Compartmental Flow Modelling of Acute Care Hospital Bed Occupancy for Strategic Decision-Making

A thesis presented towards the degree of Doctorate of Philosophy

By

Mark Mackay BSc(Hons) BEE BComm

School of Psychology

University of Adelaide

Submitted July 2007
Table of Contents

Table of Contents ... i

List of Figures ... vii

List of Tables .. xvii

Abstract .. xxi

Declaration .. xxiv

Acknowledgments ... xxv

Glossary and Abbreviations .. xxvii

Chapter 1 — Introduction ... 1

 1.1 The Australian Health System and the Emerging Problem 2
 1.2 The Need for Better Decision-Making 9
 1.3 Why Model Hospital Bed Occupancy? 13
 1.4 Decision-making and Hospital Beds 14
 1.5 Simple Models and the Average Length of Stay 14
 1.6 The Introduction of Bed Occupancy Compartmental Flow Model .. 15
 1.7 Compartmental Flow Modelling and Health Services Research .. 19
 1.8 The Need for More Research into Compartmental Flow Bed Occupancy Modelling .. 21
 1.9 Personal Motivation for Undertaking the Research 22
 1.10 The Research Project Outline .. 25
 1.11 The Research Project Aims ... 25
 1.12 The Research Project Questions 26
 1.13 About the Research Project Methodology 28
 1.14 Contribution Towards Knowledge 28
 1.15 The Thesis Layout .. 29
 1.16 Author Publications ... 31
 1.17 Conclusions ... 32

Chapter 2 — Hospital Bed Modelling - A Chequered History 33

 2.1 Introduction ... 34
 2.2 Australian literature reviews ... 34
 2.2.1 Review by Dwyer and Jackson 35
 2.2.2 Review by Anderson et al. ... 36
 2.2.3 Review by Goddard and Mills 37
 2.2.4 Conclusions about Australian literature reviews 38
 2.3 General hospital bed modelling techniques 38
 2.3.1 Simple Methods .. 41
 2.3.2 More Complex One-off Approaches 44
 2.3.3 Queueing Models .. 47
2.3.4 Simulation ... 53
2.3.5 Flow Models .. 58
2.3.6 Conclusion regarding the general research 64
2.4 The Harrison and Millard compartmental flow model 67
2.4.1 The Subsequent Research Effort 67
2.4.2 A more in-depth look at the compartmental flow model 78
2.4.3 Conclusion regarding the compartmental flow research 87
2.5 Other sources of literature ... 90
2.5.1 Bed management texts ... 90
2.5.2 Grey information ... 91
2.5.3 Conclusions regarding the other literature 92
2.6 Overall conclusion ... 93

Chapter 3 — Setting the Scene 95

3.1 Introduction .. 96
3.2 Flinders Medical Centre ... 97
3.2.1 Background Information ... 97
3.2.2 Methodology ... 99
3.2.3 Results .. 100
3.3 Internal Medicine Department, HealthCare Otago 106
3.3.1 Background Information ... 106
3.3.2 Methodology ... 108
3.3.3 Results .. 110
3.4 Discussion ... 119
3.4.1 The Hospital Services .. 119
3.4.2 Methods of Analysis ... 123
3.4.3 Problems with the ALOS 127
3.4.4 Simple Alternatives to the ALOS 129
3.5 Conclusion ... 131

Chapter 4 — Modelling — Some Theoretical Background 132

4.1 Introduction ... 133
4.2 Modelling .. 135
4.3 The process of model building 137
4.3.1 Testing the model validity and inputs 137
4.3.2 Testing the model outputs 138
4.4 Model choice ... 139
4.5 Model fit and complexity trade-off 143
4.6 Model choice and performance 145
4.6.1 Model performance — common approaches 145
4.6.2 Least Squares and Maximum likelihood 150
4.6.3 Bayesian Information Criterion (BIC) 153
4.6.4 Bayes factor .. 155
4.6.5 Cross validation and Bayes factor 157
4.7 Conclusion ... 159
Chapter 5 — Choice of Models for the Analysis and Forecasting of Acute Care Hospital Beds ... 160

5.1 Introduction .. 161
5.2 Methodology .. 162
5.2.1 The Harrison and Millard Approach 162
5.2.2 Methodology 1 – using all the data 166
5.3 Results ... 172
5.4 Discussion .. 184
5.4.1 Does the Model Succeed in Describing Acute Care Data? 184
5.4.2 Validity and Reliability ... 186
5.4.3 Should the Single Day Census Style of Model Continue? 187
5.4.4 The Fit and Complexity Trade-off 189
5.4.5 Other Issues ... 189
5.5 Conclusion ... 190

Chapter 6 — Modelling New Zealand Acute Care Occupancy 193

6.1 Introduction ... 194
6.1.1 The Need to Establish Validity .. 194
6.1.2 Evaluation of Service Change ... 194
6.1.3 Application of Model Selection Techniques 195
6.2 Methodology 2 – capturing variation through the average 195
6.2.1 Data ... 195
6.2.2 Method ... 196
6.3 Results ... 200
6.4 Discussion .. 207
6.4.1 Model Fit ... 207
6.4.2 Explanatory value .. 209
6.4.3 Alignment with experience ... 210
6.4.4 Portability of health system measures and validation 211
6.4.5 Expert Judgment ... 213
6.4.6 Average models ... 214
6.4.7 Other issues ... 215
6.5 Conclusion .. 215

Chapter 7 — Model choice and prediction: forecasting changes in bed occupancy profiles as a consequence of population change 217

7.1 Introduction ... 218
7.2 Methodology .. 220
7.2.1 Creation of the Compartmental Flow Model 220
7.2.2 Linkage to Population Change 222
7.3 Results .. 222
7.3.1 The Compartmental Flow Models 222
7.3.2 Parametric Parameter Forecasts Linked to Population Change 222
7.4 Discussion ... 237
7.4.1 Model Choice ... 238
7.4.2 Forecasts and policy ... 241
10.1.1 The Australian Casemix-funding Model ... 325
10.1.2 The Average Length of Stay and the Casemix-funding Model 328
10.2 Methodology ... 331
10.3 Results ... 332
10.3.1 DRG Profiles .. 332
10.3.2 Overnight Stay Patient Results .. 334
10.3.3 Elective Same-day Results ... 336
10.4 Discussion .. 338
10.4.1 Number of Data ... 338
10.4.2 DRG 261 Model Fit ... 339
10.4.3 Inpatient and Same-day Activity .. 340
10.4.4 Business Rules – fix add distribution could change 341
10.4.5 Casemix and Benchmarking .. 342
10.4.6 Policy Implications ... 343
10.4.7 Further Research .. 344
10.5 Conclusion .. 345

Chapter 11 — The use of sensitivity and simulation analysis in conjunction with compartmental flow bed occupancy models .. 348

11.1 Introduction ... 349
11.1.1 Sensitivity Analysis .. 351
11.1.2 Simulation Analysis .. 353
11.2 Method ... 354
11.2.1 Data and Base Model .. 354
11.2.2 Research Tools .. 354
11.2.3 Sensitivity Analysis .. 355
11.2.4 Simulation .. 356
11.3 Results ... 358
11.3.1 Sensitivity Analysis – BOMPS Style .. 358
11.3.2 Tornado Sensitivity Analysis ... 361
11.3.3 Parameter Simulation .. 364
11.3.4 Patient Turn-away Model Simulation .. 366
11.4 Discussion .. 369
11.4.1 Sensitivity Analysis – BOMPS Style .. 371
11.4.2 Tornado Sensitivity Analysis ... 373
11.4.3 Parameter and Patient Turn-away Model Simulation 374
11.4.4 Technical Issues .. 376
11.4.5 Migration of Research into the Applied Setting 377
11.5 Conclusion .. 378

Chapter 12 — Discussion .. 380

12.1 Introduction ... 381
12.2 The Research Questions ... 381
12.2.1 The Main Research Question .. 382
12.2.2 The Secondary Research Questions ... 385
12.3 The Revised Methodology and Model .. 388
12.4 The Preferred Methodology ... 392
List of Figures

Figure 1: The changing age structure of the Australian population is illustrated through the changing proportion of older people (aged 65 years or more). Historically the proportion of older people was low. While it has increased in recent times, a new period of rapid growth is forecast to commence. Source data: Australian Bureau of Statistics (2002 and 2006). .. 4

Figure 2: The hospital utilisation patterns for non-Indigenous Australians show a high use of services for the very young and increased utilisation as age increases. The difference between males and females aged between 15 and 40 relates to child bearing. Data source: AIHW (2006). .. 5

Figure 3: A schematic representation of the emerging demand and supply issues facing the health sector ... 7

Figure 4: A diagrammatic representation of the flow of patients through compartments. The compartments may be virtual or real - the patients may not actually change location within the physical hospital (Mackay and Lee, 2005). ... 17

Figure 5: Application of Powell and Baker’s creative problem solving process to the hospital bed problem. There is an apparent difference between my research and the approach undertaken by the hospital. .. 24

Figure 6: A diagrammatic representation of the research that is required to show that there is merit in adopting compartmental flow models for strategic decision-making purposes in the Australian acute care environment. ... 29

Figure 7: The cumulative growth in the number of publications per year since 1991 showed a period of marked increase from 1998. 75

Figure 8: Journal publications have been the dominant form of disseminating written information about the modelling approach to others. .. 76

Figure 9: The research effort has been biased towards services relating to aged care. .. 77

Figure 10: A diagrammatic representation of the flow of patients through compartments. The compartments may be virtual or real - the patients may not actually change location within the physical hospital (Mackay and Lee, 2005). ... 79
Figure 11: Scatterplot of estimated average inpatient occupancy and the proportion of same-day patients. The relationship between these two variables appears to be reasonably well described by a linear relationship, with approximately 65 per cent of the variance in occupancy explained by changes in the proportion of same-day patients. ... 102

Figure 12: A scatterplot of the average number of bed and the proportion of same-day patients. A linear relationship appears to exist between the two variables, with the changes in the proportion of same-day patients explaining approximately 75 per cent of the variation in the average number of available beds. ... 102

Figure 13: A scatterplot of the ALOS (inpatients) and estimated inpatient admissions. A linear relationship was found to explain the relationship, with a decrease in ALOS generally being associated with an increase in patient throughput. ... 103

Figure 14: The length of stay distribution compared to a Normal distribution with the same mean and standard deviation. 105

Figure 15: Trend in total bed occupancy. A seasonal trend is evident, as is regular peaks and troughs. The regular peaks and trough relate to day of week trends that were found to occur. ... 106

Figure 16: The ALOS trend for the period 1990-2004. It is evident that the way patients flowed through the system changed after 1996 as the ALOS declined significantly. ... 110

Figure 17: The average midnight bed census profile occupancy profile (ogive) for the Internal Medicine Department data. The shape of the distribution indicated that occupancy has a skewed distribution, which is expected, with most patients only being admitted for a relatively short period of time (for example, fewer than 10 days). ... 111

Figure 18: The total midnight bed occupancy trend for the Internal Medicine Department 1990 to 2003 is illustrated. The trend reveals weekly trends (illustrated by the many peaks and troughs occurring between, say December 1992 and June 1993); seasonal trends (for example, December 2001 and December 2002 are low points, while June 2002 represents a peak in occupancy); and change in service trends (the occupancy for period prior to 1997 is generally greater than the occupancy from 1997 onwards). These trends, however, can be highlighted better using moving averages. ... 112
Figure 19: A seven-day moving average of total midnight bed occupancy. The troughs represent low points of activity (such as weekends) and the peaks represent days of high admissions (typically a week day). However, when data covering many years is presented in this manner, as in this case, the weekly cycle becomes compressed. .. 113

Figure 20: A 90-day moving average of total midnight bed occupancy for the period 1990 to 2003. The trend highlights the seasonal variation associated with the functioning of this service and removes the noise arising from daily variations in service provision. ... 113

Figure 21: A 90-day moving average of short and long-stay patient midnight bed occupancy trends. It can be seen that the post 1996 growth in bed occupancy is due to short-stay patients. ... 115

Figure 22: Profile of total bed midnight bed occupancy by patients aged 65 years or more. When viewed with the previous figures it can be seen that these patients occupy the majority of Internal Medicine Department beds. ... 116

Figure 23: Relative distribution of midnight bed occupancy for aged and non-aged patients. The non-aged patients account for less of the total bed occupancy post 1997. ... 117

Figure 24: Trends in aged and non-aged patient total midnight bed occupancy for patients admitted for 10 or fewer days. Increases in midnight bed occupancy for aged patients post 1997 have led to more beds being occupied than before 1997 for this group of patients. ... 118

Figure 25: Trends in aged and non-aged patient total midnight bed occupancy for patients admitted for more than 10 days. While post 1996 service delivery changes have been maintained, the occupancy for the aged patient group has increased. .. 119

Figure 26: According to Armstrong (1985) models built for forecasting purposes have two basic inputs or components, namely variables and relationships. The concepts of validity and reliability can be applied to these inputs. ... 137

Figure 27: According to Hastie, Tibshirani and Friedman (2001), model development should include the use of both training and test data sets. ... 139

Figure 28: The model space represents the total possible number of models that could be fitted to the data. The number of models actually tested represents a small proportion of the model space. 140
Figure 29: Increasing model complexity achieves a gain in fit for both training and test data to a certain point, after which gains only occur in the fit obtained for the training data (based upon Hastie, Tibshirani and Friedman, 2001).

Figure 30: Harrison and Millard (1991) used a bed occupancy census from a single day, which is highlighted by the data enclosed in the red box. An alternative approach could have been to census a patient cohort, which is represented by the shaded numbers (along the diagonal). Ultimately, patients are discharged, which is not shown on the diagram.

Figure 31: All of the data is captured and used in this methodology as suggested by the box surrounding the data, whereas the Harrison and Millard (1991) approach is based upon a single day census approach.

Figure 32: In order to avoid early termination of the model optimisation process, seeding was used. Seeding provided a starting point for optimisation that resulted in the model fitting process being able to overcome the presence of local optima.

Figure 33: Comparison of the absolute errors for census and the annual average bed occupancy compartmental flow models. The annual average model performance was better than any census model performance (in terms of absolute error).

Figure 34: Comparative fit, in terms of maximising log-likelihood, of models against training and test data.

Figure 35: Comparison of available beds during the training and test years.

Figure 36: The "seasonal model" represents a less complex model compared to those illustrated in Figures 37 and 38. The more general nature of this model (that is, reduction in complexity) results in a better fit of the test data compared to the more complex models.

Figure 37: The "monthly model with weeks" represents a more complex model than illustrated in Figure 36 and achieves a better fit to the training data. However, the model fit deteriorates when test data is used as seen by the emergence of greater variation between the model and test data.

Figure 38: The "weekly model with weekends" represents a highly complex model. The fit to the training data is superior compared to the models illustrated in Figures 36 and 37. However, the greater model complexity results in further deterioration of fit when compared to test data.
Figure 39: The average and standard deviation were calculated for each time period (using the reverse cumulative days since admitted profile) as opposed to using all the data points.

Figure 40: One option was to create a model that described all the data as indicated by the blue line. The difficulty with this approach was that it covered two periods of different service provision arrangements.

Figure 41: The creation of a compartmental flow model of bed occupancy for each year was also possible. The blue lines indicate the points where the data was cut in order to achieve these models. This represented the most complex solution.

Figure 42: The simplest splitting of the data that enabled the change in service provision arrangements to be captured was to model the pre and post service change periods (the blue line indicates the split of the data).

Figure 43: The fit of the model to the data improved, generally, as the complexity of the model increased. While the usefulness of the model is improved by slightly increasing complexity, over-fitting occurred once the numbers of parameters exceed 20, as shown by increasing BIC values.

Figure 44: The model fitted the pre-service change period data for each year well, although some years were described better than others.

Figure 45: The model fitted the post change period data for each year well. Variation between the model and data was expected, as the aim was to avoid over-fitting of the data. The maximum duration of patient stay was reduced compared to the pre-service change (hence the changed x-axis scale).

Figure 46: Visual inspection of the models and data show that the fit was good. Furthermore, given the change in shape of the post-change model, it can be seen that there was a reduction in occupied beds and patients flowed through the system faster (the post change model line has a steeper slope).

Figure 47: Visual representation of the age groupings used for the analysis. The circled option was the preferred model.

Figure 48: The trade-off between model fit and generalisation with increasing complexity is shown.

Figure 49: Fit of the data against the simplest model - the annual average model with no disaggregation of patients by age. The model did not fit the data well.
Figure 50: Fit of the data against the most complex model. All data groups are well-fitted (over-fitted) by the model, as evidenced by the difficulty in visually differentiating between the data and model. ... 226

Figure 51: Fit of the preferred model and data. The model does not perfectly fit the data and thereby avoided over-fitting (see Figure 50), but represented a significant improvement on the simplistic poor-fitting model (see Figure 49). .. 226

Figure 52: The five age components of the preferred model exhibit a high level of fit to the data. ... 227

Figure 53: Trade-off between complexity and fit for the preferred model. Based upon the BIC value, a single compartment model was suggested. However, other factors can also be important for model selection. .. 228

Figure 54: Comparative population profile. It is predicted that there will be a large growth in the number of older people during this period. ... 231

Figure 55: The timing of change of population with age groups matched to the preferred compartmental model. 232

Figure 56: Forecast change in requirements for short-stay beds according to changes in the population size based upon age. 232

Figure 57: Forecast change in requirements for long-stay beds based upon population changes. The timing of changes is important for policy and planning reasons. ... 233

Figure 58: Forecast total bed requirements. It is evident that those aged 65 years or more use the most beds. 233

Figure 59: The forecast mix of bed usage based by age group over time. 234

Figure 60: The assumption that the mix of short and long-stay beds was held constant is reflected in the forecast results. 235

Figure 61: Visual representation of effects of making changes to the system. The system becomes stable over time. 236

Figure 62: Representation of the different approaches to including seasonal weather factors in the bed occupancy compartmental flow model. In this scenario a switch (or model) is provided for each month, whereas based upon the findings reported in Chapter 6 fewer switches could be used. ... 259

Figure 63: Total available beds = occupied beds + vacant beds. Vacant beds provide a buffer against variation in occupancy. 261
Figure 64: Daily occupancy trends for total and age grouped bed occupancy. The moving average indicates the existence of a winter peak in total occupancy. ... 267

Figure 65: Moving average occupied bed trends for the age-grouped data. Winter peaks in bed occupancy appear to exist for some age-grouped data. ... 268

Figure 66: Monthly movements in average monthly 9 a.m. air temperature and the relative change variable. Both variables show a strong winter trough. ... 270

Figure 67: Scatterplot of bed occupancy for the model year and relative temperature change variables. The variation in occupancy was largely explained by the relative temperature change variable. 272

Figure 68: The weather adjusted compartmental flow model better reflects the actual occupancy data than the average compartmental flow model. ... 275

Figure 69: Despite a better fit between the weather adjusted model and the daily occupancy data, the model is clearly suited, as intended, for exploring longer-term strategic issues as opposed to the operational issues associated with daily occupancy. 276

Figure 70: The weather adjusted forecast provided a visual indication of the seasonal occupancy fluctuations, unlike the forecast based upon the average compartmental flow model. ... 277

Figure 71: Comparison of the original compartmental flow model and weather adjusted compartmental flow model. The weather-adjusted model required less vacancy to avoid patient turn-away. ... 278

Figure 72: Comparison of the original, weather-adjusted and weather and vacancy-adjusted models with the data. ... 280

Figure 73: Comparison of the original, weather-adjusted and no patient turn-away model forecasts. Inclusion of seasonality and vacancy is important for aiding planning decisions. ... 281

Figure 74: The movement from the base model to the modified model resulted in a better fit between the model and data. ... 283

Figure 75: Schematic representation of the change in the weather adjusted compartmental flow model of bed occupancy. The modification is adjusted to reflect business or policy implications. ... 290

Figure 76: The ALOS trend showed a period of continued decrease post service until about the year 2000 after which the ALOS rose.
The changes in ALOS were small, with an increase of approximately 2.5% over the period.

Figure 77: The 90-day moving average trend shows an increase in total occupancy that commences from about the year 1999.

Figure 78: The ALOS trend is fitted well by a polynomial model. However, the forecast is overstated. A linear model does not describe the post change period well.

Figure 79: Using fewer historic observations results in a better linear fit. The model appears to forecast the future ALOS well, although the ALOS during 2005 was greater than expected.

Figure 80: Trends and forecasts for bed occupancy compartmental flow parameters over the post service change period. A constant model best described Parameters b, c and d, while a linear model best described parameter a.

Figure 81: The forecast of the model parameter A appeared reasonable. The implication of the forecast was that additional patients were admitted.

Figure 82: Comparison of short-stay group patient flow data based upon the original modelling period and the forecast period. There appeared to be an upward trend in the ALOS, which is contrary to the forecast for the short stay flow parameter, b (see Figure 80). It is not possible to determine from the available data whether the increase in ALOS was solely flow related.

Figure 83: The best forecast for parameter C was with a constant model (as shown in Figure 80). During the forecast period, there appeared to have been growth in the number of long-stay patient beds.

Figure 84: Comparison of long-stay patient group flow data over the model and forecast period using the ALOS as a proxy measure for parameter D. The best forecast for parameter d was with a constant model (as shown in Figure 80). There appeared to be a downward trend in ALOS during the forecasted period, but it was not possible to determine from the available data whether this was solely related to patient flow.

Figure 85: The comparison of the compartmental flow expected length of patient stay and the average length of stay showed that the two measures were similar, though not identical. The partial data for 2003 and lack of data for 2004 for the compartmental flow model makes comparison of the measures more difficult.

Figure 86: Visual inspection reveals that the trimmed length of stay profile does not exhibit a Gaussian distribution.
Figure 87: The original data and the fitted model are illustrated. Visually the model appears to describe the data well. .. 335

Figure 88: The length of stay profile for AR-DRG 274 was different to that of AR-DRG 261. AR-DRG 274 appears to have a Gaussian distribution. ... 337

Figure 89: The length of stay profiles for AR-DRG 572 was different to that of AR-DRG 261. AR-DRG 572 appears to be uniformly distributed around a single value of stay. .. 337

Figure 90: The effect on patient admissions as a consequence of altering the number of available beds is illustrated. Over time the change stabilises. .. 359

Figure 91: Visualisation of the results presented in Table 41. 360

Figure 92: The effect of altering the model parameters by +/- 10% on the first compartment release rate is illustrated. Changes to the second compartment parameters did have a very small effect, as opposed to no effect. ... 362

Figure 93: The second compartment release rate was affected by changes to parameters B, C and D, but not by equal amounts. 362

Figure 94: Daily admissions were most sensitive to changes in the first compartment parameters A and B. ... 363

Figure 95: The number of occupied beds was sensitive to changes in parameters A and C - the bed parameters. ... 363

Figure 96: The overall expected length of patient stay was particularly sensitive to changes in parameter B - a flow rate parameter. It was also sensitive to changes in the other parameters, although to a much lesser extent. ... 364

Figure 97: The spread of total bed occupancy is illustrated after 10,000 runs... 365

Figure 98: Probability ranges for the number of total beds based upon 10,000 simulation runs using standard Monte Carlo methods. 366

Figure 99: The distribution of total occupancy for the month of January arising from the Monte Carlo simulations. 367

Figure 100: The original model describing the number of beds required to avoid patient turn-away. The number of beds is represented deterministically, that is, there is no attempt to show the extent of uncertainty around the forecast. .. 368
Figure 101: Uncertainty was incorporated into the model designed to avoid patient turn-away by adding the range minimum and maximum lines. ... 369

Figure 102: Identification of secondary hypothesis and the chapter in which the question was answered. ... 387

Figure 103: Modification of the original (base) model has occurred to enable the incorporation of seasonal variation and variability of patient arrivals. The diagrams on the right-hand side are illustrative only and were presented in full detail in earlier chapters. 390

Figure 104: The use of the compartmental flow model of bed occupancy for planning and facilitating understanding has been extended. This research has shown the potential to apply this style of modelling in the areas of forecasting, evaluation and casemix. 391

Figure 105: The range of stakeholders in the decision making process may be large. A solution that relies upon a single group may not yield the best solution. ... 403
List of Tables

Table 1:	Recent reviews of state health systems have not always included bed modelling or access to modelling methodologies used.	11
Table 2:	Categorisation of research papers. Where papers could have been assigned to more than one category, the capitalised X indicates the primary category.	40
Table 3:	Table of publications between 1991 and 2005 (inclusive) stemming from the original work by Harrison and Millard (1991).	70
Table 4:	Summary statistics relating to the Flinders Medical Centre. While trends are evident, such as the increase in same-day admissions, these are often better visualised.	101
Table 5:	Length of stay statistics revealed that the distribution is highly skewed.	194
Table 6:	A search of “average length of stay” and “hospital” using the Google™ and Google Scholar™ internet search engines found many hits. The ratio of Google Scholar™ hits to Google™ hits was similar regardless of the country.	134
Table 7:	Types of models created and analysed. The number of model parameters reflects the complexity of the model, with the annual average being the least complex model.	172
Table 8:	Comparative model fit, measured in terms of absolute errors. The complex models perform better than the single day census models.	178
Table 9:	Correlation between models, training and test data.	180
Table 10:	Types of models created and analysed. The number of model parameters reflects the complexity of the model.	202
Table 11:	Model complexity and performance. The BIC value indicated that one of the more simple models was the preferred choice and the likelihood of this choice being incorrect was low given the Bayes Factor scores.	203
Table 12:	Additional performance statistics supported the findings from visual inspection that although there was some variation between the model to the individual year data, the fit was very good.	205
Table 13:	Commonly used model performance statistics indicated that the model fitted the data well.	206
Table 14: Analysis of the model parameters shows that the change in bed numbers and flow rate was not uniformly implemented across short and long-stay patient groups, with the long-stay patient group being changed more than the short-stay group.

Table 15: Search results on "country name" and "hospital bed occupancy" using Google™ and Google Scholar™.

Table 16: Scenarios tested to determine the best age grouping of the data for modelling bed occupancy. The preferred model is highlighted.

Table 17: Model performance statistics. The correlation between the individual components of the model and the data was very high and the absolute errors were all low.

Table 18: Short-stay patients used disproportionately less bed-days than long-stay patients. Valuable information about the long-stay patients can be gained via a double compartment flow model.

Table 19: Confidence (95 per cent) intervals for each parameter of the model. Such intervals are useful in showing that uncertainty around the exact model fit exists.

Table 20: The comparison of the model to the actual data suggests that the model over-estimates the total number of beds actually occupied.

Table 21: Summary of resource use (that is number of beds and admissions) by age group for 1998.

Table 22: Summary of resource use (that is number of beds and admissions) by age group for 2019. The forecast increase since 1998 is also shown.

Table 23: Correlations between bed occupancy data and average climate variables. The mean 9 a.m. temperature was found to have the strongest correlation.

Table 24: Correlations between the four temperature variables and bed occupancy. The relative monthly average temperature change has strong correlations with occupancy and the over temperature variables.

Table 25: Correlations between 1995-2000 average monthly bed occupancy and the average temperature variables. The correlations are weaker, but still significant and of reasonable strength.
Table 26: Correlations between temperature variables and bed occupancy for individual years. The influence of the temperature on occupancy was not consistent; rather it was one of many factors that influenced occupancy. .. 273

Table 27: The R-square value for the model was high, with 82 per cent of the variance in occupancy explained by the weather variable. 274

Table 28: The explained variation is significantly greater than the unexplained variation. Thus, from the data, it would appear that a linear relationship between the weather variable and occupancy existed. .. 274

Table 29: Model coefficients. The model coefficients vary slightly to those in Figure 63, because a statistical package was used to run the regression analysis as opposed to the addition of a trend as part of the graphical capabilities of a spreadsheet. 274

Table 30: Vacancy rates for the original compartmental flow model and weather-adjusted model. .. 279

Table 31: Absolute errors for each model. The weather-adjusted model achieved the lowest absolute error. .. 280

Table 32: Comparative statistics for the original and trimmed length of stay profiles. The trimmed profile is still skewed. 329

Table 33: DRG profile for same-day patients during 1998. DRG 572 accounted for almost 65 per cent of the same-day activity. DRG 274 was the second most frequently assigned DRG for same-day patients. .. 333

Table 34: There was little difference between the number of patient separations for the top two inpatient DRGs. Prior research with DRG 261 and its relative cost determined its selection for this research. ... 333

Table 35: The patient stay and admission category profile for the three DRGs analysed. The majority of patients for each DRG related to the profiles analysed for the research. ... 334

Table 36: The average activity per DRG at three major teaching hospitals in South Australia. For many DRGs there is little regular activity. In smaller hospitals there tends be more DRGs where there is a low number of patient admissions per week or year. 334

Table 37: Model performance statistics. The absolute error and correlation are indicative of reasonable fit. ... 335
Table 38: Model parameters for a single and double compartment flow model. The flow rate of the double compartment model is not sufficiently different to justify the use of a double compartment model. ... 336

Table 39: Parameter variation ... 357

Table 40: BOMPS style bed occupancy measures for the original model for patients aged 65 to 79 years. ... 358

Table 41: The BOMPS style resource utilisation table for the model relating to patients aged 65-79 years. The majority of patients were short-stay patients. ... 359

Table 42: The effect on patient admissions when the number of beds was decreased by 10 per cent and short-stay patient flow was increased. ... 360

Table 43: The model parameters were altered by fixed amounts and the effects on certain aspects of patient discharge, bed numbers and length of stay were examined. ... 361

Table 44: Model parameter confidence intervals after 10,000 runs. 365

Table 45: Occupancy statistics following a 10,000 simulation run. The simulated occupancy will be greater than the average monthly occupancy as the goal was to create a model that resulted in zero patient turn-away. ... 366

Table 46: Illustration of using the ALOS to calculate bed requirements. 395

Table 47: Subdividing the data may not lead to a materially different determination of the number of beds required for a service. 395
Abstract
The research presented in this thesis focuses on the investigation of whether the compartmental flow models of bed occupancy originally described by Harrison and Millard (1991) for decision-making around geriatric service care in the English National Health Service can be used to describe data from acute care hospitals in Australia and New Zealand.

Australia's total health expenditure for 2004-05 was $87.3 billion. The use of health care services and expenditure pattern is well established and Australia follows the pattern found in most developed countries, with the greatest expenditure occurring on services for the elderly. Australia is experiencing a shift in population structure, with the proportion of older people forecast to increase. It is expected there will be a need for a greater level of expenditure on health care as the number of elderly people increase.

There is an emerging gap between the ability to supply health services and the demand for them. Furthermore, acute care hospital treatment is generally considered expensive and governments have been keen to control this expenditure.

It is imperative that governments are able to make decisions based upon robust policy advice. There are serious consequences in both economic resource allocation and patient (and population) health outcomes if decisions about future health service structures are incorrect. In particular, there is a need for better decision-making around bed management at the strategic level. Strategic decision-making relates to decisions that will occur in a longer time frame.
Decision-making can benefit from the use of modelling. Models represent a simplified
version of reality that preserve the essential features of the situation being examined
and can be used as a tool to investigate decision-making options, particularly in
complex environments such as the health sector.

Historically decision-making relating to hospital beds has used either simple “back of
the envelope” calculations or adherence to “rule of thumb” approaches. Most of the
approaches have relied upon using the average length of stay metric. While the
modelling of hospital bed numbers is not new, much of this work has relied upon the
average length of stay, which is known to be a poor measure.

Harrison and Millard (1991) introduced the application of the compartmental flow
model for modelling hospital bed occupancy and noted its potential to be used to
influence policy decision-making. The flow model results are plausible and easily
interpreted. However, relatively little work has focussed on the ability of these models
to be generalized and be used for predictive purposes.

The research undertaken for this thesis consisted of a series of modelling experiments
that can be grouped into two key stages: whether the models could be successfully
applied to the acute care data; and whether the models could be used for novel
purposes, such as forecasting, evaluation of service change, and benchmarking. This
entailed the further development of the model, and a consideration of basic modelling
issues such as the balance between data-fit and model complexity, in order to capture
better variation in the data and also to facilitate linkage to changes in population and seasonality.
Declaration Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give my consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Signed...
(Mark Mackay)

Date...
Acknowledgments

My research and this resulting thesis would not have been possible or as easily undertaken without the involvement of the following people or organisations:

- Emeritus Professor Peter Millard (London) who agreed to meet with me and discuss bed management problems during my visit to London during 1998 and then subsequently continued to help and encourage me to develop skills useful in the analysis of practical problems in the strategic management of hospital beds. Peter has responded to many emails over the years, welcomed my family and me into his home, visited Australia and provided contacts with other researchers in this area.

- Associate Professor Michael Lee (California) who has provided great support, assistance and helped me to develop further my skills in the area of modelling. His advice and guidance have been invaluable. His support to enable me to attend an international conference in London was also much appreciated.

- Dr Simon Dennis (Adelaide) who stepped in to provide supervision after Michael left the School of Psychology. Simon’s input has been much appreciated.

- The School of Psychology for enabling me to undertake my research with Michael Lee and providing opportunities for me to travel to conferences in Australia and England.

- The Department of Health for granting me study time.

- The library staff at the Department of Health for obtaining references for me and extending my loans on many occasions. Particular thanks go to Tricia Brooks, Jill Austin and Judy Gye.
To my modelling colleagues in Australia (particularly Professor Don Campbell, Professor Terry Mills, Dr Geoff McDonnell and Dr Chris Bain) and overseas (particularly Professor Gary Harrison, Professor Sally McClean, Professor Florin Gorunescu, Dr Brendon Rae, Dr Elia El-Darzi and Mrs Georgina Christodoulou) who have provided conversation, inspiration, assistance and answered many emails over the years.

To Don Mackay, my father, and Marisa Maio Mackay, my wife, for helping with the editing of my thesis.

My parents, Don and Jocie Mackay and Enzo and Tina Maio for their endless support.

Benjamin and Matthew, my sons, for being a source of inspiration to ensure that my work remained focussed and for all the smiles, hugs, games and good times.

Marisa, my wife, for keeping me company at night while working on my research; providing encouragement, advice and being a sounding board; keeping me focussed on finishing; believing in me, and her ongoing love and support.

Without this assistance, this research would not have been possible. I thank them all and I am indebted to them for their support.
Glossary and Abbreviations

A The first parameter of the first compartment in the flow model that relates to the total number of occupied beds or patients in the first or short-stay compartment.

ABS Australian Bureau of Statistics

Acute care hospital A hospital that provides short-term medical care especially for serious acute disease or trauma

ALOS Average length of stay

ARDRG Australian refined diagnostic related group

ARIMA Auto-Regressive Inductive Moving Average

B or b The second parameter of the first compartment in the flow model that relates to the flow of patients through the first or short-stay compartment.

BIC Bayesian information criterion

BOMPS Bed Occupancy Management and Planning System
C The first parameter of the second compartment in the flow
model that relates to the total number of occupied beds or
patients in the second or long-stay compartment.

D or d The second parameter of the second compartment in the flow
model that relates to the flow of patients through the second
or long-stay compartment.

DRG Diagnostic related Groups (see also ARDRG)

Elective admission A planned admission of a patient into a hospital bed, as
opposed to emergency admission.

Emergency admission An unplanned admission of a patient into a hospital bed.

Long-stay patients Patients who stay for a longer period of time than short-stay
patients. Arises from the fitting of a double compartmental
flow model to acute care hospital data. Long-stay is a relative
term and differs when applied to alternative types of care
paradigms, for example, geriatric care services (see also
short-stay patients).

LOS Length of stay
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-stay patients</td>
<td>Patients who stay for a short period of time in an acute care hospital. Arises from the fitting of a double compartmental flow model to acute care hospital data. Short-stay is a relative term and differs when applied to alternative types of care paradigms, for example, geriatric care services (see also long-stay patients).</td>
</tr>
<tr>
<td>WSSE</td>
<td>Weighted Sum Squared Error.</td>
</tr>
</tbody>
</table>