ARTERIAL DISEASE

J. R. A. MITCHELL
M.B. B.Sc. (Manchester)
D.Phil. (Oxon) M.R.C.P. (London)
Lecturer in Medicine, Oxford University, and
Assistant to the Regius Professor of Medicine,
Radcliffe Infirmary, Oxford

AND

C. J. SCHWARTZ
M.D. B.S. M.C.P.A. M.C.Path.
Lecturer in Pathology, Institute of Medical and
Veterinary Science, Adelaide, South Australia

FOREWORD BY
PROFESSOR SIR GEORGE
PICKERING
M.A. M.D. F.R.C.P. F.R.S.
Regius Professor of Medicine,
University of Oxford

BLACKWELL
SCIENTIFIC PUBLICATIONS
OXFORD
CONTENTS

FOREWORD page vii

ACKNOWLEDGMENTS page ix

INTRODUCTION

CHAPTER 1 · THE PROBLEM page 3
Terminology in arterial disease 3
Selection of material for study 4
Method of study 4
The Oxford Necropsy survey 5
Examination of material 8
System of grading 9
This book 10

PART ONE
THE OXFORD NECROPSY SURVEY

CHAPTER 2 · THE MORPHOLOGY OF
ARTERIAL PLAQUES page 15
Historical background—arteriosclerosis, atheroma, atherosclerosis, other
terms 15
Macroscopic types of plaque 17
fatty streaks 18
raised sudanophilic plaques 19
fibrous plaques 21
complicated plaques 21
Aneurysms 22
Histological features of arterial plaques 24
fatty streaks 24
raised plaques 26
fibrosis 27
elastosis 28
calcification 28
granulomata 30
medial thinning 31
haemorrhage 31
fibrin 32
fatty deposits 34
vascularity 34
adventitial changes 35
other changes 42
Relationship between flat and raised plaques 43
Significance of changes in the adventitia 46
CONTENTS

CHAPTER 3: THE LOCALIZATION OF ARTERIAL PLAQUES page 50

<table>
<thead>
<tr>
<th>Aortic plaque localization 50</th>
<th>Histological structure and plaque localization 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of carotid and iliac systems 54</td>
<td>Arterial pressure and plaque localization 62</td>
</tr>
<tr>
<td>Localization in carotid and vertebral systems 55</td>
<td>Turbulence 63</td>
</tr>
<tr>
<td>Localization in the iliac system 57</td>
<td>Shearing Stress 65</td>
</tr>
<tr>
<td></td>
<td>Significance of plaque localization 65</td>
</tr>
</tbody>
</table>

CHAPTER 4: THE RELATIONSHIP BETWEEN ARTERIAL DISEASE IN DIFFERENT SITES page 68

<table>
<thead>
<tr>
<th>Coronary, carotid and iliac stenosis 69</th>
<th>Plaque ulceration 81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large cardiac lesions and aortic disease severity 72</td>
<td>Carotid and iliac occlusion in cardiac infarction 82</td>
</tr>
<tr>
<td>Large cardiac lesions and carotid and iliac disease 75</td>
<td>Systemic nature of arterial plaques 82</td>
</tr>
<tr>
<td></td>
<td>Sex differences in arterial disease 85</td>
</tr>
</tbody>
</table>

CHAPTER 5: AORTIC DISEASE page 87

<table>
<thead>
<tr>
<th>Unselected necropsy sample</th>
<th>area of lesions and malignant disease 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>aortic area 87</td>
<td></td>
</tr>
<tr>
<td>area of lesions and age 89</td>
<td></td>
</tr>
<tr>
<td>area of lesions and blood pressure 91</td>
<td>Cardiac infarction sample 96</td>
</tr>
<tr>
<td></td>
<td>Diabetic sample 97</td>
</tr>
</tbody>
</table>

CHAPTER 6: THE RELATIONSHIP BETWEEN LESIONS OF THE MYOCARDIUM AND CORONARY ARTERY DISEASE page 103

<table>
<thead>
<tr>
<th>The unselected necropsy sample 103</th>
<th>other lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of the heart 104</td>
<td>focal necrosis 126</td>
</tr>
<tr>
<td>Assessment of coronary stenosis, coronary score, coronary occlusion and inter-coronary anastomoses 106</td>
<td>myocarditis 127</td>
</tr>
<tr>
<td></td>
<td>fatty change 129</td>
</tr>
<tr>
<td>Histological examination of the myocardium</td>
<td>infiltrations 130</td>
</tr>
<tr>
<td>changes in heart muscle 107</td>
<td>pericarditis 130</td>
</tr>
<tr>
<td>large cardiac lesions 109</td>
<td>Perivascular and interstitial fibrosis 136</td>
</tr>
<tr>
<td>small cardiac lesions 113</td>
<td>Evolution of endocardial fibrosis 136</td>
</tr>
<tr>
<td>changes in the perivascular and interstitial tissues 114</td>
<td>Myocarditis and focal myocardial necrosis 138</td>
</tr>
<tr>
<td>papillary fibrosis and small vessel thickening 121</td>
<td>Main findings of the unselected necropsy survey 139</td>
</tr>
<tr>
<td>changes in the endocardium 125</td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS

CHAPTER 7 - LARGE CARDIAC LESIONS page 142
- The large cardiac lesion sample 142
- Features of large cardiac lesions
 site 145
 size 145
- histological appearances 145
- endocardial and perivascular sparing 149
- pericardial changes 151
- mural thrombosis and endocardial fibroelastosis 151
- Heart weight in patients with large lesions 154
- Prevalence of other lesions 156
- Rupture of the heart 159

CHAPTER 8 - POST-MORTEM RADIOGRAPHY OF THE CORONARY ARTERIES page 161
- Anatomy 161
- The normal heart 162
- The abnormal heart 164
- Radiographs of transverse sections 167
- Increase in small vessel density localized—the 'subendocardial plexus' 170
- generalized 174
- Coronary calcification 174

CHAPTER 9 - THE DISTRIBUTION AND PREVALENCE OF CORONARY STENOSIS AND OCCLUSION page 178
- Coronary stenosis in patients with large lesions 179
- Sex difference in coronary stenosis 180
- Localization of coronary stenosis 182
- Coronary occlusion previous reported results 185
- reasons for divergent results 186
- definitions 187
- prevalence in Oxford survey 188
- site 190
- relationship to stenosis 191
- Large lesions without occlusion 193
- Coronary stenosis and size of large lesions 194
- Inter-coronary channels 194

CHAPTER 10 - THE STRUCTURE OF THROMBI page 197
- Platelets 198
- White cells 201
- Fibrin 201
- Red cells 203
- The fate of arterial thrombi 204
- Distinction between recanalizing thrombi and arterial plaques 207

CHAPTER 11 - DISEASE OF THE CAROTID AND VERTEBRAL ARTERIES page 210
- Distribution of disease 211
- Stenosis in the carotid and vertebral arteries 214
- Correlation between carotid and vertebral stenosis 217
- Correlation between aortic disease and carotico-vertebral stenosis 218
- Plaque ulceration 219
- Stenosis and strokes 219
- Significance of carotico-vertebral stenosis 221
- Carotid and vertebral occlusion 224
- Carotico-vertebral stenosis and arterial blood pressure 229
CONTENTS

PART TWO

ARTERIAL DISEASE—A REVIEW

CHAPTER 12 · THE HISTORICAL DEVELOPMENT OF OUR KNOWLEDGE OF THE EFFECTS OF ARTERIAL DISEASE page 235
Disorders of the coronary circulation 235
Disorders of the peripheral arterial circulation 240
Disorders of the cerebral circulation 242

CHAPTER 13 · INDIVIDUAL AND ENVIRONMENTAL FACTORS IN ARTERIAL DISEASE page 248
Terminology in arterial disease 248
validity of death certification data 249
the problem of sudden death 250
Significance of these factors in comparative studies
different periods in one country 253
different countries 254
Species differences 254
Inter-racial differences 255
Genetic differences 257
Personal factors
sex 258
social class 259
occupation and physical activity 259
smoking habit 260
'stress' 261
systemic blood pressure 262
obesity 264
blood clotting mechanisms 264
fibrinolysis 265
serum lipid levels
the findings 266
the theories 268
further observations 269
other diseases
familial hypercholesterolaemia 272
diabetes mellitus 273
Environmental factors
dietary fat 275
hardness of water supply 277
smoking 277

CHAPTER 14 · THE PATHOGENESIS OF ARTERIAL PLAQUES page 283
Historical background 283
Comparative pathology 288
Experimental approach 290
trauma 291
experimental hypercholesterolaemia 293
raised arterial pressure 300
injection of clot and thrombus 302
hormones
antithyroid agents and myxoedema 304
diabetes mellitus 306
sex hormones 308
The contributions of experimental pathology 309
The pathogenesis of human arterial lesions
the lipid hypothesis 311
the mucopolysaccharide hypothesis 312
the intramural haemorrhage hypothesis 313
the medial thinning hypothesis 314
the thrombogenic hypothesis 315
CONTENTS

CHAPTER 15 · EXPERIMENTAL CONTRIBUTIONS TO THE STUDY OF THROMBUS FORMATION page 326

Platelets 326
 platelet clumping 328
White cells 331
Red cells 332
In vitro models for studying thrombus formation 333
In vivo models for studying thrombus formation 335

Injury to vessels and the white body phenomenon 335
Russell’s Viper venom administration 342
Working hypothesis for thrombosis and artery wall disease 350

CHAPTER 16 · TREATMENT OF ARTERIAL DISEASE page 356

Anticoagulant therapy 356
 types of agent 356
 experimental effect 357
 clinical effect
 in cardiac infarction 357
 in stroke 360
 in angina pectoris 361
Fibrinolytic agents 362

Depression of serum lipids 364
 by diet 364
 by hormones 364
 by nicotinic acid 365
 by inhibitors of cholesterol biosynthesis 365
Hypotensive agents 366
Surgical treatment 366
Vaso-dilator drugs 369

PART THREE
METHODS

CHAPTER 17 · TECHNIQUES FOR THE QUANTITATIVE STUDY OF CARDIOVASCULAR DISEASE AT NECROPSY page 377

Injection methods for studying the coronary arteries 377
Serial sectioning of the heart 380
Radiography of the injected heart 380
Clearing 382

Microradiography 383
Planimetry and tracing 386
Assessment of stenosis 394
Plaque severity in large arteries 394

INDEX page 397
FOREWORD

The subject of this book is an important one for three reasons. First, many people, particularly men, die in middle age after the abrupt onset of pain in the chest and with manifestations before and after death suggesting infarction of the heart. Second, the cause of this disease is not understood, and therefore no preventive measures can be undertaken. Finally, a vast number of man-hours of scientific research, and a corresponding amount of wealth is being consumed in trying to answer this riddle. Unfortunately, the elementary facts concerning the disease in man are by no means clearly established. The critical onlooker may therefore be forgiven if he is a little doubtful whether some of this effort will have great relevance to the human problem just outlined.

It was because of this important consideration that Mitchell and Schwartz undertook the work that is set out in the first part of this book. I myself am delighted with this work for several reasons. It represents the joint effort of a physician and a pathologist to illuminate what happens during life by what can be seen after death, an effort that is nowadays too rare. They have compared the changes found in the coronary arteries with those in other arteries of comparable size and in the aorta. They have used the best methods yet described. They have avoided unnecessary and unverified assumptions. They have used the same methods to investigate patients dying with clinical or post-mortem evidence of infarction of the heart, and an unselected sample of those dying in hospital in the same city. Thus although this is not the first study of this subject it is in many ways the most complete. The story seems to be this.

The immediate cause of infarction of the heart is in most cases, though possibly not in all, a thrombus occluding a branch of a coronary artery, particularly the left anterior descending. The thrombus has a characteristic structure—clumps of platelets fringed with leucocytes and interlaced with a fibrin meshwork which often contains red cells or the ghosts of red cells. As the thrombus ages the nuclei disappear, and it becomes more uniform in composition. Later it becomes organized and recanalized. The longer the interval between the clinical attack and death, the less likely is there to be a fresh thrombus and the more likely is there to be a characteristic plaque of intimal thickening producing coronary stenosis. A unitary view