-027
5. T,(0200) 1-613 0-015 0-001 13. T,(0000) 1-746 0-024
6. T,(02i0) 1-610 0-031 0-004 14. T,(00¢0) 1-753 0-039
7. T,(m00¢c) 1-602 0-031 0-012 15. T,(mz0c) 1-744 0-023
8. T, (m0ic) 1-628 0-004 0-014 16. Ty (mzic) 1-752 0-038

Mean 1-614 Mean 1-749
R.m.s. value 0-024 0-008 R.m.s. value 0-031
(d) 0-O distances in tetrahedron edges, in A
Key no. of
tetrahedron 0,4-0p 04-O¢ 04-0Op Op-O¢ Og5-Op O¢-Op
1. 2-537 2770 2:525 2631 2-721 2593
2. 2-518 2702 2-540 2-651 2:680 2711
3. 2-486 2-744 2-556 2-666 2-713 2-577
4. 2-598 2-709 2-564 2-696 2678 2-669
5. 2:586 2519 2:655 2-644 2-659 2723
6. 2:636 2-520 2-639 2743 2-550 2-678
7. 2700 2-549 2-660 2:603 2-535 2-648
8. 2-618 2-613 2-651 2:706 2-663 2-697
9. 2:725 3-020 2-7124 2:842 3016 2-842
10. 2-594 3-013 2-638 2-893 2:962 2:914
11. 2-839 2:946 2:705 2-867 2-892 2-886
12. 2679 2:914 2-819 2-935 2-871 2-818
13. 2-895 2-752 2-803 2-886 2-862 2-897
14. 2712 2:690 2-831 2:962 2:936 2:944
15. 2-857 2-759 2753 2-819 2-903 2:974
16. 2-791 2-797 2-840 2-876 2:870 2-980
(e) Other short O—O distances and Ca—Ca distances, in A
Atoms Length Comment
0g(0200)-0p(mz00) 3-200 Ca(z20c¢) polyhedron edge
Op(00:0)-0p(m0:0) 3-063 Ca(0éc) polyhedron edge
0 p(mz00)-0¢(m0ic) 3:003 Ca(z0c) polyhedron edge
0p(m0:0)-0 ¢(mz0c) 2-983 Ca(0ic) polyhedron edge
O¢(0240)— D(mOOO) 3-146 Ca(000) polyhedron edge
Op(0000)-0p(m000) 3-054 Ca(000) polyhedron edge
0 p(02¢0)-0 p(mzi0) 2-993 Ca(2¢0) polyhedron edge
0 4(1000)-0 4(100¢) 3-217
0 4(1220)—0 4(1zic) 3-245 Shared edges across centres
04(1200)—0 4(120¢) 3-260 of symmetry
04(1040)-0 4(107c) 3-278
Ca(000)—Ca(00c) 3-983
Ca(220)--Ca(zic) 3-880 Short cation—cation distances across
Ca(200)—Ca(z0c) 4-065 centres of symmetry
Ca(0¢0)—Ca(0ic) 4-160

the notation of Megaw (1956). Their standard
, calculated from the standard deviations

the ¢ o(xn) (see er I, §6), are as
39; 7-0, 0- ; 0-0, 00053 A;
at T, 0-4°; angle at O, 0-6°. Projections of the

are shown in Fig. 1

Preliminary results, and conclusions about the Si/Al
have already been reported (Kempster,

& Radoslovich, 1960)

1021

|r¢-group mean|
0-009
0:003
0-003
0-008

0-005

2. Description of structure

2-1. T-0 bond lengths, and Al[Si distribution

It was mentioned in Paper I that the 7-O tetrahedra
divided themselves into two groups, the difference

between which became more marked as refinement

progressed. It is obvious from inspection of Table 2(b)
(and is confirmed below) that the difference is signif-

icant, and therefore the small and large tetrahedra
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Table 2 (cont.)
(f) Bond angles at 7', in degrees

Key no. of Atom Edge subtending angle at T'
tetrahedron
04-0Op 04-O¢ 04-O0p O5-Oc¢ Op-O0p O¢-Op
1. T,(000) 101-0 118-6 102-6 109-8 114-7 1101
2. T,(002) 102-9 115-0 101-4 1127 110-6 113-3
3. T, (mz0) 100-0 116-0 1065 110'5 116-1 107-9
4. T, (mzi) 106-4 112-1 102-8 113-5 111-7 109-8
5. T',(020) 107-2 101-5 110-3 1105 1124 114-3
6. T (02%) 108-0 102-9 112-6 114-1 104-8 114-6
7. T (m00) 114-8 103-4 109-9 110-8 106-6 1114
8. T (m03z) 106-8 106-7 108-7 112:8 109-7 1121
9. T,(020) 99-3 118-1 99-2 110-7 118-5 110-7
10. T',(0z4) 96-4 121-3 96-3 114-4 114-1 1124
11. T, (m00) 107:6 113-2 99-3 112-0 112-5 111-6
12. T, (m07) 99-3 112-2 109-5 113-4 112-6 109-6
13. T,(000) 110-0 103-3 105-8 112-5 110-7 114-1
14. T'5(00¢) 98-7 99-4 109-1 113:8 114-8 117-8
15. Ty (mz0) 109-4 105-7 102-7 1094 111-3 117-7
16. T,(mzi) 108-7 105-3 107-1 111-6 110-7 113-2
(9) Bond angles at O, in degrees
04 Og O¢ Op

1000 136-2 0000 129-4 132-8 137-8

1020 140-0 0070 135-9 130-8 124-6

1200 135-3 0200 139-6 131-2 125-2

1220 136-1 0220 128-3 130-8 132:6

2000 125-3 m000 170-8 130-5 140-3

2020 122-5 m070 145-3 130-9 166-9

2200 124-0 mz00 143-5 127-5 161-4

2240 125-9 mzi0 163-6 130-5 1385

must be identified as Si-rich and Al-rich respectively.
Small and large tetrahedra alternate in every direc-
tion, so that each O atom is shared by one small and
one large one. Since no assumptions about the nature
of the T atom were made at any stage in deriving this
result, it constitutes a direct proof of the ‘aluminium
avoidance rule’ put forward earlier (Loewenstein,
1954 ; Goldsmith & Laves, 1955).

The significance of bond-length differences can be
examined by Cruickshank’s (1949) test, based on the
ratio 8l/o, where 8 is the difference of the two quan-
tities to be compared, o1 and oa are their standard
deviations, and ¢2= 0%+ o2 The mean bond lengths
and deviations from the mean are recorded in Table
2(c).

We first notice that &(r), the r.m.s. deviation of a
bond from the tetrahedral mean, is much greater than
o(r), the standard deviation derived from o(ws). The
significance of this is demonstrated in Table 3 (1). It
shows that the differences of bond length within a
tetrahedron, though not very large, are real. At this
stage we merely note their existance, without trying
to discover their physical meaning.

Because of this effect, differences befween tetrahedra
cannot be regarded as real unless they are significantly
greater than the average differences within tetrahedra.
Thus significance tests for tetrahedral means must be

based on comparisons of differences with e(r) rather
than with o(r).

It is next necessary to consider whether the mean
radii of tetrahedra in the same group differ signif-
icantly from one another. From Table 3 (2) it can be
seen that the differences are not significant. If the
test had been carried out using o(r) in place of &(r),
the ratios would have been 7 and 4 respectively,
indicating high significance. Thus we can say that,
while the differences between tetrahedral means are
real, they are only of the order of magnitude of
differences within tetrahedra, and therefore cannot
be used as evidence for different Si/Al ratios in the
atoms ing them. |

Bye , we may apply the same test, using e(r),
to the difference between the group means (Table 3 (3)).
This difference is seen to be highly significant.

We now use the results of Smith. (1954) to examine

able to assume, for statistical study, that his estimated
errors are about twice the standard deviation. How-
ever, Smith (1960) expresses doubt about the con
stancy of the bond lengths within these limits in al
circumstances. To make some allowance for this
we use the estimated errors as if they were s.d.’s
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Table 3. Significance of bond-length differences

Key to symbols:

r, = tetrahedral mean bond length &(r)
rg = group mean bond length o(r)
rsm= Smith’s empirical bond length A(r)
Quantities compared c ol
Single bond a{r)
(1) { Tetrahedral mean o(r)[2 &(r)
) Tetrahedral mean e(r)[2 — |
Group mean e(r)/2y8 t)max.
(3) Group mean, small esi(r)/2Y8 (o) a1l
Group mean, large eal(r)/2V/8 g)a1
(4) Smith’s bond length  A(r) [
Group mean e(r)/2y8 g 7Sm

* Significance levels are those suggested by Cruickshank (1949):

1023
= r.m.s. deviation of single bond length
= s.d. of single bond length calculated from o(xy)
= Smith’s estimated limit of error
Set of Numer- Denom- Cruickshank  Signif-
tetrahedra ator inator ratio icance*
(i) Small 0024 A 00044 A 55 High
(ii) Large 0-031 0-0044 7 High
(i) Small 0-014 0-013 1-1 Zero
(ii) Large 0-009 0-016 0-6 Zero
All 0-035 0-007 5 High
(i) Small 0-014 0-011 1-3 Zero
(ii) Large 0-031 0-041 1-5 Zero

‘high’ and ‘zero’ correspond to probabilities of accidental

oceurrence of <0:19% anl > 5%, respectively, or difo>38-1 and <165,

Then from Table 3 (4) it can be seen that the dif-
ferences of the group means from Smith’s values for
pure Si and pure Al are not significant. It is true,
of course, that no significance test is more objective
or carries more weight than the postulates on which
it is b h r, it is ce there
isnoe ce which we i e any
departure from perfect Si/Al order.

It is perhaps worth noting that, from Smith’s
values, one would deduce the presence of 8% Al in
the Si-rich sites, 17% Si in the Al-rich sites. In view
of the particular difficulty experienced by Smith in
fixing the Al end of his scale, the latter estimate is
quite unreliable.

It is interesting that in both forms of BaAl;SisOs,
the felspar celsian (Newnham & Megaw, 1960) and
the non-felspar paracelsian (Bakakin & Belov, 1960),
there is also a high degree of Si/Al order, and no
certain evidence that order is less than perfect (though
neither structure is so far refined as anorthite).
In celsian, the pattern of Si-rich and Al-rich sites is
the same as in anorthite.

Inspection of Table 2(¢c) suggests that the tetrahedral
means in anorthite differ less from the group mean
than would be expected from their variations within
a tetrahedron if the tetrahedra provided random
samples. This may be tested by comparing the two
estimates of the standard deviation of the group mean,
namely [r.m.s. value of ¢(r)]/)/(32) and (r.m.s. value

tively for Al-O. The Cruickshank ratios are therefore
1-6 for Si-O, 8 for Al-O, indicating doubtful signif-
for the former, high significance for the latter
on-randomness could be caused by the pseudo-
discussed later (§3-3), but its more con-
manifestation for Al-O is rather striking

suggests that the wolume occupied by an Al atom
more nearly constant than would be expected if

it were controlled purely by the direct Al-O contacts.

The largest Si-rich hedral n ano ,
1-628 A, is not far the Si tetra 1
mean in reedmergnerite, N Os, (Clark & -
man, 1960) which has the e 1:623 A. I -

mergnerite (which has the felspar structure) there is
no possibility of attributing the large value to Al
substitution. This supports the conclusion previously
reached that it is unsafe to do so in anorthite.

The results of this section may be summed up by
saying that the structure contains a regular alternation
of Si and Al tetrabhedra, such that any O atom has
one Si neighbour and one Al; that the ordering of
Si and Al is perfect, within the limits of experimental
error (which suggest that disorder is in any case less
than 109%); that the individual bond lengths within
tetrahedra vary slightly, but that the tetrahedral
means are rather more uniform than would have been
expected if the individual variations were wholly
random.

2-2. Envivonment of Ca

Since there are four different subcells, there are four
differently situated Ca atoms. The Ca—O distances
are listed in Table 2(a), the seven shortest for each
Ca on the left-hand side of the column, other distances

of less than 4 A on the . The s on the
left-hand side include all 3.1 A, O atoms
concerned may be counted as neighbours; each Ca

is then 7-coordinated. One of these distances, however,
—the O¢ bond of Ca(000)—is so much longer that
any of the others that it might have more meaning
physically to count it as a non-bonding contact, and
take this Ca as 6-coordinated. No arguments depend
critically on which choice is made; indeed with ir-
regularly coordinated atoms like Ca there is not much
significance attached to any such choice.

All other bonds are within the usual range for Ca-0,
except that from Ca(000) to O4(2), which is excep-
tionally short. Bonds from cation to O4(2) tend to be
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short in most felspars, and in anorthite the O4(2)
bonds of the other three Ca’s are also short.

It can be seen that the configurations round
(a(z0¢) and Ca(0ic) resemble one another very closely;
Ca(000) and Ca(z¢0), though not quite so much alike,
nevertheless resemble each other much more than
they do the other Ca’s.

Ca(000) Ca(z00) )
0,4(1000)
z00)
20c¢)
Ca(0i0)  Og(m0ic) Ca(zi0)
(00ic)
0i0) Ou(1zi
0ic)

0,{00/0)

Fig. 2. Stereograms of environment of the four Ca atoms.
Intersections of the small circles and diameters shown with
dashed lines are at the corners of a regular cube. Where the
symbols of two atoms are written together the upper sym-
bol refers to the atom in the upper hemisphere,

Stereograms showing the directions of the Ca—O
bonds are given in Fig. 2. (Note that the groups related
by subscript ¢ are related by a true centre of sym-
metry; it is more convenient here to consider Ca(z00)
and Ca(0:0) than the equivalent (Ca(z0c) and Ca(0ic)).
The general resemblance of the coordination to a

distorted cube with one corner missing (or two corners
for Ca(000), if this is taken as 6-coordinated) can be
seen. In more detail, one may note that four bonds
(to two O4(1) and two Og or two Op atoms) approx-
imate rather closely to cube-corner directions, the
bond to 04(2) lies roughly along the bisector of the
angle between the two O4(l) bonds, and the other
toms fait in as best they can. It is as if the steric
necessity to fit the O4(2) atom in this direction,
at a rather short distance, upset the regular angular
arrangement of the neighbouring O’s.

It is often said that the large cations in a felspar
are gituated in a ‘cavity’ in the Si/Al-O framework.
This suggests that they are perhaps rather loosely
held in place, or that there may be more than one
possible position for them. It is true that there is a
large cavity enclosed by 10 oxygen atoms, but in
anorthite the corrugations of its walls are such as to
grip each Ca atom tightly. This central interstice has
two essentially different shapes, one bounded by two
Oz’s and one Op, one by one Op and two Op’s. If the
coordinates of Ca in one such interstice are altered
by z=1%, it will not fit into the other interstice; one
of the distances to Op or Op is impossibly short.
The same is true of any other such interchanges
(cf. Ta .

The pic B value of about 1-0 A2 is comparable
with that found for the cation in other felspars;
the accuracy with which it or its anisotropy is deter-
mined is not great enough to draw elaborate con-
clusions. It is certainly larger than for the other atoms.

of

ion

ion

(which might result from ‘frozen-in’ thermal am-

plitudes), cannot be decided on present evidence.

Qutside these limits, there is no evidence for Ca

disorder, and any displacement of Ca would need

corresponding changes in the shape of the framework
to make room for it.

Table 4. Bond lengths (in A) with Ca placed at ‘right’ and “wrong’ sites in subcell

(A ‘wrong’ site is one derived by adding } to all the coordinates of a Ca atom

whose symbol differs by ¢ from that of the right atom for the subcell)

Subeell 00 Subcell z0 Subcell 0¢ Subcell 24
Right ‘Wrong Right Wrong Right ‘Wrong Right Wrong
Neighbours  Ca(00) Ca(07) Ca(z0) Ca(z1) Ca(07) Ca(00) Ca(z1) Ca(z0)
O4(1) 2-62 219 2-48 2-65 246 2-85 2 47 2-30
04(1) 250 2:72 2-41 2-82 2:28 2 59 2-87
04(2) 2-28 2-34 2-35 2-31 2-34 2:31 232 235
Og 2-37 2-27 246 2-63 241 2-60 242 2:30
Op 2-92 2-49 2-50 272
O¢ (3-09) 2-61 257 2-87 2-57 2:81 2-50
Oc¢
Op 2-42 268 240 216 2-38 217 2-39 267
Op 2-53 293 2-77

(Ca—O bond lengths of 2-30 A and less are regarded as too short to be stable unless in exceptional cases, e.g. the bond to
04(2) which is abnormally short in most felspars. Unsatisfactory values are shown in italics.)
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Table 5. Electrostatic valence

O atoms in group

Group 1 04(100), 04(10¢), 04(120),
(4 altogether)
Group 2 04(200), 04(207), 04(220),
0p(00z), Op(020), Opg(0z:),
Oc(OZ'I:), Oc(mOO) Oc(mO%)
0p(00¢), Op(020), Op(0z7),
(20 altogether)
Group 3 0g(m00), Og(mazz), O¢(000),
Og¢(mzt), Op(m0i), Op(mz0)

(8 altogether)

No. of Ca  Electrostatic

neighbours valence
O 4(1z7) 2 2-32
04(222), Opg(000),
OB(’MO% OB(sz ,
O¢(mz0), Op(000), 2:04
Op(m00), Op(mzi)
00(007’), OC(OZO)’

0 1.75

Table 6. Bond angles at oxygen in various felspars

Angles are given in degrees, rounded off to the nearest degree
Where independent values are taken together in a group, the extreme values are recorded,
and also (in brackets) the mean of the group

Microcline  Low albite High albite Orthoclase Celsian Anorthite

0.4(1) 144 142 144 144 139 (187)
135-140

0.(2) 140 131 133 139 135 (124)
122-126

Op (153) (150) (149) 153 (150) (144)
152-155 140-160 142-155 150 128-171

O¢ (131) (130) (131) 131 (129) (131)
130-132 125-135 128-134 127-130 128-133

Op (142) (141) (140) 142 (139) (141)
140-144 134-147 136-144 138-139 125-167

2:3. 0-0 distances, and bond angles ot Si and Al

These are recorded in Table 2(d), (¢), and (f). Since
the standard error in the determination of bond angle
is about 0-5°, the difference of the angles from the
tetrahedral value are real; their structural significance
will be left for discussion in § 3-3.

2-4. Environment of O atoms, and bond angles at O

Each. O atom has one Si neighbour and one Al;
the angle between these two bonds is recorded in
Table 2(g). In addition, many of the O’s have Ca
neighbours: each O4(1) has two, as in other felspars,
and most other O’s have one, but certain O’s have
none within what are regarded as effective bonding
distances. Table 5 shows the symbols of the atoms in
each group, and their electrostatic valence. (Here

(Ca(000) is counted as 7-coordinated; the effect of
counting it as 6-coordinated would be to transfer
0¢(022) from group 2 to group 3, with negligible effect
on any of the arguments for which this classification
ig later used).

The bond angles at O resemble in a general way
those in other felspars (Table 6), but on the whole
show a larger spread of values. They are of the order
of magnitude of those found in other silicates (cf.
Liebau, 1960). Detailed discussion is left to § 3-3.

The average temperature for O has a lue
of 0-6 A2 (Paper I). This, t not very ac ely
determined, is still appreciably lower than the values
found in some other felspars (Table 7). It is an indica-
tion that we are here dealing with an ordered structure,
and that the O atoms are not spread over a wide range
of neighbouring positions in different unit cells, as

Table 7. Isotropic B values in A2

Microcline Low albite Sanidine
Large cation 1-0 1-3 1.9
T _
0 -

Orthoclase Celsian Anorthite  Reedmergnerite
1-0-1'5 0-5-1-2 0-3-1-0 1.23
06 0-6% 0-2 0-337
1-2 1-2% 0-6 0-67

* These figures refer to the penultimate stage of refinement, when the structure was still being treated as if there were complete
Si/Al disorder. No revised estimates were made at the later stage.
t Information kindly supplied by Dr D. E. Appleman, 1962.
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must inevitably happen if Si and Al are distributed
at random in the tetrahedral sites, because of their
difference of radii.

3. Discussion

3:1. Concept of structure as a framework built from elastic
‘buslding elements’

There is much to be gained from a consideration
of the anorthite structure as if it were a construction
built on engineering principles, according to the
macroscopic laws of statics. We first consider the
SifAl-O framework, neglecting the large cation.
Suppose all Si—O and Al-O bonds are rigid rods with
lengths of 1-61 units and 1-75 units respectively, all
angles at Si and Al are exactly tetrahedral, and all
angles at O exactly 130°; O-O contacts, between
different tetrahedra, of less than 2-7 A are forbidden.
Attempts to build a structure resembling that of
felspars, and repeating itself with a parallelepiped of
approximately 8x 13 x7 units, will probably show
that it cannot be done. We must endow our building
elements with elasticity—the rod lengths with a
Young’s modulus, the hinge angles with a rigidity
modulus. It may then prove possible to build the
required periodic structure. The existence of the
felspars proves that it is possible but suggests also
that the structure will not be in stable equilibrium
(in the sense used in statics) unless it is propped
open with spacers of appropriate size, namely
spheres of radius about 1 to 1-3 units. If the role of
the large cation were merely to maintain electrical
neutrality we should expect to find felspars in which
magnesium, and possibly beryllium and lithium, could
play this part. As it is, the hinged frameworl shears
till the forces due to elastic compression of the spacer
are called into play, and, when the spacer is large
enough, equilibrium results. In determining the de-
tailed nature of the shear, the electrostatic forces play
their part.

In this process, all the bond lengths and bond angles
are necessarily strained from their ideal values; the
amount of strain adjusts itself at each, so that over
the structure as a whole the energy is a minimum.,
Thus there are intrinsic strains in the various building
elements when the structure as a whole has its
equilibrium configuration.

Assuming a knowledge of the unstrained dimensions
of the building units and their elastic constants, and
a Hooke’s law relation between stress and strain,
one could in theory set up equations from which to
derive the equilibrium configuration and all individual
strains. In practice the mathematical solution of the
equations might be too ditficult. For a crystal structure
there are the further difficulties (i) that we do not
know our unstrained lengths and angles, because they
never exist in isolation, (ii) that we cannot be sure of
the validity of a Hooke’s law approximation, and
(iii) that the elastic constants themselves may depend

THE STRUCTURE OF ANORTHITE, CaAlSi,0,, II

on such influences as the electrostatic field of neigh-
bouring atoms. Nevertheless an empirical examination
of bond lengths and angles along these lines, taking
the strains as deviations from the best estimated mean
value, provides a useful starting point.

It turns out that the model needs to be adapted to
allow for electrostatic attractive and repulsive forces
emanating from the large cations, as well as the
homopolar (or semipolar) attractive forces in the
framework, and the repulsive forces within the frame-
work and between cation and oxygen. These will be
considered in more detail later.

3-2. Framework and ‘lattice’ vibrations

This girder-type model enables us to understand
the doubling of the unit cell additional to that required
by the Si/Al alternation. If all bond lengths and bond
angles are strained in order to achieve a periodic
repeat, doubling the period doubles the numbers of
atoms over which the strain is to be distributed, and
therefore (roughly) halves the individual strains with
a consequent reduction in strain energy.

One may then ask why, if longer periods lower the
strain energy, periodic structures are ever achieved ?
The answer lies in the fact that we have so far
considered only potential energy. An actual macro-
scopic structure has natural frequencies corresponding
to modes of vibration, and kinetic energies associated
with them. The corresponding features of the crystal
structure are the ‘lattice vibrations’ and their contri-
bution to the free energy. Presumably this part of the
energy is so much less for a periodic structure that it
more than compensates for the extra strain energy.
It is, however, temperature-dependent; and a tran-
sition to a structure of half the period at higher
temperatures could be caused by a changing distri-
bution of energies between the available vibration
modes in a way which favoured shorter wave lengths.

The very small variations in Si-O bond lengths,
and the only slightly larger variations in Al-O, show
that these bonds are elastically stiff; by comparison
the Ca—O bonds are elastically compliant. A similar
contrast is seen for Si and Al bond angles on the one
hand, Ca bond angles on the other. Tt is therefore to
be expected that the Si/Al-O framework will vibrate
as a whole, in ‘lattice’ modes, while Ca will vibrate
more nearly independently, in Einstein modes. (This
is perhaps a crude approximation, but it is only in-
tended to give a qualitative picture). Since the force
constants of the Ca—O bonds are smaller than of
bonds and angles in the framework, and the effective
mass concerned in the framework vibrations is greater
than that of a single Si/Al or O atom, the vibration
amplitudes of Ca are likely to be larger than those of
Si/Al or O. This agrees with the observations of B
values in anorthite, and also in reedmergnerite, the
only other perfectly ordered structure for which
detailed information is available.

Again, since the spread of values of bond angles



HELEN D. MEGAW, C.J. E. KEMPSTER AND E. W. RADOSLOVICH

at O suggests that such angles are elastically more
compliant than those at Si and Al, and since moreover
the greater mass of Si/Al compared with O might
tend to make them act as nodes for the standing waves,
it is reasonable to expect that 8i/Al amplitudes should
be still less than O-amplitudes. This is observed.
Tt may be related to the smaller difference parameters
of T atoms compared with O atoms (Paper I, Table 5
and Table 9), as if the 7' atoms tended to stay as fixed
points during the distortions of the parts of the
structure round them. The B values recorded for
other felspars are in accordance with these ideas
(ct. Table 7); but when Si/Al disorder is believed to
be present in the structure (as in the simplest inter-
pretation of orthoclase) or is simulated by an averaging
process at the stage at which the B values are com-
puted (as was true of celsian, and is a possible inter-
pretation of orthoclase) care has to be taken in estimat-
ing the effects of thermal vibration, because the
experimental evidence does not distinguish between
this and disorder broadening of the peaks. It is
therefore rather surprising that in both orthoclase and
celsian the B values for Si/Al are so low; it is ob-
viously due to the same physical cause as the small
size of the difference of 1" coordinates in anorthite.
In both orthoclase and celsian the disorder broadening
is manifested in B values for oxygen which are much
larger than those in the ordered structures. For the
A cations, if the very large anisotropy in the albites
is attributed to disorder, and the smaller anisotropy
in of the others is ignored, all have isotropic
B of about 1 to 2 A.

3+3. Detailed examination of intrinsic strains

We proceed to examine the intrinsic strains of
individual bond lengths and bond angles, to see what
regularities can be noted and how far they can be
correlated with each other or with physically reason-
able causes.

(i) Bond angles at O

Since, of all the ‘building elements’ of the structure,
these show the greatest spread, and are therefore most
compliant, it is convenient to consider them first.

Table 2(g) shows that a classification according to
the type of atom (4(1), A(2), B, C, or D) is a natural
one for demonstrating regularities. At O¢, the angles
are all closely alike (~ 130°), not only in anorthite
but in other felspars (Table 6). There is similar con-
sistency at O4(1), with slightly lower values (~ 138°)
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for the 14 A felspars than for the 7 A felspars (~ 143°).
At 04(2) the angles in anorthite are even more
congistent as a group, but conspicuously lower than
in any other felspar. At Og and Op there is much
more spread in all felspars, and in anorthite it is so
great that there is not much significance in recording
the mean.

The Op and Op atoms at which very large angles
(160-170°) occur are those which have no Ca neigh-
bour. At first glance one might try to correlate large
angles with low electrostatic valence. This, however,
cannot be substantiated by consideration of the
other O bond angles, since comparison with Table
5 shows that (a) high values of electrostatic valence
at O4(1) are associated with normal bond angles,
and normal values at O4(2) with low bond angles,
(b) similar values at O4(2) and half the O¢’s are
associated with different bond angles, (¢) different
values for two sets of Oc¢’s are associated with similar
bond angles. These qualitative comparisons can be
substantiated by detailed statistics. It must be con-
cluded either that the electrostatic field does not play
a large part in controlling the bond angles or that
the simple treatment of the field embodied in the
Pauling rules for electrostatic valence is inadequate
for evaluating its effect on bond angle.

In fact it seems much more likely that steric effects
(depending on repulsive forces) play the main part
in determining the oxygen bond-angle strains. One
piece of supporting evidence is the fact that ab-
normally high angles at some Oz, Op sites are com-
pensated by low values at others within the same ring
of four linked tetrahedra, so that the means for each
ring are very much alike (Table 8). It is very notice-
able that, for these angles as for the Ca environments,
the closest resemblance among the four subcells is
between those related by the base-centring operation
z¢. This point will be considered further below.

(i1) Si-O and Al-O bond lengths

The grouping of bond lengths to show up regularities
in their strains may be tried in three ways, as follows
(grouping into tetrahedral means having been shown
to smooth out differences rather than emphasize
them). The first way is according to the number of
Ca neighbours of the O atom, as given in Table 5.
The results are shown in Table 9. There is obviously
a significant shortening for group 3 as compared with
group 2; between groups 1 and 2 the differences for
Si and Al separately are not (formally) significant,

Table 8. Bond angles (in degrees) in the four different Os—Op rings

Atom Angle Atom Angle
0p(0000) 129-4 Opg(mzi0) 163-6
Op(0000) 137-8 O p(mzi0) 138:5
Op(mz0c) 143-5 Opg(00ic) 135-9
Op{mz0c) 161-4 Op(00ic) 124-6

Mean 143-0 Mean 140-6

Atom Angle Atom Angle
0p(0200) 139-6 Op(m0i0)  145-3
0p(0200)  125-2 Op(m0i0) 1669
Og(m00c)  170-8 Op(0zic) 128-3
Op(m00c)  140-3 Op(0zic)  132:6

Mean 144-0 Mean 143-8
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Table 9

(a) Comparison of 7'-O bonds according to environment of O

Mean bond length

S.d. of mean bond length

No. of Ca
neighbours 8i-0 Al-O 8i-O Al-O
Group 1 2 1-632 A 14780 A 0:007 A 0-015 A
Group 2 1 1-622 1-755 0-005 0-006
Group 3 0 1-588 1-719 0-008 0-009
(b) Significance tests
Group 1-2 Group 2-3
Cruickshank significance Si 10/(72+52)F =1-16 34/(524+8%)F =3-62
ratio c¢g Al 25/(152462)F =1-56 36/(62+92)F =3-33
Probability of accidental Si 0-12 < 0-001
occurrence of observed { Al 0-06 < 0-001
difference* Joint 0-007 <106

* Calculated from Cruickshank’s expression, P=4— } erf (¢s/}/2)

but since the probability for their joint occurrence
accidentally is the product of the separate prob-
abilities, the combined effect is significant. (Errors in
the coordinates of any O, which would affect both
its bonds, would tend to do so in opposite directions,
because the bond angle is greater than 90°; hence
they could not give rise to systematic differences in
the same direction between both kinds of bonds).

The second way of grouping bonds js according to
the type of O atom, which proved effective for O bond
angles. Average values for both kinds of bonds
involving Ou(1) are slightly larger than for those
involving 0O4(2), and these again than for bonds
involving Og, O¢, Op, which show no consistent trend ;
but none of the differences is large enough to be
gignificant. Bonds to 04(2), which is linked by the
abnormally short bond to Ca, are if anything longer
than normal; hence the shortening of Ca—04(2) is not
due to stresses exerted on O4(2) by its T neighbours.

The third way is a comparison of 7-O bond lengths
with bond angle at O. This showed no detectable
regularity, except what could be accounted for by the
fact that the four atoms with largest angle have no
Ca neighbour.

It therefore seems clear that the most conspicuous
differences of Si-O and Al-O bond length depend on
the number of Ca neighbours of the O atom. Such
an effect has been suspected previously, e.g. by Smith
(1960), Smith, Karle, Hauptman & Xarle (1960),
Radoslovich (1960); but is here conclusively demon-
strated. It means either that there are intrinsic
stresses in the 7-0 bonds due to the stresses applied
to them by the Ca—O bonds, or that the electrostatic
field of Ca acts directly on the bonds to lengthen
them. Which explanation is physically more realistic
cannot be decided on this evidence,

It also remains doubtful which of the lengths should
be regarded as ‘unstrained’, since there are certainly
other stresses operating besides those in the Ca—O
bonds—notably those affecting the bond angles at O.

It is not surprising, for example, that Si-O bonds in
this structure for O atoms with no Ca neighbours
should be shorter than in a structure such as quartz
where none of the O’s has any other neighbour.
No similar effects have been observed with certainty
in other felspars. For intermediate microcline, ortho-
el and R catter of i  vidual bond 1 hs
W na e is insign ant (&(r)~0 A
or less). For low albite, the scatter is rather large
(e(r)=0-021 A) but so is the standard error of deter-
min (6=0019 A). F h albite, with
the o, the scatter is (0-008 A). For
mergnerite, NaBSizOs (with the felspar structure),
the scatter is rather larger in proportion (e(r) =
0-017 A, 6=0-010 A), which suggests that the devia-
tions are real; but the margin is too narrow to allow
very definite conclusions. More detailed information
from three-dimensional analysis of the albites is
desirable.

(iii) Bond angles at Si and Al

Inspection of Table 2(f) suggests some degree of
uniformity within groups of four tetrahedra. Accord-
ingly, bond-angle strains (differences from the tetra-
hedral angle, 109-5°) for corresponding angles were
averaged over the four atoms whose symbols are
derived from any one of the set by operations 000, 001,
m00, mO0i—i.e. for atoms related topologically (not
exactly) by body-centring and mirror-plane operations
The results (Table 10) show clearly that corresponding
angles for different atoms within a set have on the
average very small differences from one another as
compared with the differences between their means.
(Most of these differences are large compared with the
estimated experimental error, ~ 0-5°). Moreover,
while 7'; and 7' tetrahedra show quite different sets
of strains, tetrahedra containing Si or Al respectively
(related by operator z) have very similar strains,
except that those for Al are slightly (perhaps not
significantly) larger.



Type of
tetrahedron

T

0O

atoms

AB

AC

AD

BC

BD

CcD

AB

AC

AD

BC

BD

CD

Table 10. Bond angle strains (in degrees) and O-0 tetrahedron edge strains (in A)

0-0 edge
in anorthite
m——

Si Al
—0-105 —0-148
+0-020 +0-004
+0-091 +0-113
+£0-015 +0-027
—0-094 —0-138
+0-009 +0-031
+0-021 +0-024
+0-012 +0-019
+0-058 +0-075
+0-012 +0-038
—0-002 +0-005
+0-032 +£0-022
—0:005 —0-046
+0-020 +£0-040
—0-080 —0-110
+0:019 +0-019
+0-011 —0-053
+0-004 £0-018
+0-034 +0-026
+0-031 +0-024
—0-038 +0-033
+0-030 +0-017
+0-046 +0-089
+0-015 +0-018

Strains are deviations from values for a regular tetrahedron
The table lists the means over corresponding angles and edges in similar tetrahedra, and their standard deviations

O-T-0 angle

Anorthite Low albite High albite Microcline Orthoclase Sanidine Celsian
e’ — e,
Si Al Si Al SifAl Si Al Si SijAl Si/Al Si Al
—69 —84 -39 59 —4-8 —48 —22 —34 — 42 —65 —69
+1-3  +21 +0-3

+59 +67 +37 +56 +2-5 +35 +37 +51 +35 +67 +64
+1-2 417 +0-6

—-62 —85 -29 —62 —46 —43 =28 —34 —34 —65 —84
+09 +2-5 +1-0

+21 431 —06 +21 -15 +32 407 +0-7 +1-4 +1-8 +41
+0-8 +07 +35

+38 +49 +12 407 +3-0 +02  +0-1 +0-5 +2-4 +42 +43
+1-1 +12 +40

+0-8 +16 +08 +2-6 +45 +09 —48 —0-7 —0-3 +01 —0-5
+1-0 +05 +1-7

—04 —28 —-1-1 —2-9 —1-0 +0-6 +0-6 -31 -30
+£1-6 +23 +15 +1-7 +0-4

-59 —62 —50 —25 —4-3 —4-9 —4-9 —62 —84
+10 +1-3 +0-9 +01 +03

+09 =31 -15 —2-2 —-09 —0-8 —06 —06 —06
+07 412 £07 413 +0-2

+25 423 +35 —-18 +1-2 +18 +0-4 +40 +33
+0-7 +0-8 +0-5 +23 +0-2

-1-2 +24 +1-0 +13 +1-2 +1-6 +2-1 +23 +33
+15 +09 +0-3 +0-4 +0-2

+36 +62 +2-1 +7-4 +33 +1-3 +2-3 +29 443
+07 %10 +1-7 +0-2 +09

HOIAOTISOAVY "M "d ANV YHLSAWHM "H £ 0 ‘MVOHN " NHTHH

6601
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Exactly similar effects are shown by an analysis
of the O-O bond-length strains, i.e. the differences
the values , 2:860 A, corresponding to
ar tetrahedra T-0 distances 1-614, 1-749 A
respectively. These are also shown in Table 10. The
consistent differences between the edges 7'1(AC) and
T2(AC) in a number of felspars was earlier noted by
Jones & Taylor (1961), who pointed out that it could
not be due to a difference in Si/Al ordering but must
‘be due to the general balance of forces as between
Si/Al and O on the one hand, and X (or Ba) on the
other.’

The more detailed analysis of the present paper
allows us to go further. Table 2(f), or its analysis in
Table 10, shows that in anorthite all tetrahedra of
the same type (71 or 7T'2) tend to have the same shape,
i.e. the same angular strains, whatever their position
or orientation in the structure, and whatever the
nature of 7. These tetrahedra are not related by
symmetry, though of course their general arrangement
is not far from the symmetrical sanidine structure.
It therefore seems that the strains, and consequently
the stresses producing them, are not on the whole very
sensitive to the detailed coordinates of the atoms
and their departure from the higher symmetry.
(In so far as bond-length strains may be associated
with any of the same regularities as affect bond-angle
strains, similarity between tetrahedra of the same type
will have the effect of making their 7-O tetrahedral
means more nearly alike than would have been ex-
pected from a random distribution of the bond lengths
throughout the structure, thus tending to explain the
observation noted in § 2-1.)

Some striking facts emerge from comparison of the
bond angles with those in other felspars (Table 10).
The largest strains, those in 7'1(4 B), T1(AC), Ti(AD),
Ts(AC), are observed in all the felspars studied; they
do not vary greatly within a structure, and the mean
value of each for a given structure is roughly constant
for all the felspars with cations of similar valency
(Table 11), the ratio of the strains for divalent and
monovalent cations being about 1-7. The strains must

THE STRUCTURE OF ANORTHITE, CaAlSi,04. IT

therefore be due (like the 7-0O bond-length elonga-
tions) to the effect of the A cations. The stresses
causing them must, like the strains, be relatively
insensitive to small differences in atomic coordinates
and configuration round 4. Since the 4 atom is nearly
on a mirror plane of symmetry, and is nearly repeated
by a body-centring translation, this explains the close
resemblance in shape between different tetrahedra in
the same structure as well as between different struc-
tures. The relative insensitivity of the strain to the
departure from overall monoclinic symmetry is par-
ticularly striking: the monoclinic (or nearly mono-
clinic) potassium felspars are only slightly different
from the distinetly triclinic albites, but quite different
from monoclinic celsian,

3-4. Bond-angle strain as a consequence of electrostatic
repulsion
The mechanism by which the cation affects the
0-T-0 bond angle must be treated in terms of electro-
static forces, because even if homopolar forces con-
tribute to the Ca—O bond we have no means of
estimating them. As a nearest-neighbour effect, the
electrostatic field of Ca polarizes each neighbouring O
and thereby influences both the attractive and repul-
sive forces between O and its other neighbours. For
second-nearest-neighbour effects, we must consider
Ca—-Ca and Ca—1" electrostatic repulsions; this looks
formidable at first glance but is greatly simplified if
one recognizes the shielding of Ca by its surrounding
O’s. Since these are polarizable, one may represent
in a crude model by es ius
1:5 A. Tor this p in all
O’s at distances not greater than the cation—cation
distances to be studied, since it is not merely O’s in
contact with Ca which serve to shield it. Then only
where there are gaps in the shell of O’s is cation—cation
repulsion likely to be important. This effect can be
visualized using lines of force. The ideas used here
are the same as those underlying Pauling’s electro-
static-valence concept.

Table 11. Comparison of bond angles showing large strain: mean values over all similar tetrahedra

Large cation Felspar Mean bond-angle strain (degrees)
T,(AB) T,(AC) T,(AD) Ty(AC)
Nat Low albite —4-9 +4-6 —40 —50
Nat High albite —4-8 +2:5 —46 —25
K+ Microcline —35 +3-6 —35 —4-3
K+ Orthoclase —34 +51 —-34 —4-9
K+ Sanidine —4-2 +35 —34 —4-9
Catt Anorthite — 77 +6:3 —7-3 —6-1
Batt Celsian —6-7 +6-5 —75 —7-3
1-valent Mean —4-2 +03 +39 404 —39 +0-3 —4-3 +04
2-valent Mean —72 +04 +64 +01 —-74 +01 —67 4+04
. 2—wvalent
Ratio —— 1-7 16 19 1-6

1 —valent
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Fig. 3. Sketch stereogram of the environment of T',(0000}).

The fact that the largest O-7-0 strains are those
involving the three angles round 7:1—0u(1) is suf-

re 1 tetrahe ang B and AD are too s
A o large; i er w T-04(1) is tilted fu
downwards. To restore regularity, it would be neces-

arge (135° instead of the
of the softness (high

1
an edge. It seems that there are strong forces tending
to make it contract.

Y

Oal1)

@

()
Fi 4

)
f

show effect more clearly.

The electrostatic origin of the forces tending to
shorten 04(1)-04(1) can be shown as follows. The
shielding shell of Ca comprises ten O’s (two each of
04(1), 04(2), Oz, Oc, Op). The only serious gap in it

is at the 04(1) 1), across h there is
another Ca distan about 4 A. 4(a) shows
a on in a plane perpendic 0017,
ap imately to scale. The ab short
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distance is shown by the cut-off of the circles at a
common. chord. Assuming the 04(2)-04(2) distance
to be fixed by other parts of the framework not shown
(cf. below, §4-1), the Ca—O distances could be made
more nearly normal by moving the Ca’s nearer
tog and the 1)’s further a

the n in the es at T and ) .

Ca’s are kept apart by their electrostatic repulsion,
and this also draws together the two O4(1)’s, as shown
in Fig. 4(b). Not only the interrelation of the three
largest strains, but their independence of the detailed
symmetry of the felspar, and their dependence on
cation valency, are thus explained simultaneously.
(It may be noted in passing that since Oa(2) is ab-
normally close to Ca it is in a strong electrostatic field
and is polarized accordingly, with consequent effect
on its other bonds).

4. Linkages and stability of structure

4-1. Monoclinic approximation

We now consider the linked framework as a whole,
t0 see how the details hitherto examined fall into place.
Tigs. 5(a), (b), (c), are stylized diagrams of parts of
the structure; (a) and (b) are viewed down [010], and
may be compared with the scale diagram in Fig. 1,

-&
(3
Og
0al2) Qu(2) E 7
Ca oM Ca X
Fig. 5(a) X

Fig. 5. Stylized diagrams of parts of structure. (a) Projection
on (010) of slab bounded approximately by y=+0-3,

b) j on o 10)
y= (c) ect,
In ) 7

Pairs of atoms and bonds which are superposed in projec-
tion are shown by double lines. Heavy lines E—(F, F’) and
G-H indicate links affecting x* repeat distance. Labelling
of atoms is given in bottom left-hand corner.
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e
~ G
/, H
”~
’/
T2 z
*
x
QM
Fig. 5(b). x
Os
OD
T, y
Oc
. *
Fig. 5(c) X

and {c) is viewed down [001]. Neither in Fig. 5 nor
in the following discussion is any distinction made
between Si and Al, because, as has been shown above,
their difference gives only second-order effects. The
full sanidine symmetry is retained for this first stage
of the discussion.
Fig. 5(a), which includes all atoms

shows the striking pseudosymmetry w

pt Oc,

exists

THE STRUCTURE OF ANORTHITE, (aAlSi,0,. TI

(010) slab of the structure bounded a

by y=+0-2. To this approximation,
Og and Op are equivalent, and the symmetry is ortho-
rho Ca, and each lying at
the of tw or pla he slab is built
from a double sheet of 7-O tetrahedra, each sheet

contain r bered ri ndt lyto s

in the ] by a ¢ 8ys of -
] from Ca and Ou(2) g. 5(c)).
us le slab forms a fairly ri  unit.

Fig. 5(b) shows the linkage between one slab and
the next, between the upper rings of the slab in 5(a)
(centred on y=0) and the lower rings of the one

C n
(o]
e S5

from Og by their participation in a four-membered
ring with Oc, which stands in a vertical plane linking
the layers.

The repeat distance in the a* direction is deter-
mined by two different sets of links, shown in Figs.
5(a) and (b) by the heavily-drawn lines E—(¥, #') and
G-H respectively. Other links are negligible, tending
mainly to produce shear. For equilibrium, the stresses
in B—~(F, F') and G-H must be equal and opposite.

T
1 T,

T O

T: O T

Fig. 6. Stylized diagram showing detail of linkage
in region G-H of Fig. 5(b).

But we have seen that E—(F, F') is in compression,
shown by the shortness of the bond Ca—04(2). Hence
G-H must be in tension. This is shown in more detail
in Fig. 6 (cf. also 5(c)). Assuming that the stress
manifests itself more in bond angle strains than in
T-0 bond length strains, we expect positive strains
in the angles marked in Fig. 6, and negative strains
in T5(BD) and T2(AC), the latter rotating the bond
T5~Oc downwards towards the plane of the paper.
The angle 71(BD) is also concerned in the link
E—-(F, F"), where a negative strain is required, but
its effect on this length is only half its effect on G-H,
and may therefore be ignored; on the other hand,
Ts(BD) should have a positive strain in E—(F, F')
and we cannot predict whether this or the negative
strain required for G—H will predominate. Table 12
shows a comparison of predicted and observed strains
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Table 12. Comparison of observed and predicted bond angle strain in x* repeat distance
Mean bond-angle strain (degrees)-
T,(BO) T(BD) T'y(AC) To(BO) Ty(BD) T,(CD)
Predicted 4 + + Indeterminate +
Anorthite +2:6 +44 —61 +2-4 +06 +4.9
Celsian +3-0 +4-2 —-7-3 +3:0 +2-9 +3-6
Low albite —06 +1-2 —50 +35 +1-0 +2:1
High albite —15 +3-0 —2:5 —1-8 +1-3 + 74
Microcline +3-2 +0-2 —4-3 +1-2 +1-2 +3-3
Orthoclase +07 405 —4-9 +1:8 +1-6 +1-3
Sanidine +1-4 +2-4 —4-9 +0-4 +2-1 +2-3
ese
for
es
good a  ment, he
b n it ent are as ed
scopically in changes of & and y angles.
QM
4-2. Distortion from monoclinic symmetry
The next step is to examine what distortions follow
as a result of the small Ca radius.
In Fig. 3(a) it was that the a* o Op
of Ca is rather rigidly ined. In the ( 5
r, the ation of Fig. 5(z) show
four e Op and Op neighbours, ou2
cannot all come into contact with it because they are 04(2) 4(2)
%
o, Og z
of the square Osg d these O’s just
themselves so that good contact one
is pushed right out, its bond angle increasing to about o) .
. ) X

in the
odated

of O cause
ot be entirely

yt o]
ay c
or r

Fig. 7. Schematic projection of double layer on (010),
showing distortion from original symmetry due to small Ca.

stresses are related by symmetry or pseudosymmetry
in the ideal structure, this symmetry will be retained,
at least locally, in the distorted structure, (ii) that all
periodicities will remain as small as is compatible
with (i). In anorthite, there are strong oppositely-
directed electrostatic repulsions acting along Ca—Ca
across the centre of symmetry at (0, 0, 0); this centre
is retained. There is a strong compression along
Ca—04(2); this direction remains, locally, an axis
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of pseudosymmetry, and the plane defined by
T9-04(2)-T; tilts about it, out of the vertical, giving
equal rotations (or displacements) to the two 7%
octahedra and their adjacent O’s (Fig. 7). In this
way large bond-angle strains can be introduced at
Op and Op, without change of bond length. Since
there is one large O-angle for every Ca, and two are
associated with every O4(2), half the 04(2)s are
unaffected. Those affected are (like everything else)
centrosymmetric about (0,0, 0) (Fig. 7). Hence suc-
cessive double rings in the z direction cannot be true
repeats; exact repetition occurs only after twice the
original ¢ distance. There is nothing in the sideways
linkage to forbid the original C-face-centred arrange-
ment, which is therefore retained. A body-centred
arrangement would have the disadvantage, because
of its centre of symmetry at (1, 1, 1) (referred to the
cell in Fig. 5(a) and (b)), of introducing two 170° angles
into the same vertical 4-membered ring, which looks
unlikely.

The features illustrated schematically in Fig. 7 can
be seen in the projection of the actual structure,
Fig. 1 (best shown in 1(a)).

The argument thus predicts a 14 A C-face-centred
structure, having the environments of Ca(000) and
Ca(zi0) identical with each other and different from
those of Ca(200) and Ca(0¢0). This result, as was made
clear in Paper I, is a very good approximation to
observed fact. The Si/Al alternation, however, does
not satisfy the C-face-centring condition, and the
consequent atomic displacements result in small dif-
ferences between members of each of the above pairs.

The argument would apply equally to albite, except
that the electrostatic forces and their resultant strains
are smaller, and mistakes of sequence therefore more
likely. This point will be discussed elsewhere.

No use has been made here of the individual bond-
angle strains at 7' which show departures from
monoclinic symmetry. These, and the individual bond
angles at O, may contain much useful information.
The structure also offers opportunities for studying
lattice parameters in terms of interatomic forces,
along the lines suggested in §4-1. On both these points,
it would be particularly valuable to trace the changes
of structural detail which accompany macroscopic
changes and changes of composition. Structure deter-
minations of other felspars in the plagioclase series are
in progress (Chandrasekhar, Fleet & Megaw, 1960;
Kempster, 1957; Waring, 1961), and further discus-
sions may wait till anorthite can be compared with
them.

5. Summary

The unit cell of anorthite consists of four subecells of
equal volume in which the atoms have nearly but not
quite identical configurations. The structure is perfect,
with no disorder, within the limits of accuracy of the
work, which are fairly narrow. Si and Al tetrahedra

THE STRUCTURE OF ANORTHITE, CaAl,Si,0,. II

80
Al
ela

same Si/Al distribution; nevertheless their atomic

are as cl similar as pairs

dis tion, are related by
the scatter of lengths te , but ter
than is allowed for in ’s discus of
bond lengths.

One Ca atom is perhaps best considered as 6-coor-

dinated, t h with a 7th distant n
the other e are 7-coord . All the

lengths are fairly normal; the closest contact is to

able b to the ox surrou
The e factors, h not mined
with great accuracy, are informative. The low values
of B for Si/Al and O are characteristic of a perfect
str (as contra with the B value for oxygen
in rs with S disorder, which includes a
‘broadening factor’). The high value for Ca is com-
le with that in felspars, an y represent
a true or a f in thermal itude.
The ‘strains’ (departures from ideal values) of bond
length and bond angle give important information.
Al-0O bonds show, on the
as the number of Ca ne
of the O drops from 2 to zero. The bond angle strains
at all 7' atoms of the s crysta r type
(71 or T2) show marked larity, e nt of
symmetry or Si/Al ratio in different felspars; the

three 1  est, in p ular, can be shown to de

on cat charge er than cation size. The
acr y
It y
ra h

monoclinic symmetry, but also the pattern of dis-

ents and r nsequent on the relatively

ize of Ca. ion of its effect on the a*
repeat distance leads to a qualitative prediction of
bond-angle strain in the other Si and Al angles which
agrees with that observed. Consideration of its effect
on Ca displacement predicts the close approximation
to a C-face-centred lattice which is also found ex-
perimentally.

It is rather surprising that the explanation of the
structure can be carried so far without any need to
invoke the effects of differences between Si and Al
in er radius or ch . Obviously t must
a ; but it would ear that the is sm
than has often been tacitly assumed. Deviations of
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individual values of bond lengths and bond angles
from their group averages give a basis for further
study.

It is a pleasure to express our indebtedness to Dr
W. H. Taylor for suggesting this work, and for his
support and guidance throughout its execution. It
will be obvious how much it owes to his forethought
and wise planning, by which detailed structural
studies of the key members of the felspar family have
been made available for comparison with each other.
We are grateful to Mr P. H. Ribbe for carrying out
the bond angle calculations.
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X-RAY STUDIES OF THE ALTERATION OF SODA FELDSPAR!
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G. W. BrinDLEY AND E. W. RAposLovich
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The Pennsylvania State University, University Park, Pennsylvania

ABSTRACT

Studies have been made of the alteration of pure albite single crystals and powders. No
structural modification of the feldspar itself has been detected. No evidence has been ob-
tained for any preferential orientation of an alteration product in relation to the initial feld-
spar. Under hydrothermal conditions at 280° C and 430° C, albite flakes and powders have
been subjected to attack by 0.1 N HCI {for periods ranging from a few hours to 52 days. The
flakes changed mainly to boehmite, the powders to a variety of products, including a well-
defined kaolinite. This difference of behavior is interpreted in terms of Correns’ ideas on
the weathering of silicates.

INTRODUCTION

This paper reports exploratory work undertaken to elucidate the formation
of clay minerals from feldspars. An attempt has been made to study the process
at three stages of development, namely (i) the initial stage when the alteration
of the feldspar commences, (i1) an intermediate stage, and (iii) the final stage
when clays and/or other products are fully developed.

Feldspars are formed of three-dimensionally linked SiO, and AlO, tetrahedral
groups. Clay minerals consist mainly of two-dimensionally linked SiO, and
AlQ, tetrahedra, together with octahedral groups containing Al and other cat-
ions. A considerable structural rearrangement is involved, therefore, in pass-
ing from feldspar to clay mineral and it is not obvious how the transforma-
tion takes place. We have therefore looked for evidence which may show how a
feldspar alters in the initial stage of the transformation, and also for evidence
of any crystallographic relation between an alteration product and the initial
feldspar. Various x-ray diffraction techniques have been applied, involving
both single crystals and powdered materials. The work began with a study of
some naturally altered feldspars, but progressed towards laboratory-controlled
alterations., Various physical and chemical environments have been used and
the nature of the end products determined.

EXAMINATION OF SOME NATURALLY ALTERED FELDSPARS

Eleven rock specimens, mainly granites, containing weathered feldspars from
the surface and apparently unweathered feldspars from below the surface were
first examined. They appeared to be well suited for the present investigation.
Microscopic examination showed small surface cavities containing crumbly or

1 Contribution no. 55-25 from the College of Mineral Industries.
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particle size,

material and fresh interior crystals. Since it was an essential condition for the
ork that it s to the x-ray unambiguous-
on was dir s de spars, the ation of which
could be followed under laboratory-controlled conditions.

SINGLE-CRYSTAL TESTS FOR FELDSPAR ALTERATION

Soda feldspar (albite) was chosen as being the most suitable for preliminary

p
n

)

less than 3 percent of lime feldspar. Tuttle and Bowen state: “Low-temperature
albite apparently cannot tolerate more than very small amounts of potash. Crys-
tals which have formed side by side with potash feldspar usually contain only
a few tenths of a percent of K,0.” On the basis of this evidence, we consider
that the materials used in the present experiments were pure or almost pure soda
feldspar.

Under the microscope, the Amelia albite showed liquid inclusions and the
cleavelandite a few solid inclusions and possibly a trace of muscovite. The speci-
mens cleaved readily on (010) and cleavage flakes about 6 X 4 X 0.5 mm in
size were easily obtained.

An x-ray examination of cleaved flakes was made before and after various
treatments. It was expected that any marked extraction of alkali or aluminum
ions by an alteration process would modify the relative intensities of the 0k0
reflections; a one-dimensional Fourier synthesis should then give an indication
of the nature of the change taking place. Flakes were carefully mounted on
goniometer arcs on a G.E. XRD3 Geiger counter diffractometer and the inten-
sities of the 0kO re  tions were accur m ured. Thee f
to show any chan  in the relative sit  of the 0kO )
though these were practically destroyed by some of the treatments.

Additional experiments were carried out in which the 0%l reflections of fresh
of partially c were d on nberg -
hs. No refl e dly we or di by the

ments applied.

The outcome of all these experiments is that no evidence was obtained for any

1 In this diagram, the angular interval 26 should be given as 131-131.
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systematic alteration of the feldspar lattice as a first step towards the breakdown
of the mineral.

ABSENCE OF ORIENTATION RELATIONSHIPS BETWEEN
SODA FELDSPAR AND ITS ALTERATION PRODUCTS

The possibility was envisaged that alteration of a feldspar may proceed by
chemical breakdown followed by an oriented development of the new products
on the surface of the feldspar. Partially altered flakes were observed to develop
a shell of altered material around a core of apparently unchanged feldspar.
Glancing-angle photographs of slightly altered flakes were recorded with a flat
plate camera and pinhole collimation. No positive evidence was obtained for
an oriented development of an alteration product. However, as will be shown
in the following section, it was only rarely that claylike products were formed in
the experiments with albite flakes. We cannot therefore exclude the possibility
that oriented growth may sometimes occur. It can only be stated that we have
not so far detected any such effect.

ALTERATION PRODUCTS FROM FELDSPARS TREATED
HYDROTHERMALLY WITH 0.1 N HC1

Preliminary attempts to alter albite with acid and alkali treatments up to
100° C proved extremely slow. Hydrothermal treatments were therefore ap-
plied. Experiments with powdered albite and H,0 -+ CO, in a steel bomb at
around 400° C yielded a mica-like product, probably of biotite type, and a chlo-
rite-like material, but the products were not well crystallized and there was con-
tamination by reaction with the steel bomb.

All subsequent experiments were carried out with 20 cc gold-lined Morey
bombs charged with 10 cc of 0.1 N HCI together with the specimen, either a
(010) cleavage flake of albite weighing about 10 to 20 mg, or a similar amount
of powdered material. In some experiments, the particle size was reduced to
less than 5 microns. The bombs were maintained at about 280° C and satur-
ation pressure, or at 420 to 435° C and about 10,000 psi for periods of 2 hours
to 52 days. There was a large excess of HCI in these experiments; the initial
pH was about 1 and the final pH about 1.2 after a run.

Table 1 summarizes the main experimental results. The product obtained
from the flakes was most commonly boehmite, AIO(OH). Kaolinite was ob-
tained in experiment 56 when <5 micron cleavelandite was kept at 285° C
for 52 days. In experiment 40, finely powdered Amelia albite after 24 hours
at 285° C yielded a rather doubtful kaolin-type mineral. Occasionally the
product hydralsite was obtained; this has been described previously by Roy
and Osborn (1952, 1954) and appears to have a composition approximating to
2A1,0, * 2810, - H,0. As these authors state, previous workers have probably
obtained hydralsite, but have confused it with pyrophyllite. In addition, an
unknown product X was obtained on several occasions. This yields a rather
simple x-ray powder diagram of sharp lines (Table 2). The material has not
been identified so far and may possibly be a new phase.



G. W. BrInDLEY AnD E. W. RabosLovicH 333
TABLE 1.— ALTERATION OF ALBITES BY HYDROTHERMAL TREATMENTS WiTH 0.1 N HCl
(A = ALBITE FROM AMELIA, VIRGINIA; C = CLEAVELANDITE FROM AUBURN, MAINE)

Expt. no. Albite Temp. Time Results

L. Experiments with albite flakes

37 C 285°C 2% days Boehmite and residual albite.
28 A 285° 17 days  Boehmite, strong sharp x-ray diagram.
55 A 275° 52 days  Boehmite predominant, but diagram less sharp

than no. 28. Component showing lines at 7.2,
3.6, 2.65, 1.57 A may be a kaolin-type mineral.

56 C 285° 52 days  Flake disappeared completely; data for pow-
der, see below.

22 A 420° 2 hours  Boehmite; weak unidentified x-ray lines which
may be hydralsite; residual albite.

34 C 430° 1 day Hydralsite, nearly pure; a few additional x-
ray lines.

26 A 420° 2 days Boehmite.

29 A 420° 13 days  Boehmite, strong sharp x-ray pattern.

II. Experiments with powdered albites

40 A, <5u  285° 1 day Kaolin mineral, rather doubtful; unknown
component, X.

55 A, <5u  275° 52 days  Uncertain product resembling a disordered
pyrophyllite.

56 C, <5u  285° 52 days  Good kaolinite; small amount of boehmite;

additional lines not identified including a
sharp line at 12.5 A. Also a glassy deposit
giving no crystalline pattern.

30 A 435° 1 day Boehmite and hydralsite in comparable pro-
portions,

31 C 430° 2 days Unknown X; a little boehmite.

38 A 435° 2% days Unknown X; boehmite; other lines not identi-
fied.

Boehmite, A10 (OH) ; hydralsite, 2A1903 » 2Si02 « HoO (Roy and Osborn, 1954) ; kaolinite,
Al2Siz05(0H) 4; unknown product X, x-ray pattern given in Table 2.

DISCUSSION OF THE HYDROTHERMAL RESULTS

The results obtained with the two kinds of albite from Amelia and from Maine
are not quite consistent. Also, what is less surprising, the results obtained with
f and powders are diff The present s may be with
r obtained by Gruner ) who, in ce of his ex used
conditions closely similar to those employed in the present work. Using a pow-
dered soda feldspar containing 87 percent albite and 0.1 N HCI in gold-lined
bombs, Gruner obtained after 17 days at 300° C pyrophyllite and some kaolinite
and after 14 days at 400° C pyrophyllite and some unchanged feldspar. The
pyrophyllite which he recorded may have been the hydralsite which we have
observed. Boehmite was seldom observed by Gruner, but this may be attributed
to his use of powdered material rather than flakes. It appears that in experi-
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TasLE 2—X-RAY PowpEr DaTA For UNkNowN Propuct, X

d, A I (est.) d, A I (est.)
5.95 W 1.900 w

3.22 s 1.801 W
3.06 vw 1.664 m
2.770 vs 1.595 m
2.350 m 1.450 VW
2.170 vw 1.425 vw
1.957 vs 1.380 wm

ments of this kind it is rather easy to obtain variable results, probably because
all the factors influencing the reactions are not fully appreciated or fully under
control.

With the data so far available, it appears that feldspar flakes are changed
principally to boehmite, although if the experiment is continued sufficiently
long (c.f. Expts. 55 and 56) the boehmite itself may change. Finely powdered
materials tend to pass quickly through the boehmite stage, but the full course
of the transformation is not yet clear. It appears that unknown X, hydralsite,
and possibly other products may be intermediates before a clearly recognizable
kaolinite is obtained.

A result not brought out in Table 1 is that throughout the experiments with
flakes (with Expt. 56 as the only exception) the flakes retained their size and
shape during the hydrothermal treatment. They became porous and chalky in
appearance, and lost a considerable fraction of their weight. Except for the
shortest treatments, the feldspars were completely altered; in cases of incom-
plete alteration, the inner core remained as unaltered feldspar so far as we could
ascertain by x-ray tests (see section on single-crystal tests).

The alteration to boehmite is noteworthy. This mineral may not be the final

uct but i to be a nt stage in the a . Itis

e clearly es than powders. Theb shows
no detectable preferential orientation. It is probably not strictly valid to com-
pare this result with the equilibrium studies of Ervin and Osborn (1951) on
the system Al,0,—H,0, according to which we would expect corundum or
diaspore as the most likely product under the temperature-pressure conditions
of our experiments. However, we do not have the simple Al,0,—H,O system,
since HCL, Si0O,, and Na,O are also present, and in addition it is probable that
equilibrium has not been reached in many of the present tests. However, the
significant fact is that alumina rather than silica remains behind within the
confines of the flake. This appears to rule out entirely any hypothesis which re-
quires that the HCI shall attack the feldspar and form AlCl," which then hydro-
lyzes to AL(OH) , and subsequently transforms to AIO(OH). In one experiment
(no. 26 in Table 1), the flake lost 51 percent of its initial weight, and an ap-
proximate chemical analysis by Dr. R. C. Vanden Heuvel gave the following
data:

Before treatment After treatment
ALO, 19.5% 49%
Sio, 68.7% 16%

This confirms the marked extraction of SiO, from the flake by the acid treat-
ment.
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The different behavior of flakes and fine powders may be interpreted in terms
of a mechanism similar to that considered by Correns (1940) and his co-
workers. This has been summarized conveniently by Van Schuylenborgh and
Sénger (1950). The outer layer of a weathering particle consists predominantly
of the more slowly dissolving components. Dissolution of the components within
a particle is then determined by their rates of diffusion through the surface
layer. The s of the ows until there is an equil
between the diffusio its own rate of dissolution.
the conditions of the present experiments, it is clear that silica dissolves more
readily than alumina from the albite flakes, so that a leached layer deficient in
silica, and a concentration of alumina within the flakes, are to be expected. We
cannot, however, offer any explanation why boehmite rather than other forms
of alumina is the product. In the case of fine powders, however, we may picture
the bulk of the material as residing in the surface layer, so that no appreciable
segregation of alumina takes place. The whole system then becomes reactive
and the products approach equilibrium in considerably less time.

During the course of the experiments described here, Dr. G. W. Morey
(1955) of the Geophysical Laboratory, Washington, gave an account (at a
meeting of the Geophysical Union) of experiments on the decomposition of
albite and microcline by a continuous flow of water at 350° C and 5000 psi for
long periods. In the case of albite he recorded the formation of boehmite to-
gether with paragonite; analcite was formed at the exit tube from the bomb.
The two latter products have been recognized in the present experiments.*
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EFFECT OF BIOTITE ON THE FIRING
CHARACTERISTICS OF CERTAIN WEATHERED
SCHISTS

By K. NorrisH and E. W. RADOSLOVICH
Division of Soils, C.S.I.R.0O., Adelaide, South Australia.
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ABSTRACT

A study was made of five clays used for brickmaking to determine the
reason why certain clays crumbled on firing. Partially weathered
biotite was found to be a constituent of the clays which crumbled and
the crumbling was due to this mineral exfoliating and so disrupting the
bricks at a comparatively low temperature. Fresh biotite and highly
weathered biotite do not have this adverse effect.

INTRODUCTION

The present investigation was concerned with the problem of why
certain clays used by the Onkaparinga Brickworks, South Australia,
crumbled on firing while adjacent clays were satisfactory.

To enable a mineral comparison to be made between the satis-
factory and unsatisfactory clays five samples were taken from the
quarries of the Onkaparinga Brickworks and the followin g are notes
on their firing characteristics.

No. 78. White fireclay. Short and friable. Very refractory with
a low shrinkage on firing. Used for blending with the materials for
making bricks. No. 119. Red clay. Good strong clay which
binds well and is moderately plastic. Medium shrinkage on firing.
Fuses at 1350°C. Makes satisfactory bricks. No. [20. Decom-
posing fine grained mica schist. Less plastic than 119 but binds
fairly well. High shrinkage on firing. Fuses at 1200°C. Good for
making bricks. No. 203. Decomposing fine grained mica schist.
Rather short. Does not bind and tends to crack on drying. Crumbles
on firing. Useless for brickmaking. No. 204. Decomposing fine
grained mica schist. Coarser texture but behaviour similar to 203.

According to Gaskin and Samson (1951) the white clay, 78, *is
a bed of decomposed slate, 75 ft. thick, occurring between two beds
of mica schist, and forms part of the Middle Adelaide Series.”
Sample 119, a soil, overlies 204, 203 and 120 in that order; the clay,
78, is 100 yards away.

189
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RESULTS

The results of laboratory analyses are recorded in Tables 1-3
inclusive. The X-ray data are in good agreement with the chemical
analyses. Table 4 gives the approximate mineral composition of
the samples, calculated from the data of Tables 1-3. X-ray diffrac-
tion patterns of the mica present in the schists indicate the presence of
biotite. However, chemical and physical data indicate that the

TaBLE |—Particle size analyses.

Size in (Sample number with % material in each grain-size)
microns

78 119 120 203 204

2000-200 0-20 0-36 2-00 0-84 29-44

200~ 20 59-44 18-08 56-76 86-80 60-24

20- 2 2976 22-38 36-02 9:37 7-22

<2 724 55-90 4-17 4-75 335

Moisture loss % 0-25 3-10 1-10 045 0-60
(at 110°C)

TaBLE 2-——Chemical analyses.

78 119 120 203 204

Si0; 73-11 70-13 59-08 61-87 64-13
AlO3 18-38 15-64 19:30 1721 18-10
FeyO3 0-40 5-45 4-19 619 5-82
FeO 0-16 1-82 0:94 0-29
MgO 0-18 0-16 5-13 4-34 251
CaO 004 0-20 0-04 0-04
Na,O trace 0-29 0-62 0-26 0-34
K0 0-43 2-46 2:51 2:26
TiO; 1-46 1-19 1-57 1-24 1-09
SO» 0-02 0-02 0-0l
Cl 0-03 0-02 0-03
H,O+ 6-63 6-22 577 5-38 5-12

Total 100-20 99-89 99-99 100-01 99-73

Analyses by Assay Dept., School of Mines, S. Australia,

micas have undergone varying degrees of weathering. Chemically,
some of the micas are altered from biotite in that most of the iron
has been oxidised to the ferric state; there has probably been a loss
of potassium also, coupled with some hydration. Physically the
micas have changed so that the flakes from 204 are golden coloured,
soft and pliable. (Golden micaceous flakes represent an early stage
in the weathering of biotite, (Walker, 1949) hydration not having
proceeded sufficiently to increase the interlayer spacing beyond
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10A). This mica is termed “weathered biotite” in Table 4. Where
weathering and hydration have proceeded sufficiently to increase the
interlayer spacing to about 12 A, the mica is termed hydrobiotite.
All the mica of the coarse sand of sample 204 is weathered biotite
while the mica of the same fraction of No. 203 contains only a small
percentage of golden flakes and in No. 120 it is practically absent.
The ratio of ferrous iron to total iron in the samples also suggests
that the biotite of sample 204 has weathered more than that in No.
203 and this more than that of No. 120. The golden flakes of

TaBLE 3—X-ray diffraction analyses of separate size fractions.

78 119 120 203 204
Whole Kc Kc Kc Kc Kc
sample Qc Qc¢ Mc Mc Mc
Qc Qc Qc
200-20p Qc Qc Qc Qc
Mc Mc Mec
K1 K1 Km
Cm C?
<20p K Kec Kc Kc¢ Kc¢
Hm HI1 HI HI1
Q<5% M1 M1 MI
Q<5% Q<5%  Q<5%
Gl
<2u K K¢ Kc Kc Ke
S1 Sm Sm Gl
HI H1 H1 HI
Ml M1 Ml
Q2% Q2% Q2%
K =kaolinite S =montmorillonite G =goethite
M =mica Q=quartz H =hydrobiotite
C=chlorite m=moderate

c=considerable amount 1=little

weathered biotite exfoliated on heating and Table 5 shows the in-
crease in volume of some 200-20u fractions when rapidly heated to
850°C. The volume increase in these samples appears to depend on
their weathered biotite content.

Walker (1949) has studied weathered biotites, similar in many
respects to these, which also exfoliate on heating. Furthermore,
many of the Australian commercial “vermiculites” studied by the
authors were found to be biotites in an early stage of weathering.
They expanded greatly on heating but had an ignition loss only a
little greater than that of biotite.
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The mechanism of exfoliation restricts the phenomenon to particles
of moderate particle size so that silt and clay size micaceous minerals
do not exhibit exfoliation. For this reason the hydro-biotite which
is in the finer fractions of the samples, would not be expected to cause
any volume increase on heating.

The properties of the samples can now be viewed in relation to their
mineralogy. The high kaolinite content of sample 78 is consistent
with it being a good fireclay. The good binding and plasticity of
No. 119 is due to the high clay content (partly montmorillonite).

TABLE 4—Approximate mineralogical composition of samples in per cent.

78 119 120 203 204
chlorite — LS 5 —
biotite — 34 20 —
weathered biotite — — — 20 40
hydro-biotite — 15 10 5 5
montmorillonite — 5 1 — —
kaolinite 47 45 15 20 25
quartz 52 35 25 30 30
goethite — - - — — 2

TaBLE 5-—Volume increase on rapid heating in per cent

120 203 204
Increase in volume 2 8-6 13-4
Weight loss on ignition 5 45 4-0

Samples 120, 203 and 204 have low clay contents with correspondingly
poor plasticities. The crumbling on firing of samples 203 and 204
is due to the exfoliation of the weathered biotite. Since this volume
increase takes place below 800°C (i.e., before there is any sintering)
the expanding flakes are able to disrupt the mould while it is mechani-
cally weak. On the other hand the mica of sample 120 has not
weathered sufficiently to give a serious volume change on heating.

It appears from this study that both the relatively unweathered and
the highly weathered schists form suitable raw material for brick-
making, whilst the partially weathered schists are unsuitable.

Acknowledgement—We wish to thank Mr H. Ellerton, of the Cement and

Ceramics Section, C.S.I.LR.O., who brought this problem to our notice, and who
provided the notes on firing characteristics.
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TABLE 1

Description of Some Red-brown Earth Profiles Studied

Description

Urrbrae fine sandy
loam

Light Pass fine
sandy loam

Belalie loam

Lemnos loam

Finley loam

Deniboota loam
light profile phase

Summervale clay
loam

Overton loam

rea red-
earth

Qakey area red-
brown earth

loam
( loam
D ndy
loam (c)

Dalrymple loam

to

r.b.e.

to Gulf
b.e,

lton clay

Approximate Soil Leaching
location no. index
, . 12%721-6 118
I ute)
Adelaide, S.A. o088
Barossa Valley, S.A, 151449 101
Barossa Valley, S.A. I 00
Clare, S.A 3743-7 106
Booboorowie, S.A. 3805-9 106
Dookie, Vic. V6188-93 I'11
Barooga, N.S.W., 114238 111
Berriquin, N.5.W. 10300-8 008
Deniliquin, N.S.W 13464—72 068
Tr 11700-4 o770
Co e, 16204 0'59
N.S.W.
Trangie, N.S.W. 16191 070
Nyngan, N.S.W. 16168-73 0'59
Muswellbrook, 12891—5 097
N.S.W.
xley, 178717 0'59
Qld. 16546 074
1d. 9887-9 112
Jondaryan, Qld. 16559-65 112
Springsure, Qld. 16886—g0 X1} 4
Charters Towers, 16554-8 o83
Célariers "T'owers, 13156—9 o8s
Burdekin Valley, 1654953 125
Qld.
Lower Burdekin 14812-17 1°25
Valley, Qld.
14020-3 038
140503 038
1 'E. 155468 053
N.T.
County Buckingham, 12022-5 169
Tas.
Brighton, Tas. 16945—7 1 69

Parent material and
cene to de-
fromPr ous
rocks. Northcote et al. (1054).
ped on Pro-Cambrian s,
or schists or on al
materi same. er (1
On co and r ai 1
of western N.S.W.

Sedimentary fine channel deposits
s

T d
s n
vium.
s de
rian
ry rocks.

Coal Measures, Branxton
Bedas.
Pleistocene alluvium.

Transported mat.e-riﬂl, partly basaltic

sandstones.

Granodiorite mass intruded by some
basic rocks as dykes.
On an acidic granite exposure.

b
M tured basic alluvium.
Basic alluvium.

Biotite granite.

Residual and colluvial material,
from dolerite intrusion of Jurassic
,in of dykes and sills.
J sic te.

Soils selected by Dr. C. G. Stephens, Soil Survey and Pedology Section, Division of Soils, C.5.1.R.O.

Prescott (19
cation of the

form

has s
hing

ested the use of a cli
or in soil formation. s

P|Em,

where P = annual rainfall in inches,
E = annual evaporation from a free water surface in inches,

san i
takes

ind
n
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TABLE 2

X-ray Analyses of Some Red-brown Earths (< 2p fraction)

Depth
Profile No. Horizon (in.)
1 12723 B, 13—30
2—-6
7 15147 B,
8, 9, 14, 21, and 24
13 3745 B, 10-20
10, I1I, 16, 17, 9, 20,
18 B 19—24
23 12893 B, 8-16
25 16546 2427
26 B 18-33
27
28 16889 B 24-30
29 16555 B 6-18
30 13158 B 13-19
31 Similar,
3z 14814 B, 8-23
33 14022 B 18-24
34 14052 BC 20-27
35 15548 BC  26-34
36 12024 B 8-13
37 16947 B 9-18
Il
M

tification doubtful.

e an
are
The X-r
red-brown

ite have been found in red-brown earths.

22
mod.

mod.

mod.

K M M.L.
1.
mod. 1.
mod. L. to
mod.
1. 1 mod.
mod.
mod. 1
m, 1
v.m. 1.
m. 1
m. 1
m. mod.
mod. mod. L
m. ?
m, mod. L
mod. L
1 L mod.

from Table 2.

ults

inS

rs to be kao

ers Towers

Others
Chlorite?

Chlorite or
vermiculite?

Chlorite or
vermiculite

clay mi
nd New

in the south but a ‘fireclay’ or
One soil from western Queen

Comments

Chlorite increasing
with depth,

M.L. increasing
slightly with depth,
in general.

M. increasing with
dep nt
ins

M. not well

linite.

to halloysite or
‘fireclay’.

K. probably
halloysite.

K. probably
hallo

M. in ng, and
M.L. decreasing
depth.

M. does not give very
sharp basal spacing.

K. probably
halloysite.

These
in typ
Wales

n the
from
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Northern Territory and one from Tasmania contain montmorillonite as
a major component.

Chemical Data

Potassium Content of Illitic Minerals in Some Red-brown Earths

to trans . Droster rdst X-r
of such ryontheh side 10A

=R =R SR ="
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scatter.

TABLE 3
Potassium Content of Illite in Some Red-brown Earths

Clay fraction Calculations X-ray

Soil K Ex. Cap Kin Illite Illite (y)  Iilite (y)

no. (%) (m.e. %) (%) (%) (%)
3745 2'1 46 3'4 61 70
3807 2'4 40 38 63 70
10302 22 39 39 58 70
11425 3'4 40 41 82 00
12893 17 34 38 43 50
13466 2°4 46 36 68 8o
14051 oy 40 2°5 30 25
12723 17 50 30 58 70

Cols. 2—5 were recalculated from data supplied by Mr. A. D. Haldane and
Mr. J. T. Hutton, Division of Soils, C.S.I.R.O.

N  h(1949) has he ap mate
ip s between ex an m nt:
P ium +ex gec = a constant.
. per per
Th  nstant was order of 150 . for illi
soils, has been a d to be of th for the
earths.
The values ob d for K; from the che (Table 3) lie
between 2-5 per and 4-1 per cent. K. s of the 1illite

* Milli-equivalents per 100 g. clay. + Chemist, Division of Soils, C.S.I.R.O.
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This curved-crystal fluorescence x-ray spectrograph has been used successfully for about
eight years as a routine analytical instrument; its performance compares favourably with

other spectrographs.

Several novel features of the design so simplify the instrument

mechanically that it can be constructed inexpensively by workshops with modest facilities.
The sample is placed near the analysing crystal, rather than on the focusing circle. This
avoids the usual need for the precise relative movement of both detector and sample (or
detector and crystal); accurate movement of the detector alone is required. The geometry
allows this to be achieved quite simply—an ordinary centimetre scale being linearly related

to wavelengths.

The practical performance is discussed with particular reference to the associated

x-ray and counting equipment.

1. Introduction

cu S
su ra
he a

instrument has operating characteristics which compare

t
8
t
The counting equipment may be obtained commercially.

2. Geometrical design

Birks and Brooks (1955) have discussed two designs of
spectrographs using curved crystals in the reflecting position.
In their designs a small sample is placed at the correct

analysing In any very

must be pla sing to obtain

sufficient sensitivity. A larger sample, however, can be

placed with advantage nearer the crystal without loss of
sensitivity, and is the arrang

Sandstrom (1 pointed out e radiation

will be correctly focused by a curved crystal for a sample

placed anywhere bet s C;S C,S (figure 1). A

line source S may be re d by an extended

provide beams of several square centimetres quite close to
the window these conditions may easily be met. In the
present ins al sa is to the
crystal bec the al of this
geometry (Radoslovich 1951), viz.:

(i) The sample now subtends a considerable angle at C
enabling quite a range of wavelengths to be recorded with-
out moving S,S,. This is practically essential if a range of
wavelengths is to be recorded simultaneously on a film in a

ent

cassette placed along the focusing circle. However, this
geometry also considerably simplifies the mechanical design
if counting techniques are used. In order to scan the spectral
lines of several neighbouring elements, only the detector
need be moved. Moreover it is not at all necessary to locate

25¢em

S
S
G
1. Diagram of a ing focusing c crystal
cence X-ray spectro using a line e S or

extended source S;S,.

an extended specimen with precision, provided that it is in

the (br pri am. Other desi oth. for

or flat tals e the precise lo of the

(or the slits) o cis ive nt of at 1

two mechani o s. the of Birks
(1955) re the p ere Ve mo f the
and the le or ple ; that and

Axelrod (1956) needs precision reduction gearing between
detector and analysing crystal.

(i) The path length from sample to detector is thereby
decreased to the minimum possible for any geomeiry, so

re ng the air or absorp
With a hete neous le a more representative
on is d an ex source r
a line w g milli atS. P d

sections may be placed at S,;S, without grinding, for example.

It appears that the geometry adopted by Sandstrom (1934)
has not been widely noticed, since few people seem aware
that the sample can be placed within the focusing circle in
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this way. This arrangement is not mentioned in the review
by Birks, Brooks and Friedman (1956) nor in the books by
Birks (1959) and by Liebhafsky er al. (1960), but surely
deserves to be considered more generally for its merits.

In this spectrograph the sample is a disk (diameter =
1-27 cm) placed about 8 cm from the x-ray tube target T,
and 6 cm from the crystal C;C, (figures 1 and 2). The radius
of the focusing circle, centre Py, is CP; = 25 cm, and the
counter views C;C, through a slit D moving on this circle.
Then

A = 2dsin § = 2d(CD/2)/CP; = 0-04d CD &

and the measurement of CD by a suitable vernier centimetre
scale gives A very simply for each crystal used: no precise
angular scales or conversion tables are needed. The recording
range is from 6 = 8° (i.e. CD = 7cm, A =~ 0-25d) to § = 30°
(ie. CD =25cm, A =d), so that three suitable crystals
could cover from 0-3 to 3-6 A which includes the K or L
spectra of all elements heavier than Ca(Z = 20). The
resolution of A is adequate for # << 30°, and higher angles,
leading to lower intensities and greater path lengths, are
avoided. Wavelengths less than 0-3 & are also avoided.

The dispersion is the same as that of a non-focusing
spectrograph of equal radius, i.e. 25 cm. At the midpoint
of the CD scale the K« or La lines of elements of neighbour-
ing atomic number are separated by about 1 cm, which is
adequate for an analytical instrument.

3. Mechanical design

The parts of the spectrograph are fixed to a solid base
which is itself mounted in slots on a subplatform to allow
some freedom for alignment in front of the x-ray tube.
Two pillars P; and P, (figures 1 and 2) are fixed 25 cm
apart and the crystal was originally mounted over P, with
the following adjustments for aligning it.

(i) The whole assembly can rotate about P, to bring the
centre of ¢ of the crystal on to the |

(i) A p above P, has a screw nt for
moving the crystal along PP, until the crystal surface is
exactly 25 cm from P|.

(iii) The crystal holder was supported above this platform
by three levelling screws, for aligning the crystal axis parallel
to axis of the focusing circle. Experience has shown that
this adjustment is not needed if the spectrograph is con-
structed with reasonable precision; it is omitted in figure 2.
Since (i) and (ii) are made only rarely the mounting could
be made very simply by clamping the crystal block directly
on to a plate on top of P,. Movement together of screws
B and C gives the radial adjustment (ii), and in opposition
the angular adjustment (i).

The specimen is supported on a small table T (figure 2)
carried on arm A, (length 6 cm) pivoted about P,. A pointer
on A, shows the average angle 0 on a scale on the baseplate.
The base of T (which can a vertical axis on A,)
is graduated so that the a ngles to the sample of
the incident and emergent beams can be noted. The
specimen holders, generally of Perspex, slip into a brass
block on T.

Initially the fluorescence spectral lines were photographed
using a film cassette on the focusing circle from 8 = 7° to
30° (Radoslovich 1951). Although this is still available,
counting techniques are used exclusively as they are more
sensitive and better adapted to quantitative analysis. The
arm A, pivoted about P, carries a bearing exactly 25 cm
from P, (centre to centre), and the receiving slits are mounted

on a block B fitting over this bearing. A rod R passes
through P,, and then through B above the centre of the
supporting bearing. Thus A| and R together constrain the
receiving slit D so that it moves around the focusing circle
but is always normal to the beam from the crystal C. The

(See text also.)

distance CD is measured by a scale rigidly fixed parallel to
R, an accurate steel rule being quite suitable after the centi-
metre scale had been changed to read CD directly. A
vernier attached to B gives readings to 0:05cm and is
mounted through slotted holes for adjusting the origin. The
slits can be locked by a clutch from B on to R, after which
a simple screw device allows vernier movement (over a
range of 1-5cm) along CD. This screw may be driven by
a synchronous motor, giving automatic traverse over a small
range of wavelengths.

The receiving slits are made of tantalum and adjusted in
width using fecler gauges—the slits are usually set at 0-2 mm.
The detector is attached to B by two thumbscrews. The
centres of the sample, crystal and receiving slits (all at the
same height above the base-plate) are set level to the x-ray
tube window. A slit assemblage on the latter limits the
dimensions of the primary beam on to the sample. The
slits are tantalum plates mounted in brass housing which
also carries a tantalum shutter for the tube window. The
housing further provides a slot for holding absorption foils,
and beyond this a clamp for holding the Perspex sample
holder when the absorption of the direct beam by the sample
needs to be measured. The absorption coefficients of the
sample for particular monochromatic wavelengths are
measured when necessary and for this purpose a clamp for
the sample holder is provided above R near to the crystal
holder. Absorption foils can be placed in a slot in front of
the receiving slits.

The crystal holders* consist of two pieces between which
the crystal is clamped. For perfect focusing a crystal ground
cylindrically to a radius of curvature of 50 cm should be
bent by the holder to 25 cm (Johannson 1933). Cylindrically
ground quartz crystals are readily available and therefore
used, but most other suitable crystals cannot be ground
satisfactorily and are simply bent elastically in a holder of
50 cm radius. The focusing is no longer theoretically perfect,
but there is almost no difference in line width (using approxi-
mate and perfect focusing) which is due mainly to aberrations

* Available from Charles Beaudouin, 13 Rue Rataud, Paris 5.
The central portion of the convex piece, containing the aperture
screw, is reduced in size by filing to increase the aperture to § = 30°,
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from other causes, e.g. height of the beam, and depth of
penetration in the crystal. The crystal holders necessitate
using crystals of about 45 mm X 12 mm x 0-2 mm although
the reflecting area is only 45 mm X 5Smm. The intensity
would be considerably increased if the slot height (5 mm)
were enlarged, or if the crystal were cemented to the back
block and the front block removed, to utilize the whole
crystal face.
The following crystals have given satisfactory results.

Gypsum (010) d = 7-58 4 forA>1-8to3-44
Quartz (1011) d =3-3454 for A from 0-85 to 335 &
LiF (200) d=2-0122 for A from 0-5 to 2-00 &
LiF (400) d=1-006A forA<1-0A.

All are readily available. Certain organic crystals may be
better than gypsum for the longer wavelengths.

4. Specimens

The specimen holders are normally made from Perspex
with dimensions 1:25in. x 1:0in. X 0:125in., and have a
0-500 in. hole drilled through them. Powder specimens are
pressed into this hole using a closely fitting plunger which is
guided vertically by a cylindrical metal jig. If the holder is
laid on a strip of Terylene plastic and a Perspex plunger is
used the specimen may be pressed into the mount without
contacting any metal; this is desirable for the analysis of
trace elements. The pressure heeded to form a sample which
is self-supporting depends a great deal on the nature of the
sample. Pressures up to 80001bin~2 are obtained by a
hydraulic jack, and specimens weighing from 0-02 to 0-2 g
are used. Very small powder samples (<<0-02 g) are either
diluted and mounted in the normal way or else pressed into
a shallow recess machined into a Perspex plate. Sample
holders for fluorescence and absorption measurements on
liquids are made with a hole identical with the powder
holders, using Perspex of different thicknesses between 0-15
and 1-5cm. Thin Terylene windows, 0-01-0-1 cm thick,
are cemented over the hole and the cell so formed is filled
and emptied via two capillary holes with the aid of a hypo-
dermic needle.

Samples are normally made comparatively thin and with-
out backing—or with the minimum window thickness for
the liquid cell—for several reasons. (i) All irradiated instru-
ment parts, including any support behind the sample, are
potential sources of contaminating wavelengths at the
counter. (ii) A thick sample or backing material may
increase the background more rapidly than the line intensity,
reducing the sensitivity. (iii) For absorption and absorption—
fluorescence spectrography the absorption coefficient of the
sample is required, for which the sample must have a uniform
thickness and known area.

5. X-ray generator and counting equipment

The primary beam is obtained from a Raymax demountable
self-rectifying x-ray tube, capable of operating at 1500 w
and up to 100 kv (peak). The input voltage is stabilized to
within +0-59%; and the x-ray tube current is stabilized by the
feed-back circuit (Lees and Armitage 1950). A fine control and
milliampere meter are mounted beside the scaler so that the
tube current can be monitored continuously. These factors
ensure adequate stability over periods of several hours. In
a typical test, under working conditions, the times for twenty
consecutive counts of 10° were recorded; this gave a coeffi-
cient of variation of 0-17% (in the times for 10% counts).
Since a counting error of 0-19% is associated with 10 counts

the overall stability of the generator and counting equipment
was about 0-15%,. The long-term drift of the x-ray output
(due to changes in the focus and to deposition on the target)
can be compensated for by regularly checking against
standards. Additions to the vacuum line of the x-ray tube
allow the changing or cleaning of the target within a few
minutes. The tube has an 0-2 mm thick beryllium window.
Targets of Ag and Au electroplated from high purity reagents
are used for certain analyses of trace elements where less
pure targets give spurious lines at the detector. Other
targets include Cr, Fe, Co, Ni, Cu, Mo and W.

The wavelength range covered by the instrument is from
about 0-3 to 3 & for which a scintillation counter proved to
be the most generally satisfactory single detector. The
scintillation crystal is a small piece of Nal (TI) mounted in a
cell with a 0-1 mm beryllium window.

The photomultiplier feeds through an adjacent head
amplifier to the main linear amplifier (total gain used from
104 to 2 x 10% and then to a single channel pulse analyser

(figure 3). This is followed by a gating circuit operated
Clock VN
1l I v v
Head near Pulse Gate aler VI
am a
EHT Rate Rect
X vl X
Figure 3. Block diagram of electronic components, viz.:

I, sodium iodide scintillation crystal and photomultiplier tube
(Dumont, type 6291); II, head amplifier and IlI, linear
amplifier (both EKCO, N 568); 1V, pulse analyser (Dynatron,
N/101); V, gating circuit (designed here); VI, scaler (Austronic
Engineering Laboratory, SC 4/4 Px); VII, stopwatch and
‘start-count’ switch (Venner, A 40); VIII, ratemeter (Austronic,
R X 1); IX, h.t. supply (Austronic, H 52); and X, recording
potentiometer (Philips, PR 2210 A/21).

from the mains in such a way that pulses are passed only
for that portion of the a.c. cycle when the primary beam is
being produced (about one-third). Thus no background is
counted when there is no useful beam. Pulses finally go to
a scaler and also to a chart recorder via a ratemeter. The
scaler is controlled for preset times (10 to 103 sec) or for
preset counts (10° to 10%) in which case the time is read from
a built-in stop-watch to within 0-02 sec.

The resolution time of the counting equipment is limited
by the pulse analyser. Though this has a nominal input
resolution time of 1 usec it is in fact somewhat longer, and
depends on the integration and differentiation time constants
of the amplifier. Furthermore since coincidence losses occur
at the input to the analyser, but only pulses transmitted by
the channel are counted, the apparent resolution time will
exceed the input resolution time by the ratio of pulses

received to pulses transmitted. The effective resolution time

for the pulses counted therefore varies with the channel
width setting of the pulse analyser, with the energy distri-
bution of the input pulses, and with the time constant
settings of the linear amplifier. This variability is intolerable
because it is the effective resolution time which must be used
to correct for counting losses. It has been overcome by
adjusting the resolution time at the input of the scaler to
about 3 psec, a value exceeding normal variations in resolution
time due to changing conditions. - X-rays are only produced
for a fraction f of each cycle; actual counting rates during
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that part of the cycle are 1/f times the average rate. The
correction to be applied for coincidence losses then becomes
Cl
C =
where C’ = the measured rate in counts per second, C = the
rate, corrected for losses, and dt = effective resolution time
divided by f. The resolution time of the scaler has been
adjusted so that dr = 10 pusec which further simplifies the
above formula.

In routine analyses the quantity measured is the line ¢
for a fixed number of counts N for which the above formula
becomes

t =1t — Ndt

where N = Ct. This provides an even more convenient
correction for losses, when dt = 10 usec. The correction is
very s made by subtracting 10 sec
for N , 1 secfor N = 10° and 01

6. Performance

As mentioned earlier the dispersion is satisfactory for
analytical purposes. Focusing spectrographs are inherently
capable of very high reselution, but in practice the use of
large crystals and approximate focusing (crystals bent but
not cylindrically ground) gives rise to line broadening. In
the present instrument penetration of the crystal is the main
source of aberration. Perfect focusing depends on reflection
taking place at the surface of the crystal. This condition is
fulfilled for the longer wavelengths, but the shorter wave-

§ penetrate to
~ lsinf. As @
so that broadening increases rapidly in the region where the
lines of neighbouring elements lie closest together.

The difficulties of making crystals less than 0-1 mm thick
(to limit this broadening) would be considerable. The actual
width of the lines at half height varies from about 0-10°
for long wavelengths (2 A) to about 0-4° for shorter wave-
lengths (0-7 &). This compares well with other focusing and
non-focusing spectrographs. Barstad and Refsdal (1958)
have described a curved crystal spectrograph employing slits
in front of the detector and sample with line widths of 0-4°
for 2 & and 1-0° for 0-5A4. Line widths on a commercial
non-focusing spectrograph are constant at about 0-5°.

Because a comparatively small crystal is used absolute
intensities are less than given by some other focusing or non-
focusing instruments. Nevertheless the sensitivity is com-
parable with, and sometimes exceeds, that for other instru-
ments, mainly because of the good line to background ratio
(due to sharper lines). The aperture control on the crystal
holder and various lead shielding ensure that only crystal
reflected radiation reaches the detector.

In the present design the sample is near the crystal, not on
the focusing circle. Since this geometry theoretically can
increase the background the main sources of background
are now considered, as follows.

(i) Non x-ray background. This includes natural radiation,
noise from the photomultiplier and amplifier and spurious
counts due to interference from outside sources. This can
be minimized by using pulse height analysis and by gating
(for a half wave generator); the rate is 0-3c/s in this
spectrograph.

(i) Radiation diffracted by the crystal. This lies near to
the fluorescence beam in wavelength, and originates as white
radiation from the x-ray tube, and is both coherently and
incoherently scattered by the sample. It cannot be removed

by pulse height analysis, and, because it is diffracted, its
intensity depends on the brightness of the sample in the
same way as the fluorescence beam. Line to background
ratio is therefore unaffected by moving the sample off the
focusing circle. This constitutes a major fraction of the
background normally.

(iii) Radiation from, but not diffracted by, the crystal. A
small fraction of all the radiation falling on the crystal will
be scattered (coherently and incoherently) over a large angular
range. Most of the radiation will be that originating as
white radiation from the x-ray tube and scattered by the
sample, but fluorescence radiations originating in the sample
will contribute, sometimes in a major way. Radiation
falling on the crystal can cause the crystal elements to
fluoresce, occasionally increasing the background consider-
ably.

These sources of background depend on the fotal radiation
falling on the crystal; increasing the arca of the sample (as
in this geometry) might be expected to raise this fraction of
the total background significantly. Normally, but not
always, this fraction is small compared with that diffracted
by the crystal. The wavelengths will generally differ from
the required spectral line and so can be effectively removed
by pulse height analysis. All fluorescence radiation arising
in the crystal, except CaKe from gypsum, will be absorbed
by the air in a non-evacuated spectrograph.

For the radiation listed as (ii) and (iii) above, the line to
background ratio will increase directly with resolution,
i.e. inversely with the angular width of the lines.

A consideration of (i), (ii) and (iii) above suggests that,
with pulse height analysis, backgrounds should be little
affected by moving the sample from the focusing circle, and
this is confirmed experimentally, The line and background
intensities for several elements in CaCOQj (see table) are
compared with data for an instrument with a slit on the

Comparison of i S and line-to-background ratios for
two spe r N 0-1% of element in CaCOs
Element Author* Line Order Filter s
_ . (c/s)

Ni B&R K« 1 Br 16 126 8

Ni N&R K« 1 — 4 40 10

Sr B&R K« 2 Mo 12-2 44 36

Sr N&R K= 1 — 90 1000 11

* Data from Barstad and Refsdal (1958) marked B and R;
other data obtained by authors.

focusing circle in front of the sample (Barstad and Refsdal
1958). Their use of a Geiger counter undoubtedly reduced
both the absolute intensities and the line to background
ratios.

The range of elements is from Z = 20 (Ca) to Z = 92 (U),
as for all non-evacuated x-ray spectrographs. The instru-
ment has been used in this laboratory for about eight years
on a wide range of elements and samples. For accurate
quantitative analyses calibration curves are used where
possible, but for variable materials an absorption—fluorescence
method is used which does not require calibration curves,
dilution or internal standards. This will be described by
one of us (K.N.). The following typical analyses confirm
the performance characteristics.

@) Solutions

For Fe in soil extracts (Norrish and Taylor 1961).
For U in metallurgical specimens, both in major and minor
amounts (K. Norrish and T. R. Sweatman 1961, Divisional
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Report 11/61 of the Division of Soils of the Commonwealth
Scientific and Industrial Research Organization). High U
contents were determined by fluorescence or absorption
spectrography with an error of about 2% (relative); minor
amounts were determined by fluorescence spectrography
with an error of +4 parts per million in several minutes.

(ii) Powder specimens

For major amounts of Pb, Zn, Fe and other elements in
ores minerals and soils with relative accuracies to 1.

(iii) Trace elements

Analyses of Sr in plant materials and their ashes showed
agreement internally and with independent assays (David
1962). All three results on a variety of plant materials
agreed to within about 1 part per million in the range
2-100 parts per million.

Soils and rocks may be analysed for various trace elements.
For example the standard rocks G1 and W1 have been
analysed for V, Ga and Zr and the results compare satis-
factorily with those obtained by other methods (McKenzie,
Oertel and Tiller 1958).
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