SOUTHERN HEMISPHERE COMPARISONS

Here the situation on Australian coasts will be briefly compared with that on South African, South American, and sub-antarctic coasts.

The sub-littoral, as in most other parts of the world, is populated largely by litorinal and sub-litorinal algae. In Australia these belong to the genus Callithamnion and Nodilittorina, as in South Africa to Littorina, as in the northern hemisphere generally.

The upper littoral is typically a bare, rocky or sandstone, with a few if any algae except Porphyra (usually seasonal except under cold conditions). The mid-littoral varies from a bare zone to a rockweed (often mainly limpet) zone, in which sculpins are zeros and a prominent feature. Mussels are conspicuous in cold temperate Australian, often forming a black band, but this is apparently not so in South Africa. Oysters are prominent in the mid-littoral on sub-tropical and sheltered warm temperate Australian coasts, and in inshore and offshore inlets in New Zealand, but are not a feature of South African coasts. In the latter country seagrasses are important under sub-tropical conditions. The lower littoral is typically an algal zone. In Australia coralline algae are prominent here, often associated with Hormotome and also lichens. Fucoids (Doriolites etc.) in New Zealand. Fucoids are not conspicuous in the South African lower littoral (except Blidingia on the cold temperate west coast), but other algae are dominant. Hypnea species is noteworthy on the east (sub-tropical) coast.

There is much greater algal growth, both in bulk and in species, in the lower littoral on rough New Zealand coasts than on Australian coasts, and algal growth appears to be more prominent throughout the littoral on South African coasts (especially the west coast) than in Australia.

The upper sub-littoral shows the most distinct similarities and differences between temperate southern hemisphere countries. On cold temperate coasts this zone is dominated by large brown algae, of which the Laminariales are usually present. The differences between southern Australia and New Zealand have been previously discussed, and the account of Skottsberg (1941) shows that sub-antarctic South America is similar to New Zealand. Skottsberg classed the Doriolites antarctica zone as lower littoral, changing to the upper littoral at-
ruled by *Laminaria nigrescens*, with *Macrocystis pyrifera* in deeper water. *Dunaliella tertiolecta*, however, grows below *D. antarctica* and is placed in the upper sub-littoral by Skottsberg; it is therefore comparable to *D. picoiana* in habitat. In cold temperate South Africa *Dunaliella* does not occur, and Laminariales are exclusive dominants of the upper sub-littoral. *Ecklonia radiata* and *Laminaria pallida*, together with *Ecklonia radiata* and *Macrocystis angustifolia*, are of importance.

The distribution of the genus of Laminariales in the southern hemisphere is of interest. The South African species of *Laminaria* is the only southern hemisphere representative of this northern genus. *Ecklonia* is known from South Africa and Australia, with one species (*E. radiata*) in common. *Laminaria* is of greatest importance in South America, but single species are known from both New Zealand and Tasmania. *Macrocystis* is a circum-circumpolar genus (*Womersley, 1947*) with *M. pyrifera* distributed in this manner, a second species *M. integrifolia* on the west coast of South America, and a third species, *M. angustifolia*, in southern Australia and South Africa.

On warm temperate coasts the large brown algae are usually replaced by smaller forms, and animals such as sea-lilac *Pyura* become dominant in the sub-littoral fringe or just above (e.g., *South African south coast, New South Wales*). In New South Wales, however, the Fucales genus *Phyllophora* (to 8 ft. long) is dominant on exposed coasts, and *Ecklonia* under less rough conditions. Red and green algae become conspicuous in the fringes zone in South Africa, and *Sargassum* is unusually common on any warm temperate southern hemisphere coast.

There is no part of Australia, which is comparable to southernmost New Zealand, where Knott has shown that algae are dominant throughout the littoral during the whole year (see Table V). While many cold temperate New Zealand species also occur on the south coast and Stewart Island, others are restricted to the south (e.g., *Apthodoropsis paulli*). This coast is similar to that of the sub-antarctic islands of New Zealand. The species *Pyura californica* in different Southern hemisphere countries. *Pyura californica* in South Africa is a similar species, characteristic of the sub-littoral fringe; the same species, occurring in Dusio, Bennett, and Pope (1953), is common on the New South Wales coast but is distinctly a lower-littoral inhabitant. Knott (1957: 376), however, makes doubts as to whether the South African and Australian forms are identical. In New Zealand the staked *Pyura perfloridesima var. gibbus* is conspicuous in the upper sub-littoral depending for some distance below low water (Bassham, 1934).
New Zealand and the sub-Antarctic South America (Scottsberg, 1941: 99). More detailed ecological comparisons between Australia and other countries will be evident by comparing Tables IV and V.

Ecological comparisons of the intertidal zone are made on the life form of a relatively limited number of organisms. When species of the same genus are being compared, the conclusions are more significant than when different genera of a group are compared. Ecological comparisons tend to be broad and may often be either superficial if more fundamental floristic and faunistic differences are not also considered. Thus statements such as Guiller’s (1952, p. 59) that “ecologically the Tasmanian coasts have a greater affinity with New Zealand or Chile than with the shores of South Australia” are incorrect. The similarity between Tasmania and New Zealand and Chile is based largely on the presence of *Dorella* and *Murexys* in the upper sub-littoral, but different species of *Dorella* and in part of *Murexys* are involved, and *P. putaturn* in Tasmania is an upper sub-littoral sign while *D. australis* in New Zealand and the Sub-Antarctic is lower littoral. Otherwise, as Guiller himself states (p. 52), the animal zonation on Tasmanian coasts is basically similar to that on both Victorian and South Australian coasts. Ecologically Tasmania is closely related to South Australia but much less to New Zealand and scarcely at all to Chile.

SOUTHERN HEMISPHERE MARINE FLORAS

Stephenson (1947) discussed Ekman’s (1935, English edition, 1953) account of southern hemisphere faunas and clearly showed the existence of cold temperate (west coast), warm temperate (south coast) and sub-tropical (east coast) regions on the South African coast. Stephenson’s conclusions are based on the water temperature and the fauna and flora of the intertidal zone. Stephenson (pl. 15) gives a map of southern countries surrounding Antarctica and classifies the coasts as Antarctic and Sub-Antarctic, cold temperate, warm temperate, and sub-tropical and sub-tropical. Hedgecock (1937b) also reviews the “litter provinces” of the world, basing his map (Pl. 1) largely on the work of Ekman. It is now possible to consider the position of southern Australia in this scheme and comment on the position of other countries (Fig. 2).

Stephenson followed Ekman in classing southern Australia and New Zealand as warm temperate, but recognised that future work may prove part of these regions to be cold temperate. Bennett and Pope (1953)
and Guille (1952) have shown that Victorian and Tasmanian coasts should be regarded as a cold temperate region, characterised by the giant brown algae *Davallia portuliformis* and *Macrocystis*, and by other zonation features such as the virtual absence of *Pyroc*. These coasts contrast with the whole New South Wales coast, that Dalin, Bennett and Pope (1948) have shown to be warm temperate.

The position of the southern Australian coast west of Robe in South Australia has been discussed by Warriner and Edwards (1958) and previously in this paper. Ecologically it differs from Victoria and Tasmania, and is only in the absence of *Davallia* and *Macrocystis* and some minor species; the upper sub-littoral is instead characterised by other genera of Fucaceae, notably *Cystophora*, which were only moderate size. South Australia differs from the warm temperate New South Wales coast significantly in certain zones, especially in the absence of *Pyroc* and *Porphyra* which may be regarded as a warm temperate indicator species. Pedologically and faunistically, however, the differences between the South Australian and New South Wales coasts are considerable, while the whole southern Australian region is a floristic and faunistic unit (Bekun 1955). It thus seems best to class southern Australia from Robe to the south-west corner of Australia as a region intermediate between warm temperate and cold temperate in its affinities but closely related to the cold temperate Victorian and Tasmanian shores.

There can be little doubt that most of New Zealand should also be classed as cold temperate, with the northern extreme becoming warm temperate and the southernmost coast subantarctic. What little is known of the west coast of South America indicates that cold temperate conditions extend far northwards under the influence of the cold Humboldt current. Howe (1914) records giant kelps such as *Macrocystis pyrifera*, *M. integrifolia*, *Laminaria* and *Eisenia* extending to the northern part of Peru.

Subantarctic and Antarctic coasts have usually been grouped together by marine ecologists. Skottsberg (1941), however, showed that there are considerable differences between the flora of the Antarctic continent and that of the subantarctic islands and southernmost South America. It is probably justified to regard these regions as distinct, comparable to the distinction between cold and warm temperate regions.

It is surprising that *D. antarctica* does not occur on the Tasmanian coast, since it occurs in New Zealand under water temperatures higher than those in Tasmania.
most New Zealand should probably be included in the sub-oceanic region which is characterised by algal dominance throughout the littoral zone, by Dictyota antarctica and Lama in the lower littoral and upper sub-littoral respectively, and by species such as Hildenbrandia lecaniiellii. The true Antarctic flora is quite different from that of sub-oceanic islands, as large brown algae are largely absent from the upper sub-littoral. Delesseria and Laminaria are the most prominent sub-littoral genera (Skottsberg, 1941). The littoral region is poorly populated due to ice action, but Hildenbrandia lecaniiellii, Monostroma, Trichocladus and Lithothamna do occur.

While parts of the South African, Australian, New Zealand and South American coasts can be all grouped as cold-temperate, floristically and faunistically they are quite distinct from each other, though Australia and New Zealand have a considerable number of species in common (some 20% of the algae).

This segregation of coasts into cold and warm temperate is based on the organism present, the annual dominants and water temperatures. Bennett and Pope (1953) are probably correct in saying that no South African coast at the temperate limit of the true cold temperature region seems to be higher (12°C.) than on South African coasts (10°C. in winter) (Skottsberg, 1949, p. 127). Kow also states that the limit on New Zealand coast is higher than 10°C.

In the northern hemisphere the ratio Rhodophyta has been used (see Chlorophyta).

Chapman, 1957) to distinguish broad regions; this ratio is close to unity in the arctic and increases to about 4 in the tropics. Chapman pointed out, however, that this is not applicable in New Zealand, and the ratio for southern Australia would be about 7, which reflects the peculiarly strong endemic and development of Rhodophyta in this region.

ECONOMIC ASPECTS

The first record of utilisation of Australian marine algae is that of Lahlilllls (1803) who found the Tasmanian aborigines using dried fronds of Dictyota antarctica as water-carrying and drinking vessels. Large pieces of the frond were cut into a circular or oval shape and smudged into a pouch; the ends were often bunched up and tied with thin parts of the frond or with a stick. Lahlilllls also refers to the natives eating boiled pieces of the frond. Apart from this early record
more appear to be no others of the use of marine algae by Australian aborigines, though coastal tribes in South Australia did use Posidonia leaves for making baskets.

During the last century, and to some extent this century, Enhalusac saueri and Pteroides fasciata were employed for making jellies by Western Australian women, and Gracilaria was similarly used in Tasmania (Luka, 1936; Wood, 1946). Such use is probably very small if it exists at all at the present time.

Modern use of or possible use of Australian marine algae is concerned with the alginate, agar and alginates.

Agar. Prior to Australia obtained all its supplies of agar from Japan, using some 70 tons per annum, principally in meat canning and the manufacture of confectionery, spices and condiments (Wood, 1946). Supplies were seriously reduced in 1939 and ceased, owing to economic sanctions, in 1941. By 1942 and Australian firms were producing its own requirements for meat canning from Gracilaria salicornia, and others were undertaking production. In the later years of the war and after, Australia purchased her own needs, but the prohibition ceased some years later when the Japanese product came back on the market. At present virtually no agar is manufactured in Australia.

The development of an agar industry in Australia became possible when it was shown that sufficient beds of Gracilaria salicornia could be isolated in some marine bays on the South West coast, and that a good quality agar could be produced from it (Wood and Peadie, 1941; Wood, 1942, 1943, 1956). A possible production of 150 tons or more of agar per annum was estimated. There are two main forms of Gracilaria, one estuarine with a high agar content (30-60%) and good gel strength, the other occurring in lagoons and brackish water with a lower agar content and poor gel strength (Wood, 1953). The free form was used. It grows on solid objects on a sandy bottom and was harvested by taws or gaffs. Drift weed was also collected. The plant reaches a length of eight feet in beds two feet thick and of considerable extent, in depths of 15 to 20 feet of water.

Compared with Japanese agar, the Australian product has greater viscosity, its gel strength is greater at higher concentrations and less at lower concentrations, it is more transparent and the setting point is higher. Attempts to lower the setting point were not successful. The Australian agar was considered very satisfactory for most uses.
In western Australia, *Eucheuma spinosum* was used for agar, being harvested from drift weed only.

During the last year or two, dried *Gigartina* has been exported to Japan for agar manufacture.

Algae. There is no production of alginate in Australia at present, but the extensive beds of *Macrocystis pyrifera* on the south-east coast of Tasmania have been surveyed (Cribb, 1954a) to obtain an estimate of resources. Cribb estimated that a minimum of 35,000-64,000 tons of air-dried weed could be obtained in three harvests per year from nearly 50,000 acres of *Macrocystis* beds. The samples gave an average alginic acid content of 21% and average mannitol content of 8.3% on a dry weight basis.

Dorvillesia potatorum is the only other Australian brown alga that could be used to any extent for alginate production if an industry based on *Macrocystis* were already established. Moss and Naylor (1954) have found a high alginic acid content (about 60% dry weight) in the New Zealand *Dorvillesia antarctica* and *D. willicus,* and *D. potatorum* would probably give similar results. Harvesting of living *D. potatorum* is not possible, since it grows under surf conditions, but deposits of several tons are often cast up on beaches in Victoria and Tasmania. Areas of *Ecklonia cava* and *Fucus* shown by Woodward (1955, Fig. 1) on South Australian and New South Wales coasts could not be utilized, since the plants are relatively small and scattered, and could not be readily harvested.

BIBLIOGRAPHY

Aguina, C. A., 1821. Species Algarum Rite Cognitae cum Synonymis, Differentes Specifical et Descripientibus Incipientis.

Aguin, J. G. 1871-1900. Till Algarum Systematic, I-4. Lunds Univ. Arsb. 9 (1872); 17 (1882); 19 (1895); 21 (1895); 23 (1897); 25 (1898).

THE BOTANICAL REVIEW

FISHING, R. W. 1991. A voyage to Terra Australis ... in the years 1801-1803 in His Majesty's Ship the Investigator

1960. Voyage in search of La Pensée. [English Transl.]

THE BOTANICAL REVIEW

MARINE ALGAE OF AUSTRALIA 613

1821. Венте Г. Медицинские Алг. Линней 24: 677-709.

trip along the
ridgewater bay,
to show a deep
a to be similarly
was up to 25 feet
isted of enormous
in diameter.

in places
beach the balls
pools were
virtually absent
the beach fairly
base were the red
marine angiosperms;
red streaks were
found the me immed-
eter yards across
et perpendicular
morning of
holes of Antithamia
form offshore from
up on the beach.
Published in Nature 134 (4609): 828

trip along the Agnew Waterway, to show a deep bed to be similarly represented of enormous m. in diameter. In places the sand pools were virtually absent, the beach fairly level and the red marine angiosperms grew. Red streaks were visible several yards across and perpendicular to morning of the tide of Antithamnion was off shore and on the beach.
Future Contents of
THE BOTANICAL REVIEW
Articles Received and Awaiting Publication

Phototaxis ... SEALIN W. BOLTON
Respiration, III ... JAMES S. BEYER
Influence of Grazing on Plant Succession of Rangelands .. LEROY B. BISHOP
Conservation of Fungus Cultures HARVEY W. CAMPBELL
Crop Rotation and Following in Relation to Tobacco Disease Control R. L. KENDALL
Production of Disease-free Seed T. B. KEETLES
Maturity and the Plant Cell D. M. HENDRY
Absorption of Water by Plants R. G. HAYES
Ecological Effects of Forest Fires G. E. HOPKINS
The Division and Clones of Plants QUINCY C. WEEDON
Cytology and Genetics of Forage Grasses H. L. CARRASCO
The Climax Concept ... J. C. BROLIN
Biological Antagonism Due to Phytotoxic Root Exudates PAUL W. WOODS
The Lernuaceae ... W. J. HARRISON

ripped along the

galvater Bay,
show a deep
to be similarly
up to 25 feet
sted of enormous
in diameter.
in places
ach the balls
ules were
rtually absent
he beach fairly
were the red
marine angiosperm,
red streaks were
in the immediate
yards across,
perpendicular
orning of

les of Antitennion
rm offshore from
on the beach.