DIETARY MANAGEMENT OF

POLYCYSTIC OVARY SYNDROME

Lisa Jane Moran

B.Sc (Hons), B.N.D

Research Centre for Reproductive Health
Faculty of Health Sciences
School of Paediatrics and Reproductive Health
Discipline of Obstetrics and Gynaecology
University of Adelaide
CSIRO Human Nutrition

Supervisors:
Professor Robert Norman
Associate Professor Manny Noakes
Professor Peter Clifton

A thesis submitted to the University of Adelaide for the degree of
Doctor of Philosophy in Medical Science

March 2007
TABLE OF CONTENTS

LIST OF FIGURES ... IV

LIST OF TABLES ... V

DECLARATION ... VI

DESCRIPTION OF THESIS ... VII

ACKNOWLEDGEMENTS ... VIII

ABSTRACT .. X

PUBLICATIONS ARISING FROM THIS THESIS ... XII

PRESENTATIONS ARISING FROM THIS THESIS ... XV

ABBREVIATIONS .. XVII

CHAPTER 1: LITERATURE REVIEW ... 1

1.1: INTRODUCTION ... 2

1.2: OVERWEIGHT AND OBESITY ... 3

1.2.1: Overview of overweight and obesity... 3

1.3: INSULIN RESISTANCE AND HYPERINSULINEMIA ... 4

1.3.1: Insulin resistance and hyperinsulinaemia ... 4

1.3.1.1: Insulin resistance .. 4

1.3.1.2: Mechanisms of insulin resistance ... 5

1.3.1.3: Obesity and insulin resistance ... 7

1.3.1.4: Measurement of insulin resistance ... 9

1.4: PREVALENCE AND DEFINITION OF PCOS ... 10

1.4.1: Definition and overview of PCOS .. 10

1.4.2: Diagnosis of PCOS ... 12

1.4.3: The relationship of obesity to PCOS ... 15

1.4.3.1: Obesity and reproductive parameters ... 15

1.4.3.2: Obesity and PCOS ... 16

1.5: PATHOPHYSIOLOGY AND AETIOLOGY OF PCOS ... 17

1.5.1: Hypothalamic-pituitary dysfunction in PCOS .. 19

1.5.2: Excessive androgen production and secretion in PCOS 19

1.5.3: PCOS, insulin resistance and hyperinsulinaemia ... 22

1.6: OVERVIEW OF THE PATHOPHYSIOLOGY OF PCOS 26

1.7: TREATMENT OF PCOS ... 28

1.7.1: Overview of the treatment of PCOS .. 28

1.7.2: Dietary management of PCOS .. 28

1.7.2.1: Overview of dietary management of PCOS .. 28

1.7.2.2: Effects of weight loss on the presentation of PCOS ... 30

1.7.2.3: Degree of weight loss for improving the presentation of PCOS 31

1.7.3: Altering dietary composition in the dietary management of PCOS 33

1.7.3.1: Altering dietary protein amount ... 35

1.7.3.2: Altering dietary carbohydrate amount .. 36

1.7.3.3: Altering dietary glycemic index or glycemic load .. 38

1.7.3.4: Safety of different dietary compositions ... 40

1.7.3.5: Summary of dietary management of obesity and overweight in PCOS 41

1.8: PATHOPHYSIOLOGY RELEVANT TO IMPLEMENTATION OF LIFESTYLE

MANAGEMENT IN PCOS ... 42

1.8.1: Overview of pathophysiology relevant to lifestyle management implementation in

PCOS .. 42

1.8.2: Modification of energy expenditure and energy intake in PCOS 45

1.8.3: Appetite regulation overview ... 46
LIST OF FIGURES

Figure 1.1: Insulin receptor signalling...6
Figure 1.2: Clinical features associated with Polycystic ovary syndrome11
Figure 1.3: Steroid biosynthetic pathways in the adrenal, ovary and peripheral tissue........21
Figure 1.4: Polycystic ovary syndrome, the hypothalamic pituitary axis and insulin27
Figure 1.5: The major causal linkages among genetics, environmental effects, physiology, behaviour and energy balance...44
Figure 1.6: Energy homeostasis and peripheral signals......................................49
Figure 2.1: Study flow diagram ..66
Figure 2.2: Weight loss for data analysed as completers analysis, baseline value carried forward for study drop-outs and last clinic visit carried forward for study drop-outs.........80
Figure 2.3: Fasting insulin (a) and homeostasis model assessment of insulin sensitivity (b) before and after 8 weeks of energy restriction on one dietary pattern (meal replacements) and 24 weeks of follow-up on either a fat counting (FC) or carbohydrate counting (CC) dietary protocol ..85
Figure 2.4: Fasting testosterone (a), SHBG (b), free androgen index (c) and free testosterone (d) before and after 8 weeks of energy restriction on one dietary pattern (meal replacements) and 24 weeks of follow-up on either a fat counting (FC) or carbohydrate counting (CC) dietary protocol ...86
Figure 3.1: Study flow diagram ..99
Figure 3.2: C-reactive protein before and after 8 weeks of energy restriction on one dietary pattern (meal replacements)..108
Figure 3.3: Glucose (a) and insulin (b) concentrations at baseline and 15, 30, 45, 60, 90, 120 and 180 min after the ingestion of a test meal at week 0 and week 8.................................109
Figure 4.1: Fasting and post-prandial ghrelin after 12 weeks of energy restriction and 4 weeks of weight maintenance on a standard protein or high protein diet..131
Figure 4.2: Subjective measures of hunger, fullness, satiety and desire to eat after a test meal before and after 12 weeks of energy restriction and 4 weeks of weight maintenance on a standard protein or high protein diet..133
Figure 5.1: Glucose (a), insulin (b), ghrelin (c), cholecystokinin (d) and peptide YY (e) concentrations at baseline and 15, 30, 45, 60, 90, 120 and 180 min after the ingestion of a test meal at week 0 and 8 before and after 8 weeks of energy restriction on one dietary pattern (meal replacements)..152
LIST OF TABLES

Table 1.1: Abnormalities associated with insulin resistance and hyperinsulinaemia5
Table 1.2: Factors secreted from the adipocyte ...9
Table 1.3: 1990 National Institute of Health and 2003 Rotterdam criteria for clinical diagnosis of Polycystic ovary syndrome ..14
Table 1.4: Phenotypes and estimated prevalence of phenotypes of Polycystic ovary syndrome according to the National Institute of Health 1990 and Rotterdam 2003 Criteria ...14
Table 1.5: Insulin effects related to ovarian function ...25
Table 1.6: Changes in the macronutrient composition of various diets34
Table 1.7: Hypothalamic and gut peptides involved in appetite control48
Table 2.1: The food sources that subjects in the fat counting and carbohydrate counting diet groups were required to count grams of fat or carbohydrate from daily ...71
Table 2.2: Baseline subject characteristics ...74
Table 2.3: Dietary intake during 8 weeks of energy restriction on one dietary pattern (meal replacements) ..76
Table 2.4: Dietary intake at baseline and during 24 weeks on either a fat counting (FC) or carbohydrate counting (CC) dietary protocol (week 8 to 32) ...77
Table 2.5: Dietary intake (micronutrient) before study commencement (week 0) and during 24 weeks of follow-up on either a fat counting (FC) or carbohydrate counting (CC) dietary protocol ..78
Table 2.6: Weight, body composition, blood pressure, energy expenditure, lipids, glucose, ghrelin and CRP before and after 8 weeks of energy restriction on one dietary pattern (meal replacements) and 24 weeks of follow-up on either a fat counting (FC) or carbohydrate counting (CC) dietary protocol ...81
Table 3.1: Subject baseline characteristics ..104
Table 3.2: Weight, body composition, lipids, HOMA and reproductive hormones before and after 8 weeks of energy restriction on one dietary pattern (meal replacements) ..107
Table 4.1: Subject baseline characteristics ...125
Table 4.2: Dietary intake for 12 weeks of energy restriction and 4 weeks of weight maintenance on a standard or high protein diet ..126
Table 4.3: Combined data for weight, body composition, fasting and post-prandial glucose and insulin and homeostasis model assessment before and after 12 weeks of energy restriction and 4 weeks of weight maintenance on a standard protein or high protein diet ..128
Table 5.1: Subject baseline characteristics ...148
Table 5.2: Weight, body composition, lipids, glucose and reproductive hormones before and after 8 weeks of energy restriction on one dietary pattern (meal replacements)149
Table 5.3: Ad libitum energy and macronutrient intake 3 hours after test meal consumption before and after 8 weeks of energy restriction on one dietary pattern (meal replacements)154
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

I acknowledge that copyright of published works contained within this thesis (as listed below) resides with the copyright holders/s of these works.

SIGNED... DATED…………………

vi
DESCRIPTION OF THESIS

Chapters 2–6 were submitted for publication prior to the completion of this thesis. Chapters 2 and 4 have been accepted and published, Chapters 3 has been accepted and is in press and Chapter 5 is currently under review. For this reason, this thesis was prepared in a similar style to a Thesis by Publication. The bulk of the study methodology is included within the relevant chapters conforming to the style of the relevant journal to which the chapters were submitted. Additional methodological information is provided in Appendix 2. Where new information pertinent to the topic of the chapter has been published after the relevant paper, it is discussed in the final conclusion as opposed to the Chapter/Paper discussion being amended. Paper co-authors are acknowledged in the Acknowledgement Section and Appendix 3 contains the published papers.
ACKNOWLEDGEMENTS

I would firstly like to acknowledge the co-authors for the manuscripts arising from these studies: Professor Robert Norman, Associate Professor Manny Noakes, Professor Peter Clifton, Professor Gary Wittert, Gemma Williams, Lisa Tomlinson, Dr Cherrie Galletly, Dr Natalie Luscombe-Marsh, Dr Carel Le Roux, Dr Mohammed Ghatei and Professor Stephen Bloom. I would also like to acknowledge Unilever and McDonalds Australia for assistance with study supplies and The National Health and Medical Research Council Program Grant (to Robert Norman), The University of Adelaide Faculty of Health Sciences Small Research Grants Scheme and Colin Matthews Research Grants for Clinically Based Research and CSIRO Human Nutrition for funding for that contributed to this research.

I’d also like to acknowledge the invaluable assistance of a large number of people in the implementation of these studies at CSIRO Human Nutrition and Repromed. I gratefully acknowledge Anne McGuffin, Kathryn Bastiaans, Julia Weaver, Jodie Avery and Vanessa Courage for clinical trial co-ordination; Grant Brinkworth, Emma Farnsworth, Eleni Argyiou, Bronwen Roberts and Gillian Homan for assisting in clinical measurements; Gemma Williams, Jennifer Keogh and Paul Foster for assisting in the dietary interventions; Rosemary McArthur, Ruth Pinches, Sue Evans, Sue Davies, Marcia Parish and Deborah Roffe for their nursing expertise and Alan Gilmore, Anne-Marie Carerra, Michelle Kolo, Mark Mano, Candita Sullivan, Cherie Keatch, Julie Turner, Cathryn Seccafien, Paul Orchard and Michael Mular for assisting with the sample collection and biochemical assays. Thank you also to all the study participants who volunteered their time and made these studies possible.

I’d like to thank my supervisors Robert Norman, Manny Noakes and Peter Clifton. Specifically, Rob who provided me with support, understanding, opportunities and challenges and Manny who kept my enthusiasm for research alive and always provided a critical eye for...
my presentations and papers. Thank you to Peter and Gary Wittert for their useful scientific input and assistance in interpreting all my study results. Thank you also to post-docs and students Grant Brinkworth, Natalie Luscombe-Marsh, Jane Bowen, Damien Belobradjic, Leana Coleman, Amanda Aloia, Karma Pearce, Bianca Benassi, Sasja Beetstra, Denise Furness, Phil Thomas, Caroline Bull, Shusuke Toden, Melanie Bagg, Cadence Minge, Theresa Hickey and Rebecca Robker both for scientific input and for all their help in de-stressing and staying sane!

Finally, thank you to my parents Rosemary and Terry for their unconditional assistance and love, to Kevin for proof-reading and editing and to all my friends who provided me with much needed escapism over the years (and who helped me label thousands of tubes). A special thanks to Nick for his love, patience and understanding!
ABSTRACT

Background

Polycystic ovary syndrome (PCOS) is a common endocrine condition in women associated with obesity, reproductive and metabolic abnormalities. It improves with weight loss, however currently no specific dietary recommendations exist and there may be abnormalities in appetite regulation in PCOS that contribute to difficulty in weight management.

Aims

To assess the effect of 1) short and long-term weight loss and weight maintenance strategies on weight loss, reproductive and metabolic parameters in overweight women with PCOS and to 2) assess the relative effect of weight loss on cardiovascular risk factors and 3) post-prandial appetite, appetite hormones (ghrelin, CCK, PYY) and food intake in overweight women with and without PCOS.

Results

Overweight women with PCOS followed an 8-week weight loss (2 meal replacements/day, 4904.4±127 kJ, n=32) followed by a 6 month carbohydrate (<120 g/day) or fat restricted (<50 g/day) weight maintenance regime (n=23). Reductions in weight (5.6±2.4 kg) and improvements in body composition, insulin, reproductive hormones and menstrual cyclicity occurred and were sustained equivalently for both diet groups. We then assessed the effect of weight loss (4.2±0.7 kg over 8 weeks as described above) in overweight women with (n=15) and without (n=17) PCOS on cardiovascular risk factors. All subjects had similar improvements in body composition, triglycerides, reproductive hormones and fasting and post-prandial insulin. C-reactive protein decreased with weight loss for non-PCOS women (-1.2±0.5 mg/L, P=0.025) but not for PCOS women.
We finally assessed appetite regulation in PCOS. Women with (n=20) and without (n=12) PCOS followed a standard protein (55% carbohydrate, 15% protein) or high protein diet (40% carbohydrate, 30% protein) for 16 weeks (~6000 kJ/day). Non-PCOS subjects were more satiated (P=0.001) and less hungry (P=0.007) after the test meals and had a 70% higher fasting baseline ghrelin (P=0.011), a greater increase in fasting ghrelin (57.5 versus 34.0%, P=0.033), a greater post-prandial ghrelin decrease at week 16 (113.5±46.3 versus 49.3±12.2 pg/mL, P=0.05) and a greater maximal decrease in post-prandial ghrelin (-144.1±58.4 versus -28.9±14.2 pg/mL, P=0.02) following weight loss than subjects with PCOS. Lastly, women with (n=14) and without (n=14) PCOS undertook an 8-week weight loss regime (4.2±0.7 kg as described above). At week 0 and 8, women with PCOS again displayed lower ghrelin levels (P=0.01 and P=0.097 respectively) and a lesser post-prandial ghrelin decrease (P=0.048 and P=0.069 respectively) but similar post-prandial appetite, buffet consumption and fasting or post-prandial peptide YY and cholecystokinin compared to women without PCOS.

Conclusion

Meal replacements and moderate macronutrient restriction are effective strategies for the dietary management of PCOS. Equivalent weight losses improved cardiovascular risk factors similarly for overweight women with and without PCOS with the exception of CRP which did not decrease with weight loss for overweight women with PCOS. PCOS status is associated with altered fasting and post-prandial ghrelin levels but is not consistently associated with other impairments in post-prandial gut peptides or food intake. Further investigation is required to assess if appetite regulation is impaired in PCOS and the optimal strategies and amount of weight loss for improvement of reproductive and metabolic parameters in PCOS.
PUBLICATIONS ARISING FROM THIS THESIS

Conference proceedings

This citation not included in the original print copy of thesis

Published Abstract:

PRESENTATIONS ARISING FROM THIS THESIS

Oral presentations

2006:
Androgen Excess Society International Meeting, Athens, Greece
‘Obesity and Polycystic Ovary Syndrome’. Moran LJ and Norman RJ.

International Congress of Obesity, Sydney, Australia

2005:
Dietetics Association of Australia State Conference, Adelaide, Australia
‘Diet and Polycystic Ovary Syndrome’, Moran LJ.

Poster presentations

2006:
International Congress of Obesity, Sydney, Australia

2005:
North American Society for the Study of Obesity International Conference,
Vancouver, Canada
Australasian Society for the Study of Obesity National Conference, Adelaide, South Australia
Nutrition Society of Australia National Conference, Melbourne, Victoria

2004:

Nutrition Society of Australia National Conference, Brisbane, Queensland
Australasian Society for the Study of Obesity, Brisbane, Queensland

2003:

Endocrine Society of Australia National Conference, Melbourne, Victoria
Australian Medical Research Council National Conference, Adelaide, South Australia
Nutrition Society of Australia National Conference, Hobart, Tasmania
Dietetics Association of Australia State Conference, Adelaide, South Australia

ABBREVIATIONS

α-MSH: α-melanocyte stimulating hormone
ADP: Adenosine diphosphate
AgRP: Agouti-related peptide
AI: Adequate intake
AMH: Anti-mullerian hormone
Apo A-IV: Apolipoprotein A-IV
ATP: Adenosine triphosphate
AUC: Area under the curve
BIA: Bioelectrical impedance analysis
BMI: Body mass index
BNRP: Bombesin/bombesin related peptides
CART: Cocaine and amphetamine regulated transcript
CC: Carbohydrate counting
CCK: Cholecystokinin
CHO: Carbohydrate
CIGMA: Continuous infusion of glucose with model assessment
CRF: Corticotropin-releasing factor
CRP: C-reactive protein
CV: Coefficient of variation
CVD: Cardiovascular disease
DBP: Diastolic blood pressure
DEXA: Dual X-ray absorptiometry
DHEA: Dehydroepiandrosterone
DHEAS: Dehydroepiandrosteronesulfate
5α-DHT: 5α- Dihydrotestosterone
DHT: Dihydrotestosterone
ER: Energy restriction
FAI: Free androgen index
FC: Fat counting
FFA: Free fatty acid
FSH: Follicle-stimulating hormone
FSIVGTT: Frequently sampled intravenous glucose tolerance test
hCG: Human chorionic gonadotrophin
GH: Growth hormone
GHRH: Growth hormone releasing hormone
GHS-R: Growth hormone secretagogue receptor
GI: Glycaemic index
GL: Glycaemic load
GLP-1: Glucagon-like peptide 1
Glucose-6-P: Glucose-6 phosphate
GLUT4: Glucose transporter 4
GnRH: Gonadotrophin releasing hormone
HA: Hyperandrogenism
HDL-C: High density lipoprotein cholesterol
HOMA: Homeostasis model assessment
HP: High protein
3βHSD: 3β-hydroxysteroid dehydrogenase
17βHSD: 17β-hydroxysteroid dehydrogenase
20αHSD: 20α-hydroxysteroid dehydrogenase
HSD: Hydroxysteroid dehydrogenase
IGF: Insulin-like growth factor
IGFBP: Insulin-like growth factor binding proteins
IGT: Impaired glucose tolerance
IL: Interleukin
IR: Insulin resistance
IRS: Insulin receptor substrate
IST: Insulin sensitivity test
ITT: Insulin tolerance test
IVF: In vitro fertilization
LDL-C: Low-density lipoprotein cholesterol
LH: Luteinising hormone
LP: Low protein
MAPK: Mitogen activated protein kinase
MCH: Melanin-concentrating hormone
MTT: Meal tolerance test
MUFA: Monounsaturated fatty acid
NIH: National Institute of Health
NPY: Neuropeptide Y
OGTT: Oral glucose tolerance test
OXM: Oxyntomodulin
P450AR: Cytochrome P450 aromatase
P450cscc: Cytochrome P450 side chain cleavage
P450c11AS: Cytochrome P450 11 aldosterone synthetase
P450c11B: Cytochrome P450 11-hydroxylase
P450c17α: Cytochrome P450 17α hydroxylase
P450c17,20: Cytochrome P450 17,20 lyase
P450c21: Cytochrome P450 21-hydroxylase
PAI-1: Plasminogen-activator inhibitor activity
PCO: Polycystic Ovary Syndrome
PCOS: Polycystic Ovary Syndrome
PI3-K: Phosphatidylinositol 3-kinase
POMC: Pro-opiomelanocortin
PP: Pancreatic polypeptide
PPAR: Peroxisome proliferator activator receptor
PUFA: Polyunsaturated fatty acid
PVN: Paraventricular nucleus
PYY: Peptide YY
QUICKI: Quantitative insulin sensitivity check index
RDI: Recommended dietary intake
REE: Resting energy expenditure
RR: Relative risk
RQ: Respiratory quotient
SFA: Saturated fatty acid
SHBG: Sex-hormone binding globulin
SP: Standard protein
StAR: Steroidogenic acute regulatory protein.
T2DM: Type II diabetes mellitus
TFM: Total fat mass
TFFM: Total fat free mass
TNF-α: Tumour necrosis factor α
TSH: Thyroid stimulating hormone
VAS: Visual analogue scores
VLCD: Very low calorie diets
VLDL: Very low density lipoprotein
VO_{2max} : Maximal oxygen consumption
WHR: Waist-hip ratio
WM: Weight maintenance