Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae)

By

Mansoureh Malekian (M.Sc.)

A thesis submitted in the fulfilment of the degree of Doctor of Philosophy of Science (Ph.D.) in the Department of Ecology and Evolutionary Biology

June 2007
Table of content

Table of content II
List of figures VII
List of tables X
Declaration XII
Abstract XIII
Acknowledgments XV

1 General introduction 1
1.1 Preamble 1
1.2 Introduction 1
1.3 Current taxonomy and distribution of gliding petaurids 2
1.4 Conservation status 3
1.5 Phylogeny and evolution of gliders 5
1.6 Phylogeography and population structure 6
1.7 Genetic variability and habitat fragmentation 7
1.8 Study aims 9

2 Molecular systematics of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea 11
2.1 Introduction 11
2.2 Material and methods 15
  2.2.1 Taxa sampling 15
2.2.2 Genetic analyses 16
2.2.3 Choice of outgroups 16
2.2.4 DNA isolation, PCR- amplification and sequencing 17
2.2.5 Sequence analysis 18
2.2.6 Phylogenetic analyses 19
2.2.7 Molecular clock and divergence time estimates 20

2.3 Results 22
2.3.1 Sequence analyses 22
   2.3.1.1 Mitochondrial regions 22
   2.3.1.2 Nuclear marker 23
2.3.2 Phylogenetic analyses 24
   2.3.2.1 Mitochondrial gene analyses 24
   2.3.2.2 Nuclear gene analyses 25
2.3.3 Molecular clock and divergence time estimates 28

2.4 Discussion 31
2.4.1 Phylogenetic relationships 31
2.4.2 Divergence time and biogeography 35

3 Phylogeography of the sugar glider (Petaurus breviceps) in Australia 37

3.1 Introduction 37

3.2 Material and methods 39
3.2.1 Population sampling 39
3.2.2 PCR- amplification and sequence analyses 40
3.2.3 Phylogenetic analyses 40
3.2.4 Population structure 42

3.3 Results 42
3.3.1 Variation and distribution of haplotypes 42
3.3.2 Phylogenetic relationships 43
3.3.3 Population structure 44
   3.3.3.1 Mitochondrial region 44
   3.3.3.2 Omega-globin gene 49
3.4 Discussion

3.4.1 Phylogeography and genetic structure 50
3.4.2 Taxonomy 51
3.4.3 Implications for conservation 53

4 Nest box-use, social structure and mating system of *P. breviceps* 55

4.1 Introduction 55

4.2 Material and methods 57

4.2.1 Study area 57
4.2.2 Sampling methods 57
4.2.3 Comparison between small and large patches 60
4.2.4 DNA extraction and microsatellite analysis 60
4.2.5 Parentage analysis and mating system 61
4.2.5.1 Relatedness analysis 63

4.3 Results 64

4.3.1 Nest box occupancy 64
4.3.1.1 Species, Occupancy rate and pattern of use 64
4.3.1.2 Comparison between small and large patches 64
4.3.2 Parentage analyses 69
4.3.3 Mating system 74
4.3.4 Relatedness and kinship 75

4.4 Discussion 78

4.4.1 The effects of patch size on nest-box use, group size and structure 78
4.4.2 Mating system of *P. breviceps* 80
4.4.3 Relatedness and Kin structure of *P. breviceps* 81
4.4.4 Inbreeding avoidance 82

5 Genetic diversity and population structure of *P. breviceps* 84

5.1 Introduction 84

5.2 Materials and methods 86
5.2.1 Study populations and molecular data 86
5.2.2 Genetic diversity 86
5.2.3 Population structure 87

5.3 Results 88
5.3.1 Genetic diversity 88
5.3.2 Population structure 90

5.4 Discussion 92

6 An extension to the known distribution of the squirrel glider (Petaurus norfolcensis) in Australia 95
6.1 Preamble 95
6.2 Introduction 95
6.3 Material and methods 97
6.3.1 Genetic investigation 97
6.3.2 Field investigations 98
6.3.3 Morphometric assessments 98
6.4 Results 100
6.4.1 Genetic investigation 100
6.4.2 Field investigation 101
6.4.3 Morphometric assessments 103
6.5 Discussion 107

7 Concluding discussion 109
7.1 Review of aims 109
7.2 Evolutionary relationships of Petaurus species 109
7.3 Phylogeography and population differentiation within P. breviceps in Australia. 110
7.4 Nest box-use social structure and mating system of *P. breviceps* in fragmented habitats 111

7.5 Genetic diversity and population structure of *P. breviceps* 112

7.6 Limitations of the study 113

7.7 Further research 113

References 116

Appendix 1 137

Appendix 2 139

Appendix 3 159

Appendix 4 168

Appendix 5 170

Appendix 6 188

Appendix 7 195

Appendix 8 208
List of figures

Figure 2.1 Distribution map of the glider species in Australia and New Guinea. ........... 13

Figure 2.2 Current distribution of subspecies of *P. breviceps* in Australia and New Guinea. ................................................................................................................................. 15

Figure 2.3 Phylogenetic relationships of *Petaurus* species in comparison with the representatives from other genera of Petauridae, using Maximum Parsimony analyses of ND2 sequence data. ........................................................................................................ 26

Figure 2.4 Phylogeny of the genus *Petaurus* based on combined mitochondrial ND2 and ND4 genes. ........................................................................................................................................ 27

Figure 2.5 Distribution map of the mitochondrial lineages within *P. breviceps* in Australia and New Guinea. ....................................................................................................................... 29

Figure 2.6 $\omega$-globin gene tree inferred using a partitioned mixed-model in MrBayes... 30

Figure 2.7 50% posterior probability Bayesian consensus tree using all three genes (*ND2, ND4* and $\omega$-globin gene) with model partitioning, implemented in MRBAYES. 31

Figure 2.8 The distribution of morphological subspecies and evolutionary lineages from genetic data obtained in the present study. ................................................................. 35

Figure 3.1 Omega-globin gene tree of *P. breviceps* inferred using a partitioned mixed-model in MrBayes .................................................................................................................... 46

Figure 3.2 Maximum Parsimony tree of combined mtDNA (*ND2* and *ND4*) from *P. breviceps* in Australia. ............................................................................................................. 47

Figure 3.3 Unrooted network of mtDNA haplotypes from *P. breviceps* haplotypes inferred using statistical parsimony and associated nested clade design. ......................... 48

Figure 3.4 Haplotype network of $\omega$-globin gene generated under 95% statistical limit of parsimony. ................................................................................................................................. 49

Figure 3.5 Distribution of the current subspecies of *P. breviceps* in Australia and the two mtDNA clades found in the current study. ................................................................. 53
Figure 4.1 Location of 23 patches surveyed in this study. ............................................. 59

Figure 4.2 Seasonal use of nest boxes by P. breviceps................................................. 65

Figure 4.3 The percentage of the total of nest box checks where a nest box was occupied by at least one P. breviceps individual in five small and five large patches. .......... 66

Figure 4.4 The mean number of individual P. breviceps per nest box in small and large patches. ......................................................................................................................... 66

Figure 4.5 Frequency histogram of the number of P. breviceps inhabiting nest boxes at one time in small and large patches. ............................................................ 67

Figure 4.6 The mean number of reproductively active adult male and female P. breviceps per nesting group in small and large patches.................................................. 68

Figure 4.7 The mean number of juvenile and sub-adult male and female P. breviceps per nesting group in small and large patches......................................................... 68

Figure 4.8 Average coefficient of relatedness of nesting adult individuals in nest groups ............................................................................................................................. 76

Figure 4.9 Average coefficient of relatedness for nesting individuals nesting together. 77

Figure 5.1 Log likelihood probability of data (Ln P(X/K) as a function of K for P. breviceps samples from 16 populations................................................................. 92

Figure 6.1 Distribution map of P. norfolcensis in Australia prior to this study. ............ 95

Figure 6.2 Sketch map of upper south-east of South Australia. ................................. 96

Figure 6.3 Parameters used in morphometric analysis ................................................. 99

Figure 6.4 Neighbour-Joining phylogram from 700 base pairs of ND2 sequenced from four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat. ................................................................. 101

Figure 6.5 The first live suspected squirrel glider in South Australia. ....................... 102

Figure 6.6 Roadside habitat in Western Flat................................................................. 103
Figure 6.7 Bivariate plot of Condylobasal length (CBL) over maximum zygomatic breadth (MZB) for *P. breviceps* and *P. norfolcensis* ................................................................. 105

Figure 6.8 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis for *P. breviceps* and *P. norfolcensis*. ................. 105

Figure 6.9 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis of both sexes of *P. breviceps* ............................................ 106
List of tables

Table 1.1 Conservation status of the Australian gliding petaurids.................................5

Table 2.1 Primer name, Source and nucleotide sequences used for amplification and sequencing of ND2, ND4 and \( \omega \)-globin gene .................................................................18

Table 2.2 Summary of nucleotide substitution models selected for data partitioning using the Akaike Information Criterion in Modeltest version 3.9.................................21

Table 2.3 Comparison of sequence statistics for all three genes used in the study. ....23

Table 2.4 MtDNA (combined ND2 and ND4) sequence divergence between Petaurus species.............................................................................................................................23

Table 2.5 Mitochondrial DNA sequence divergence between P. breviceps clades. ....28

Table 2.6 The estimated age of the Most Recent Common Ancestor already defined of P. breviceps lineages in Australia and New Guinea using the program BEAST...........29

Table 3.1 Summary of nucleotide substitution models selected for data partitioning using Akaike Information Criterion in Modeltest version 3.9........................................41

Table 3.2 Numbers of samples, mtDNA haplotypes and diversity indices of P. breviceps populations across Australia.................................................................44

Table 3.3 Pairwise sequence divergence comparisons between regions in Australia and New Guinea ....................................................................................................................44

Table 3.4 Pairwise F_{ST} values for the populations of P. breviceps in Australia, using an analysis of molecular variance (AMOVA).................................................................445

Table 4.1 Size, ownership and location for 23 native forest patches surveyed in the current study ...................................................................................................................58

Table 4.2 Primer sequences, annealing temperatures and source of the nine polymorphic microsatellite loci used in screening of P. breviceps samples........................................61

Table 4.3 Number of adult male, female and offspring P. breviceps sampled from 12 populations....................................................................................................................63
Table 4.4  Species recorded using nest boxes, and the number of patches and nest boxes in which animal species were detected. ................................................................. 65

Table 4.5 Frequency of the various combinations of adult sugar gliders nesting together in nest boxes in five small patches and five large patches................................. 69

Table 4.6 Result of parentage assignments for juvenile and sub-adults sampled in this study by calculation of the most likely male and female parents. ................................. 71

Table 4.7 Pairwise relatedness values for the most likely mated pairs from one small patch, two larger patches and a continuous forest ......................................................... 78

Table 5.1 Summary statistics of genetic diversity for P. breviceps in south-eastern South Australia............................................................................................................... 89

Table 5.2 Pairwise F_{ST} and probability values based on 10000 permutations between each pair of populations sampled in this study. .................................................. 91

Table 6.1 Pairwise distances between four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat........................................ 101

Table 6.2 Average and range of CBL: MZB ratio for P. breviceps and P. norfolcensis.......................................................... 104

Table 6.3 Average skull parameters and summary statistics for P. norfolcensis and P. breviceps .............................................................................................................. 106
Declaration

I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief it does not contain material that previously published or written by any other person, except where due reference has been acknowledge in this thesis. I give consent to this copy of my thesis being available for loan and photocopying.

Mansoureh Malekian

Date
Abstract

The gliding petaurids are small sized arboreal and nocturnal marsupials restricted to Australia and the New Guinean region. They have suffered range contractions since European settlement, and most of the species are of conservation concern, either nationally or at a state level. This study applied molecular approaches to investigate several questions involving Petauruis species which may provide valuable insights for their conservation and management of species. The objectives of this study included an examination of phylogenetic and evolutionary relationships among Petaurus species, an assessment of phylogeographic structure within P. breviceps and an investigation of genetic diversity, social structure and mating system of P. breviceps in fragmented habitats.

A broad molecular systematics study of the genus Petaurus was first undertaken. Two mitochondrial genes (ND2 and ND4) and a nuclear gene marker (ω-globin) were screened for sequence variation in samples obtained from across the distribution of petaurid species, including Australia, New Guinea and its surrounding islands. Phylogenetic analyses confirmed the monophyly of the genus Petaurus and revealed that, with the exception of P. gracilis, the currently recognised species were associated with divergent mtDNA clades. It also revealed considerable mtDNA diversity within the widely distributed species P. breviceps. The existence of at least seven distinct and divergent mtDNA lineages within P. breviceps was supported, with two lineages located in Australia and at least five lineages in New Guinea. However, the distribution of these evolutionary lineages did not correspond with current morphological subspecies boundaries. Analyses of ω-globin sequence provided support for a number of these distinct populations, suggesting the possible presence of cryptic species within P. breviceps. Molecular analyses also suggested that squirrel gliders, P. norfolcensis, may occur in both South Australia and the Northern Territory, extending the current known range of the species. The presence of P. norfolcensis in SA was further verified by examining museum skins.

Population structure and current pattern of gene flow within P. breviceps in Australia was examined further to elucidate phylogeographic structure within the species, and explore potential causes of geographic variation. Evidence for significant phylogeographic structuring across the range of the species in Australia was provided
from population genetic (AMOVA) and phylogenetic analyses of both mitochondrial DNA and the \(\omega\)-globin gene. In particular, there was evidence for the existence of two divergent clades that were distributed over distinct geographical regions. Divergence dates calculated for the two major mtDNA clades suggested that environment and climate changes which occurred during the Pliocene may have facilitated this diversification.

Habitat fragmentation is generally considered to be a major factor threatening the viability of forest dependent species such as gliders. Effects of habitat fragmentation were therefore investigated in *P. breviceps* in the highly disturbed landscape of southeastern South Australia. Genetic mating system and social structure of the species in these fragmented habitats was explored in 13 populations, using nine polymorphic microsatellite loci. Social groups consisted of two to seven gliders, and these were often close relatives, including parents with their offspring. Parentage analyses provided some evidence for a polygamous mating system, with a number of males found to have fathered offspring from multiple female partners. Some direct evidence of inbreeding was also found within a small isolated patch. Genetic diversity within *P. breviceps* populations was moderate compared to the range reported in other marsupial species. Population structure analyses indicated that gene flow between some patches was restricted. Small patches surrounded by a matrix of pine were more likely to show inbreeding and potentially suffer from inbreeding depression, although further data are required to verify this result. Overall, results suggest that, although the species is still present in these small and isolated patches, it may face threats from a lack of dispersal and inbreeding. Maintaining the size of patches and establishing corridors between isolated populations needs to be considered in conservation and management of species in these fragmented habitats.
Acknowledgments

This thesis and the work that it represents is not representative of my own effort alone, I need to acknowledge a multitude of people who have helped me through this journey.

First and foremost, I would like to thank my supervisors Dr Susan Carthew from the University of Adelaide and Dr Steve Cooper from the South Australian Museum for their ideas, supports, critical discussions and encouragement throughout the project. Without their continued intellectual encouragements and tireless editing skills this thesis would not be in the form it is in.

I am also grateful to those people who assisted me in the field in trapping, erecting nest boxes and collecting samples in the south-east of SA: Key Richardson, Michelle Le Duff, Darryl Funnell, Meredith Brown, Benjamin Parkhurst, Josh Griffiths, and all volunteers who got to haul the ladder around the bush. I wish to thank Troy Horn from Forestry SA for his assistance with sampling nest boxes in Deadmans Swamp forest and providing me with digital maps of Native Forest Reserves in the south east. I also thank Justin Cook (Department of Sustainability and Environment, Victoria), Mark Bachman (Department for Environment and Heritage, South Australia) and private land-holders in south-eastern South Australia including Mr. and Mrs. Hill, the Paltridge family, the Peucker family, Mr. Bourne, Mr. Yeates and Mr. Mulligan who allowed access to their properties for this study.

I would like to express my gratitude to the following people and museum curators for providing the samples and specimens used in this study: Dennis O'Meally, Karen Gray and Sandy Ingleby (Australian Museum), David Stemmer and Cath Kemper (South Australian Museum), Claire Stevenson (Western Australian Museum), Gavin Dally (Museum & Art Gallery of the Northern Territory), Rory O'Brien (Museum Victoria), Heather Janetzki (Queensland Museum), Dan Harley, Trish Kendal, Andrea Taylor, Rodney van der Ree and Alexandra Pavlov. I also thank Kathy Saint, Leanne Wheaton and Terry Bertozzi, for their laboratory assistance and Mike Gardner for his help with microsatellite analysis.

This research has been supported and funded by various organizations, including the Wildlife Conservation Fund in South Australia, ANZ Holsworth Wildlife Research
Fund, Mark Mitchell Foundation, Hancock Victorian Timber Plantations, The University of Adelaide and South Australian Museum

I was fortunate to be a part of the Department of Ecology and Evolutionary Biology in the School of Earth and Environmental Sciences and the Evolutionary Biology Unit, where I met friendly and helpful people, both their staff and the students. I would like to thank Sue’s postgraduate students, both past and present, for their friendship and assistance in many ways over the years. All members of EBU contributed to my study through discussion groups and through friendship while sharing labs and office space.

Finally, I owe a special debt of gratitude to Reza for his support and help in the field and at home. I cannot express how much your love and support meant to me and gave me strength to complete this study.