SUBSTRATE DEPRIVATION AS A NOVEL THERAPY FOR THE MUCOPOLYSACCHARIDOSES

Ainslie Lauren Kemp Roberts
BMed & Pharm Biotech (Hons)

Thesis submitted for the degree of

Doctor of Philosophy

in

Discipline of Paediatrics
School of Paediatrics and Reproductive Health
Faculty of Health Sciences
University of Adelaide

Matrix Biology Unit
Children, Youth and Women’s Health Service

February 2007
Table of Contents

THESIS SUMMARY..VIII
DECLARATION ..X
ACKNOWLEDGEMENTS ...XI
ABBREVIATIONS..XIII

Chapter One: Introduction and Literature Review - 1 -

1.1 LYSOSOMES AND LYSOSOMAL STORAGE DISORDERS - 2 -
1.2 MUCOPOLYSACCHARIDOSES – GENERAL - 3 -
 1.2.1 MUCOPOLYSACCHARIDOSIS TYPE III - 6 -
1.3 GLYCOSPHINGOLIPID STORAGE DISORDERS (GSLs) - 7 -
1.4 ANIMAL MODELS OF MUCOPOLYSACCHARIDOSIS - 9 -
 1.4.1 MPS IIIA mouse model - 9 -
1.5 THERAPIES FOR LSDS .. - 10 -
 1.5.1 ENZYME REPLACEMENT THERAPY - 11 -
 1.5.1.1 Localised therapy for “hard-to-reach” tissues - 15 -
 1.5.1.1.1 Intra-articular ERT ... - 15 -
 1.5.1.1.2 Intra-thecal ERT ... - 15 -
 1.5.1.2 Other problems with ERT - 16 -
 1.5.2 BONE MARROW TRANSPLANTATION - 17 -
 1.5.3 GENE THERAPY .. - 18 -
 1.5.3.1 Ex vivo gene therapy ... - 19 -
 1.5.3.2 In vivo gene therapy ... - 20 -
 1.5.4 CELL THERAPY ... - 22 -
 1.5.5 SUBSTRATE DEPRIVATION THERAPY (SDT) - 24 -
 1.5.5.1 Substrate deprivation therapy for GSL disorders - 25 -
 1.5.5.1.1 N-butyldeoxynojirimycin (NB-DNJ) - 25 -
 1.5.5.1.2 N-butyldeoxygalactonojirimycin (NB-DGJ) - 27 -
 1.5.5.1.3 L-cycloserine .. - 28 -
 1.5.5.2 Substrate Deprivation Therapy for MPS - 29 -
 1.5.5.2.1 Rhodamine B .. - 29 -
 1.5.5.2.2 Sodium chlorate ... - 30 -
 1.5.5.2.3 Analouges of glucose and galactose - 31 -
 1.5.5.2.4 Genistein .. - 32 -
 1.5.5.3 OTHER AGENTS – MISCELLANEOUS - 33 -
 1.5.5.3.1 Chemical Chaperones - 33 -
 1.5.5.3.2 Stop codon read-through - 34 -
 1.5.5.3.2 RNAi ... - 35 -
 1.6 GLYCOSAMINOGLYCANS AND PROTEOGLYCNAS - 36 -
 1.6.1 STRUCTURE AND FUNCTION - 36 -
2.4.7 IN VIVO ADMINISTRATION OF RHODAMINE B ...- 59 -
2.4.8 URINE COLLECTION ..- 60 -
2.4.9 EUTHANASIA...- 60 -
2.4.10 LIVER FUNCTION TESTS...- 60 -

2.5 MOUSE BIOCHEMISTRY METHODS .. - 61 -
2.5.1 ISOLATION OF URINARY GAGS ...- 61 -
2.5.2 TISSUE HOMOGENISATION...- 61 -
2.5.3 TISSUE PERCOLL FRACTIONATION...- 62 -

2.6 MOUSE BEHAVIOUR METHODS... - 62 -
2.6.1 REPEATED ACQUISITION AND PERFORMANCE CHAMBER (RAPC)- 62 -
2.6.1.1 RAPC apparatus ... - 62 -
2.6.1.2 Saccharin habituation... - 63 -
2.6.1.3 Habituation A.. - 63 -
2.6.1.4 Habituation B.. - 64 -
2.6.1.5 Habituation C... - 64 -
2.6.1.6 Habituation D... - 64 -
2.6.1.7 Performance habituation .. - 65 -
2.6.1.8 Performance protocol ... - 65 -
2.6.1.9 Repeated acquisition protocol ...- 66 -
2.6.1.10 Auditory Evoked Brainstem Response .. - 67 -
2.6.2 MORRIS WATER MAZE ANALYSIS ..- 67 -
2.6.2.1 MWM apparatus ... - 67 -
2.6.2.2 Habituation ... - 68 -
2.6.2.3 Acquisition phase .. - 68 -
2.6.2.4 Probe phase .. - 69 -
2.6.2.5 Relearning phase .. - 69 -
2.6.2.6 Reversal phase .. - 69 -
2.6.3 CROSS MAZE ANALYSIS ...- 69 -
2.6.3.1 Cross maze apparatus ... - 69 -
2.6.3.2 Habituation (Day 1).. - 70 -
2.6.3.3 Learning phase (Days 2-6) ... - 70 -
2.6.3.4 Memory phase (Day 16) ... - 71 -
2.6.4 OPEN FIELD ANALYSIS ...- 71 -

2.7 GENERAL PROTEIN METHODS .. - 72 -
2.7.1 PROTEIN ASSAY: BRADFORD ...- 72 -
2.7.2 PROTEIN ASSAY: LOWRY ..- 72 -
2.7.3 URONIC ACID ASSAY ...- 72 -
2.7.4 DETERMINATION OF URINE CREATININE LEVELS ...- 73 -
2.7.5 B-HEXOSAMINIDASE ENZYME ACTIVITY ASSAY ..- 73 -
2.7.6 ACID PHOSPHATASE ENZYME ACTIVITY ASSAY ..- 73 -

2.8 HISTOPATHOLOGY METHODS ... - 74 -
2.8.1 PROCESSING OF TISSUE FOR PARAFFIN EMBEDDING ..- 74 -
2.8.2 PROCESSING OF TISSUE FOR SPURR’S RESIN EMBEDDING- 74 -
2.8.3 PREPARATION OF APES COATED SLIDES...- 75 -
2.8.4 SECTIONING OF PARAFFIN EMBEDDED TISSUES ..- 75 -
2.8.5 SECTIONING OF SPURR’S EPOXY RESIN EMBEDDED TISSUES- 75 -
2.8.6 TOLUIDINE BLUE STAINING ...- 75 -
2.8.7 LIGHT MICROSCOPY ..- 76 -
2.8.8 ELECTRON MICROSCOPY ...- 76 -

2.9 STATISTICAL ANALYSES ...- 76 -
2.9.1 BODYWEIGHT ANALYSES ..- 76 -
2.9.2 TISSUE WEIGHT AND GAG ANALYSES ..- 77 -
2.9.3 RAPC ANALYSES ..- 77 -
2.9.4 CROSS MAZE ANALYSES ..- 78 -

Chapter Three: Inhibition of gag synthesis \textit{in vitro} and in murine MPS IIIA- 79 -

3.1 INTRODUCTION ...- 80 -
3.2 \textbf{IN VITRO RESULTS} ...- 83 -
 3.2.1 INHIBITION OF GAG SYNTHESIS BY RHODAMINE B IN NORMAL AND MPS CELLS. - 83 -
 3.2.2 INHIBITION OF GAG SULPHATION BY SODIUM CHLORATE IN NORMAL CELLS.....- 84 -

3.3 EFFECT OF RHODAMINE B TREATMENT IN AN \textit{IN VIVO} MPS IIIA MOUSE MODEL ..- 84 -
 3.3.1 PHYSICAL APPEARANCE ..- 84 -
 3.3.2 BODYWEIGHT PROFILE ...- 85 -
 3.3.3 URINARY GAG OUTPUT ...- 85 -
 3.3.4 ORGAN WEIGHTS ...- 85 -
 3.3.5 GAG CONTENT ..- 86 -
 3.3.6 TISSUE HISTOLOGY ...- 87 -

3.4 DISCUSSION ...- 89 -

Chapter Four: \textit{In vivo} behaviour and SDT in MPS IIIA ...- 93 -

4.1 INTRODUCTION ...- 94 -
4.2 EVALUATION OF DIFFERENT BEHAVIOUR TESTS IN MPS IIIA AND NORMAL MICE ...- 98 -
 4.2.1 REPEATED ACQUISITION AND PERFORMANCE CHAMBER.............................- 98 -
 4.2.1.1 Performance phase ..- 98 -
4.2.1.2 Repeated acquisition phase ... - 99 -
4.2.1.4 Incidence of failure ... - 100 -
4.2.1.5 Auditory evoked brainstem response (ABR) - 100 -
4.2.2 MORRIS WATER MAZE ... - 101 -
4.2.1.1 Acquisition phase .. - 101 -
4.2.1.2 Reversal phase .. - 102 -
4.2.1.3 Probe phase ... - 102 -
4.3.1.4 Failure measurements... - 102 -
4.2.3 CROSS MAZE ANALYSIS ... - 103 -
4.2.3.1 Learning phase .. - 103 -
4.2.3.2 Memory phase ... - 104 -
4.2.3.3 Failure measurements.. - 104 -
4.2.3.4 Effect of SDT on learning and memory in cross maze...................... - 105 -
4.2.3.5 Analysis of eye pathology in MPS IIIA mice.. - 106 -
4.2.3.5.1 Physical assessment ... - 106 -
4.2.3.5.2 Light and electron microscopic examination of eye pathology...... - 106 -
4.2.4 OPEN FIELD ANALYSIS .. - 107 -
4.3 DISCUSSION ... - 108 -

Chapter Five: SDT Multi-generational study and toxicity analysis - 116 -
5.1 INTRODUCTION ... - 117 -
5.2 MULTI-GENERATIONAL STUDY .. - 120 -
5.2.1 LITTER SIZE ... - 120 -
5.3 TOXICITY OF RHODAMINE B ... - 121 -
5.3.1 LIVER HISTOLOGY: H&E: MGS1 AND MGS4.................................... - 121 -
5.3.2 LIVER HISTOLOGY: SPECIAL STAINS: MGS1 AND MGS4 - 121 -
5.3.3 LIVER FUNCTION TESTS ... - 123 -
5.4 EFFECT OF TREATMENT ON MPS IIIA PATHOLOGY - 123 -
5.4.1 MOUSE BODYWEIGHTS .. - 124 -
5.4.2 TISSUE WEIGHTS ... - 124 -
5.4.3 LYPOSOMAL STORAGE BY LIGHT MICROSCOPY - 124 -
5.5 HIGH DOSE RHODAMINE B STUDY ... - 125 -
5.5.1 MEASUREMENT OF PHYSICAL PARAMETERS.................................... - 125 -
5.5.2 EFFECT OF HIGH DOSE ON LYPOSOMAL STORAGE - 125 -
5.5.3 HIGH DOSE TOXICITY STUDY BY HISTOLOGY - 126 -
5.6 DISCUSSION .. - 127 -
Addenda

Chapter 1
p10, line 18: Insert words “and produce” after breed (add and produce)
p12, line 5: Change “relative permeable” to “relatively permeable”
p14, line 1: Remove comma after blood-brain barrier
p16, line 18: Insert after co-administration of antihistamine... "or by prolonging the infusion time or by a range of other drugs including those with anti-inflammatory and immuno-suppressive properties such as corticosteroids (Schiffman and Brady 2002, Drugs; 62(5):733-742; Beck et al. 2004, Eur. J. Clin. Invest. 34:838-844).
p17, line 6: Add word “function” before reference.
p18, line 13: Replace words “Recent evidence has” with “It has been”
p19, line 14: Remove the word “outcome”
p21, line 19: Insert underlined words “In another study of MPS mice were treated... and 12 month...”
p22, line 21: Insert “and cross-correction via mannose-6-phosphate mediated uptake following cell engraftment” at end of sentence.
p23, line 4: Replace word “production” with “localisation”
p24/25, Figure 1.7: Figure 1.7 A-D have been replaced. Legend line 9: replace “though” with “thought”
p26, line 1-3: Sentence should read “These patients showed a reduction of mean liver and spleen volumes and also an increased...”
p28, line 5 and line 8: Replace “Twitcher” with “twitcher” to indicate strain of mice
p28, last line: Replace sentence with “These compounds can be formulated to be administered orally, which is a major advantage”
p30, line 3: Add word “white” after “New Zealand”
p32, line 12: Add comma after “isoflavones”
p33, line 24: Replace “beta-glucuronidase” with “beta-glucosidase”
p34, lines 3, 4, 5, 8: Replace “beta-glucuronidase” with “beta-glucosidase”
p34, line 15: Insert word “the” after “stop codons in”
p34, line 20: After “preclinical studies” insert “in MPS I”
Figure 1.9 legend, line 15 Replace “structure” with “structures”
p40, line 11: Replace “2-3” with “two to three”
p41, line 6: Replace “uncovered a role in TGF-β regulation in adult cells via protein-protein interaction” with “uncovered a role of syndecan-2 and its direct binding to TGF-β which regulates TGF-β signalling in adult cells”

Chapter 2
p71, lines 4-6: Replace sentence with “If a mouse failed to reach the escape platform within the allocated 60 seconds, the mouse was place manually onto the platform”

Chapter 3
p85, line 11 and Figure 3.5: Insert: “Female mice included in this study were not used for colony breeding and therefore were not pregnant or had litters.” A power analysis to determine how many female mice would be needed to confirm the difference in bodyweight was conducted and to achieve a power analysis of 80% with a difference in weight of 15% a sample size of 4 mice would be needed and 2-5 mice were analysed for each group at 4 months of treatment.
Table 3.1: Insert “(n=3 per group)” after “normal treated mice” in table legend.
p86, line 22: Insert “A reduction in total gag was seen in MPS IIIA treated mice, which on average was reduced to 74% of MPS IIIA untreated total gag levels in the liver (Figure 3.8A). This would incorporate total gag including a lysosomal component, and this decrease is likely to be due to reduced lysosomal gag. To confirm this, lysosomal gag was also analysed. Analysis of lysosomal
gag showed a greater reduction compared to total gag levels, with MPS IIIA treated mice on average reduced to 60% of MPS IIIA untreated lysosomal gag levels (Figure 3.8). This was expected since MPS IIIA is a lysosomal storage disorder and most of the gag reduction was lysosomal gag.”

p91, line 2: “si” should read “is”
p91, line 11: Add word “been” after “has not”

Chapter 4
p94, line 1: Change “Neurological pathology” to “Neural pathology”
p98, bottom line: Change “showed an increased trend…” to “showed a trend to increased…” (reverse order)
p103, 2nd last line of 2nd last paragraph: Missing full stop at end of the sentence.
p114, insert before 3rd paragraph: “Qualitative changes in lysosomal storage in the brain or somatic tissues have not been observed in either study reported in chapters 3 and 4 using light microscopy analysis. However, a small decrease in brain lysosomal gag was seen when a quantitative assay was employed. The discrepancy between the biochemical measurement and visual assessment of storage may be due to the relative insensitivity of light microscopy to detect small changes in lysosomal storage. SDT acts to slow down the accumulation of gag substrate in the lysosome, providing the opportunity for residual lysosomal enzyme activity to slowly turn over resident and newly acquired substrate. Thus conceptually SDT will not have the dramatic effect on gag storage observed with other types of treatment such as enzyme replacement therapy.”
p115, last line: Replace “4” with “four”

Chapter 5
p121, line 5: Insert sentences “These stains were chosen as good representative stains which are useful for detecting abnormalities in liver sections. H&E was used to detect general changes in morphology. Perl staining was used to stain iron and determine iron load, which is a marker of hepatic injury. Sirius Red staining was used to detect liver fibrosis and PAS staining is good stain for glycogen and mucins and is useful for outlining tissue structures such as basement membranes, capsules and blood vessels.”
p123, line 22: Insert full stop at end of sentence.
p124, line 11: Replace “not” with “no”
p124, line 22: Replace “distal convoluted tubule” with “proximal convoluted tubule”
Figure 5.9 legend, line 4: Replace “distal convoluted tubule” with “proximal convoluted tubule”
Figure 5.9 legend, line 5: Replace “proximal convoluted tubule” with “distal convoluted tubule”
p127, insert before 3rd paragraph: “The colony was regularly checked every three months for a battery of pathogens including salmonella, enteric pathogens, respiratory pathogens including Mycoplasma spp, ecioparasite examination, burrowing mites, helminths, protozoa mucosal scrapings and pinworm testing. No pathogens were observed in mice from the multi-generational study, therefore it is unlikely that pathogens would have been an influence of the visceral and neural pathology. All mice included in the multi-generational study were healthy and the only abnormalities were those associated with MPS IIIA disease progression in affected animals.”
p128, line 12: Remove “had” after “Kupffer cells”
p129, line 24: Replace “natural level” with “minimal level”
p130, line 18: Remove “was” after “a toxicity study”

Chapter 6
p132, 2nd paragraph: Reword first sentence to clarify: “Even though ERT has been used to treat a large number of patients with non-neurological MPS pathology, there are still a number of problems associated with this type of therapy. Firstly, targeting...”
Thesis summary

Reduction of an enzyme required for the lysosomal degradation of glycosaminoglycan (gag) chains will result in a mucopolysaccharidosis (MPS) disorder. Substrate deprivation therapy (SDT), a new therapy option for MPS, aims to reduce the synthesis of gag chains, the natural substrate for the deficient enzyme. Reduced substrate levels would balance the reduced level of enzyme in patient cells resulting in normalised gag turnover. Rhodamine B, a non-specific inhibitor, reduced gag synthesis in a range of normal and MPS cells and also decreased lysosomal storage of gag in MPS VI (72%) and MPS IIIA (60%) cells. This positive response \textit{in vitro} was extended to an \textit{in vivo} therapy trial in the MPS IIIA mouse. Bodyweight gain of male MPS IIIA mice treated with 1 mg/kg rhodamine B was reduced compared to untreated MPS IIIA mice and was indistinguishable to that of normal mice. Liver size, total gag content and lysosomal gag was reduced in treated MPS IIIA animals as was urinary gag excretion. The alteration in MPS IIIA clinical pathology by rhodamine B combined with the observation that treatment had no effect on the health of normal animals demonstrates the potential for this type of therapy for MPS disorders. The water cross maze was found to be the only learning and memory test capable of detecting differences in learning behaviour in MPS IIIA and normal untreated mice. MPS IIIA mice treated with SDT rhodamine B showed an improved outcome with better learning capabilities than MPS IIIA untreated mice observed using this test. This means that rhodamine B is likely to cross the blood-brain barrier. These results are the first evidence of a positive response by the CNS to a systemic therapy for MPS IIIA. Rhodamine B administration over 4 generations did not produce any deleterious side effects in MPS IIIA. \textit{In utero} therapy over four generations did not cause a reduction in litter size or bodyweight profile demonstrating that reduction of gag over a combined timeframe of two years was safe. A higher dose of 5 mg/kg rhodamine B did not produce any additional benefits on MPS IIIA pathology and no signs of hepatotoxicity were noted. Rhodamine B proved to be a
general inhibitor of gag synthesis and had a positive outcome on a number of clinical parameters in MPS IIIA mice. SDT in MPS IIIA mice improved learning capabilities as detected by the water cross maze which has not been previously reported. This provides evidence that small molecules such as rhodamine B, that are able to cross the blood-brain barrier, can have some effect on neurological pathology. This proof of principle study showed that SDT can be used to have a positive outcome on MPS pathology. Additional inhibitors of gag synthesis can also be investigated before this type of therapy can be translated into clinical use in MPS patients. Although it may be feasible to use rhodamine B as a SDT agent in vivo, other inhibitors may be more practical.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for photocopying and loan if accepted for the award of the degree

SIGNED:... DATE:...
Acknowledgements

The list is long, but I have to thank all these people for helping me over the last 4 years.

I would like to thank my supervisors, Dr Sharon Byers, Dr Janice Fletcher and Dr Belinda Thomas, for which I greatly appreciate all the help, suggestions and advice they have offered me over the past four years.

To the members of the Matrix Biology Unit both past and present: Alvina, Belinda, Christian, Julian, Hannah, Kylie, Jackie, Marleesa, Miriam, Richard, Simon, Stanley, Wanda, Xenia. Thanks also to Chantelle from Gene Technology Uni for her help over the last couple of years.

To all the staff in the Department of Genetic Medicine, CYWHS (formerly Department of Chemical Pathology, WCH) for their help and support over the past four years, there are too many to name. Particular thanks go to members of the “blue lab” both past and present who will remain good friends and are always there to lend an ear or hand when needed.

To the CYWHS animal house staff: Lynn Scarman, Loren Ellis, Hanan Elmassih, Lesley Jenkins-White and also IMVS animal house staff particularly Brigitt Hines who helped facilitate the move of mice from CYWHS to IMVS and temporary use of their facilities.

Also to the staff at Adelaide microscopy, particularly Lyn Waterhouse and Ruth-Ellen Williams, who did the electron microscopy sample preparation and sectioning and also for their guidance in use of the transmission electron microscope.

To all the staff in the Department of Histopathology, CYWHS, particularly Alvis Jaunzems for electron microscopy advice and Michelle for doing the special staining for the hepatotoxicity study. A special thank you to Lynette Moore for help with histopathological evaluation and comments on the liver sections for hepatotoxicity. Also to the staff of the Core Laboratory, CYWHS for measuring urinary creatinines and conducting the liver function test analysis.

Thanks also to the Department of Pulmonary Medicine and particularly Trish Cmielewski for use of dissecting microscope and camera attachment for taking images of the corneal clouding in MPS IIIA mice.

A special mention has to go to the staff from the Hanson Institute: Brooke Summers, Allan Rofe and Peter Coyle for their permission to use their cross maze apparatus setup and help with the analysis. Particular thanks to Matthew Rees for all his help in the setup.

Well statistics is not my forte, so thank you to Janine Jones and particularly Kate Dowling at Biometrics SA for their help with statistical analysis for the bodyweight profiles, RAPC and cross maze data. Thanks for also answering my endless questions and narrowing the gap in my statistical understanding.
Thanks also to Dr. Sonja Klebe from the Department of Anatomical Pathology, Flinders Medical Centre for analysis of corneal clouding in mice with MPS IIIA both macroscopically and helping take pictures post-mortem.

The auditory evoked brainstem response analysis in the RAPC study would not have been possible without Dr Paul Weston from the Neurology department, CYWHS who helped set up the equipment and methodology and also to evaluate the hearing threshold in MPS IIIA and normal mice.

Thanks to my family, who have always been there and made sure that I had every opportunity to have the best start in life. They have always supported me through my studies and research and still don’t understand what MPS is after all these years.

Last but not least, to my fiancé Simon. Thanks for all your support, words of wisdom and encouragement over the years. This would not be possible without someone to share the anger when the experiments don’t work.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV</td>
<td>adeno-associated virus</td>
</tr>
<tr>
<td>ABR</td>
<td>auditory evoked brainstem response</td>
</tr>
<tr>
<td>APES</td>
<td>3-aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>BBB</td>
<td>blood-brain barrier</td>
</tr>
<tr>
<td>BMT</td>
<td>bone marrow transplantation</td>
</tr>
<tr>
<td>bp, kb</td>
<td>base pairs, kilobase pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>CS</td>
<td>chondroitin sulphate</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>dB</td>
<td>decibel(s)</td>
</tr>
<tr>
<td>DGJ</td>
<td>1-deoxy-galactonorjirimycin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide 5’triphosphate</td>
</tr>
<tr>
<td>DS</td>
<td>dermatan sulphate</td>
</tr>
<tr>
<td>dH2O</td>
<td>deionised water</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EM</td>
<td>electron microscopy</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERT</td>
<td>enzyme replacement therapy</td>
</tr>
<tr>
<td>EXTL</td>
<td>exostosin-like gene family</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>gag(s)</td>
<td>glycosaminoglycan(s)</td>
</tr>
<tr>
<td>Gen</td>
<td>generation</td>
</tr>
<tr>
<td>GET IT</td>
<td>gene-expression targeted isoflavone therapy</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary associated protein</td>
</tr>
<tr>
<td>GPI</td>
<td>glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>GSL</td>
<td>glycosphingolipid storage disorders</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronan/hyaluronic acid</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HS</td>
<td>heparan sulphate</td>
</tr>
<tr>
<td>HSpg</td>
<td>heparan sulphate proteoglycan</td>
</tr>
<tr>
<td>hr</td>
<td>hour(s)</td>
</tr>
<tr>
<td>IMVS</td>
<td>Institute of Medical and Veterinary Science</td>
</tr>
<tr>
<td>kg, g, mg, µg, ng</td>
<td>kilogram, gram, milligram, microgram, nanogram</td>
</tr>
<tr>
<td>kDa, Da</td>
<td>kilodalton, dalton</td>
</tr>
<tr>
<td>KS</td>
<td>keratan sulphate</td>
</tr>
<tr>
<td>LSD</td>
<td>lysosomal storage disorder</td>
</tr>
<tr>
<td>LiCl</td>
<td>lithium chloride</td>
</tr>
<tr>
<td>L, ml, µl</td>
<td>litre, millilitre, microlitre</td>
</tr>
<tr>
<td>m, cm, mm, µm</td>
<td>metre, centimetre, millimetre, micrometre</td>
</tr>
<tr>
<td>mCi, µCi</td>
<td>milli Curie, micro Curie</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>M, mM, µM, pM</td>
<td>moles per litre, millimoles per litre, micromoles per litre, picomoles per litre</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>MGS</td>
<td>multi-generational study</td>
</tr>
<tr>
<td>MPS</td>
<td>mucopolysaccharidosis</td>
</tr>
<tr>
<td>MPS IIIA</td>
<td>mucopolysaccharidosis type IIIA</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris water maze</td>
</tr>
<tr>
<td>Na³⁵SO₄</td>
<td>radioactive sodium sulphate</td>
</tr>
<tr>
<td>NB-DNJ</td>
<td>N-butyldeoxynojirimycin</td>
</tr>
<tr>
<td>NB-DGJ</td>
<td>N-butyldeoxygalactonojirimycin</td>
</tr>
<tr>
<td>NN-DNJ</td>
<td>N-(n-nonyl) deoxynojirimycin</td>
</tr>
<tr>
<td>NDST</td>
<td>N-acetylglucosamine N-deacetylasel/N-sulphotransferase</td>
</tr>
<tr>
<td>NS</td>
<td>sulphamidase</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OGT 918</td>
<td>N-butyldeoxynojirimycin</td>
</tr>
<tr>
<td>PAPS</td>
<td>3’-phosphoadenosine 5’-phosphosulphate</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>P/S</td>
<td>penicillin/streptomycin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion concentration</td>
</tr>
<tr>
<td>% (w/v)</td>
<td>percent weight per volume</td>
</tr>
<tr>
<td>% (v/v)</td>
<td>percent volume per volume</td>
</tr>
<tr>
<td>RA</td>
<td>repeated acquisition</td>
</tr>
<tr>
<td>RAPC</td>
<td>repeated acquisition and performance chamber</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA induced silencing complex</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SDT</td>
<td>substrate deprivation therapy</td>
</tr>
<tr>
<td>sec</td>
<td>second(s)</td>
</tr>
<tr>
<td>siRNA</td>
<td>short interfering RNA</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) amino methane</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
</tbody>
</table>