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1.1 The Fundamental Models

This thesis provides a general methodology for classifying and describing many combinatoric prob-

lems, systematising and �nding theoretical expressions for quantities of interest, and investigating

their feasible numerical evaluation.

Our knowledge of random allocation theory is extended. This is achieved by investigating

new processes, generalising known processes, and by providing a formal structure and innovative

techniques for analysing them.

The random allocation models described in this thesis can be classi�ed as either occupancy urn

models as de�ned by Gardy [37, 2002], or a new occupancy urn model, both of which will now be

described in a broadbrush fashion � the details will be left till later chapters.

In the former, we have a sequence of urns and throw balls into them at random, and either look

at the �nal con�guration or throw the balls in one by one at random and consider the sequence of

con�gurations. In the latter, we have a sequence of urns and throw balls into them one by one at

random and measure the wait until the appearance of a speci�ed con�guration occurs after or at
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the same time as an initial speci�ed con�guration occurs. Emphasis is placed on the new occupancy

urn models, which are formally named 	-processes in Chapter 3 on The Random Processes; and

whose basic model produces a numerator in the probability distribution that is termed a 	-number.

These three models are referred to as static, dynamic and waiting-time models (or processes),

respectively. Some of the associated models are generalised to allow for a number of balls to be

thrown into one or more urns. Numerous other variations and generalisations are also investigated,

with many of these incorporating the same form of the numerators as occurs in the basic 	-

processes.

Examples for the �rst of these models are Sock-Matching (Friedlen [34]) and Estimating the

Abundance of Wildlife (Finkelstein [31]), which are described in Sections 2.6 and 2.25, respectively.

Examples for the second include investigating the maximum room required during sock-sorting

(Steinsaltz [79]), which is described in Section 2.6, and investigating the maximum room required

for cakes in the new Cake Display Problem, which is described in Section 2.7. Examples for the

third are Queueing in Lanes (Henderson, Kennington and Pearce [45] and [44] titled A Second

Look at a Problem of Queueing in Lanes and Stochastic Processes and Combinatoric Identities,

respectively) and The Coupon-Collector�s Problem (Feller [29]), which are described in Sections

2.2 and 2.3.1, respectively.

Emphasis is placed on without-replacement sampling for all three models. With-replacement

sampling is investigated only for the new waiting-time model. The former has dependent arrivals

and the latter has independent arrivals. One way to look at the without-replacement process is to

consider only state changes in a with-replacement process; for example, in The Coupon-Collector�s

Problem one might only count coupons that are new.

There are two views of the processes that are investigated here: the macro-view and the micro-

view, with emphasis on the former. The macro-view considers the probabilities of a state occurring

after one or more balls have been thrown into one or more urns. The micro-view considers the

probabilities of transitioning between one state and another as a consequence of throwing one

or more balls into one or more urns. The macro-structure is investigated by determining the

distributions and moments for the static, dynamic and new waiting-time models, and measuring

the maximum possible wait and the total wait for new waiting-time process. The micro-structure

is investigated by use of Markov Chains; it is also shown how to determine the properties of the

macro-structures from them.

Although this thesis focusses primarily on precise formulations, it also investigates limit theo-

rems and approximations.
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1.2 State of the Discipline and Field of Study

Remarkably little has been done in this �eld of study. To avoid duplication, we provide only a

brief outline here of the material that has been generalised and leave the details to Chapter 2 on

Descriptions of Applications, Related Theory and Known Results.

The major component of this thesis is associated with 	-processes. It was the author created

the concepts of these processes and who began the formal study of this �eld. He published joint

papers on the beginnings of the subject with Henderson and Pearce ([45], [44]). The article by

Hauer and Templeton [43], which is described in Section 2.2.1, used an ad hoc method for a very

simple case that does not provide an easy way to generalise the simple result.

In their model, the urns are cars and these cars have a speci�ed �xed location relative to

each other. As a consequence of abstracting their model and generalising it, their formulae, in

particular, and all generalisations and variations of them, are made applicable to models in which

there does not need to be a physical relationship between the positions of what the urns represent.

The distribution for the without-replacement static model (Section 6.20) is trivial and well-

known. The expected number of pairs of socks on the table and completed pairs is well-known;

see Section 2.6 for a description and examples related to Bernoulli�s Marriage Problem and Sock-

Matching with Multi-Legged Beings.

1.3 Theoretical Techniques

The main techniques used are listed here. Throughout the text, the main techniques used are the

counting techniques of combinatorial analysis. These are used to provide the initial probability

distribution functions. Existing and new combinatorial identities are used to convert expressions

to alternative forms. Reference is made to Feller [29, 1968] for combinatorial and other results

and techniques wherever possible. A recent book by Charalambides [19, 2002] on enumerative

combinatorics provides an up-to-date version of some parts of Feller�s book, together with some

di¤erent material; it includes generalisations, up-to-date theory, more-recent concepts, and new

examples. It contains an extensive and very useful bibliography. However, it does not o¤er anything

that would change the way things are done in this thesis.

The Calculus of Finite Di¤erences (Jordan [47]) is used to convert the initial form of the

new without-replacement process to a more-useful and more-e¢ cient form. In order to accomplish

the most important generalisations, a new kind of principle of inclusion and exclusion has been

discovered and used.
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In order to provide computationally more-e¢ cient forms of the distribution functions, summa-

tion by parts and also generating functions of two complex variables have been used; the latter also

includes the use of Newton�s Binomial Formula, Leibnitz�Theorem and Osgood�s Lemma. The use

of computational engines to automatically convert some of the main combinatorial expressions to

simpler forms is shown to be entirely unsuitable.

The property of linear independence of a collection of functions is used to write complex

expressions as a unique linear sum of those functions. This is referred to as decomposition.

The ability in certain circumstances to remove some sets from the calculations without altering

the result reduces the number of terms in some distribution formulae. Removing all such sets

produces a minimal covering. This reduces the number of calculations required.

Generating functions are also used when they are useful for determining counts in applications.

To �nd approximate values, various tools have been used. It was expected that Bonferroni�s

Inequalities would be useful. However, we show that these are useless for the models described

here. An attempt to use the incremental inclusion of sets of interest also proves to be fruitless.

Maximum Likelihood Estimation is used to determine the most-likely value of one parameter in

a distribution, given the others. For one model, various properties of continuous and di¤erentiable

real functions are used to derive the maximum value, including the Intermediate Value Theorem.

Markov chains are produced and their characteristic polynomials are determined. In examples,

their corresponding eigenvectors are provided.

Graphs have been used to illustrate the behaviour of certain distribution functions, especially

when the result is surprising.

To prove the formulae for the total maximum wait in special cases of the without-replacement

waiting-time process, an adaptation of a technique used in optimisation theory is employed. It

also uses the fact that any permutation on a set of numbers may be represented as a �nite product

of transpositions, to argue points for the whole arrival stream based on the results for certain

transpositions.

Moments for the basic waiting-time distributions have been determined by �rst �nding the

rising factorial moments. The rising factorial moments for the more-general distributions use the

linearity property of the expectation operator. Indicator functions are used to determine the mean,

variance and covariance for the platoon size problem in Section 11.5 and the means and variances

for the Measures of the Dynamic State of Disjoint G-Sets in Section 11.6; the form of the indicator

functions is a little more general than has been seen elsewhere. The formula for the variance of a

sum in terms of the sum of variances plus twice the sum of covariances is used.
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Counting the numbers of operations involved in formulae is done by both analysis and a com-

puter program.

To calculate numerical values, computer programs have been written in BASIC, Delphi (which

is essentially object Pascal), MuPad, and the Maple engine that is embedded in Scienti�c Work-

Place.

The more-complex applications, such as the 2-D Gap Problem of Section 13.5, require extensive

modelling before the theory can be applied. Trees for paths in a network are produced for some

examples.

A di¤erent use of the probability distributions is in testing the randomness of a sequence of

events. It is usual in inferential statistical theory to have a known distribution for a given set

of observations and under some assumptions that are speci�ed in a null hypothesis, test the null

hypothesis against an alternative hypothesis. For example, Kolchin, Sevast�yanov and Christyakov

[50], apply their distributions to the testing of the randomness of a process.

The distributions presented here may provide another method of testing randomness. We

provide several tests, including a �2 test. These are described further in Section 2.12 and applied

in Chapter 16.

One application is to testing the randomness of random number generators. Another is to test

the randomness of the digits in the transcendental number �, which we do using the Bird-Watcher�s

Test in Section 16.4.3; this test is based on the new with-replacement waiting-time process.

1.4 Alternative Expressions and Computational Improvements

This thesis provides not only theoretical results, but also provides investigations into calculating

probabilities, moments and Markov Chains. As a consequence, it was necessary to develop the

theory further in order to determine results in a much-reduced time-period. This enables precise

results to be calculated for much larger problems than the initial formulae enabled.

There are some alternative expressions for formulae that have been produced, in order to

speed up the calculations and also to enable the determination of much simpler forms for the

rising factorial moments; they are also more appealing due to their relative simplicity. These

alternative formulae are referred to as either simpli�ed or reduced formulae or expressions. Some

of these expressions are far more complicated in immediate appearance, but are still referred to as

simpli�ed, because they allow �nding closed-forms for the sum that produces the rising factorial

moments and because there are orders-of-magnitude fewer calculations to perform. In at least

one without-replacement case, this o¤ered reductions in processing time of at least three orders
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of magnitude. In a with-replacement case involving coupon-collecting, the reduction by using the

somewhat complicated converted expression for the expectation yields six orders of magnitude

improvement in speed, compared to calculating the expectation directly from the initial expression

for the distribution.

Producing the decomposition formula, which is mentioned in the previous section, can reduce

the number of calculations signi�cantly by providing a formula for the probability distribution that

is a linear combination of a function whose values can be stored in a lookup table.

Determining a minimal covering, also mentioned in the previous section, reduces the number

of calculations required by a colossal amount in some applications, as will be demonstrated.

1.5 Computational and Numerical Aspects

By providing alternative expressions as described in the previous section, the size of a so-called

small problem is increased. That is, the increase in running time due to an increase in problem

size is minor compared to the decrease in running time due to using the alternative expression.

With the steadily increasing speed of computers, precise results can be determined for a further

increase in the size of a small problem. However, there are other issues when calculating values

for some of the distributions and moments that have been determined in this thesis.

Sometimes an application has parameters that make it too large a problem to determine exact

numerical results for. In such cases it would be useful to have approximate or asymptotic formulae.

One of the ways of approximating the principle of inclusion is by use of Bonferroni�s Inequalities

or the improved Bonferroni inequalities of Dohmen [25]. This is discussed in Chapter 4. However,

these do not provide useful bounds for probabilities determined herein. This is discussed in detail

in Section 4.3 with an additional example in Section 6.12.2 on Using Bonferroni�s Inequalities.

Chapter 4 also includes a discussion of Size of the Numbers Involved in Section 4.6, Number

of Calculations in Section 4.5, Digits of Accuracy in Section 4.7 and Processing Time Required in

Section 4.8.

Much work in the area of random allocations centres on �nding asymptotic results under

various conditions; for example, see Kolchin, Sevast�yanov and Christyakov [50] and Steinsaltz

[79]. However, in many situations these results do not apply well to real applications in which

the numbers are small; for example, this applies to sock-sorting. Here, we �nd some asymptotic

expressions and compare asymptotic results with precise calculations.

Odlyzko [64] in Asymptotic Enumeration Methods provides a systematic analysis of many as-

ymptotic and precise methods for combinatorial enumeration. This includes identities, estimates
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in terms of integrals, summation formulae, the inclusion-exclusion principle, generating functions,

complex analytical functions, subtraction of singularities, recurrence relations, Gosper�s algorithm

(Wilf [87]), formal power series, Chebyshev�s Inequality, Tauberian Theorems and many more.

Odlyzko has also collected together many interesting examples in one place, including coins in a

fountain, rooted labelled trees, Bell numbers, partitions with bounded part sizes, runs of heads in

coin tosses and Stirling�s Formula. Several of these ideas are used here, but none of the approxi-

mation formulae or identities are used.

1.6 General Comments

Although some mathematical concepts and techniques are theoretically interesting in themselves,

this thesis provides applications and examples to illustrate how these concepts can be applied

to problems that either have been observed in the literature or created as models of physical

phenomena. In addition, some examples have been invented to illustrate how the theory can be

applied to certain problems that at �rst seem to be intractable due to the complexity of the problem

or incalculable due to the number of cases involved. The former is illustrated by the game SET

(Section 2.8.3). The latter is illustrated by the 2-D Zig-Zag Problem (Section 2.9.1), which can be

simpli�ed by manipulating its inherent structure to make it suitable for applying a result that is

published here for the �rst time.

This result is referred to as the Fundamental Formula as it is both fundamental to the de-

termination of distributions and moments for non-trivial cases and fundamental in the sense that

it is a crucial piece of knowledge in the theory of the new waiting-time models described here.

The Fundamental Formula is decomposed into a form that in certain cases greatly simpli�es the

expressions for the distribution and the rising factorial moments, and provides a formula that can

be calculated in a reasonable time. This decomposition formula provides the distribution as a

linear combination of what may be considered to be the building blocks of the process, which is a

pleasing theoretical development.

In order to satisfy the aim of providing a purist approach to the mathematical development,

which ensures its generality, this thesis separates general theory from applications. However,

some of the applications require the development of further theory, which, although is speci�c

to their domain, provides techniques that may be applicable to a wider domain. For example,

Queueing in Lanes (Section 2.2), the 2-D Zig-Zag Problem (Section 2.9.1) and the 2-D Gap Problem

(Section 2.2.12) require di¤erent approaches when modelling them and calculating numerical values

for them. In fact, in the analysis of the 2-D Gap Problem, we see how the distribution for a
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quite complex problem may be reduced to a simple formula whose limits in the summations are

independent of the total number of cells, and whose form is the decomposition formula, which is

both derived from the Fundamental Formula for one case, and determined for all cases ex nihilo

by an alternative, combinatoric argument.

For a complete list of major accomplishments, see Section 17.2.

1.7 The Joy of Mathematical Research

Professor Stephen William Hawking performed many calculations to determine the entropy of a

black hole and con�rmed Jacob David Bekenstein�s conjecture that it is given by

SBH =
kA

4l2P
, (1.1)

where A is the black hole�s area, k is Boltzmann�s constant and lP =
p
G=c3:is the Planck length,

where G is the gravitational constant and c is the speed of light in a vacuum. Professor Hawking

and others remarked that it must be right because it is so simple.

However, Sir Isaac Newton, who was the Lucasian Professor of mathematics at the University

of Cambridge prior to Professor Hawking, also had a simple formula, that for the gravitational

attraction between two bodies, and this formula was shown by Albert Einstein to be inaccurate

under extreme conditions.

The kind of mathematics involved herein is not of this kind. It has been created once and for

all time. This is a very satisfying.

In both cases, the formulae were appreciated for some kind of innate beauty. During the

investigations for this thesis, there has sometimes been remarkable elation when, after weeks or

months of toil, a result appears that is simple and beautiful. Sometimes, it is worthwhile sitting

back and admiring such simplicity in nature.

The �rst of these occurred for the initial generalisation of the Hauer-Templeton parking model

[43] to allow bi-directional exits; see Section 11.2.9.1. After hundreds of thousands of formulae and

manipulations, the �nal result, a mean, was so simple that the thought was that it must be right.

This was also a time of great joy, for it was realised that this was the beginning of something far

greater.

There were several small leaps forward during discussions with his supervisor, but a great rush

occurred when the author provided the generalisation to an arbitrary number of directions, which

is now termed the Fundamental Formula; see Section 6.7. Much later, the fundamental reason
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for this appeared as a �ash of insight; see Section 5.3. The abstraction away from lines brought

more excitement, for this meant the theory could be applied more generally. The fact that the

more-general formulae could be written in terms of the single-set model, allowed the formation of

the idea of writing them as a unique linear combination of them, and this was a joyous occasion;

see Section 6.9.2. Determining the platoon size distribution, which was one of the many problems

the author was told he could not do, was a joy to complete because of the direct challenge in

addition to obtaining the result itself.

All of the work on with-replacement 	-processes was hard work, with little insight involved,

and the reduced formulae are not pretty, although albeit more e¢ cient. One could describe the

emotion after months of e¤ort on these processes as relief ; not joy.

The game SET is an enjoyable, challenging mathematical game; see Section 2.8.3. To be able

to apply the theory to a game was a joy in itself. However, when the expected length of time a card

would remain unmatched with previously-dealt cards was determined, the simplicity of the result

was astonishing and generated a sense of the beauty nature has; see Section 13.7.3. In car-parking

terms, this model has 40 exit paths, and therefore may be considered to be 40-dimensional. This

makes the result seem even more remarkable and provides a sense of real accomplishment. Being

able to apply the batch-arrival model to the game SET also brought a pleasant feeling, as there

weren�t any other obvious applications at the time of developing that part of theory.

Not being that interested in optimisation theory as an undergraduate student, made the next

joyous occasion more of a rush and increased the sense of accomplishment. To determine the

maximum total wait in the bi-directional car parking model seemed to be a trivial task � but

proving it was a challenge; see Section 11.1. Many di¤erent techniques were tried and failed. One

night while going for a regular walk (in order to walk one million steps in a year), the whole solution

suddenly appeared, and, strangely, some of the words appeared in the language and pronunciation

of the optimisation theory lecturer, Dr Franz Salzborn, whose classes had been taken 26 years

earlier. There was nothing in those lectures directly related to the solution, but somehow several

ideas were put together to produce it. It also included a piece of knowledge from a second-year

pure mathematics class on writing permutations as tuples.

Another exciting moment was the creation of the Cake Display Problem, especially when mul-

tiplicities were introduced; see Section 2.7. It was supposed to be a natural generalisation the

sock-sorting problem, but instead turned out to have some quite di¤erent properties. When the

graph of expected numbers of slices on display showed two local maxima, one could describe the

feeling as sheer elation. The graph also has some appeal to it; see Section 11.6.6. At the time, the
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author was eating cake at various cafés and often wondered how long an entire cake would be on

display.

After converting an expression to an alternative form, one hopes that there will be some bene�t.

One doesn�t know for certain what these might be. In some cases, the computational gains made

are so huge that one can deservedly feel great satisfaction.

There are many other moments of joy and elation, but the above covers the main moments,

and also provides an introduction to the main theoretical ideas and practical models that appear

in this thesis. Many of these appear in remarks throughout the thesis.
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2.1 Introduction

Although the probability theory and related theory developed in this thesis stands on its own

merit, without some applications one might perceive that they are limited in scope. In addition,

it is through the application of the theory that one gains an understanding of its nature, discovers

problems or gaps in pre-existing theory, is forced to consider computational aspects, and discovers

that new theory is required to solve issues discovered whilst applying the theory.

Prior to the author developing the theory of 	-processes, only one known application existed in

the literature, and that is a very simple model of parking in lanes that was analysed in an ad-hoc

fashion.

Some of the areas of application described in this chapter already exist. Here, however, new

questions are asked about them. We provide some interesting formulae related to these applications

for completeness of references and knowledge about them, and also to illustrate the di¤erences

between techniques and formulae that are known and those that are produced here.

There are several new areas of application described. These ful�ll the need to increase the

scope of application, provide an application for theoretical models that are variations of existing

models, provide reasons for considering computational aspects, and to feed the imagination.

The applications are discussed in approximate order of a mixture of historical, theoretical and

practical importance, with the most-relevant appearing �rst.

2.2 Queueing in Lanes

2.2.1 E. Hauer and J.G.C. Templeton (Parking Lot Design)

The models discussed by Hauer and Templeton [43, 1972] solved the simplest version of the without-

replacement 	-process, albeit in an ad hoc fashion. A part of their abstract is provided here. They

13
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presented a queueing model

: : : in which delay stems from a disparity between the order at which service is provided

to customers and the order at which they may leave the system. Consider, for example,

wives waiting in cars � in single �le � for the arrival of their husbands by a common

train. A car is ready to leave when its passenger takes his seat but may have to wait

for the departure of all cars preceding it in the lane.

The authors considered both the single-queue problem and the consequences of splitting the

queue into several parallel queues. They applied the results to measuring the trade-o¤ between

the ability for cars to leave immediately and reducing the size of a parking lot by parking cars in

a di¤erent fashion as follows.

In the standard sport event car park, cars park in pairs with their front bumpers facing each

other. When the occupants arrive, they may depart immediately by either reversing from their

parked position or by driving forward. The latter can only occur if there is no vehicle parked in

front of them. A parking space is called a stall. Hauer and Templeton considered that a car may

not leave if the stall in front of them is empty. They also considered only one independent arrival

per car.

The reduction in the overall size of the parking lot is achieved by doubling the size of a stall

to allow two cars in a stall, or making it s � 1 times the size so that s cars can �t in a stall. This

increases the density of cars in the car park. However, cars that have cars behind them still, once

the occupants have arrived, must wait for the occupants of the cars behind them to arrive before

being able to reverse out.

With respect to the splitting of queues, the authors remark:

On the face of it, the complexity of the combinatorial structure is compounded. Yet,

complete description of the probability function follows easily from the results of the

preceding discussion.

Once the model is extended to allow cars to reverse out as well as drive forward, the probability

function for the case of split queues no longer follows easily from the single-lane model. The models

described in this thesis that include this model as a special case do not follow from their results

and are far more complex. However, as will be seen, the new theoretical framework developed here

makes it trivial to determine the probability distributions for some of these.

Here is a description of Hauer and Templeton�s basic model, followed by a formulation of the

parking lot model and their main technique and results. This uni-directional model is referred to

14
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here as the HT model.

Suppose N vehicles are arranged in lanes and are parked in such a manner that any vehicle can

depart only when all those in front of it in its lane have departed. N people arrive in sequence and

each proceeds to their own vehicle. The arrival sequence constitutes a discrete uniform distribution

on the N ! possible outcomes. If the vehicles ahead of their own in their lane have already departed,

a driver departs at once. Otherwise they wait until these vehicles have received their drivers and

have departed, upon which they depart. Interest is in the following question. Given that a vehicle

is jth in a lane of s vehicles, what is the distribution of the number of further arrivals for which

its driver must wait before being able to depart? A typical application would be to the design of

a large parking lot at a sports stadium. Here the designer of the parking lot could wish it to be

as compact as possible, and at the same time compatible with the delays su¤ered by drivers not

being excessive.

They observe that while this is a �queueing problem�, it does not seem to �t naturally into the

standard queueing literature. The formulation provided herein allows us to categorise this model

and its generalisations as completion time (�rst passage time) problems for a particularly simple

type of stochastic process.

Speci�cally, there are t lanes with si cars in lane i, i 2 f1; : : : ; tg with N =
Pt

i=1 si. The driver

for the jth car in the ith lane can depart when the drivers for the cars in the ith lane in positions

1, : : :, j have arrived. Hauer and Templeton observed that extending the case from t = 1 to the

case t � 1 was trivial and the distribution was identical as for the case t = 1.

Hauer and Templeton derive a solution to this problem, and �nd a useful approximation for

practical purposes for the mean total wait for all drivers, namely

E [W ] � N + 1

2

 
N + 0:846t� 2 ln

tY
i=1

(si + 1)

!
. (2.1)

To avoid the possibility of a very large number in the product, we prefer to write it as

E [W ] � N + 1

2

 
N + 0:846t� 2

tX
i=1

ln (si + 1)

!
. (2.2)

Hauer and Templeton quanti�ed the duration of waiting by assuming that inter-arrival times

between all pairs of consecutive arrivals have a mean value H. They investigated the expected

total waiting time for all arrivals and for individuals. Details are provided in Section 13.2.5 on

Waiting Times and Section 13.2.6 on Parking Lot: Comparison of Delays.
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2.2.1.1 Hauer and Templeton�s Derivation of the Distribution for t = 1 and the

Moments

For the case t = 1 the method as well as the results are included. This is because this thesis

is also about methods, and the reader might �nd Hauer and Templeton�s method useful. It also

demonstrates how di¤erent the current approach and results are.

The authors use pj = k to mean that the passenger for car j occurs as the kth passenger in the

arrival stream, and declare that the number of passengers for the arrival of which the passenger of

car j has to wait before departing is given by

Nj = max (p1; : : : ; pj)� pj . (2.3)

They �nd

P (max (p1; : : : ; pj) = m; pj = m) =
1

j

�
m�1
j�1
��

N
j

� for m = j; : : : ; N , (2.4)

P (pj = kjmax (p1; : : : ; pj) = m; pj 6= m) =
1

m� 1 , (2.5)

and for k = 1; : : : ;m� 1, m = j; : : : ; N , j = 2; : : : ; N ,

P (max (p1; : : : ; pj) = m; pj = k) =
1

j

�
m�2
j�2
��

N
j

� , (2.6)

and therefore

P (Nj = r) =
N�rX

k=max(1;j�r)

1

j

�
k+r�2
j�2

��
N
j

� , (2.7)

so that for r = 1; : : : ; N � 1, j = 2; : : : ; N ,

P (Nj = r) =
1

j

PN�j
s=0

�
s+j�2
j�2

�
�
Pr�j

s=0

�
s+j�2
j�2

��
N
j

� (2.8)

=
1

j

�
N�1
j�1
�
�
�
r�1
j�1
��

N
j

� (2.9)

=
1

N

 
1�

�
r�1
j�1
��

N�1
j�1
�! . (2.10)

For r = 0,

P (Nj = 0) =
1

j
for j = 1; : : : ; N . (2.11)
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They found the cumulative distribution to be

P (Nj � R) =
1

j
+
R

N
� 1

N

�
R
j

��
N�1
j�1
� for R = 0; : : : ; N � 1, (2.12)

and the rising factorial moments to be

E
�
[Nj ]`

�
=
(j � 1) (N + `)!

(`+ 1) (j + `)N !
, (2.13)

from which the mean and variance were derived and written as

E [Nj ] =
N + 1

2

(j � 1)
(j + 1)

(2.14)

and V ar (Nj) =
N2 � 1
12

� (N � j) (N + 1)

(j + 1)2 (j + 2)
. (2.15)

2.2.2 Parking Lot Design with � Arrivals for a Vehicle

In 1981 the author solved the problem of � arrivals for a vehicle, and together with William

Henderson and Charles Pearce published the result along with related (and other) investigations

in 1982 ([44]).

2.2.3 Parking Lot Design with Bi-Directional Exiting

In 1981 the author solved the problem of bi-directional exiting; publication details are provided in

the next section.

For this model of the parking lot, consider the facing pairs of abutting stalls to be a single

stall and allow cars to drive both forward and in reverse. The former consideration allows one to

consider any number of cars per original pair of stalls instead of just even numbers.

Speci�cally, there are t lanes with si cars in lane i, i 2 f1; : : : ; tg with N =
Pt

i=1 si. The driver

for the jth car in the ith lane can depart when the drivers for the cars in the ith lane in either

positions 1, : : :, j or positions j, : : :, si have arrived.

2.2.4 Parking Lot Design: Multi-Directional Exiting

It was soon after the author solved the problem of bi-directional exiting in 1981 that the author

solved the problem of multi-directional exiting. It was during a meeting with his supervisor,

William Henderson, when the author produced the current form of the distribution for multi-

directional exiting in Theorem 6.28; this is now referred to as the Fundamental Theorem of 	1-

17



Descriptions of Applications, Related Theory and Known Results 18

2.2. Queueing in Lanes

Processes.

The abstract set-theoretical reason for this was determined and proved by the author in 2001,

and now appears The Principle of Inclusion and Exclusion for the Mini-Max in Theorem 5.12. It

was at this time that the aforementioned name for the theorem was coined.. The original form

of this theorem appeared in 1984, together with related investigations, in a paper by Henderson,

Kennington and Pearce [45]. These investigations included applying the results to the car parking

model of Hauer and Templeton and comparing the consequences of allowing bi-directional versus

uni-directional exiting.

2.2.5 Parking Lot Design: Platoon Size

Another aspect of sizing a parking lot is the number of cars that will be arriving at the exits

simultaneously. Here we model the number of cars that leave each time a driver arrives, and

determine the mean and variance of the platoon size as a special case of a more-general model.

2.2.6 At a Movie Theatre

This is real example of the HT model.

Consider cars parked in an alley1 that is so narrow that even the doors cannot fully open, let

alone cars can pass each other. Suppose the occupants of the cars park them in the narrow alley in

order to watch a movie at a movie theatre. When the movie ends, the patrons will arrive at their

cars in a random order and will only be able to depart when those in front of them have departed.

2.2.7 Random Servicing of Vehicles in Lanes

This model is similar to the HT model, but the drivers do not constitute the arrival stream and it

allows for a with-replacement process.

Suppose there are vehicles queued in a lane so that vehicles can leave the lane only if the

vehicles in front of them have also left. Vehicles may leave once they have been serviced. Suppose

that the vehicles are being serviced in a random order and we wish to determine the number of

vehicles the driver of each vehicle expects to wait for, measured from the time his/her vehicle has

been serviced.

If each vehicle is being serviced once then we have a without-replacement process. If multiple

services are possible then we have a with-replacement process. The latter may occur, for example,

if the person servicing the vehicles has no memory of which cars have already been serviced.

1This example was provided by Charles Pearce in a private communication, having experienced it �rst-hand.
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2.2.8 School Bus Lane

At a school, 6 school buses drive up to a special parking area that is wide enough for only one

bus, and are waiting for their passengers. At the bell, children arrive in a random order for their

buses, with the number of children for each bus known in advance.

A bus�driver wants to know how long the wait will be, once all that bus�passengers have

arrived. The �th arrival for a bus wants to know how long the wait will be.

2.2.9 District Postal Service

Consider a postal service that has a van in a remote region. Suppose there are N parcels to be

posted by N di¤erent people and the van departs when all items have been received2. One might

be interested in the time it takes to �ll the van measured from the time one�s own parcel is placed

on the van. This is the most trivial example exhibited, with the probability of waiting for k parcels

trivially being P (T = k) = 1=N for k 2 f0; 1; : : : ; N � 1g. See Section 6.4.7 for details.

2.2.10 Remote Bus Service

When in England in 1981, the author met a Chilean who told of a bus service in which the buses

wait until they are full before they leave, and that one must take several days worth of food and

water for the wait. The tickets are generally bought in advance, but there is no time limit on when

to use them; let�s suppose within a few days.

Consider the bus to have N seats for the N people with tickets. A passenger might be interested

in the expected waiting time prior to arriving at the bus. This is equivalent to the District Postal

Service, which is described in Section 2.2.9. Here, the model is precise, as the ticket-holders are

known in advance.

2.2.11 Wheat Board Parking Lot Problem

This is a real physical example of HT�s parking lot design model. A company with limited parking

space for its employees at one of its o¢ ces, had a car park that was operated as follows. The car

park was a rectangular block with a fence on two sides and a wall on the other. The open side

provided the only entrance and exit; this is referred to as the front of the parking lot. The car

park was divided up into several rows facing the rear, fenced side of the block, thereby forming t

lanes with s parking bays in each lane.

2This is essentially how a postal service in a remote Columbian town operated, with the di¤erence being that the
number of people who could potentially post parcels was not equal to the number of parcels posted and this number
was not known in advance.
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Figure 2.1: The 2-D Gap Problem

In the morning, cars were driven onto the parking lot, with those closest to the rear of the lot

in any given lane being �lled �rst. At the end of the working day, those employees whose cars had

a car parked behind theirs would have to wait until those cars had been driven away before they

could leave. Cars could not change lanes as they reversed out. This example is a bit bizarre, but

was witnessed by the author and con�rmed by an employee of the company.

2.2.12 2-D Gap Problem

This problem will be couched in terms of vehicles parked in lanes with single occupants, the

drivers, arriving in a random sequence to their vehicles, but the results apply equally well to

other situations that can be modelled in this way. Consider a two-dimensional array of N vehicles

uniformly arranged in n lanes with L � 1 physical gaps within each lane so that vehicles may

change lanes as they travel in a generally forward direction. This is referred to as the 2-D Gap

Problem and is depicted in Figure 2.1. Another view of this is having a layered network with the

gaps representing links, and the vehicles between gaps being packets of information at nodes with

the information �owing in a single direction.

There is a special vehicle labelled g in the diagram in front of which there are n lanes, each

containing � = m +
PL

`=1m` vehicles. There are gaps at each of L speci�ed positions so that it

is possible to have a choice of up to n routes from one gap to the next. For example, if the m1

vehicles in the same lane as g do not all have drivers but m1 vehicles in another lane do, then a

clear path is said to exist from the �rst gap to the second gap. Note that any vehicles that are

behind g are not of any real signi�cance here as we are considering only uni-directional paths, so

they alter our model only in so far as to increase the total number of vehicles. We could count

those behind g in the obvious manner as m0;m0
1; : : : ;m

0
L0
, and put �0 = m0 +

PL0

`=1m
0
`. Put
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m = (m;m1;m2; : : : ;mL). We require the completion time, T (m), possibly zero, measured from

the instant the driver for vehicle g has arrived to the instant at which a clear path exists from it

to the front of the lanes.

2.2.13 Other Generalisations

Other generalisations include allowing each car to have a number of people arriving at random

amongst the entire arrival stream. Another possibility is to consider each car to have one person

attending one function, another attending another function, and so on, and consider that all

functions end simultaneously with one from each function arriving at a time at their cars. This is

considered in the model termed simultaneous varieties, which is analysed in Section 9.9.2

2.2.14 Parking Attendant

The Palais Car Park on North Terrace in Adelaide, South Australia, used to operate as a private

facility with an attendant who moved cars for arrivals that were blocked in by other cars in multi-

car stalls. It is assumed that there is only one direction available for driving a car from its stall.

Of interest is how useful the parking attendant is. Perhaps more than one attendant is required

to achieve a minimum level of service.

This is a dynamic process as cars arrive during the departure period. However, if one assumes

that all parking occurs in the morning before any departures and no new arrivals occur that

interfere with the initial group of parkers, one can approximate the value of the attendant in

reducing waiting times by making some simplifying assumptions about the processes involved.

These are discussed in Section 13.2.9. This is used to illustrate the idea of applying the theory to

an optimisation problem rather than providing a thorough theoretical model for the real process.

2.3 Coupon-Collecting Models

2.3.1 Coupon-Collecting

Suppose there are N distinct coupons that are collected in batches of size b in order to make

t complete sets. When b > 1, the coupons in each batch may be speci�ed as distinct, and are

assumed to be randomly selected with the uniform distribution. The classical coupon-collecting

problem considers b = 1 and t = 1. The classical question requires the expected number of trials

till the nth distinct coupon is completed.

Feller [29, 1950, IX 3 (d)] uses sums of random variables to provide the expected number
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required when b = 1 and t = 1 as

E1 (n) = N

�
1

N
+

1

N � 1 + � � �+
1

N � n+ 1

�
. (2.16)

Von Schelling [85, 1954] produced the corresponding value for a full set when the probabilities

of each coupon appearing are unequal (but > 0) as

E1 (N) =
NX
j=1

(�1)j�1
X

1�i1<i2<:::<ij�N

1Pj
k=1 pik

. (2.17)

Earlier, Von Schelling [84, 1934] published more-general results in the German journal Deutsches

Statistisches Zentralblatt. These are for the mth last coupon appearing; Equation 2.17 is for the

case m = 1. Although his formulae involved a di¤erent interpretation of
P

k in order to express

double-sums like in Equation 2.17, we employ the current standard usage to represent his formulae.

The probability that mth last coupon appears at the nth trial is given by

wn;m =
N�2X
`=m�1

(�1)`�m+1
�

`

m� 1

� X
1�i1<i2<:::<i`+1�N

0@`+1X
j=1

pij

1A0@ NX
j=`+2

pij

1An�1

. (2.18)

From this, the mean and variance were determined by von Schelling to be

En;m =
N�1X
`=m�1

(�1)`�m+1
�

`

m� 1

� X
1�i1<i2<:::<i`+1�N

1P`+1
j=1 pij

(2.19)

and

Vn;m = 2
N�1X
`=m�1

(�1)`�m+1
�

`

m� 1

� X
1�i1<i2<:::<i`+1�N

1�P`+1
j=1 pij

�2 � En;m � E2n;m, (2.20)

respectively. When pi � p, that is 8i pi = p, with, therefore, p = 1
N , these were manipulated to

become

En;m = N

�
1

N
+

1

N � 1 + � � �+
1

m

�
; (2.21)

which is the same as Feller�s result of Equation 2.16, and

Vn;m = N2

�
1

N2
+

1

(N � 1)2
+ � � �+ 1

m2

�
�N

�
1

N
+

1

N � 1 + � � �+
1

m

�
. (2.22)

Von Schelling continued by observing that when pi � 1
N , the mean given by Equation 2.18 may
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be written as3

wn;m =
m
�
N
m

�
Nn

N�m�1X
`=0

(�1)`
�
N �m
`

�
(N �m� `)n�1 . (2.23)

After observing that this is unsuitable for numerical calculations, von Schelling produced the

partial di¤erence equation

N [wn+1;m �wn;m] = m [wn;m+1 �wn;m] , (2.24)

with initial conditions w1;N � 1 and wn;N � 0 for n = 2, 3, 4 : : :, from which numerical results

can be readily obtained in the sequence wn;N�1; wn;N�2, : : :, wn;1.

In the report by Caron, Hylinka and McDonald [18, 1988], the authors prove the above result

apparently unaware of Von Schelling�s result from 34 years earlier. They investigate Equation 2.17

for values of p that minimise it. In such problems, it is usual to �nd the minimum occurs when

all values are equal. They were unable to extend this conjecture past N = 6 and observe that it is

surprisingly di¢ cult to prove in the general case.

Polya [69, 1930] solves the problem when n = N for general b with distinct coupons in each

batch and t = 1. For example, for b = 2

E2 (N) =
N (N � 1)
2N � 1

"�
1 +

1

2
+ � � �+ 1

N

�
+

1

2N � 1

 
1� (�1)N�

2N�2
N

�!# . (2.25)

Newman and Shepp [63, 1960] study the Double Dixie Cup, which is the case b = 1 and general

t, in its general form. Their interest is centred on the asymptotic forms as t, N !1.

Myers and Wilf [62, 2003] extend the classical problem to one in which two collectors are

simultaneously and independently seeking collections of N coupons. They �nd the probabilities

that the two collectors �nish at the same trial, and observe that the game has a particular ballot-like

character. In this thesis we obtain alternative forms for combinatorial sums, some of which include

Stirling numbers, so it is interesting to observe that they obtain the evaluation in �nite terms of

certain in�nite series whose coe¢ cients are powers and products of Stirling numbers of the second

kind. They also study the Newman and Shepp case [63] and give a simpler derivation of their

results; it is made easier by determining an explicit generating function, which is of one variable

and not multivariate as provided by Newman and Shepp. Finally, they obtain the distribution of

the number of singleton coupons once N distinct coupons have been received.

Kolchin, Sevast�yanov and Christyakov [50, 1978] use generating functions to �nd the mean

3Von Schelling�s article had Nm in the denominator, but this is clearly incorrect, as this would have the proba-
bilities tending to in�nity as the number of trials, n, increases.

23



Descriptions of Applications, Related Theory and Known Results 24

2.3. Coupon-Collecting Models

and variance of the number of empty cells after n trials, from which the corresponding moments

for the number of occupied cells can be determined. Their emphasis is on asymptotic forms.

Wilf [87, 1994, Section 4.10, Exercise 2] has the probability it takes n trials to complete a single

set of N coupons as

pn =
N !
�
n�1
N�1

	
Nn

, (2.26)

where
�
n
k

	
is the Stirling number of second kind. From this he deduces the ordinary power series

generating function as

p (x) =
(N � 1)!xNQN�1
i=1 (N � ix)

, (2.27)

from which the mean and standard deviation may be readily obtained.

Lu and Skiena [55, 2000] consider the more-complex problem of Filling a Penny Album with

coins that are in circulation. There is a di¤erent number of coins minted in each year and some coins

are progressively removed from circulation. The authors use a simple exponential decay model to

predict the frequency of circulating coins which have been subject to collection by collectors. Each

coin has a probability of not being lost during a given year; this is estimated by taking a sample

of coins and using the actual numbers of coins minted each year. They compare some methods

for estimating the probability. To reduce the number of calculations, they partition the years into

groups of consecutive years. They do this in two ways, one which produces a lower bound and the

other an upper bound. Interestingly, each run of a program to calculate the expected number of

pennies took 2:3 CPU days on average on the fastest computer at the Department of Computer

Science at the State University of New York.

Zito [88, 1999] quotes Maunsell�s result [59, 1938] for the probability of requiring n trials to

complete a single set of N coupons as

coupon (n;N) =
NX
i=0

(�1)i
�
N

i

��
1� i

N

�n
(2.28)

� coupon (n;N) =

N�1X
i=0

(�1)i
�
N

i

��
1� i

N

�n
. (2.29)

However, Zito has applied a wrong meaning to the formula, for the above formula is for the number

of occupied cells being N after n trials or, equivalently, N cells are occupied at or before the nth
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trial ! See Feller [29, II 11.11], for example. Maunsell provides the result correctly as

D (n;N) = coupon (n;N)� coupon (n� 1; N) (2.30)

=
1

Nn�1

N�2X
i=0

(�1)i
�
N � 1
i

�
(N � i� 1)n�1 . (2.31)

Zito comments that calculating numerical values using Equation 2.28 is very slow for large

N , and that its functional properties are not apparent. Zito states an asymptotic result for

coupon (n;N) and refers to it as �the expected number of trials before all coupons have shown up�,

which is incorrect.

Maunsell determines the expected waiting time from D (n;N) as

EN =
1

NN�2

N�2X
i=0

(�1)i

(i+ 1)2

�
N � 1
i

�
(N � i� 1)N�1 [(i+ 2)N � i� 1] , (2.32)

and a limiting form for this with N � 1 terms as

EN � N
 
1 +

N�2X
i=1

(�1)i�1

i

�
N

i

��
N � i
N

�N!
. (2.33)

Feller [29, IX 3.4] derives the expectation of the more-general case of waiting for r � N cells

to be occupied using the linearity of expectations over the sum of random variables as

EN;:r = N

�
1

N
+

1

N � 1 + � � �+
1

N � r + 1

�
, (2.34)

and then approximates this with an integral to give the approximation

EN;:r � N ln
N + 1

2

N � r + 1
2

. (2.35)

For example, for N = 365 days of the year and r = 24 distinct birthdays, the expected waiting

time is E365;24 ' 93:4 people. For r = 365, E365;365 ' 2 407:0 people.

For r = N = 10, Maunsell�s formula in Equation 2.32 gives E10 = 29: 289 682 54 and Feller�s

formula in Equation 2.34 gives E10;10 = 29: 289 682 54, which is the same. The approximation in

Equation 2.35 gives E10;10 ' 30:445 224 38, which out by a value greater than 1. Equation 2.33

gives E10 ' 29: 289 682 54, which is identical to 8 decimal places to the exact result.

Maunsell also equates the most probable number of cards with the median and calculates the

median.
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Remark 2.1 Maunsell determined the expectation directly from the distribution, whereas Feller

determined it without any knowledge of distribution. Furthermore, Feller�s formula is not only

extremely simple by comparison, but also more general.

Sampling with repetition is a usual assumption in the coupon-collection problem, but if we

only want to consider changes of state then we can use a without-replacement process to model it.

Godwin [39] generalises Maunsell�s coupon formula, Equation 2.31, to the case of having

favourable and unfavourable kinds of coupons; his context is cars. Suppose there are m favourable

kinds and m0 unfavourable kinds with m + m0 = N . Then the waiting-time distribution for r

favourable kinds is given by

P (n; r) =
m
�
m�1
r�1
�

Nn

r�1X
s=0

(�1)s
�
r � 1
s

��
m0 + r � s� 1

�n�1 . (2.36)

Equation 2.36 reduces to Equation 2.31 when m0 = 0 and r = m; after observing that the last

term in the sum is zero.

Godwin states that the standard method of approximation is to calculate the moments and

use one of Pearson�s [66], [67] system of curves with the same �rst 4 moments, and proceeds to

determine the moments by �rst calculating the rising factorial moments and writing them as sums

of powers of the reciprocals of the integers between m� r + 1 and m.

Lindsay [54, 1992] produced a new form of the solution for the classical question for the classical

problem. He produced a function which he termed the two-dimensional factorial, which is given

by

f (x; y) =

yX
j=1

jf (x� 1; j) , (2.37)

where f (0; j) � 1. (2.38)

His solution for the probability that N �M unique coupons will be collected in n trials is given by

P (n;N;M) =
N !

M !Nn
f (n� (N �M) ; N �M) . (2.39)

Lindsay observes: The [two-dimensional factorial] function allows computation of set collection

probabilities with improved accuracy compared to the classical alternating-sign series solution.
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2.3.2 Asymptotic Distributions

There are many aspects of coupon collecting that have been investigated for their asymptotic

nature. Here we include a few of the simpler results that have been chosen because of the simplicity

and interesting nature of their formulae.

Erdös and Rényi [26, 1961] proved the following and Motvani and Raghavan [61, 1995] published

it in a book on Randomized Algorithms due to its wide applicability. One application is to random

walks on upper triangular matrices; see Pak [65, 1999], for example. Let the random variable

X denote the number of trials required to collect each of s types of items. Then, 8c 2 R and

n = s ln s+ cs

lim
s�!1

P (X > n) = 1� e�e�c . (2.40)

Boneh and Papanicolaou [12, 1996] consider what happens as N !1 and develop techniques

of computing the asymptotics of the expected number of coupons that a collector has to buy in the

case of arbitrary probabilities. They reproduce the expected number of trials until all objects are

detected in two forms. The �rst is von Schelling�s formula (Equation 2.17, above) and the second

is a formula established by Flajolet, Gardy and Thimonier [32, 1992]:

E1 (N) =

Z 1

0

"
1�

NY
i=1

�
1� e�pit

�#
dt. (2.41)

Flajolet, Gardy and Thimonier use regular languages extended by the addition of the shu e product

and then use systematic translation mechanisms to derive integral representations for expectations

and probability distributions. Although their techniques are not used here, it shows strong interest

in �nding asymptotic solutions for intractable problems and they apply it to the coupon-collector�s

problem (and two other problems including the birthday paradox). These techniques are probably

applicable to many of the distributions here, but this investigation is left for the future. It is also

interesting to note how computationally useful the integral representations are, as this thesis places

some emphasis on examining computational tractability. They claim that a typical Markovian

analysis of a typical cache problem, which is their third application, would require approximately

10180 in time and 1060 in space, and the time complexity would reduce to 1040 if symmetric function

expressions that resemble a summation over all possible cases were used, whereas their integral

forms can be estimated using 107 to 108 function evaluations. Here in this thesis we �nd even

more-dramatic reductions.

Boneh and Hofri [11, 1997] follow Flajolet, Gardy and Thimonier with the use of the calculus

of generating functions over regular languages to provide arbitrarily accurate approximations to
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quantities such as the mean waiting time till all coupons are collected in a time that is linear in

N for any type of distribution. This and another method are applied to several applications that

can be modelled using the standard coupon-collector�s problem as a base.

Boneh and Papanicolaou quote two previously-known asymptotic estimates for special cases.

In the linear case, which has pi � 2i
N(N+1) , the following result was �rst established by David and

Barton [23, 1962, Ch. 14].

E1 (N) �
�
2�p
3
� 3
�
N (N + 1) . (2.42)

In the case of the Zipf distribution, which has pi � 1
iHi
, where Hi denotes the ith harmonic

number, namely Hi �
PN

k=1
1
k , the following result was proved by Flajolet, Gardy and Thimonier

[32, 1992].

E1 (N) � NHN lnN . (2.43)

Boneh and Papanicolaou develop general techniques for obtaining asymptotic estimates for

more-general distributions of p that treats the above two as special cases. This begins with the

integral for the expectation as provided in Equation 2.41.

2.3.3 Variations

There are many variations to the standard coupon-collector�s problem that are not discussed in this

thesis. Each of these variations can be examined with respect to the new waiting-time process, but

this is left to others. The variations we do discuss are of a di¤erent kind than appear elsewhere.

One variation appears in the next section due to its applicability to the study of random graphs.

2.3.4 Restricted Coupon-Collector�s Problem

The following model is not discussed in this thesis, but it is an interesting variation of the coupon-

collector�s problem that appears in non-probability books and articles.

Fountoulakis [33, 2003] required the analysis of the following problem in order to solve a problem

in the Thresholds and the Structure of Sparse Random Graphs, which is discussed in Section 2.11.8.

Assume that there are N types of coupons, with each of them having d � 2 distinct copies. The

collector must collect one of a permissible number of coupons for any type, namely l = (l1; : : : ; lh)

with 1 � li � d 8i and h > 1:

Fountoulakis states that the number of ways of collecting t copies of coupons whose counts
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satisfy the above constraints, Cd;L (t;N), is given by the coe¢ cient of zt in the generating function

G (z) = R (z)N =

0@ hX
j=1

�
d

lj

�
zlj

1AN

. (2.44)

He then uses Cauchy�s Integral Formula to produce

Cd;L (t;N) =
1

2�i

Z
C

G (z)

zt+1
dz, (2.45)

where the integral is taken over a closed contour, C, containing the region. This solution is

produced by application of the Laurent Expansion Theorem, which is provided in the book by

Marsden and Ho¤man [58, 3.3.1].

Fountoulakis then provides a theorem for the limiting distribution as N ! 1, when the

additional condition minj2f1;:::;hg lj <
t
N < maxj2f1;:::;hg lj holds, as

Cd;L (t;N) =
1p
2�Ns

R (r0)
N

rt0
(1 + o (1)) (2.46)

uniformly over the additional condition, where r0 is the unique positive solution to the equation

rR0 (r)

R (r)
=
t

k
(2.47)

and

s = r0
d

dx

xR0 (x)

R (x)

����
x=r0

. (2.48)

A table of relative errors provides a value just over 3% for low values of N = 8 and t = 12. For

larger values of N = 300 and t = 500, the value is just under 0:1%:

2.3.5 Applications

Applications of the distribution of the coupon-collecting waiting-time distribution include the test-

ing of random number generators and sequences, which are discussed in Section 2.12 on Testing the

Randomness of Data and in Chapter 16 on Testing the Randomness of Sequences, and estimating

the amount of DNA required to create all potential solutions in the �eld of DNA computation,

which is what Maley [57] discusses.

In the report by Caron, Hylinka and McDonald [18, 1988], mention is made that the solution

to the problem investigated by them and mentioned herein in the previous section
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helps to give lower bounds on the expected number of iterations (trials) needed to detect

all the necessary constraints in sytems [sic] of linear inequality constraints, when certain

probabilistic methods are used.

They refer to Berbee at al [8, 1987] for further details. This leads one to think that there are

unthought-of applications of the material in this thesis still to be discovered or determined.

In Zito�s thesis [88, 1999], Maunsell�s Equation 2.28 and its asymptotic approximations appear

in many expressions. These appear in his investigations into

possible ways of approximating the parameters that describe the phase transitional

behaviour (similar in some sense between the transition in Physics between solid and

liquid state) of two important computational problems: that of deciding if a graph is

colourable using only three colours so that no two adjacent vertices receive the same

colour, and that of deciding whether a propositional boolean formula in conjunctive

normal form with clauses containing at most three literals is satis�able. A speci�c

notion of maximal solution, and for the second problem, the use of the probabilistic

model called the (young) coupon collector allows us to improve the best known results

for these problems.

Shiyong and Skiena [76, 2000] analyse some real data related to the quantity of pennies in use in

the population from each year of minting, and try to estimate how long it should take to �ll a penny

album. They introduce a decay coe¢ cient to model the rate at which pennies are removed from

circulation. This involves the weighted coupon-collector�s problem, which has unequal probabilities

for each coupon. The number of terms in von Schelling�s formula, Equation 2.17, is exponential

in N , so is computationally useful for only small values of N . Therefore Shiyong and Skiena form

groups of size m � N , and propose a reasonable value of m to be 20. Their study included actually

collecting a full set of pennies.

Chvátal [21] provides us with an altogether di¤erent kind of application, in that he estab-

lishes a uniform asymptotic approximation of certain probabilities arising in the coupon-collector�s

problem, and uses it to prove that almost all graphs with n vertices and 1:44n edges contain no

subgraph with minimum degree at least three, and hence are 3-colourable.

Chvátal considers that the coupon collector collects one coupon from N coupons per day, and

�nds a limiting distribution for the probability of having at least m copies of each of the coupons

after t days, where t is proportional to N .

Section 2.11.3 describes a fail-safe system, which in basic form can be modelled as the standard

coupon-collector�s problem.
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2.3.6 Coupon-Collector�s Page Problem

Suppose there are a number of ordered pages of distinct pictures or names or other identifying

information of observable objects. For example, these could be pictures of birds or the tax �le

number of individuals. For ease of description, assume these to be pictures of birds. The pages

are assumed to be numbered 1; 2; 3; : : : . Let N be the number of pictures, �i be the number of

pictures on page i, and n be the number of observations.

2.3.6.1 The Without-Replacement Model

As birds are observed, one could consider only sightings of as-yet unseen birds. This would occur,

for example, if there were only one of each type of bird observable or if we were considering only

the changes of the state of distinct birds sighted. This is the without-replacement point of view.

In this case we typically assume that n = N , but there are also some questions that arise (and are

answered herein) when n < N .

Suppose there are very many pages and they are stored away until a bird on a page is �rst

sighted, at which time the page is displayed on a shelf or wall, and is removed from the wall when

completed. If one asks how much room the pages will require on the wall after each sighting, then

one has the same model as the Cake Display Problem as described in Section 2.7. Equivalently

one could place the pages in a folder and ask how thick would the folder be after n sightings. One

could consider this either statically or dynamically.

If one had duplicate pages of birds to observe, then we have an equivalent of the Non-Unique-

Cake Display Problem.

We determine the distribution of the number of completed pages and those not yet started, and

also the length of time a page is on display. The distribution of the latter measures the waiting

time from the �rst sighting for a page until the last sighting for a page.

Suppose the pages are to be �led in sequence by page number. That is, page j may only be

�led away when all birds on pages 1 through j have been sighted. We determine the waiting time

for the �ling of page j, measured from the sighting of the �th bird on page j. We also determine

the distribution of the number of pages �led simultaneously; in the parlance of queueing in lanes,

this is termed the platoon size distribution.

2.3.6.2 The With-Replacement Model

When one counts sightings of birds that one has already seen, n could exceed N by a considerable

amount without having sighted all of the birds listed on the pages. We investigate the nature of
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this.

As in the without-replacement model, suppose the pages are to be �led in sequence by page

number. That is, page j may only be �led away when all birds on pages 1 through j have been

sighted. We determine the waiting time for the �ling of page j, measured from the �rst sighting

of the �th bird on page j. This is referred to here as the Coupon-Collector�s Page Problem. When

� = 1 and j = 1, this is referred to as The Coupon-Collector�s Single Page Problem; results for

this will apply to any page when any need for completion of other pages can be ignored.

2.3.6.2.1 The Bird-Watcher�s Problem

A particular question we will provide the answer to involves taking photographs of or sighting

N = 1000 distinct birds whose photographs appear on 100 pages with 10 pictures per page. We

assume for this model that the bird-watcher will sight 10 000 birds at random during a year, which

averages to about 27 sightings per day; birds that are not included in the book are not included

in the count.

If the bird-watcher wants to �le page 1 away before page 2, one question that might be asked

is this: What is the probability of completing both pages? Another question is this: What is the

expected waiting time for the completion of pages one and two, measured from the sighting of the

5th unique bird on page 2, conditional on completing both pages? This expectation is referred to

brie�y as the conditional expectation.

For convenience, we refer to the former question as The Bird-Watcher�s Probability and the

latter question as The Bird-Watcher�s Expectation, both with an emphasis on the word The.

Together they form The Bird-Watcher�s Problem.

A third question enquires: What is the e¤ect of sighting ever more birds on the conditional

expectation?

For convenience, we introduce the vector notation for the problem being described here. It

is de�ned here within the context of The Bird-Watcher�s Problem, but will be seen to apply in

more-general situations.

Notation 2.2 Let (N;n;m; �; �) represent the parameters in the Bird-Watchers�Problem, where

N is the number of distinct birds, n is the number of not necessarily distinct birds sighted, m is

the number of pictures on page one, � is the number of pictures on page two, and � is the number

of sighted birds on page two from which the waiting time is measured.

32



Descriptions of Applications, Related Theory and Known Results 33

2.4. Bernoulli�s Classical Lot Problem

2.4 Bernoulli�s Classical Lot Problem

Steinsaltz [79, 1.2.7] describes Daniel Bernoulli�s classical Lot Problem [9]. The original article

appeared in the 1766�1767 annals of the Imperial Scienti�c Academy of St. Petersburg. Here is

the English translation of the original Latin, as provided in Steinsaltz�thesis.

Suppose an even number of lots to have been put into an urn, so that two are marked

with a number in such a manner that each is a partner of the other, and both form

an [indistinguishable] pair; di¤erent pairs may be marked with di¤erent numbers, so

that each pair may thus be distinguished [from each other pair]. Now the lots are to

be drawn out one after the other; whereby, we ask, given the number of lots residing in

the urn, what will probably be the number of complete pairs, and, at the same time,

how many lots will remain orphaned from their companions or partners.

This is a special case of the sock-matching process, which is described in Section 2.6.

2.5 Bernoulli�s Marriage Problem

Steinsaltz [79, 1.2.7] describes Daniel Bernoulli�s classical Marriage Problem [10]: On the average

duration of marriages, whatever the age of the partners, and other related questions: This paper

considers the following problem.

Suppose we begin with 1000 people all of the same age. Life tables, which were then

becoming available, would allow an estimate of the number of those people still alive

after, say, 20 years. Suppose, though, that these 1 000 people are 500 married cou-

ples, and that we want to know the expected number of couples remaining after a

given number of people have died; or, conversely, the expected number of widows and

widowers.

If we suppose that the men and women die at random, then this is analogous to the problem of

determining the expected number of singleton socks at a particular time during the sock-matching

process; see Section 2.6 for details.

In this thesis, one can answer many other questions about this process as special cases of

more-general processes.

One can determine how long one expects to remain alive after one�s partner has died.
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There is the general distribution of the number of couples dead, singles dead and singles alive

at time n. This is already known, but is determined here as a special case of a more-general

distribution.

2.6 Sock-Matching

2.6.1 Introduction

In problems involving sock-sorting, the literature places its focus on the global viewpoint of esti-

mating the maximum room required when socks are placed on a table side-by-side until a match

occurs. The classical question posed by Bernoulli [9] in 1776 asks how many pairs and how many

orphans exist at the time when a new lot is picked from an urn that contains distinguishable pairs

of indistinguishable lots. There is no reference to an amount of room required. This is discussed

in Section 2.4 on Bernoulli�s Classical Lot Problem.

The initial reference to this problem as sock-matching in English is apparently by Luttman [56,

1988] in 1988 in the American Mathematical Monthly�s Problems and Solutions section. Many

methods of solution were provided, as well as a solution for a general number of socks of the same

type forming a complete set. Solution providers included J.C. Smith, J.N. van Kalma, R. van

Doornbos, whose solutions were printed, R.W. van der Waall and sixteen others. It was noted

that three di¤erent solutions for an even number of drawn socks appeared in a Dutch journal (J.C.

Smith [77]) in 1967.

One of the solution providers was Bowron [16], whose solution used indicator functions to

determine the moments. This is generalised in this thesis to apply to a more-general form of

sock-sorting that allows for multiple matches for the same kind of sock, and also to more-complex

models; this is done in Section 11.6 on Measures of the Dynamic State of Disjoint G-Sets. An

example of a more-complex model, which distinguishes socks in a way that allows them to be part

of more than one set, appears in Section 2.8.3 on The Game SET.

We also investigate the e¤ect of placing matching socks on top of each other rather than beside

each other as they are sorted. This is more closely related to how people sort socks from the

laundry basket, and, more importantly, the results apply to Cake Display Problems (Section 2.7),

which are new models and applications that have not previously appeared in the literature. In

response to Luttman posing his problem about sock-matching, Donald E. Knuth remarked that

for sock-sets of sizes4 �1, �2, : : : ; � with
P

i=1 �i = N , the expected number of complete sets of

4The terminology of this thesis is used here.
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matching socks after k socks have been drawn at random is
P

i=1

�
k
�i

�
=
�
N
�i

�
.

The generalisation of this to �i-tuples in which a �xed-size subset is considered a match appears

in Section 6.20 on the Static Distribution. The moments for this more-general model that allows

multiple sets of the same type and also elements to be members of more than one set are provided in

Section 11.6 on Measures of the Dynamic State of Disjoint G-Sets. Several examples are provided

and applications include The Game SET in Section 2.8.3, sock-sorting, and the Cake Display

Problem in Section 2.7. We also consider the e¤ect of drawing in batches in Section 9.8.

2.6.2 Variations on Placement

The sock-matching models assume that when a set of socks on the table contains two or more

socks, the socks are still considered to be placed next to other socks and the number of socks on

the table represents the amount of room required. There is an alternative way, namely to place

subsequent socks of the same set on top of each other, and to count the number of incomplete

sets on the table. The latter question appears to be new, even though it is the more immediate

generalisation of Bernoulli�s classical problem with lots and urns. In practice, when there are more

than two socks in a set, this obviates the need for constantly scanning the table for complete sets.

Both of these questions can be answered using the static distributions of Section 6.20, and the

means and variances for several properties of this process in Section 11.6.

2.6.3 Limiting Distributions

In 1990, the following problem posed by Friedlen [34] was solved by several respondents, with

the solution by Doug Prior being published. The problem was to �nd an explicit formula for the

expected time of the �rst match, Tn, when there are n pairs of socks, and then produce the limiting

distribution for P
�
Tn � xn

1
2

�
. The former is E [Tn] = 22n=

�
2n
n

�
and the latter is 1�e�x2=4, which

is known as the Weibull Distribution.

In 1996, Lange [53] illustrated some moment identities for order statistics and applied the

results to an urn model with sock-sorting as a special case. He determined the expected values

for all order statistics, thereby generalising Friedlen�s �rst result. The technique used for applying

the identities to a without-replacement model was to embed the sampling process in the uniform

process (Blom and Holst [15]).

In 1996, Steinsaltz [79] adapted general empirical process and martingale methods to describe

the asymptotic behaviour of a varied class of stochastic processes, and was particularly concerned

with processes whose expectations start at a small value, rise up to a clear maximum, and then

35



Descriptions of Applications, Related Theory and Known Results 36

2.6. Sock-Matching

fall back down. In the Cake Display Problem, the distribution of the number of slices displayed is

not uni-modal, so the results therein do not apply.

Steinsaltz [80] discusses Sock-Sorting Limits and other Stochastic Process Limit Theorems

within the context of mentioning limiting processes for the maximum number of socks ever on

the table. He also applies his theory to the distribution of the maximum over all times of the num-

ber of boxes that have exactly k balls in the classical allocation problem. Steinsaltz�work applies

to uni-modal structures, which isn�t applicable to the more-general sock-sorting model proposed

here.

Steinsaltz [79, p5] considers approximations for the distribution of the maximum number of

socks on the table, when the number of sets of socks is large in comparison to the number of socks

in a set. In practice, this ratio can sensibly be as low as two; for example, consider sock-sorting

with 12 sports socks and 6 socks per set.

When determining the distribution for the maximum number of boxes with k balls in the

generalised sock-sorting process, approximations are made that include assuming that a ball has

negligible probability of being placed into the same box as another ball. This would not be true

in the case of a large number of socks per set and small number of sets of socks.

2.6.4 Generalisations

There could be batch removals of cake slices, and these may be from di¤erent cakes; the new

waiting-time process for this is discussed in Section 9.9.6 on Batch Arrivals with Randomised

Varieties.

One might want to be alerted when the �th slice of each cake is eaten, and need to know the

expected waiting time until all slices of that cake will have been eaten.

2.6.5 Formulation

Suppose  distinguishable types of socks, with �i socks of type i, are placed in a basket and

drawn out randomly in B batches of size nb, b 2 f1; : : : ; Bg, such that N =
P

i=1 �i =
PB

b=1 nb;

previously, nb � 1. In this context, de�ne a set for the ith type as a set of di socks such that dij�i.

As each batch is drawn, its contents are compared with unmatched socks on a sorting-table, all

sets are removed, and then any unmatched socks in the batch are placed on the sorting-table.

When nb � 1, placement of unmatched socks from a batch is typically considered to be in a

horizontal row, and the number of socks on the table is used as a measure of the amount of room

required. For nb > 1, we have a choice of models: place the batch in a line that is vertical to the
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horizontal placement of successive batches, or place the socks in the batch in a random order in

a single horizontal row as if they were removed singly from the basket. These require di¤erent

amounts of room.

In the case of the waiting-time process, we use the number of batches as a measure of the wait.

In the case of the static and dynamic processes, we provide the theory for several measures based

on either the number of complete matches, number of socks on the table, number of incomplete sets

on the table with either at least � socks on the table or at least � still required to complete a set,

the number of sets not yet started, and the number of socks required to complete the incomplete

sets on the table.

The shape and size of these socks has not been speci�ed, and is not relevant for the models we

consider. However, the techniques used to determine the distributions and moments can readily

be adapted to answer other questions when the socks are not cloth coverings for the foot, worn

inside a shoe that reaches to between the ankle and the knee. For example, if the socks are like

round coins of equal size, we might want to place the drawn coins in the square of least size at

each step during the sorting process and measure the step-function of the size of the square.

Measuring the number of incomplete sets on the table with at least � = 1 sock corresponds

to the placement of incomplete sets of socks of each type on single piles on the table, instead of

spreading them out in a single row. This is how the author has always sorted socks and related

items; for example, coins sorted into dollar piles. Hence this measure is considered to be the

relevant measure in some circumstances.

The classical problem investigates the distribution of the maximum number of socks on the

table for each time-point at which a sock is placed. This is for di � �i. The more-general case

is, in fact, what occurs when one purchases multiple pairs of socks of the same kind, which is

quite commonly done for sport and business socks. It has not been observed in the literature, and

analysis shows this generality to provide at least one interesting and surprising consequence.

As part of the general theory, we are able to determine the distribution of the waiting time for

the completion of a set measured from the occurrence of the �th sock of the set. This question

could arise, for example, when members of a family are called to the sorting-table when the �th

sock of a set is observed; this would occur, perhaps, if the family had to be ready for something

immediately that the set is completed. An individual might hear �Found one!� and the sorter

might hear later: �Have you found the rest yet?�.

Also, we can determine the distribution of the length of time that a sock will remain on the

table.
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Steinsaltz [79] and [80] investigated the distribution of the maximum number of socks for large

N , and the distribution of the maximum over all times of the number of boxes that have exactly a

balls for large N . It is shown in this thesis that if it is not true that di � �i, then his investigations

are not applicable, because they �are concerned with processes whose expectations starts [sic] at a

small value, rise up to a clear maximum, and then fall back down.�� yet in the general case, this

need not necessarily happen; this is illustrated in Figure 11.2.

2.6.5.1 Example: Bernoulli�s Marriage Problem

Bernoulli�s Marriage Problem is described in Section 2.5. It has �i � 2 and di � 2.

2.6.5.2 Example: Sock-Matching with Multi-Legged Beings

Knuth [48] provided the expected number of complete sets after k socks have been drawn, when the

 sets of socks are from creatures with �i legs, and matches consist of di � �i socks, i 2 f1; : : : ; g,

as
P

i=1

�
k
�i

�
=
�
N
�i

�
.

2.7 The Cake Display Problem

The Cake Display Problem is introduced into the literature here for the �rst time.

Figure 2.2 depicts a shop that sells cakes to the public. The section labelled Cakes on Display

corresponds to a counter in the shop that is visible to customers and upon which are placed cakes

for sale. The section labelled Bakery corresponds to a room not accessible to customers; the cakes

in this room are assumed to be kept in a refrigerator to keep them fresh for as long as possible.

The physical locations of the cakes in view and the cakes not in view have no bearing on the

mathematical model used to describe this situation, but adds �avour to it.

Assume there are a number of di¤erent kinds of cakes and each kind can have more than one

available. In the Figure, there are three kinds of cakes, a, b and c, with 3, 1 and 4 cakes and 8, 6

and 5 slices per cake, respectively. Type b has none on display, and types a and b have had 1 and

2 slices removed already. Slices that have been removed are assumed to have been eaten, and will

be referred to as such. We assume that the number of each kind of cake is known in advance.

In order to reduce spoilage, cakes will only be placed on display when the �rst slice of each

kind of cake has been ordered. Only one type of each cake is displayed at a time.

Cake types are assumed to be chosen at random, and the number of slices ordered at a single

time is assumed to be one.
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Figure 2.2: Cake Display Problem (Queues of Cakes Waiting to be Eaten)
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There is a di¤erence between placing cake slices from all cake types on a single large tray and

placing the started cakes on separate trays. In the former case, interest is in the number of slices

on display. In the latter case, interest is in the number of cakes on display. We investigate both,

with emphasis on the latter.

This problem becomes more interesting when multiple cakes of each kind are considered.

There are signi�cant di¤erences between sock-sorting and displaying cakes. When a cake is

displayed, all but one of its slices are placed on display and slices are removed one at time. Cakes

of the same kind may exist as replacements to a completed cake. The amount of physical room

required for a cake remains constant until it is �nished.

In sock-matching, one places socks on a bed one at a time in a line, and measures the length

of the line and the number of complete sets as each sock is placed. With cake-displays, the similar

measures are the number of cakes on display and the number of uneaten slices on display. However,

these models are not the same. The latter has all slices displayed at one time with one immediately

removed. This means that the cake slices arrive in batches, not singly, and the amount of room

required to display a cake remains static from the time of the �rst slice eaten until the last slice

eaten.

With cake-displays, there are other items of interest, especially so when some of the cake types

have more than one cake of each type. For example, it is of interest to know how long a cake will

be on display.

A situation could arise in the cake display problem if a cake would spoil during the dining

period. One way of avoiding this could be to decrease the number of slices per cake and increase

the number of cakes. Once the probability distribution and its moments have been determined,

this will be a piece of cake to investigate.

This model may be thought of as a queueing model in which a customer arrival instigates the

service of a cake slice. There is a �nite number of potential arrivals, equal to the number of cake

slices available. How long a cake is expected to be on display in the former model is related to

the expected length of time it would take to service an entire cake in this queueing model. In this

way, one can see that information can be determined about the queueing system using standard

combinatorial techniques without resorting to calculus. Furthermore, this state of the cakes on

display may be considered to represent the state of the queueing system after a service.

This model of the Cake Display Problem is an invention by the author. Only in the case of 2

slices per cake and one cake of each type is a direct use of material associated with sock-matching

applicable. With multiple cakes of each kind, nothing of the kind has been observed, and at least
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one interesting and surprising result arises in this case.

The two types of problem are referred to as the Unique-Cake Display Problem and the Non-

Unique-Cake Display Problem. Here is a list of most of the questions answered in this thesis:

� How long a slice is on display; see Section 6.14.3 for an example;

� How long is a cake on display; see Section 11.2.5.1.1 for an example;

� Mean and variance of the number of slices eaten; see Section 11.6 for both theory and

examples;

� Mean and variance of the number of slices on display; see Section 11.6 for both theory and

examples;

� Mean and variance of the number of cakes on display; see Section 11.6 for both theory and

examples;

� Distribution of the maximum number of slices eaten; see Section 11.6.7 for the theory;

� Distribution of the maximum of slices on display; see Section 11.6.7 for the theory;

� Distribution of the maximum number of cakes on display; see Section 11.6.7 for both theory

and an example;

� The expected length of time that at least � cakes have at least � pieces on display; see Section

11.6.7 for both theory and an example.

Typically, there are a small number of cakes, so we need the exact distributions, although

asymptotic results might be useful for comparison and apply to large numbers of cakes.

The static distribution is provided in Section 6.20. Section 11.6 provides the mean and variance

for several properties of this process; these are determined using indicator functions instead of from

the rather complicated form of the probability distribution.

Due to the investigations herein, the Unique-Cake Display Problem is a special case of the

Non-Unique-Cake Display Problem. Results are provided as examples of the general theory in

Sections 13.8 for distinct cakes and 13.9 for multiple cakes.

With the formulae presented here, one may solve operations research problems that involve

optimising an objective function that depends on the numbers of cakes and slices per cake and the

display space required for either cakes or slices.
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2.8 Attribute-Matching

2.8.1 Introduction

Matching attributed items is a more-general form of sock-matching, which is described in Section

2.6, in which the items have more than the single attribute that socks have, and can make a match

with more than one set according to some rules based on combinations of those attributes. In

general, each attributed item may occur with duplicates, but this is not allowed for here.

Here we provide applications and examples only for the case in which those rules satisfy a par-

ticular condition. This condition implies a symmetry that can be exploited to produce interesting

formulae for existing applications. These formulae are then used to provide a de�nitive answer to

an existing problem, and provide measures of the processes to explain mathematically some of the

e¤ects that people have observed.

Remark 2.3 Due to the relationship between attributed items, unlike in sock-sorting, it is not

sensible to place items in a single group (or on top of each other) as the items may be part of more

than one set.

Section 2.8.2 on Genetic Code Attribute Matching describes a situation in which the attribute-

matching is relevant in genetics. This gave rise to the game SET, which is discussed in Section 2.8.3.

This game is given a high pro�le in this thesis for several reasons. First, it illustrates the elegance

of the theory when applied to a complex process with a computationally intractable number of

possible sequences. Second, most of the theory for without-replacement process applies to it by

modelling the game and the questions associated with it as special cases of more-general models.

Third, it is a generalisation of sock-sorting that allows a sock to be part of more than one set, even

though it does not have the same attribute values as other socks in the set. Fourth, it is a popular

game that is played and enjoyed by many people. Fifth, the game is used as a teaching tool for sets

and logic. Sixth, other mathematicians have investigated various mathematical properties of the

game. Seventh, the answer to one of the questions posed is not agreed upon by all mathematicians

� and the correct answer is provided here as a simple example of the theory. Finally, an unsolved

problem involving the number of whole matches during the game has upper bounds determined

for the expectations.

We investigate the length of time a card will remain unmatched, the length of time the �th

card of a particular set remains unmatched, the number of matches in K cards, the number of

cards that become part of a match for the �rst time when the kth card is placed, and an upper

bound for the number of matches in K cards if matches are removed as the game progresses.
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2.8.2 Genetic Code Attribute Matching

Marsha Jean Falco [27] worked as a Population Geneticist at Cambridge University in 1974. She

investigated if epilepsy in German Shepherd dogs is a heritable trait, and was trying to connect

the traits that plants, animals and people have to the genes and chromosomes in their cells. To

assist her, she wrote information about each dog on �le cards using symbols to represent a block

of data. Symbols with di¤erent properties indicated di¤erent gene combinations. She was looking

for matching sets.

This led to the invention of the game SET, which embodies the essence of the matching

processes involved in her work. This game is described in the Section 2.8.3.

2.8.3 The Game SET

2.8.3.1 Description

Consider a game of cards in which each card has one of v values associated with each of a attributes.

The deck of cards consists of one card for each possible combination of attributes; hence there are

N = va cards in a deck.

With a = 4 attributes and v = 3 values, their values are:

Shape: ellipse, square, wave

Number: 1,2,3

Colour: red, blue, green

Fill: empty, shaded, �lled.

Notation 2.4 For a set of cards, G, let G(�) be the set of values of attribute � that are on the

cards.

De�nition 2.5 A set of cards, G, is called a matching set if it consists of v cards that satisfy

8a�=1
����G(�)��� 2 f1; vg� . (2.49)

The condition in Equation 2.49 states that for each attribute, either only one of the values is

present or all the values are present.

Remark 2.6 When a game is played, there are various rules for placing cards on the table and

what to do when a matching set is found. In most cases, a matching set is removed from the table

if someone spots it. In other cases, all matching sets are counted by the player or players.
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De�nition 2.7 The game will be called linear if the cards are placed on the table one at a time.

De�nition 2.8 The game will be called batch if it is not linear.

The game will be assumed to be linear unless the term batch is explicitly applied.

2.8.4 The Standard Game

The case v = 2 is not interesting, as every card matches every other card. The case v = 3 has the

nice property that for any two cards there is a card that will make a matching set with those two

cards, and the matching card is unique5. For v > 3, two cards do not uniquely determine a set and

three cards need not determine a set. Most mathematical questions to date have been associated

with the case v = 3. Henceforth discussions are only for the case v = 3.

De�nition 2.9 The game with a attributes each with v = 3 values will be referred to as the

Standard Game of SET with a attributes, and when a is omitted from that phrase, a will be

assumed to be 4.

De�nition 2.10 The Standard Batch Game of SET is the Standard Game of SET in which 12

cards are place on the table as a batch at the beginning of the game, and thereafter batches of 3

cards are placed on the table at a time.

To distinguish sets of cards from other sets, we formally de�ne a term that is used in the game.

De�nition 2.11 The term triad will be used to mean a set of 3 cards that form a matching set.

For example, in the standard game, the three cards (ellipse, 1, red, empty), (ellipse, 2, red,

empty) and (ellipse, 3, red, empty) form a triad.

The number of cards in a deck is clearly N = 3a. A vital property of the relationship be-

tween cards in a triad is provided by the following theorem, which was named by Cuoco, Manes,

Levasseur, Shteingold and Abramset [22].

Theorem 2.12 (Set Construction Theorem) For any two cards from the deck, there is exactly

one card in the deck which makes a triad with them.

Proof. This is proved by Chinn and Oliver [20] and by Cuoco, Manes, Levasseur, Shteingold

and Abramset [22].

5This is referred to as the Set Construction Theorem in �Results from the Game of Set Problem�,
www2.edc.org/makingmath/mathprojects/gameOfSet/set_ext.asp.
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Theorem 2.13 The number of possible triads is

 =
N (N � 1)

6
. (2.50)

Proof. The �rst 2 cards could be any pair of cards in N (N � 1) ways. There is always a third

card for each pair of cards and it is unique by the Set Construction Theorem 2.12. There are 3!

sequences giving rise to the same triad.

Theorem 2.14 Each card is a member of

r =
N � 1
2

(2.51)

triads.

Proof. By the Set Construction Theorem 2.12, a card can pair with any one of the other N�1

cards to produce a unique triad, but then each triad would be counted twice.

Theorem 2.15 Each triad, G, intersects with

h = 3 (r � 1) (2.52)

other triads, where r is given by Theorem 2.14.

Proof. For triad G, each card in G is part of r � 1 other triads. These r � 1 other triads are

necessarily distinct, for if two cards g1, g2 2 G with g1 6= g2 are members of triads G1 and G2,

respectively, with G1 = G2 then fg1; g2g � G1 and fg1; g2g � G2, and therefore G1 = G2 = G by

the Set Construction Theorem.

De�nition 2.16 A noset is a set of cards with no triad amongst them.

The maximum number of cards, �, that can be laid on the table as a noset is di¢ cult to

determine for a � 4. For a = 1, the number is trivially � = 2. The company that produces the

game, Set Enterprises Inc., has exhibited examples of the minimum values of � for a = 2, 3 and

4 in [74]. For a = 2, enumeration provides � = 4. Calderbank and Fishburn [17] use a variant

of the classical packing problem for the r-dimensional projective geometry PG (r; q) over the �eld

IFq with q elements to �nd the maximum cardinality of a set of points with the property that no

d points from this set are linearly dependent. We are interested in the case d = 3, for which only

a lower bound for � exists.
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a N  r h maximal noset
1 3 1 1 0 � = 2

2 9 12 4 9 � = 4

3 27 117 13 36 � = 9

4 81 1 080 40 117 � � 20
5 243 9 801 121 360 42 � � � 56
6 729 88 452 364 1 089 112 � � � 150
7 2 187 796 797 1 093 3 276 � � 236
8 6 561 7 173 360 3 280 9 837 not speci�ed

Table 2.1: Comparison of Parameters for the Game SET

Table 2.1 provides comparative values for the parameters for various numbers of attributes.

The values and ranges of � are Calderbank and Fishburn�s �gures. In the standard game, for

which a = 3, N = 81,  = 1080, r = 40, and h = 117, they determined that � � 20.

Remark 2.17 This model stands out from other models in that a member of one completion

set may be part of another completion set. For most of the theory in this thesis, this makes no

di¤erence, as the questions are mostly associated with a single such set, or apply to models in which

the completion sets are mutually exclusive. However, when considering measures for the number

of completions when the kth arrival occurs, the theory allows for complete generality of elements

being members of more than one completion set; the formulae for attribute-matching are produced

as special cases.

Remark 2.18 Consider the case a = 2, and suppose that cards are placed one at a time on the

table from left to right. Suppose also, that if a card can form a triad with a pair of cards on the

table, then the triad is removed. If there is more than one such triad, then choose the triad with

the left-most card on the table. With this version of the game it, is certain that there can be no

cards left at the end; similarly if the right-most cards are chosen when there is a choice of triads.

This has been shown by complete enumeration of all 9! possible arrival sequences. These results

imply the same consequence if 3 cards are placed at a time on the table, because although a batch

may provide a choice as to which match to remove, a batch combination converts into 3! linear

permutations and all permutations have been considered.

2.8.4.1 How Long will a Card Remain on the Table?

Players have observed that cards don�t remain unmatched for long. The question of how long a

card remains unmatched on the table falls naturally into the framework of without-replacement

	-processes.
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Figure 2.3: Example: 2-D Zig-Zag Problem

2.8.4.2 Number of Matches when a Card is Played

In the linear version of the Standard Game of SET, interest is on the number of matches made

when a single card is placed on the table.

2.8.4.3 How Many Triads in K Cards?

In the Standard Batch Game of SET, the question has been asked, but mathematicians disagree

on the answer, as to how many triads one can expect in the �rst batch. The equivalent in the

Parking Lot model of Section 2.2 would be to determine the platoon size if cars could physically

exist in many lanes at the same time; for a = 3, it would be 40 lanes. This is solved in Section

13.7.5 by specifying parameters in a more-general model.

2.9 Zig-Zag Problems

2.9.1 2-D Zig-Zag Problem

In the problems of Queueing in Lanes in Section 2.2, cars are permitted to have two directions

for exiting from a parking lot. In some situations, it may be possible to �nd a path to an exit

by zig-zagging through a maze of vacated parking spots. This allows a vastly increased number

of exit paths. As is shown later, with a simple 5� 5 block of vehicles, the number of paths to an

exit from the central spot is 92. Figure 2.3 displays this block of vehicles with reference numbers

to the cells being both sequential from 0 to 24 and array-based as (1; 1), (1; 2) : : : (5; 5). It also
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shows one of the possible exit paths from cell (4; 4) to cell (2; 5).

Our investigations show that it is computationally infeasible to determine expected waiting

times for this high number of paths; this results from the number of terms in the inclusion-

exclusion formula for the probabilities being 292 � 1. However, by applying the Minimal Covering

Theorem of Section 6.10.2, it is possible to eliminate redundant paths and reduce the number of

terms to 220 � 1.

There are other potential applications of this. For example, one could consider this as terrain

in which cells are being destroyed at random, and interest could be on the probabilities of getting

out before all paths are destroyed.

This model does not easily fall within the concept of lines of vehicles, even though the above

introduction to the zig-zag problem uses it as a starting point for a description of the problem.

There are also some special techniques developed and required for this problem that are not

required for the problems involving lines of vehicles. Hence this is treated as a distinct model.

2.9.2 Waiting for Utilities to be Connected to Plots of Land

Suppose there are one or more blocks of land that have been sub-divided for development. Suppose

they are purchased and cleared at random, and services can only be made available to a plot when

there exists a straight or zig-zag path to a plot of interest through cleared plots; this might arise if

there must be an owner to pay for the connection of the utility. This is a type of Zig-Zag Problem

in which the paths must be determined by the relationship between abutting plots that need not

be in a rectangular array.

From a plot-owner�s point of view, the time from clearing to receiving services is relevant.

Service departments would be interested in how busy the servicer would be when a plot becomes

cleared, which is a platoon-size problem.

2.9.3 3-D Zig-Zag Problem: Flying Saucers

Consider a 3-dimensional version of the 2-D Zig-Zag Problem, which is described in Section 2.9.1.

Here we consider only the 5 � 5 � 5 case. The cells are numbered sequentially from 0 to 124

and array-based as (1; 1; 1), (1; 1; 2) : : : (5; 5; 5) : The centre cell can therefore be referenced as cell

(3; 3; 3) or cell 62. The neighbours of a cell are those cells that are either vertically, horizontally

or laterally adjacent to the cell. For example, neighbours of the centre cell are considered to be

57, 61, 63, 67, 37 and 87.

A computer program was written to determine the number of possible exit paths for each
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starting position, and these are provided in Table 2.1. For the centre cell, there are 65 369 598 exit

paths. This implies there are 265 369 598 � 1 terms in the inclusion-exclusion formula. Determining

the non-redundant paths from this would be a time-consuming task, but would not be impossible.

Calculating a probability using the inclusion-exclusion formula is nigh impossible.

A new algorithm was devised to determine the non-redundant exit paths, that is, the number

in the minimal covering, which is discussed in Section 6.10, without having to determine all paths

�rst. There are 3; 030 non-redundant exit paths from the centre cell. In this case there are 23 030�1

terms in the inclusion-exclusion formula for the probabilities. There are many more when starting

in other positions. It is therefore necessary to investigate numerical methods for approximating

the probabilities and moments.

A light-hearted sci-� application is as follows. A collection of 125 �ying saucers are parked

hovering in a cubic formation in space. There is enough room for the alien visitors to a 125-galaxy

summit to �y personal carriers to and from the spacecraft. At the end of the summit, the many

thousands of visitors have various things to do before returning to their crafts. While those whose

craft are on the surface of the cube can leave immediately after all of their passengers and crew

are onboard, others may experience some delay. Because of craft manoeuvrability, it is possible

for craft to �y in a 3-dimensional zig-zagging path if their sensors become aware of any path from

their parking location to the edge of the parking cube.

2.10 Construction Site Logistics

A well-known situation faced on construction sites with multi-storey buildings is the need to store

in bulk a large range of items in a limited space, with some di¢ cult to move. Access to some items

is blocked by others, and some items, even if accessible, can be used only after certain others.

A classical problem is the optimal placing of items. However, given that in the real world the

placement may well be nearly random, especially with jobs not necessarily �nishing at due times,

what delays can be expected to be incurred?

This would only be a rough approximation of the real situation, but may be applicable in some

situations, in which case having some formulae for calculations of expected waiting times would

be useful. It would also be useful to know the degree of frustration and wasted time provided by

random placement. These values could be used in a program to minimise overall cost of placement

of, and access to, the items.

More precisely, suppose that a certain number, f , of items are required at a particular time

and any g of them are su¢ cient to begin the job � so that certain builders and/or machinery are
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not idle, for example � then we may ask what the expected waiting time is from the time these

f items are required to the time when at least g of them can be removed from the piles. The f

items of interest could become required one at a time or all at the same time.

Comparative examples are provided in Section 13.3.3.1, in which the materials are placed at

random in a random number of piles, and the expected waiting times are measured.

2.11 Random Graphs

2.11.1 Introduction

Zito [88, 1999] investigates the problem of using e¢ cient parallel algorithms to generate a graph

uniformly at random from the set of all unlabelled graphs with n vertices. He also investigates

combinatorial and algorithmic notions of approximation, and applies his results to phase transi-

tional behaviour, like the transition in physics between a solid and liquid state, for two important

computational problems. One of these is to decide �if a propositional boolean formula in conjunc-

tive normal form with clauses containing at most three literals is satis�able�. For this problem,

he uses the probabilistic model called the (young) coupon collector, which enables improvement of

the (then) best-known results for the problem.

Steinsaltz [79, 1999] considers random sequences of graphs as the possible edges are chosen and

added one at a time. He provides more-accurate estimates of the maximum number of times a

�xed subgraph appears in the random sequence of graphs.

Therefore, there is signi�cant interest and value in investigating properties of graphs generated

at random. There is also, as Zito�s thesis shows, a use for coupon-collector-type waiting-time

distributions and expectations.

Here we consider a graph with initially either no nodes connected and one connection is chosen

at random to be connected, or the nodes themselves are used as the points for arrival. These are

considered for both with- and without-replacement arrival models.

Questions of interest include determining the waiting time until a particular path is connected,

measured from the time a collection of paths have been randomly selected, how long it takes for a

node to have no neighbours, measured from the time a collection of one or more speci�ed nodes have

been randomly selected, and the time it takes for the there to be no path in a network, measured

from the time a particular collection of connections (or nodes) has been randomly chosen.

Examples include Reliability Theory, Fail-Safe System with Redundancy, Car Accidents and

Roadworks Blocking Access, No Path in a Network, Bombing Raid and Percolation Theory.
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2.11.2 Reliability Theory

A repairable system consists of N components, of which (initially unknown) subsets A1, A2, : : :,

Ar with common subset G are down at time T = 0. The system will operate if all elements of any

one of the Ai are repaired. After G has been inspected and repaired, how long must we wait before

the system is operable? This application was suggested by a referee to a paper by Henderson,

Kennington and Pearce [45]. The theory in this thesis allows one to investigate more-general

models.

Given the assumption of the subsets Ai being unknown, means we do not need to assume

repairs are random, as long as the order in which components need repairing is random, although

this would not change the results.

Example: �k out of n consecutive systems�.

(a) k consecutive fail -> system fails

(b) k consecutive operative -> operative.

Each cell fails with probability q.

Example: Wait for at least one path to exist between 2 nodes.

Example: Breakdown occurs if all paths are blocked - see Section 13.4 on No Paths in a Network

example (without-replacement) since this is a similar situation. The problem of having at least �

components functioning is the complementary problem to this.

Example: All systems down and become operational in random order. How long from the time

a particular node becomes operational before a path exists between it and another speci�ed node.

2.11.3 Fail-Safe System with Redundancy

Consider a fail-safe system with N redundant parts, and suppose that a part is randomly and

independently selected during regular intervals to have a problem. If we want to know how long it

would take till all N parts have a problem, then we have the standard coupon-collector�s problem.

2.11.4 Car Accidents and Roadworks Blocking Access

Consider the subset of a road network consisting of all roads and intersections between a home and

an o¢ ce, and suppose that a path exists between home and o¢ ce if there is at least one collection

of interconnected roads and intersections connecting home to o¢ ce that is free of car accidents

and roadworks. Assume that a road or intersection is obstructed at random. Suppose that at time

T = 0 this collection is free of all obstructions. Assuming a time-interval for the process in which

no obstructions are removed, what is the expected waiting time until there is no path from home
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to work, measured from the time that at least one of the roads or intersections that are within one

intersection of the home is blocked? One could allow consideration for obstructions to re-occur on

the same road or at the same intersection or not.

2.11.5 No Path in a Network

Consider a network consisting of nodes and links with an origin node, O, a destination node, D,

and at least one path between O and D. Suppose the nodes are visited at random, beginning

at time T = 0. One may ask what the waiting time will be till all the nodes of at least one

path between O and D have been visited, measured from the time O and D have been visited.

Alternatively, this may be measured from the time a speci�ed number of any speci�ed set of nodes

has been visited.

Suppose instead that at the beginning of the process all paths are available, and a visit to a

node blocks access to all paths using that node. One may then ask what the waiting time will be

till all paths are blocked, measured from the time a speci�ed set of nodes has been visited.

The without- and with-replacement models of the latter model have their theory discussed in

Sections 9.4 and 10.3 on Blocking, respectively. Examples for the without-replacement process are

provided for the No Path in a Network problem in Section 13.4, which applies to the Bombing Raid

problem described in Section 2.11.6. Corresponding examples for the with-replacement process are

provided in Section 14.3.

2.11.6 Bombing Raid

Consider a road network in which the intersections are being bombed. From the time a particu-

lar intersection is bombed, what is the waiting time till all possible paths to another particular

intersection have been blocked due to bombing? The following scenario provides an example of

this. The bombers have another point of view, and that is to measure how long before an enemy

is stopped from reaching a speci�ed destination.

2.11.6.1 Example: Finding a Direct Path between Two Intersections

Suppose person g is in a town in which a child is at another location in the town, and the town

is bombed with intersections being destroyed at random. Suppose g is only aware of or concerned

about the attack when the intersection next to the building has been bombed; for example, g is

in a sound-proof chamber measuring the sound of a feather dropping to the �oor. Suppose that

g must drive through unbombed intersections in a direct path to the child; that is, zig-zagging
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Figure 2.4: Percolation Theory

backward is not permitted. There are diagonal roads and overpasses and underpasses that can be

used. What is the probability that all direct paths have at least one intersection bombed by the

time g�s intersection has been bombed?

2.11.7 Percolation Theory

Consider the network model with vertices connected up in a rectangle of s t-tuples like those

displayed in Figure 2.4. Suppose the vertices are visited in a random order without repetition, and

the occupancy of t-tuples is measured at time k. Steinsaltz [79, 1.2.5, 4.6] �rst describes this model

with t = 2, and considers the count of the number of vertices that have been visited up to time k

but whose neighbours have not, from which the state of the maximum number of singletons may

be investigated. He then generalises the model to a square network with an arbitrary collection of

�nite connected subsets. Here we treat each of the �nite connected subsets as a G-set.

The static distribution for the state of the G-sets for the without-replacement model is deter-

mined in Section 6.20. The dynamic distribution for the without-replacement model is investigated

through its �rst two moments in Section 11.6. The theory of 	-processes is applicable when suit-

able questions are asked; for example, if one asks how long it would take for all t-tuples in front

of the jth tuple to be visited, measured from the time the jth tuple is visited, then the example

of Simply Interconnected Parallel Lines in Section 13.3.2.1 provides the waiting-time distribution.

The speci�c theory, examples and applications associated with sock-matching and cake displays

without multiplicities are applicable.

The theory of without-replacement 	-processes and its examples and applications may also be

applicable if the relevant questions are asked.
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2.11.8 Thresholds and the Structure of Sparse Random Graphs

Fountoulakis [33, 2003] obtains

approximations to the non-3-colourability threshold of sparse random graphs and [we]

investigate[s] the structure of random graphs near the region where the transition from

3-colourability to non-3-colourability seems to occur.

One aspect considered is the chromatic number of r-regular graphs, where r is a small positive

constant. He applies a simple �rst moment method to determine for each k � 3 a bound f(k)

so that almost all r-regular graphs with r > f(k) are not k-colourable. Then he tries to prove

that almost all 5-regular graphs are not 3-colourable using a combination of ideas that requires

the analysis of the asymptotic behaviour of a variation of the classical coupon-collector problem.

The results of his mathematical analysis of this variation are provided in Section 2.3.4 on the

Restricted Coupon-Collector�s Problem.

2.12 Testing the Randomness of Data

In testing the randomness of a sequence of data items, the problem is to decide if the observed

sequence is attributable to chance alone or whether there is evidence to suggest otherwise. Such

tests and their uses abound.

Feller [29, p61] states that Greenwood [40] used the Coupon-Collector�s Test for random digits

(Knuth [49, 3.3.2-F]) to compare the counts for numbers of observed digits in n digits of � and

e with the distribution of waiting times until all digits were observed. Greenwood noted that

P (waiting time > 50) ' 0:05 and P (waiting time > 75) ' 0:0037.

We provide a test for the randomness of these digits in Section 16.4.3. This test uses the

Bird-Watcher�s Test of Section 16.4.2, which is based on the without-replacement waiting-time

distribution.

Knuth [49, 3.3.2-F] discusses several other tests, including the following: Serial, Gap, Poker

(partition), Chi-square, Kolmogorov-Smirnov, Spectral, Equidistribution (frequency), Permutation,

Run, Maximum of t, Serial correlation, and Tests on subsequences. Tests are still being created

and developed. A more recent test is Maurer�s [60] Universal Statistical Test, which can be used

to test if �nite sequences are indistinguishable from truly random sequences to a user-speci�ed

rejection rate.

The Australia/New Zealand Gaming Machine National Standards [6] speci�es several tests for

statistical independence of outcomes, for uniform distribution of those outcomes and for unpre-
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dictability. The tests speci�ed in 2002 were Chi-square, Equidistribution (frequency), Gap, Poker,

Coupon Collector�s, Permutation, Run (patterns of occurrences should not be recurrent), Spectral,

Serial correlation test potency and degree of serial correlation (outcomes should be independent

from the previous game), and tests on Subsequences.

Kolchin, Sevast�yanov and Christyakov [50, Chapter V] describe the empty cell test for testing

the hypothesis that a sample consisting of independent observations is taken from a speci�ed

continuous distribution and then generalise it. This can be applied to a distribution by dividing

its domain into N intervals so that the probability of one observation occurring in each cell has

probability of 1=N .

Various new tests based on some of the distributions presented in this thesis are discussed in

Chapter 16 on Testing the Randomness of Sequences. The power of these tests is not within the

scope of this work.

2.13 Ball-Point Pens

Near the end of writing this thesis, the ball-point pens seemed to be running out in quick succession,

with several per week and with a peak of three on one day. One might think that one or more

pens would be favoured, perhaps because they could remain �xed in a location. However, this is

not what occurs in reality. Another example is that one might have in one�s pocket or a container,

a number of writing implements for a whiteboard or overhead projector sheets.

This prompted an investigation into the distribution of completions within speci�ed intervals.

This may be useful as a measure against surprise in an application when there appears to be a

sudden increase in the number of completions.

For the purpose of analysis here, we will assume that uses of a pen are known in advance, and

the process of choosing a pen is random.

Consider the following example. Suppose 50 ball-point pens have 800 uses each. Assume a

�xed number of uses, and assume the pens are selected at random for each use. With 400 uses

per day it would take 100 days for all of the pens to be used. How many would be expected to be

completed in each interval of either uses or time? This question is answered in Section 11.7.5.

2.14 Medical Trials

Suppose there are a number of medical trials that are being conducted simultaneously with speci�ed

people already allocated to the treatments, and they arrive for treatments in a random order. If
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the arrival for the �rst patient for a particular treatment provokes the transferral of all treatment

materials for that treatment from a holding location and a seal is broken in order to access the

�rst item, one might ask how long it will be till the �nal patient arrives for the treatment. One

might also ask what the expected maximum number of treatments will be stored on location at

any time during the trial.

2.15 Storage Problems

2.15.1 Wine Barrel Problem

Wine barrels lined up next to each other in a narrow hallway with either one or two exits. The

barrels are removed only when all the barrels between an empty barrel and one of the exits exists.

2.15.2 Information Storage in Files

Steinsaltz [79] mentions a situation in which the tax department receives information from various

sources one at a time at random; for example, a bank, the social security department, the federal

police and the stock exchange, to mention only a few. Many people will be managed at the same

time. Assume requests arrive at random. We may ask what the waiting time is till a particular

person�s �le is complete. This could be measured from the receipt of a core set of information

or a speci�ed minimal number of pieces of information in that core set. This is similar to the

sock-sorting problem.

The without-replacement models presented here apply if one considers each �le to be requested

only once. If updates can be requested, then the without-replacement model becomes applicable.

The static models enable the determination of the expected maximum storage space for open �les

for both the total number of individual �les and the number of individuals for which �les are open.

In both with- and without-replacement models one may determine waiting times for completing

the information from related tax investigations, even when some of the information is in common

between two or more people.

2.16 The Classical Occupancy Problem and Related Models

2.16.1 Introduction

The classical allocation model randomly places r balls into n cells with each of the possible nr

placements being equiprobable; the classical occupancy problem is to determine the probability of
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�nding exactly m cells empty (Feller [29, IV.2]).

According to Strauss [81, 1977], the distribution of the number of occupied cells in the classical

occupancy problem was �rst given by de Moivre in 1718 in his Doctrine of Chances [24, problem

XXXIX].

2.16.2 Related Models

The following is not directly related to the work of this thesis, but shows the level of interest in

similar occupancy problems and the techniques used.

In the discussion of urn models during the two decades 1978-1997, Kotz and Balakrishnan [51]

mention Fang�s tackling of the so-called restricted occupancy problem [28], in which m urns have

k cells each and n balls are assigned to an unoccupied cell at random. Fang counts the number

of urns containing exactly t balls for several cases, which are whether or not the empty urns are

permitted and whether or not the cells, urns and balls are distinguishable or not. Although this

is not directly related to the work herein, these static problems may be viewed as determining a

global measure of the occupancies of vehicles after the nth random arrival, with equal numbers of

arrivals possible for each vehicle.

Strauss determines the precise and asymptotic distributions for the number of runs and demon-

strates that it would be useful in large-sample signi�cance tests for clustering. Clustering is

analysed for some models and asymptotic distributions are considered for others. One of his for-

mulae involves �nite di¤erence and forward shift operators; during the development of a result in

this thesis, �nite di¤erences have also been used to simplify important expressions.

Kolchin, Sevast�yanov and Christyakov [50] considered several with-replacement random allo-

cation problems. Their interest was in the distributions of cell occupancy, especially the number

of empty cells. They also consider the waiting times of the number of trials required before k

boxes are be �lled, and provide the expectation and the variance. They derive properties for the

multinomial distribution for the number of cells with each possible occupancy number, and they

do this through generating functions without knowledge of the distribution itself. It is from their

work that the idea of a complex of simultaneous placements was observed. They observe that the

classical Coupon-Collector�s Problem is an application of a small part of their work.

Gardy [37, 1998] surveys some problems that appear in computer science that can be modelled

as occupancy urn models and discusses various approaches for analysing them. These include the

coupon-collector�s problem, hash tables, evaluation of the number of records retrieved in database

retrieval requests, and learning theory.
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Gardy and Yao [38, 1999] evaluate database performance using occupancy urn models. They

consider empty urns, a bounded-capacity urn model, and non-uniform probabilities with a view to

modelling database performance.

2.16.3 2-D Tables

Selivanov [75, 1999] discusses the limit theorems for the classical allocation problem with respect

to a 2-dimensional table. We might ask what the waiting time is from the time a speci�ed row

is completed until a speci�ed column is completed, when the allocations are random and with-

repetition. Many similar questions may be answered as a result of this thesis.

2.17 Skeletal Remains at an Archæological Site

Suppose one wants to estimate the number of skeletons buried on a site or the amount of room

required to reconstruct them after picking up n bones and matching them. In general, this would

require a probabilistic measure of the number of bones found simultaneously, but this generalisation

is not considered here.

We assume � bones per skeleton, and begin counting bones for a new skeleton after the �rst

bone is found for it.

Examples of this are provided in Section 6.16.5.

2.18 Body Parts after an Explosion

Estimating the number of dead people from body-parts after an explosion or other disaster, such as

a tidal wave, occurs sometimes. If one considers the body to be made up of N major distinguishable

and identifying parts, then one could estimate the number of dead people based on the waiting

time between �nding one body-part for a person, for example the right arm, and another body-

part for the same person, for example the left arm. This can be provided by �nding the maximum

likelihood estimate of N using the distribution provided in Section 6.14 on Waiting for the � th

Arrival of G Measured from the �th Arrival of G. If one wants to estimate N after picking up

n body parts and matching them, then this is the same model as discussed in Section 2.17 on

Skeletal Remains at an Archæeological Site.
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2.19 Baggage Collection at an Airport

Suppose a young child arrives with r family members and friends by jet at an airport with � luggage

items to be retrieved by himself (or herself) and mi for his ith family member or friend. Suppose

there are N luggage items belonging to all passengers. Let�s suppose the child becomes impatient

once he/she has all of his/her own luggage and is interested in how long to wait measured from

the time all of his/her luggage has arrived till all of the family and friends�luggage has arrived.

One can imagine an impatient child screaming out at every new piece picked up by one of the r

others: �Can we go now?�.

Other measures of potential interest include the waiting time till the arrival of one�s last bag

or the last bag of the entire group, measured from the time of one�s �th bag or the group�s �th

bag appears.

2.20 Inventory Models

An order for a particular item is sometimes met only when su¢ cient orders have been received to

make up a large shipment of goods. In general a number of di¤erent types of batches of orders

including the particular item could provoke the dispatch of a shipment.

Suppose a warehouse has a suite of vans that arrive at the same time and will leave when they

are full. Orders to the warehouse can be for items of various sizes and any combination that �lls

a van will enable the van to depart.

2.21 Game of Hex

If a single player is placing stones at random on a hex board how long can it be expected to take

for a connected path to one of the four edges measured from the time the centre cell has a stone

placed in it? This is a variation of the 2-D Zig-Zag Problem, which is discussed in Section 2.9.1.

2.22 A Voting System

Suppose there are a number of candidates for a committee. One might ask how long it would take

till all of one�s own votes are counted, measured from the time of the �rst, second or subsequent

vote for oneself has been counted. One might also ask what the probability is of having all of ones

own votes counted before any of the opponents�votes have been completely counted, measured

from the counting of one�s �th vote being counted. If the number of votes each candidate has
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received is known in advance then the latter problem can be modelled by the theory of Section 9.3

on Taboo Sets.

If one doesn�t know the number of votes for a candidate in advance, then knowing the total

number of votes and the length of time it takes from the �th vote for a candidate till the �th vote

for that candidate, enables an estimate to be made of the total number of votes for this candidate.

This is discussed in Section 6.17 and an example is provided in Section 6.17.3.

2.23 Learning Theory

Certain bodies of knowledge are to be learnt, but learning does not take place linearly, especially

in a newborn child. In order to perform a task, a core set of knowledge is required, and then one

or more additional sets of knowledge are required. How long will it take from the time one has

learnt the core set till the time one has learnt at least one of the additional sets?

2.24 Linear Hashing

Suppose a collection of �nite-sized buckets are chosen at random using a hash function to determine

which bucket to place a reference value into. At some point the buckets will become full if enough

hash values are calculated for the same bucket. This is similar to the coupon-collector�s problem

as described in Section 2.3.1.

Alon, Dietzfelbinger, Miltersen, Petrank and Tardos [1] consider, amongst other things, the

e¤ect of size of buckets on the length of time before they become full under several conditions.

One is that there is not complete independence between choices of buckets. This is an area only

lightly touched upon in this thesis. They also estimate largest bucket size, with particular interest

in the e¤ect of increasing the number of buckets6.

2.25 Tagged Fish: Estimating the Abundance of Wildlife

Feller [29, p45] observes that the method of using the hypergeometric distribution to estimate

the size of a population from recapture data was widely used in practice. One can determine the

probability of the observed number of marked animals in the re-captured group for various sizes

of population, and use this to determine the population size that maximises the probability of

the observed number occurring by chance; this provides the maximum likelihood estimate of the

6Alon et al also investigate the extent to which �ne-grained occupancy properties of completely random linear
maps between vector spaces over a �nite �eld are preserved.
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size of the population. One can also draw the maximum likelihood function to see how a change

in the estimate of the size in�uences the probability. Also, from this function, one can determine

con�dence intervals for the population size. This is sometimes referred to as the �sh catch problem

or the tagged �sh problem; here we use the latter.

The estimate based on the hypergeometric distribution is a static measure, because only the

�nal number of tagged �sh is used for making inferences, and does not consider the micro-process

that occurs as the �sh are captured. There are models presented here that investigate some

properties of this micro-structure. Each of the waiting-time models provides an alternative to the

static measure. Perhaps one or more of these would provide better estimates or reduce the number

of �sh needed to be tagged or re-captured in order to have the same level of con�dence about

estimates of population size.

One could measure the number of �sh required to re-capture � tagged �sh, measured from the

time it takes to re-capture � tagged �sh, which is one of the measures determined in this thesis.

Is this better than using the with-replacement method? Although it is beyond the scope of this

thesis, this question illustrates the need to investigate various without-replacement problems.

One could use the time between the �th marked �sh to the �th marked �sh for each � in

f1; : : : ; �g to estimate the size of the population given one knows there are n marked �sh in the

pool.

One could tag the �sh with individual tags and throw them back immediately after re-capture.

This is a with-replacement model, and not only would the waiting-time models provided herein

apply, but this then becomes a coupon-collector model, so that the distributions associated with

coupon collecting apply. Finkelstein, Tucker and Veeh [31, 1998] refer to the use of a camera in a

national park in India to photograph a number of tigers and �nd

: : : the unique maximum likelihood estimator of, and conservative con�dence inter-

vals for, the unknown number of di¤erent coupons in the coupon collector�s problem.

This problem is also known as the problem of estimating the abundance of wildlife.

The techniques developed here can be easily implemented, are valid without regard to

sample size, and validate previous methods based on large sample theory when those

methods apply.

This makes it abundantly clear that there is still an interest in �nding estimates of population

size, and provides evidence that the further development of with-replacement models is quite

relevant.
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One could have two or more types of tagged �sh; for example, male and female. One could

measure the wait for m of type 2, measured from the re-capture of � of type 1:

Samuel-Cahn [72, 1975] considers tagged �sh when tagging a¤ects catchability.

Observe that the with-replacement models do not apply in a destructive environment.

2.26 Warning Signals

The following is a description of a particular case, but the idea would apply equally to other

situations.

Suppose b containers contain a total of N pellets, and � of these pellets are special. Suppose

these pellets are being eaten one at a time by a rat in a cage, and the special pellets generate a

signal as they pass by a feeding tube attached to each container.

One could be interested in determining if the rat is selecting the special pellets at random or

is giving them preference, by performing several runs with the same rat or with di¤erent rats,

and comparing the distribution of waiting times or means with those of the known 	-distribution.

Here, however, we consider something else.

If an observer must attend the rat�s cage when all the special pellets have been eaten and takes

M minutes to attend, one might wish to minimise the time interval between the arrival at the cage

and the time the last pellet is eaten. To assist in this, an alert or warning signal can be made

to occur when the �th special pellet has been eaten. One can assume that pellets are eaten at

random and occur regularly in average intervals of H minutes.

Knowing the expected waiting time, E�, between eating of the �th special pellet until all of

the special pellets have been eaten would enable the feeder to decide upon the optimal value of

�. This is determined by �nding the value of � that provides min�2f1;:::;�g jDb;M;H (�)j, where

Db;M;H (�) = E�H �M .

2.27 Summary

This chapter has provided motivation for investigating certain random allocation problems that

have no apparent precedent in the literature. During this investigation, one would hope to �nd

some kind of unifying theory for apparently di¤erent problems.
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3.1 Introduction

All of the models described in this thesis can be classi�ed as occupancy urn models, where we have

a sequence of urns and throw balls into them.

In this chapter we describe most of the fundamental aspects of the basic models, provide the

common notation used, and provide a few examples to illustrate their use. This is not intended as
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3.2. Common Elements

Element Name
elements
cells
vehicles
states (of a system)
boxes
items
objects
parcels
urns
cake slices
links (in a network)
nodes (in a network)
cards
pictures
birds
lots
socks
bins
squares (on a chessboard)
�sh
baggage
pigeon-holes

Table 3.1: Example Names of Elements

a complete repository for later referral, but instead is intended as an introductory orientation for

the reader. It provides a fundamental description of models in one place, but is not supposed to

be complete. Variations and extensions are considered later.

3.2 Common Elements

3.2.1 Sample Space

For N 2 Z+ let N be the �nite set f1; 2; : : : ; Ng.

Depending on the context, the elements of N will be referred to by any other word or phrase

that indicates a container or repository or any item that is or can be allocated a unique identi�er

and therefore labelled uniquely with an element of N . Examples are provided in Table 3.1.

In each case, there can be a group name to represent the set N as a whole. Examples are

provided in Table 3.2.
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Group Name
a deck of cards
a set of cards
a line
a lane
a car parking lot
a collection of pictures
a set of elements

Table 3.2: Example Group Names for Elements

3.2.2 Sampling Types

We use simple random sampling for all random processes herein. That is, there is a discrete

uniform probability distribution on the elements of N .

We examine processes that have a without-replacement paradigm or a with-replacement para-

digm.

We will refer to these sampling types simply as random sampling or at random, with the context

making it clear as to whether it is without-replacement or with-replacement.

3.2.3 Observations

Let n 2 Z+ and suppose that n observations on the elements of N are made. Depending on the

context, making an observation may be referred to by any other word or phrase that indicates or

is similar in meaning to selecting a container or repository for the receipt or removal of one of its

elements. Examples are provided in Table 3.3.

Note that many of these terms may refer to an observation at a point in time at which more

than one physical arrival occurs. An example of this occurs with batch arrivals.

The corresponding noun forms of these words are used for an observation; for example, an

arrival corresponds to arriving. All tenses of these words or phrases are also applicable.

3.2.4 Arrival Number per Observation

In most models investigated here, there is just one physical arrival per observation or trial, et cetera.

However, some without-replacement models are also extended to batches with a pre-speci�ed size,

but not necessarily all the same size.
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Observation Name
choosing
selecting
allocating
a trial
throwing (a shot)
placing in
rolling a ball into
visiting (a cell)
visiting (a state)
completing
arriving
departing
leaving
�nding
ordering
occupying
marking
using
dealing (one or more cards)
eating (one or more slices of cake)

Table 3.3: Example Names for Observations

3.2.5 Special Sets

3.2.5.1 G-Sets

When a subset of N is a set for which we are waiting for the completion of (or partial completion

of) before starting to measure the waiting time, we label it as G and refer to it as a G-set.

For a speci�c G-set of interest, we use � for jGj. When we consider a partition of N into ,

possibly intersecting, G-sets, we label them as G1; : : : ; G and use �i � jGij. When the G-sets

cover N without being disjoint, the distributions involved are beyond the scope of this thesis. We

assume N = _[i=1Gi.

When we consider measuring the waiting time from an earlier arrival for G than the �nal arrival

for G, we measure it from the �th arrival of G. When we measure until before the �nal arrival for

G, we measure it until the !th arrival of G.

There are other variations, which will have their notation de�ned in context.

3.2.5.2 A-Sets (Required Sets)

We consider other subsets of N that we wait for the completion of, measured from the time a

G-set is completed. We call these sets A-sets. When there are r � 1 of them, we usually label
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them A1; : : : ; Ar, and when r = 1 we simply use A. There are applications in which it behooves us

to use a di¤erent labelling; for example, the analysis of two-dimensional structures often bene�ts

from the use of two-dimensional indices. These A-sets are referred to as the required sets as it is

necessary for these to be completed before the G-sets are considered to be free in some sense.

Remark 3.1 In the basic new waiting-time model, which is described in Section 3.3.3, measure-

ment of the waiting time is from the completion of G until the completion of its corresponding

A-set. This implies that measuring the wait ceases after the last element of G [ A. If G \ A 6= ;,

then this is still true. In some practical situations it might be natural to consider an A-set that

includes elements of G. For example, in the car parking models described in Section 2.2.1, it is

natural to consider one car in a lane as part of a platoon of cars that includes all cars that are

blocking it; in fact, measuring the waiting time for a contiguous group of cars in the uni-directional

model is the same as for the car furthest from the front in the lane.

We therefore allow generality of model speci�cation in applications by not specifying whether

or not G\A = ;. This means that the relevant elements of A as far as calculations are concerned,

are in AnG.

We use mi � jAinGj and m = jAnGj, and assume mi � 0 and m � 0.

The subsets A1; : : : ; Ar are chosen in advance of the process beginning.

It is not necessary for the general development to specify whether or not the various subsets

Ai may have states (as speci�ed in Table 3.1) in common other than those in G. When they only

mutually intersect in G some formulae are provided with simpli�ed versions.

There are times when A is used as an abbreviation for the list A1; : : : ; Ar.

When only a speci�ed-size subset of A-sets is required to be completed, we measure the wait

until the completion of any �i states of AinG for at least one i 2 f1; : : : ; rg.

3.2.5.3 Example: Car Parking in a Single Lane

In the original model of Queueing in Lanes, which is described in Section 2.2, there is a single lane

of parked cars and a car cannot leave until all of the drivers in front of it have arrived. In this case

we could number the cars from the front to the back from 1 to N . Suppose we are interested in

the jth car. Then N = f1; : : : ; Ng, G = fjg and A = f1; : : : ; jg. Here � = � = 1 and m = j � 1.

If reversals are permitted, then there would be two A-sets, namely A1 = f1; : : : ; jg and A2 =

fj; : : : ; Ng. The sense of free in this case is that the driver for vehicle j would be able to drive

out of the lane once either A1 or A2 (or both) were completed. Here � = � = 1, m1 = j � 1 and

m2 = N � j.
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3.2.5.4 B-Sets (Taboo Sets)

Sometimes it is of interest to consider sets that must not be completed by the time the G-set and

at least one of the A-sets is completed. These are called B-sets and are labelled B1; : : : ; Bt. The

elements of B-sets are chosen in advance from Nn (G [
Sr
i=1Ai) : There are times when B is used

as an abbreviation for the list B1; : : : ; Bt.

When only a speci�ed-size subset of B-sets are to be precluded from completion, we say that

�u elements of Bu must not be completed for each u 2 f1; : : : ; tg. We provide results only for the

case �u � jBuj, because this provides the fundamental methods for investigating this model, from

which the generalisation to �u � jBuj is straightforward.

Observe that a B-set may not contain elements of any A-sets.

3.2.5.5 Example: Car Parking in a Single Lane (continued)

With reversals allowed, we might want to know the waiting time until vehicle j can leave going

forward without being able to leave by reversing. In this case it is not certain that this is possible,

because those behind the driver might all arrive before all of those in front. Hence t = 1 and

B = fj + 1; : : : ; Ng.

3.2.5.6 The Set of Non-Speci�ed Elements

Let S be the set of elements other than those of G, Ai 8i and Bu 8u. That is,

S = Nn
�
G [

[r

i=1
Ai [

[t

u=1
Bu

�
. (3.1)

3.2.6 Word Usage for Observations

Let S � N . When every element of S has been observed, S is said to be, depending on the context,

any word or phrase that indicates or is similar in meaning to having observed each element of S.

Examples are provided in Table 3.4.

In the same way, we also say S is occupied, can leave, has been eaten, or any word or phrase

that indicates an observation has occurred for every element of S in this or any other tense.

In the case of the new waiting-time model, which is described in full in Section 3.3.3, a G-set

may only be considered able to leave if at least one A-set is also complete. In the case of having

taboo sets, there is the additional condition that no B-set must be completed.

We make the following observation, but do not use it in subsequent chapters. Consider-

ing a process generated by a single orbit, in which the process moves in succession into states
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Word Usage for an Observation
complete
occupied
able to leave
free to leave
able to be picked up
picked up
�led
visited
empty
full
eaten

Table 3.4: Word Usage for Observations

x1; x2; : : : ; xN at times t1 < t2 < : : : < tN , with xi 6= xj for i 6= j. We refer to making an ob-

servation as orbiting, and refer to the subset S j N as having been orbited when the process has

moved into all the states of S:

3.2.7 The Number of Observations

For a possibly positive wait to occur, it must be possible to (partially) complete the G-set and

(partially) complete at least one A-set. Now, at least � observations for G must occur before the

wait begins to be measured, and then at least ! � � more observations for G are required before

measuring the wait may cease. Also, for at least one A-set Ai, at least �i observations are required

before measuring the wait may cease.

Hence we assume the number of observations, n, satis�es n � ! +mini2f1;:::;rg �i.

3.3 The Models

3.3.1 Introduction

As stated at the beginning of this thesis, the random allocation models described in this thesis

can be classi�ed as occupancy urn models (Gardy [37, 2002]) in which we have a sequence of urns

and throw balls into them at random, and either look at the �nal con�guration, throw the balls in

one by one until the appearance of a speci�ed con�guration, or throw the balls in one by one and

consider the sequence of con�gurations. These are referred to as static, waiting-time and dynamic

processes, respectively.

Emphasis is on the new waiting-time processes.
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3.3.2 The Static Model

If the G-sets form a disjoint partition of N , that is N = _[i=1Gi, then the static models discussed

here involve �nding the distribution for the occupancy numbers of the G-sets after k arrivals, and

the joint distribution of having � G-sets unoccupied, j G-sets full and the occupancy numbers of

the G-sets. From the last of these distributions, one can determine the probability that n G-sets

have at least � arrivals.

For example, this allows the determination of how many sets of socks or cakes are completed,

partially completed or not started.

3.3.3 The New Waiting-Time Model

De�nition 3.2 A 	-process is a waiting-time random process in which the waiting time is mea-

sured from the instant the process has visited the �th element of G to the instant it has �rst visited

at least ! elements of G and �i elements of AinG for at least one i 2 f1; : : : ; rg but not �u elements

of Bu for every u 2 f1; : : : ; tg.

	-processes may be considered to be queues in which the service of one group of customers

depends on the service of another group of customers, some of whom may have already been served

while others are yet to arrive.

De�nition 3.3 A standard 	-process is a 	-process in which all the B-sets are empty.

De�nition 3.4 The probability distribution functions for 	-processes are called 	-distributions

or 	-probabilities.

De�nition 3.5 A probability value from a 	-distribution is called a 	-probability.

De�nition 3.6 A 	-number is the number of ways in which the arrivals can occur in order to

produce the speci�ed waiting time in the corresponding 	-process.

Remark 3.7 Observe that a 	-number depends on the both the parameters of the process and

the speci�ed waiting time of the process. For example, the simplest 	-process has the 	-numbers

speci�ed by 	(N;m; k) ; where k is the time variable.

The nature of which kind of 	-process is being discussed depends on context. For example,

there need not be any taboo sets.
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Remark 3.8 Observe that the taboo sets being absent is not equivalent to the taboo sets being

empty. For example, if �u = 0 for some u, then Bu is complete before the process begins, or,

equivalently, it is not possible to have < �u arrivals for the B-set Bu.

De�nition 3.9 A 	1-process is a without-replacement 	-process.

De�nition 3.10 A 	2-process is a with-replacement 	-process.

De�nition 3.11 Any 	-process, 	-number or 	-probability may have the word batch attached as

an adjectival modi�er.

Remark 3.12 There are other modi�ers. For example, there is a taboo 	1-process with varieties.

3.3.4 Occupancy Urn Model Formulation of the New Waiting-Time Model

3.3.4.1 Introduction

In occupancy urn models, there is a sequence of urns, and balls are thrown into them at random.

The new waiting-time model may be described using the terminology of occupancy urn models

as follows. The following description applies to both without-replacement and with-replacement

sampling types.

Note that using the terminology of urns suggests that only a �nite number of balls may be

added to them, but that is not the case in the with-replacement model. In that case, one view is

to consider balls of the same kind to replace the existing ball.

3.3.4.2 Preliminaries

Label N urns as 1; 2; : : : ; N ; the relative positioning of these urns is not important, but, when

determining probability distributions, it might help to perceive them as being in a straight line

with labels being in increasing order. The urns will be given one or more other labels. Assume n

balls will be thrown. In the without-replacement case, n � N . Use the letter k to represent the

waiting time; k may take on values outside the possible values of real waiting times in order to

represent the various ways in which the process does not satisfy the requirements for these real

waiting times to occur.

We will count the number of throws from the time the �th urn labelled a g is occupied (for the

�rst time) until the throw when for the �rst time both the !th urn labelled a g is occupied and

for at least one i at least �i urns labelled with an ai are occupied. If prior to this occurring there

is a u such that all �u urns of Bu become occupied, then it is not possible to satisfy the criteria,
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and the waiting time is said to be in�nite. A generalisation of this is to consider there to be at

most w (� 0) values of u for which all �u urns of Bu become occupied; the basic case has w = 0.

3.3.4.3 The Non-Batch Process with Taboo Sets

Here we model the process that begins waiting from the �th arrival of G, stops waiting when �i

elements of jAinGj have arrived for at least one i, and no u exists such that all the elements of Bu
have arrived.

Label an arbitrary � of the urns as g, for i 2 f1; 2; : : : ; rg label mi of the urns not labelled as a

g as an ai, and for u 2 f1; 2; : : : ; tg label �u of the urns not labelled as a g or any ai as a bu, and

label the remaining urns as an s.

Throw balls into the N urns one at a time at random and after each throw note the number of

urns labelled g that are occupied, the numbers of each ai and bu occupied, and the number of urns

labelled s that are occupied. Represent these counts by nG, nA (i), nB (u) and nS , respectively.

The following conditions are tested in the sequence presented here.

1. If there exist throws n1 and n2 with n1 � n2 � n such that at the n1th throw nG = � for the

�rst time and at most w u�s have nB (u) = �u, and at the n2th throw ng � ! and nA (i) � �i
for some i for the �rst time and at most w u�s have nB (u) = �u, then the waiting time until

success is k = n2 � n1.

2. If after any n1 � n balls have been thrown, we observe nB (u) = �u for greater than w u�s

with either nG < ! or 8i nA (i) < �i, then no matter how many additional balls are thrown,

the G-set is blocked from ever leaving. This is indicated by specifying k = �3.

3. If after the n balls have been thrown, we observe nG < �, then the waiting time has not

begun to be measured. This is indicated by specifying k = �1.

4. If after the n balls have been thrown, we observe nG � � and 8i nA (i) < �i, then the waiting

time is said to be in�nite. This is indicated by specifying k =1.

5. If after the n balls have been thrown, we observe � � nG < ! and nA (i) � �i for some i,

then insu¢ cient elements of G have been completed. This is indicated by specifying k = �2.

3.3.4.4 The Non-Batch Process without Taboo Sets

The non-batch process with taboo sets is considered in the previous section. Here, we reproduce

the relevant text with omissions for taboo-related material.
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Throw balls into the N urns one at a time at random and after each throw note the number

of urns labelled g that are occupied, the numbers of each ai occupied, and the number of urns

labelled s that are occupied. Represent these counts by nG, nA (i) and nS , respectively. The

following conditions are tested in the sequence presented here.

1. If there exist throws n1 and n2 with n1 � n2 � n such that at the n1th throw nG = � for

the �rst time, and at the n2th throw ng � ! and nA (i) � �i for some i for the �rst time,

then the waiting time till success is k = n2 � n1.

2. If after n1 � n balls have been thrown, we observe nG < �, then the waiting time has not

begun to be measured. This is indicated by specifying k = �1.

3. If after the n balls have been thrown, we observe nG � � and 8i nA (i) < �i, then the waiting

time is said to be in�nite. This is indicated by specifying k =1.

4. If after the n balls have been thrown, we observe � � nG < ! and nA (i) � �i for some i,

then insu¢ cient elements of G have been completed. This is indicated by specifying k = �2.

3.3.4.5 The Processes with Batch Arrivals

Consider arrivals to occur in B batches of size nb, b 2 f1; : : : ; Bg, such that
PB

b=1 nb = n, with

batches occurring in the order b = 1; 2; : : : ; B. The bth throw consists of throwing nb balls at

random and without-replacement into the urns. The list of batch sizes is represented by the

B-vector n.

The discussions of the previous two sections on non-batch processes applies with n replaced by

B and with the counting process counting batches, not balls. For example, the phrase "If after the

n balls : : :" is to be replaced with "If after the B batches : : :".

3.3.4.6 The Processes with Varieties

Consider that each of the N urns has v distinct attributes or locations in which a ball may be

placed, which we call varieties. Suppose each of the n = vN randomly-placed balls is allocated

to one of the varieties in one of the N urns, with each variety accepting precisely one ball. We

consider the process of waiting for the completion of one or more speci�ed urns, measured from

the completion of a speci�ed urn. Hence jGj = v and jAinGj � vmi. There are two arrival models

to consider.
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De�nition 3.13 A model in which each arrival for each variety occurs simultaneously at each

of the N arrival-points and whose arrival streams are independent of each other is termed the

simultaneous varieties model.

De�nition 3.14 A model in which there is no restriction on the number or type of varieties that

can arrive simultaneously is termed the randomised varieties model.

The occupancy models for simultaneous varieties are the same as described above for the

batch or non-batch processes with or without taboo sets. The di¤erence occurs when determining

probabilities for events. See Section 9.9.2 for details.

The occupancy model for randomised varieties is the same as described above for the batch

processes with or without taboo sets. In this case, jGj = v and the batches are of size v, although

that may now be relaxed. See Section 9.9.6 for details.

3.3.4.7 The Parameters

As far as this thesis is concerned, the parameters of the distributions for these 	-processes are

N , n, m, �, �, !, �, �, n, v and k. The 	-processes in this thesis have one or more of these

parameters set to values that are implicitly de�ned. By default, n = N for the without-replacement

process, ! = �, �i � m, � is not present, nb � 1 and v = 1:

There are many variations in the use of these parameters, so when a list of the parameters

is enclosed in parentheses, the values of the parameters correspond to those parameters that are

relevant for the speci�c model being discussed. The placement of the parameters might be di¤erent

for di¤erent models, and that is because it is sometimes convenient to drop parameters from the

middle of the list instead of the end of the list. For example, when � = �, it is convenient to

represent (N;m; �; �; k) as (N;m; �; k).

3.3.5 The Dynamic Model

The distributions for the static models described in Section 3.3.2 provide a static view at time k,

but can also provide a dynamic view by observing how the distributions change as k increases.

For example, one can use this to determine the expected waiting time till the number of cakes

on display with just one slice is a speci�ed number. A more-common example is the determination

of the maximum room required during sock-sorting. In the Cake Display Problem, the dynamic

model enables one to �nd the expected maximum number of cakes on display.
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3.4 The Random Variables

3.4.1 The Random Variable T (:)

For the standard process, let T = T (A1; : : : ; Ar) denote the random variable for the completion

time, possibly zero, from the instant the process has visited the �th state of G to the instant it has

�rst visited all the states of at least one of the sets A1; : : : ; Ar: Observe that we have omitted N; G;

� and � from the parameters of T . This is done because in what follows, focus is generally on the

e¤ects of changes to the A-sets for speci�ed values of N , � and �:When Ai\Aj � G, we note that

T depends only on the number of elements in each subset AinG and write T = T (m1; : : : ;mr).

T takes on the meaning of whatever process is being considered. For example, the basic

taboo model uses T = T (A1; : : : ; Ar;B1; : : : ; Bt). When we require at least q of the A-sets to be

completed and at most w B-sets to be completed, we use Tq;w (:) ; if w = 0 then we use Tq (:).

With the without-replacement paradigm, observe that the distribution of T is the same whether

we choose sets G;A1; : : : ; Ar at random with the order in which the states are visited being �xed,

or one has G;A1; : : : ; Ar �xed and chooses one�s path through the states at random. In the �rst

case, T = k if and only if the smallest value of the largest element of A1; : : : ; Ar is k larger than

the largest element of G. In the latter case, T = k if and only if the last state of the �rst of

A1; : : : ; Ar to be completed occurs k epochs after the time at which the last state of G has been

visited. There is clearly a one-to-one correspondence between probabilities of a wait of k in these

two interpretations of the process. In the �rst case, we can refer to states of a process which moves

from one position to the next in succession.

3.4.2 Example: Queueing in Lanes

If we adopt the latter viewpoint and �x r = 2 and take A1, A2 to have only G in common we

can interpret the process in terms of the vehicle parking problem with the N states representing

N vehicles. The passage of the process into a state corresponds to the arrival of a person at a

corresponding vehicle and A1; A2 represent, respectively, the collections of people in front of and

including, and behind and including the given people in its row. The set G represents the set of

people in the given vehicle. The random variable T = T (m1;m2) is then the time the people of the

speci�c vehicle have to wait after that vehicle is full before they are free to move when there are

m1 people in vehicles blocking the front and m2 behind. In the case � = 1, G represents the driver

of that vehicle and if the speci�c vehicle is jth in a lane of s, the relevant values are m1 = j � 1,

m2 = s� j:
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The Hauer-Templeton model results in a similar way for the choice r = 1 and � = 1. In [43]

they note that (using their model) the solution to the multi-lane problem is no harder than that

of the single lane problem since the distribution of the waiting time in the former case is the same

as if the vehicles in all the other lanes were placed behind the lane of interest. This useful physical

interpretation is di¢ cult to extend to the case of bi-directional exits. For this case, the present

completion time interpretation has the analogous role of immediately reducing the algebra of the

multi-lane problem to that of the single lane problem.

3.4.3 The Random Variable R (:)

Having taboo states implies that success is not inevitable. The random variable R = R (A;B) =

R (A1; : : : ; Ar ; B1; : : : ; Bt) for the event that the process visits all the states of G and at least one

of the A-sets A1; : : : ; Ar but not all the elements of any of the B-sets B1; : : : ; Bt; the possible values

of R are true and false, which are represented by 1 and 0, respectively. The general version of this

includes all of the parameters mentioned in Section 3.3.4.7. In the without-replacement process,

the case R = 0 corresponds to the outcome k = �3, which is de�ned in Section 3.3.4.3.

3.5 Comment on Su¢ ciency of Numbers of Elements

With the with-replacement paradigm, just the number of elements that are visited in the G-sets,

A-sets, intersections of A-sets, B-sets, et cetera, is su¢ cient to determine the distribution, but for

with-replacement it is necessary to know the number of times each element has been visited.
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4.1 Introduction

Whenever applying mathematics to achieve a numerical result, there are several issues to consider,

some of which are as follows. How long will it take? How much memory is required in a computer?
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What is the best software or language to use? What are the accuracy requirements? Is there an

asymptotic form of the expression that can be used? Is the problem NP-complete? Are there tables

of values that can be stored for re-use in order to reduce processing requirements? Which formula

should be used for calculations? Those questions that are of particular relevance here are discussed

in this chapter.

Numerical examples that illustrate the computational issues appear throughout this thesis, and

Chapter 15 on Numerical Analysis provides an analysis of the comparison of theoretical counts of

operations required for two alternative formulae for the same distribution and of timing require-

ments.

We begin with a discussion of Precise and Asymptotic Forms in Section 4.2. Then we provide

a novel look at the futility of using Boole�s Inequality or, more generally, Bonferroni�s Inequalities

in Section 4.3; several examples are used to illustrate the problem, including from a recent doctoral

thesis that uses them as if they converge, but doesn�t prove it nor observe that they don�t converge.

Another example appears in Section 6.12.2 on Using Bonferroni�s Inequalities.

This is followed by a discussion of the use of Kwerel�s Bounds in Section 4.4.

Then in Section 4.5 we discuss the Number of Calculations involved in some of the models with

very small values for the parameters involved. This is followed by discussions of the Size of the

Numbers Involved in Section 4.6, Digits of Accuracy in Section 4.7 and Processing Time Required

in Section 4.8.

Finally, we look at the use of mathematical tools for automatically Converting Combinatorial

Sums to Simpler Forms in Section 4.9.

4.2 Precise and Asymptotic Forms

Recently, Steinsaltz [79, 1996, p13] stated that the probabilities associated with the maxima in

the sock-sorting process could in principle be computed exactly. This indicates that it is con-

sidered di¢ cult to do so, or having weak bounds on those numbers for both asymptotic and

non-asymptotic forms is useful in itself. For this thesis, expectations have been calculated from

the precise distribution for values as high as N = 1000.

He also states that the very broad and powerful inequalities of Dudley and Alexander are

primarily intended for asymptotic estimates and limit theorems, so are not suitable for relatively

small values ofN , and also that they are vaguely determined or involve fantastically large constants.

Here, too, the numbers involved are fantastically large.

Here, we calculate precise results, so that if there only 14 pairs of socks to sort or 10 cakes to
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display, then precise knowledge is provided.

For the with-replacement process, some asymptotic forms are examined, because it is more

natural to consider what happens to the process as the number of arrivals approaches in�nity. One

can compare the gains to be made by continuing the sampling process beyond a given point and

the cost involved.

There are several places in this thesis where asymptotic results are considered; the most preva-

lent of these is for The Bird-Watcher�s Expectation.

For the without-replacement process, we examine the idea of determining a precise solution for

values of r, which is the number of A-sets involved, to see if there is a convergence as r increases.

This is done in context in Section 6.12 on Approximations.

4.3 Bonferroni�s Inequalities

4.3.1 Introduction

When using the principle of inclusion and exclusion for the probability of at least one event

occurring from a collection of events, it might be computationally infeasible to calculate all terms

in the double-sum, or the time required could exceed the time available (or maximum time provided

or required) for a result to become known. In this case, one looks for approximations.

We brie�y investigate their usefulness here, and conclude that one cannot simply ignore summa-

tion terms from the alternating sum, because the partial sums need not even closely approximate

probabilities at all. It is assumed that the magnitudes of successive sums are decreasing, but this

is not always the case. That the Bonferroni Inequalities are of practical use in general is a fallacy,

and without evidence to the contrary for a particular problem, their usefulness is unknown!

Three numerical examples are used to illustrate this. The �rst example is of a simple case of 4

events that produce successive terms that are not monotonic decreasing, and are not in the range

[0; 1] until all terms are included. The second example shows the numerators of the probability

�uctuating in sign and with ever-increasing magnitude for at least the �rst 8 terms. The third

example shows that the truncated probability values for successive terms r0 2 f1; : : : ; rg alternate

in sign and are all outside of the range [0; 1] until r0 = r.

Although some improvements have been made to these inequalities, for example by Galambos

[36] and Tomescu [83], we show that the concept of applying any such inequalities based on

truncating trailing sums from the inclusion-exclusion formula, is erroneous unless there is a proven

condition within a particular problem to justify it. This is achieved in the �nal example, in which
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a simple 	1-process is shown to have increasing partial sums until half of the sums have been

included.

4.3.2 Inequalities Based on the Principle of Inclusion and Exclusion

4.3.2.1 Theory

Consider the r events A1, : : :, Ar of a sample space N . The principle of inclusion and exclusion

applied to the occurrence of at least one of these events may be written as

P (
Sr
i=1Ai) =

rX
s=1

(�1)s�1
X
i1;:::;is

P
�Ts

i=1Aij
�
, (4.1)

where the inner summation is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg, as proved in Feller

[29, IV.1]. Feller [29, p23] states that the following inequality is occasionally referred to as Boole�s

Inequality :

P (
Sr
i=1Ai) �

rX
i1=1

P (Ai1) . (4.2)

Dohmen [25] describes Bonferroni�s Inequalities1 using indicator functions, but in the notation

used here, they may be written as

P (
Sr
i=1Ai) �

r0X
s=1

(�1)s�1
X
i1;:::;is

P
�Ts

i=1Aij
�

for r0 odd, (4.3)

and

P (
Sr
i=1Ai) �

r0X
s=1

(�1)s�1
X
i1;:::;is

P
�Ts

i=1Aij
�

for r0 even. (4.4)

Put P 0 (0) = 0, and for r0 2 f1; : : : ; rg, let

P 0
�
r0
�
=

r0X
s=1

(�1)s�1
X
i1;:::;is

P
�Ts

i=1Aij
�
. (4.5)

Boole�s Inequality is the special case of Bonferroni�s Inequality that occurs when r0 = 1.

4.3.2.2 Example: Simple Events that Illustrate the Problems

Suppose the 4 events A;B;C and D within a sample space S have probabilities that satisfy

#(S) = 20, #(A) = 19, #(B) = 16, #(C) = 16, #(A) = 16, #(A \B) = 16, #(A \ C) =
1 Interestingly, Dohmen [25, p2] observes that Boole�s Inequality was published by Boole in 1854 [14], and Bon-

ferroni�s Inequality was �rst published by Jordan [46] in 1927 and 9 years later by Bonferroni [13, 1936].
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r0 P0 (r0)�P0 (r0 � 1) P0 (r0)

1 67
20

97
20

2 �9320 �2620
3 60

20
34
20

4 �1520
19
20

Table 4.1: Example: Bonferroni�s Bounds for a Simple Problem

r0 Numerator
1 34: 4

2 �556: 1
3 6 059: 6

4 �48 111: 1
5 296 761: 9

6 �1 478 078: 9
7 6 104 758: 9

8 �21 312 841: 2

Table 4.2: Numerators for the Total Probability using Bonferroni�s Inequalities

16, #(A \D) = 16, #(B \ C) = 15, #(B \D) = 15, #(C \D) = 15, #(A \B \ C) = 15,

#(A \B \D) = 15, #(A \ C \D) = 15, #(B \ C \D) = 15 and #(A \B \ C \D) = 15.

Table 4.1 provides the incremental terms and the upper and lower bounds in the sequence of

Bonferroni�s Inequalities. Observe that they provide no useful information until r0 = r.

4.3.2.3 Example: 2-D Zig-Zag Problem - Total Probability

Consider the 2-D Zig-Zag Problem as described in Section 2.9.1 with dimensions 5 � 5. This

problem is considered in Section 6.12.2 on Using Bonferroni�s Inequalities, and is discussed in

more detail as an application in Section 13.6.2.

For cell (2; 2), r = 36. As the probabilities for k 2 f0; : : : ; 21g must sum to 1, to make use of

the inequalities we would hope they get closer to the precise result. Table 4.2 shows the numerator

of the sums for the �rst 8 values of r0. Rather than some kind of convergence, the values �uctuate

with increasing magnitude. What is more, they alternate between positive and negative numbers.

4.3.2.4 Example: 2-D Zig-Zag Problem - P (T = 0)

Within the context of the previous example, consider calculating P (T = 0) for cell (3; 3). Sec-

tion 6.12.2 discusses using Bonferroni Inequalities as an approximation, and provides the results

summarised in Table 4.3.

Scholium 4.1 Observe the large swings between large positive and negative numbers. The �rst
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r0 Term P (T = 0) r0 Term P (T = 0)

1 5:33 5:33 11 9 602:47 4 230:95

2 �31:03 �25:70 12 �6 960:23 �2 729:28
3 139:15 113:45 13 4 159:54 1 430:26

4 �484:80 �371:34 14 �2 027:74 �597:47
5 1 341:25 969:91 15 793:44 195:96

6 �3 000:32 �2 030:41 16 �243:25 �47:28
7 5 498:25 3 467:83 17 56:29 9:01

8 �8 328:30 �4 860:47 18 �9:25 �0:24
9 10 484:12 5 623:65 19 0:96 0:72

10 �10 995:17 �5 371:52 20 �0:05 0:67

Table 4.3: P (T = 0) using Bonferroni�s Inequalities

90% of the Bonferroni bounds are outside of the range [0; 1].

Scholium 4.2 Observe that the approximate value assigned to P (T = 0) is negative for as high a

value of r0 as r0 = 18.

Scholium 4.3 Observe that although the value of P (T = 0) is close to the actual value for r0 =

19, only 1 more calculation of a probability needs to be calculated for the complete sum out of

220 � 1 = 1: 048 575� 106 calculations of probabilities.

Remark 4.4 The combinatorial number of terms in the inner sum of Equation 4.1 is the major

cause of the instability of Bonferroni�s Inequalities.

4.3.2.5 Example: 2-D Gap Problem

In Section 13.5, there is an example of the 2-D Gap Problem in which the intermediary terms in

the formula for the expected wait become so fantastically large that 200 digits of accuracy are

inadequate.

4.3.3 The Case for Caution

For the 	1-process with � = 1, it is shown in Corollary 6.29 of the Fundamental Theorem 6.28

that in the case Ai \Aj � G and k > 0,

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ps

j=1mij

�
= k

�
, (4.6)

where

P (T (m) = k) =
1

N
� 1

N

�
k�1
m

��
N�1
m

� . (4.7)
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Theorem 4.5 For m � 1 and n > 0 (such that m+ n < N),

P (T (m) = k) < P (T (m+ n) = k) . (4.8)

Proof. Writing N [P (T (m+ 1) = k)� P (T (m) = k)] using Equation 4.7, and then simplify-

ing, gives

N [P (T (m+ 1) = k)� P (T (m) = k)]

=

�
k�1
m

��
N�1
m

� � � k�1m+1

��
N�1
m+1

�
=
(k � 1)! (N �m� 1)!
(k �m� 1)! (N � 1)! �

(k � 1)! (N �m� 2)!
(k �m� 2)! (N � 1)!

=
(k � 1)! (N �m� 2)!
(k �m� 1)! (N � 1)! [(N �m� 1)� (k �m� 1)]

=
(k � 1)! (N �m� 2)!
(k �m� 1)! (N � 1)! (N � k) , (4.9)

which implies the result is true for n = 1, as k < N . The result follows for n � 1 by a trivial use

of mathematical induction.

Theorem 4.6 The number of terms in the sth term of the inclusion-exclusion formula,
�
r
s

�
, in-

creases for s � r+1
2 .

Proof.

�
r

s

�
�
�

r

s� 1

�
=

r!

s! (r � s)! �
r!

(s� 1)! (r � s+ 1)!

=
r!

s! (r � s+ 1)! ((r � s+ 1)� (s))

=
r!

s! (r � s+ 1)! (r � 2s+ 1)

> 0 when 2s� 1 < r,

from which the result follows trivially.

Scholium 4.7 So, not only does the sth summation term sum larger values than the (s� 1)th

summation term, but for s = 1; : : : ; r+12 , the number of such terms terms increases as well. Also,

the previous examples demonstrate that the rate of convergence from the maximum to the �nal

value need not occur until the �nal one or two summation terms out of 2r � 1.

Hence the bounds provided by Bonferroni�s Inequalities and any form of adjustment whatsoever

is not useful in general, and it is necessary to prove their usefulness for each application of them.
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Scholium 4.8 Dohmen [25, 2000] provides Improved Bonferroni�s Inequalities under special as-

sumptions that enable identi�cation and removal of redundant terms. In his numerical examples,

his improved bounds do keep the probabilities within [0; 1], but he has not demonstrated that this

would be the case for all possible con�gurations of the models he considers. Also, they still do

not necessarily converge monotonically, and need not be close to the precise value until all terms

are included, as is illustrated by the data in (his) Table 5.10, in which the cumulative sums for

r0 = 2; 3; 4 are 0:79; 0:14 and 0:25, respectively.

4.4 Kwerel�s Bounds

4.4.1 Introduction

Kwerel [52, 1975] provided stringent upper and lower bounds on the probabilities of at least one

event occurring amongst r events and the probability of precisely r0 � r of events based on the

sums of probabilities of each of 1, 2 and 3 events. Kwerel provided conditions under which the

bounds would hold. Here we examine their usefulness for a simple collection of events and for the

2-D Zig-Zag Problem.

4.4.2 Preliminaries

Kwerel�s bounds are based on perfect knowledge of the �rst three sums in the inclusion-exclusion

formula, labelled S1, S2 and S3. He determines three parameters, namely �1 = S1, �2 = S1 + 2S2

and �3 = S1 + 6S2 + 6S3, and then calculates j =
j
r�2��3
r�1��2

k
and k =

j
�3��2
�2��1

k
.

If

1 � j � r � 2, (4.10)

j (j + 1)�1 � (2j + 1)�2 + �3 � 0 (4.11)

and

j (j + 1) r � (j (j + 1) + (2j + 1) r)�1 + (2j + 1 + r)�2 � �3 � 0, (4.12)

then the probability of at least one of the r events occurring is bounded below by

j (j + 1)�1 + (2j + 1) (m�1 � �2)� (m�2 � �3)
j (j + 1)m

. (4.13)

If

2 � k � r � 1, (4.14)
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k (k + 1)�1 � (2k + 1)�2 + �3 � 0 (4.15)

and

k (k + 1)� (2k + 1 + k (k + 1))�1 + (2k + 2)�2 � �3 � 0, (4.16)

then the probability of at least one of the r events occurring is bounded above by

k (k + 1)�1 � (2k + 1) (�2 � �1) + (�3 � �2)
k (k + 1)

. (4.17)

4.4.3 Example: Simple Events

Consider the simple example of Section 4.3.2.2. It has r = 4, S1 = 67
20 , S2 =

93
20 , S3 =

15
20 , and hence

�1 =
67
20 , �2 =

253
20 and �3 =

715
20 . Therefore j =

�
297
15

�
= 19, so Equation 4.10 is not satis�ed. As

k =
�
462
186

�
= 2 satis�es Equation 4.14, we check Equation 4.15, whose LHS evaluates to �375 .

In this case, Kwerel�s bounds are not applicable, as the conditions are not satis�ed.

4.4.4 Example: 2-D Zig-Zag Problem

Consider the example of Section 4.3.2.4. It has r = 20 and a table that includes the �rst three

sums in the inclusion-exclusion formula as S1 = 513 , S2 = 31
1
35 and S3 = 139

47
315 , where the precise

values are taken from Section 6.12.2. Here, �1 =
16
3 , �2 =

7076
105 and �3 =

5132
5 . Hence j = 8 and

k = 15. The �rst conditions for both j and k are satis�ed.

Checking the second conditions gives

j (j + 1)�1 � (2j + 1)�2 + �3 =
5560

21
(4.18)

and

k (k + 1)�1 � (2k + 1)�2 + �3 =
22 816

105
, (4.19)

from which we see that both of the second conditions are satis�ed.

Checking the third conditions gives

j (j + 1) r � (j (j + 1) + (2j + 1) r)�1 + (2j + 1 + r)�2 � �3 =
4968

7
(4.20)

and

k (k + 1)� (2k + 1 + k (k + 1))�1 + (2k + 2)�2 � �3 = �
1580

21
, (4.21)

from which we see that the upper bound will apply but the lower bound does not.
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The upper bound is given by Equation 4.17 as

k (k + 1)�1 � (2k + 1) (�2 � �1) + (�3 � �2)
k (k + 1)

=
331

252
, (4.22)

which is outside the range [0; 1] for probabilities, and so is not useful.

4.5 Number of Calculations

Some of the summations in the distribution formulae developed here have a number of summands

that depends on N , the number of elements in the set being considered. For large N this may be

a problem, especially when determining the moments, so alternative forms of the summations are

determined that have less terms. This has the further advantage of reducing the number of terms

when alternative events are possible and the principle of inclusion and exclusion is employed.

For example, in Section 13.5 on the 2-D Gap Problem, the distribution formula is shown to

have 2n
L � 1 terms. For L = 4 and n = 5 this gives 2nL � 1 ' 1:4� 10188 terms for each value of

k 2
�
0; : : : ; nL � 1

	
, giving approximately 1:4� 10192 terms in the expression for the expectation.

In the example, it is shown that the alternative formulation, which is the decomposition formula for

this model, has just 341 terms. This provides an improvement by at least 185 orders of magnitude,

thereby justifying the e¤ort taken to convert the distribution formulae to alternative forms.

4.6 Size of the Numbers Involved

Some of the numbers involved in some of the formulae for the expectations are fantastically large.

For example, in The Bird-Watcher�s Problem, which is described in Section 2.3.6.2.1, one of the

intermediary terms involved in the calculation is 1030 000. This requires an extended �oating point

data type that uses more than the maximum 10 bytes of storage that the typical programming

language provides.

4.7 Digits of Accuracy

As illustrated in Section 4.3.2.4, intermediary terms in the calculation of formulae that are based

on the principle of inclusion and exclusion can be very large compared to the �nal result. If one

did not have enough digits of accuracy, then the in�uence of the small numbers can be lost. This

has been observed many times when determining numerical results. If only 5 digits were used,

then the 19th and 20th terms would be zero and contribute nothing to the �nal sum, but these
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terms are necessary to produce an accurate result. In fact, omitting them would produce a value

for the probability that is negative.

The example in Section 15.3.3.2 illustrates the number of digits required for The Bird-Watcher�s

Problem.

In the example in Section 13.5.10, 200 digits are inadequate for a relatively small model of the

2-D Gap Problem.

4.8 Processing Time Required

The following example illustrates the necessity to consider processing time requirements. In The

Bird-Watcher�s Problem with parameters (100; 50; 10; 10; 5), which is described in Section 2.3.6.2.1,

a 19-digit mantissa is inadequate, as the calculated result is 25: 118 whereas the correct answer is

26: 889, for which a 20-digit mantissa is the minimum necessary; the value is the same when 5 000

digits are used in the calculation. If we increase the number of pages from 10 to 100 and use a

24-digit mantissa, the calculated conditional expectation for (1 000; 50; 10; 10; 5) is �3: 052� 1012,

and even a 38-digit mantissa is inadequate, as the result becomes �558:40; in this case, 39 digits

are required.

It is therefore necessary to use a special package or program that provides multiple-precision

arithmetic operations. Most of those that are available are interpreted languages, like Maple and

MuPAD, and these are much slower than compiled code; for example, MuPAD has been observed

to be a factor of 130 times slower than the equivalent Pascal code compiled with Delphi. This

makes it even more important to �nd reduced expressions for the probability distributions and

expectations.

In The Bird-Watcher�s Problem, the conditional expectation based on the initial probability

distribution would take approximately 9 780 years using 50 digits of precision and solved with

MuPAD Light 2.0 on a 100-mega-�op 1.2 GHz Athlon-based computer2. If the reduced expression

for the distribution were used, this time would reduce to 9:6 months.

Section 14.2 provides comparisons of the probabilities of completing the page, expected numbers

of sightings required for the �rst completion of the page, and the time required to produce these

values for the number of sightings varying from 1 000 to 10 000 in steps of 1 000. It also provides

the limiting values.

Section 15.3.5 provides tables of timings for (N;n; 10; 10; 5) for 20 and 50 digits of accuracy to

2A program running on the 100-mega-�op 1.2 GHz Athlon-based computer will be referred to as on Athlon, and
a program running on the 466 MHz Celeron II-based computer will be referred to as on Celeron.
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illustrate the e¤ect that the increase in number of required digits has on the time required to do

the calculations.

These are hard problems for several reasons. First, the probability distribution must be de-

termined, and it is by no means straightforward, although the principles are the same as for the

without-replacement model. Second, there are at least 2:8 � 1011 calculations involved when de-

termining the conditional expectation using the probability distribution in its initial formulation.

Third, one of the intermediary summands involved in the calculation is 100010 000 = googol300,

which has an exponent that even the extended data type that uses 10 bytes of storage cannot

handle, as its largest exponent is (just) 4 932.

Although we simplify this initial distribution to remove the summation whose upper index is

linear in the number of sightings, it still takes days to calculate the expectation based on the new

expression.

With some more e¤ort, the conditional expectation that is based on the simpli�ed distribution

can be converted to another form in which the number of terms is independent of the number of

sightings; this is obtained by performing the sum over the waiting time. Although the expression

is now more complex, the speed of calculations is signi�cantly increased. Unfortunately, both this

expression and the expression for the simpli�ed distribution are numerically unstable.

4.9 Converting Combinatorial Sums to Simpler Forms

There are three main reasons for converting combinatorial sums to alternative forms. The �rst of

these is the idea of mathematical elegance. Some expressions have a sense of beauty about them.

Although the other two are more practical in nature, it is often observed that elegant versions

are the most practical. One of these latter two reasons is to reduce the number of calculations

required. The other is to permit simpli�cation of functions of the formulae.

In this thesis, there are many examples of all three. One example that exhibits all three charac-

teristics is the without-replacement probability distribution of the so-called 	1-process of Chapter

6, after it has been converted to an alternative form. In its new form, it is more e¢ cient, enables

a simpli�ed expression for the rising factorial moments, and this new expression is signi�cantly

more e¢ cient than if the new form were not used.

There are many techniques for simplifying sums that involve binomial coe¢ cients. These

include the use of mathematical induction, generating functions (Wilf [87]), exploiting alternative

views of a stochastic process, and more recently, the use of computer programs incorporating

algorithmic techniques (Petkovsek, Wilf & Zeilberger [68]). Algorithmic techniques provide a single
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form of a result, which might not be useful. For example, Maple �nds the sum
PL

`=0

�
`+f
f

��
`+c
e

�
to

be of the form

(sin (�e))
�+ �


, (4.23)

where

� = �� (c+ 1)� (�e� 1� f) � (f + 1)� (2 + L) � (2 + L+ c� e) ,

� = � (2 + L+ f) � (2 + L+ c) � (�e) � (c� e� f)

�hypergeom ([1; 2 + L+ f; 2 + L+ c] ; [2 + L; 2 + L+ c� e] ; 1) ,

 = �� (c� e� f) � (f + 1)� (2 + L) � (2 + L+ c� e) ,

and � (x) =
R1
0 e�ttx�1dt, which is not only quite complex, but also has terms that are in�nite

for the values of interest. This occurs as e and f will be non-negative integers and therefore

� (�e� 1� f) =1 (Bell [7, Thm 2.11]).

In Section 6.3, a much simpler form for this sum, which is still in a combinatorial form, proves to

be very useful, especially for �nding a simple form for several distributions, and hence simpler forms

for the moments of those distributions. Also, the current state of algorithmic proof of identities

and determination of simpli�ed formulae do not apply in all situations. In this work, identities

have been developed for their utility. Techniques have been provided that apply particularly well

in this domain, and aid in understanding the structure of the processes.

An example of an identity that is not able to be proved by the algorithmic method provided,

occurs in Section 11.2.10 on Completions for A-Sets of Equal Size and � = 1. It is of the formPn
s=1 (�1)

s�1 �n
s

�
1

ms+c , in which the summand depends on n, so does not satisfy a pre-condition

for Gosperisability (Petkovsek, Wilf & Zeilberger [68, 5.1]) and cannot be written as a proper

hypergeometric form (Petkovsek, Wilf & Zeilberger [68, 3.2]), either of which shows that it is

not Gosperisable. Also, the fundamental theorem of Sister Celine�s method (Petkovsek, Wilf &

Zeilberger [68, 4.4]) does not apply, because either the coe¢ cient of a factorial component is not

an actual number or because the independent variable appears as a power of an arbitrary constant,

depending on which form the sum is in.

In any case, the development of new mathematical tools or techniques (or reviving old ones) is

a useful endeavour in itself.
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4.10 Application of the Minimal Covering Theorem

It is shown in Section 6.10.3 on Gains Made by Application of the Minimal Covering Theorem that

the reduction in the number of terms to be calculated can be reduced exponentially by application

of the Minimal Covering Theorem.
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Useful Formulae and the P. of I. E.

for the Mini-Max
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5.1 Introduction

This chapter begins with some useful formulae that are referenced in the text. These are either

new, are proved true for extended range of values, are convenient for later referencing, or are later

proved using a new combinatorial argument.

Then there is a collection of theorems in Section 5.3 that provide a new kind of Principle of

Inclusion and Exclusion. It is called The Principle of Inclusion and Exclusion for the Mini-Max.

The results are new and interesting in themselves and may have wide applicability. They also

form the basis for determining solutions to the multi-dimensional generalisations of 	-processes in

terms of their linear counterparts.

5.2 Useful Formulae

Notation 5.1 The binomial coe¢ cient (mn ) is considered to be evaluated in its general form
(m)n
n!

for n � 0 and = 0 for n < 0.
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Result 5.2 For all real numbers a and integers b,

(�1)b
�
a+ b� 1

b

�
=

�
�a
b

�
: (5.1)

Proof. For a > 0, Feller [29, II 12.4] provides this statement. Regardless of the value of a,

both sides are by de�nition zero for b < 0 and clearly equal to one when b = 0. Therefore assume

b > 0, and consider the �nal two cases, which are a = 0 and a < 0.

For a = 0, we have (�1)b
�
b�1
b

�
=
�
0
b

�
, both sides of which are clearly zero, since b > 0.

For a < 0, put c = �a so that the statement becomes (�1)b
�
b�1�c
b

�
=
�
c
b

�
with c > 0. If c < b,

then both sides are zero. If c = b, then the equation becomes (�1)b
��1
b

�
= 1, which is clearly true.

If c > b, then we can write the left-hand-side as (�1)b
��(c+1�b)

b

�
and apply Equation 5.1 with

a = (c+ 1� b) � 0; this is possible as it has just been shown that Equation 5.1 holds for a � 0.

This gives (�1)b
��(c+1�b)

b

�
=
�(c+1�b)+b�1

b

�
=
�
c
b

�
, which is

��a
b

�
as required.

Result 5.3 For r � 2 and � 2 f1; : : : ; r � 1g,

rX
t=1

(�1)t
�
r

t

�
t� = 0, (5.2)

and for � = r
rX
t=1

(�1)t
�
r

t

�
t� 6= 0. (5.3)

Proof. From Feller [29, II 12.16], we have
Pr

t=0 (�1)
r�t �r

t

�
t� = 0 for � 2 f0; : : : r � 1g and

= r! for � = r. As we are given � � 1, we can remove the term with t = 0. Dividing throughout

by (�1)r, and writing (�1)�t as (�1)t, provides the respective results.

Lemma 5.4 For r � 2, s � 0, m 2 f0, : : : , r � 1g and y � 0,

rX
t=0

(�1)t
�
r

t

��
st+ y

m

�
= 0. (5.4)

Proof. For m = 0,

rX
t=0

(�1)t
�
r

t

��
st+ y

m

�
=

rX
t=0

(�1)t
�
r

t

�
= (1� 1)r as r � 1

= 0.

For m � 1, writing
�
st+y
m

�
as a polynomial in st+ y with coe¢ cients being the Stirling numbers of
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�rst kind, S(m)i , (Scheid [73, Ch. 4]), and taking 00 = 1 (in order that the case t = 0 for y = 0 can

be dealt with simultaneously), gives

rX
t=0

(�1)t
�
r

t

��
st+ y

m

�

=
1

m!

rX
t=0

(�1)t
�
r

t

� mX
i=1

S(m)i (st+ y)i

=
1

m!

mX
i=1

S(m)i

rX
t=0

(�1)t
�
r

t

� iX
�=0

�
i

�

�
yi�� (st)�

=
1

m!

mX
i=1

S(m)i

"
iX

�=1

�
i

�

�
s�yi��

rX
t=0

(�1)t
�
r

t

�
t� + yi

rX
t=0

(�1)t
�
r

t

�#
.

As r � 2 and v 2 f1, : : : , r � 1g, since 1 � � � i � m � r � 1, Result 5.3 is applicable andPr
t=0 (�1)

t �r
t

�
t� = 0. As r � 2, we have

Pr
t=0 (�1)

t �r
t

�
= (1� 1)r = 0.

Hence the result is true for the speci�ed values of r, s, m and y.

Notation 5.5 For j � 0, (t)j is the falling factorial t (t� 1) (t� 2) : : : (t� j + 1).

Lemma 5.6 For r � 3, s � 0, j 2 f0, : : : , r � 2g, m 2 f0, : : : , r � j � 1g and y � 0,

rX
t=0

(�1)t (t)j
�
r

t

��
st+ y

m

�
= 0. (5.5)

Proof. As (t)j = 0 for t < j, and (t)j
�
r
t

�
= (r)j

�
r�j
t�j
�
for r � j and t � j, we can write

rX
t=0

(�1)t (t)j
�
r

t

��
st+ y

m

�
=

rX
t=j

(�1)t (t)j
�
r

t

��
st+ y

m

�

= (r)j

rX
t=j

(�1)t
�
r � j
t� j

��
st+ y

m

�

= (�1)j (r)j
r�jX
t=0

(�1)t
�
r � j
t

��
st+ y + sj

m

�

= (�1)j (r)j

"
r�jX
t=0

(�1)t
�
r � j
t

��
st+ y + sj

m

�#
= 0 when m � r � j � 1 by Equation 5.4 with y  � y + sj

as required.

Result 5.7 For r � 1,
rX
s=1

(�1)s�1
X
i1;:::;is

1 = 1, (5.6)
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where the inner summation is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. As there are
�
r
s

�
ways of selecting s distinct subsets from f1; : : : ; rg,

rX
s=1

(�1)s�1
X
i1;:::;is

1 =
rX
s=1

(�1)s�1
�
r

s

�
= 1� (1� 1)r ,

from which the result follows trivially.

The next result is very well known and is used often herein. Of signi�cance is that it will be

proved using a purely combinatorial argument in Corollary 8.1.

Result 5.8 For r; j � 0,
jX
s=0

�
s+ r

r

�
=

�
j + r + 1

r + 1

�
. (5.7)

Proof. The proof is in Feller [29, II 12.8].

The following simple result is used in theory involving without-replacement completions at time

k. Within the text, this result is shown to be the sum of probabilities over possible outcomes, but

is provided here in order to be able to reference it prior to its combinatorial explanation.

Result 5.9 For N � 1 and j � 1,
j

N

NX
k=1

�
N�j
k�j
��

N�1
k�1
� = 1. (5.8)

Proof.

j

N

NX
k=1

�
N�j
k�j
��

N�1
k�1
� =

j

N

NX
k=1

(k � 1)! (N � j)!
(k � j)! (N � 1)!

=
j

N
�
N�1
j�1
� NX
k=1

�
k � 1
j � 1

�

=
j

N
�
N�1
j�1
� NX
k=j

�
k � 1
j � 1

�
as
�
k � 1
j � 1

�
= 0 for j � 1 and k < j

=
j

N
�
N�1
j�1
� N�jX
s=0

�
s+ j � 1
j � 1

�
by substituting s = k � j

=
j

N
�
N�1
j�1
��N

j

�
by Equation 5.7 with r  j � 1, j  N � j.

For j > 0,
�
N
j

�
= N

j

�
N�1
j�1
�
, and the result follows after cancelling identical terms.

The identity given by Equation 5.9 in Theorem 5.10 is a generalisation of the well-known result

which occurs when we replace j by zero (Feller [29, II 12.7]).
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Theorem 5.10 For n, m, j integers with m � 0, j � 0,

nX
i=0

(�1)i
�
m

i

��
n+ j � i

j

�
= (�1)n

�
m� j � 1

n

�
. (5.9)

Proof. Note that both sides of Equation 5.9 are 0 for n < 0; so we may assume that n � 0:

We prove the equation by mathematical induction on m:

Putting m = 0 in Equation 5.9 gives

nX
i=0

(�1)i
�
0

i

��
n+ j � i

j

�
= (�1)n

�
�j � 1
n

�
: (5.10)

All the terms in the left-hand side of Equation 5.10 are zero except when i = 0. Therefore we

have to show that �
n+ j

j

�
= (�1)n

�
�j � 1
n

�
,

which is true by virtue of Equation 5.1 with a and b replaced by j + 1 and n; respectively.

Now assume that Equation 5.9 is true for some m � 0 and all integers n; this is true for m = 0

and all integers n: Now substitute m+ 1 for m into the left-hand side of the equation to give

nX
i=0

(�1)i
�
m+ 1

i

��
n+ j � i

j

�
=

nX
i=0

(�1)i
��

m

i

�
+

�
m

i� 1

���
n+ j � i

j

�

=

nX
i=0

(�1)i
�
m

i

��
n+ j � i

j

�

+

nX
i=1

(�1)i
�

m

i� 1

��
n+ j � i

j

�

which, by the inductive assumption and translating the summation index, becomes

= (�1)n
�
m� j � 1

n

�
�
n�1X
i=0

(�1)i
�
m

i

��
(n� 1) + j � i

j

�

which, by the inductive assumption, becomes

= (�1)n
�
m� j � 1

n

�
� (�1)n�1

�
m� j � 1
n� 1

�
= (�1)n

��
m� j � 1

n

�
+

�
m� j � 1
n� 1

��
= (�1)n

�
(m+ 1)� j � 1

n

�
,
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which is the right-hand side with m replaced by m + 1, thereby proving the assertion by mathe-

matical induction for m � 0.

5.3 Principle of Inclusion and Exclusion for the Mini-Max

In this section we provide a powerful tool that enables the simpli�cation of distribution formulae

when more than one path is available. In particular, it is used to prove The Fundamental Formulae

for both without- and with-replacement processes. These results will be applied several times in

di¤erent contexts to provide the simpli�cations.

The results of this section apply to probability theory in general, and therefore have been

abstracted out of the body of the text and placed here as useful generic formulae.

Conjecture 5.11 The results of this section could be extended to a non-discrete real function f .

Theorem 5.12 (Principle of Inclusion and Exclusion for the Mini-Max) Suppose S is a

sample space and S is the power set of S, and suppose f is a function f : S ! Z+ [ f0g. Then

for any collection of events E1, E2, : : :, Er 2 S and a �xed t > 0,

P

�
min

fi1;:::;itg�f1;:::;rg
max

i2fi1;:::;itg
f (Ei) = k

�
=

rX
s=t

(�1)s�1
�
s� 1
t� 1

� X
i1;:::;is

P

�
max

j2f1;:::;sg
f
�
Eij
�
= k

�
, (5.11)

where the minimum is over all distinct subsets fi1; : : : ; itg of f1; : : : ; rg and the inner summation

on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. For m 2 f1; : : : ; rg let Pi1i2:::im be the probability for the simultaneous occurrence

of the events [f (Ei) � k] for i 2 fi1; : : : ; img, Sm =
P

i1;:::;im
Pi1i2:::im , where the sum is over all

distinct subsets fi1; : : : ; img of f1; : : : ; rg, and Pm be the probability that m or more of the r events

[f (Ei) � k] occur simultaneously.

Then Pt can be written both as

Pt = P

�
min

fi1;:::;itg�f1;:::;rg
max

i2fi1;:::;itg
f (Ei) � k

�
, (5.12)

and by the principle of inclusion and exclusion for at least t events (Feller [29, IV.5 (5.2)], for

example) can be written as

Pt =

rX
s=t

(�1)s�1
�
s� 1
t� 1

�
Ss. (5.13)
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As Pi1i2:::im may be written as

Pi1i2:::im = P
�\m

j=1

�
f
�
Eij
�
� k

��
(5.14)

= P

�
max

j2f1;:::;mg
f
�
Eij
�
� k

�
, (5.15)

we can write Pt from Equation 5.13 as

Pt =
rX
s=t

(�1)s�1
�
s� 1
t� 1

� X
i1;:::;is

P

�
max

j2f1;:::;sg
f
�
Eij
�
� k

�
, (5.16)

where the inner summation is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg. Combining the

expressions for Pt from Equations 5.12 and 5.16 produces

P

�
min

fi1;:::;itg�f1;:::;rg
max

i2fi1;:::;itg
f (Ei) � k

�
=

rX
s=t

(�1)s�1
�
s� 1
t� 1

� X
i1;:::;is

P

�
max

j2f1;:::;sg
f
�
Eij
�
� k

�
, (5.17)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg :

Since the equality holds when k is replaced by k � 1, we subtract the equality for k � 1 from

the equation for k, thereby giving the result.

Corollary 5.13 Suppose S is a sample space and S is the power set of S, and suppose f is a

function f : S ! Z+ [ f0g. Then for any collection of events E1, E2, : : :, Er 2 S,

P

�
min

i2f1;:::;rg
f (Ei) = k

�
=

rX
s=1

(�1)s�1
X
i1;:::;is

P

�
max

j2f1;:::;sg
f
�
Eij
�
= k

�
, (5.18)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. The result follows from Theorem 5.12 by setting t = 1.

Lemma 5.14 Suppose S is a sample space and S is the power set of S. If f is a function

f : S ! Z+ [ f0g s.t. 8E1; E2 2 S the function f satis�es max ff (E1) ; f (E2)g = f (E1 [ E2),

then 8s � 2 and E1; E2; : : : ; Es 2 S,

max
j2f1;:::;sg

f (Ej) = f
�Ss

j=1Ej

�
. (5.19)

Proof. The proof is by mathematical induction on s � 2. That the statement is true for

s = 2 is given. Assume there is an s � 2 for which maxj2f1;:::;sg f (Ej) = f
�Ss

j=1Ej

�
for
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8E1; E2; : : : ; Es 2 S. Then for any collection of s+ 1 sets E1; E2; : : : ; Es; Es+1 2 S we have

max ff (E1) ; : : : ; f (Es) ; f (Es+1)g

= max fmax ff (E1) ; : : : ; f (Es)g ; f (Es+1)g

=
n
f
�Ss

j=1Ej

�
; f (Es+1)

o
by the inductive assumption

= f
��Ss

j=1Ej

�
[ Es+1

�
by the condition

= f
�Ss+1

j=1Ej

�
as required.

Theorem 5.15 Suppose S is a sample space and S is the power set of S, and suppose f is

a function f : S ! Z+ [ f0g s.t. 8E1; E2 2 S and k 2 Z+ [ f0g the function f satis�es

max ff (E1) , f (E2)g = f (E1 [ E2). Then for any collection of events E1, E2, : : :, Er 2 S,

P

�
min

fi1;:::;itg�f1;:::;rg
max

i2fi1;:::;itg
f (Ei) = k

�
=

rX
s=t

(�1)s�1
�
s� 1
t� 1

� X
i1;:::;is

P
�
f
�Ss

j=1Eij

�
= k

�
, (5.20)

where the minimum is over all distinct subsets fi1; : : : ; itg of f1; : : : ; rg, and the inner summation

on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. The result follows by applying Lemma 5.14 to Theorem 5.12.

Corollary 5.16 Suppose S is a sample space and S is the power set of S, and suppose f is

a function f : S ! Z+ [ f0g s.t. 8E1; E2 2 S and k 2 Z+ [ f0g the function f satis�es

max ff (E1) , f (E2)g = f (E1 [ E2). Then for any collection of events E1, E2, : : :, Er 2 S,

P

�
min

i2f1;:::;rg
f (Ei) = k

�
=

rX
s=1

(�1)s�1
X
i1;:::;is

P
�
f
�Ss

j=1Eij

�
= k

�
, (5.21)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. The result follows from Theorem 5.15 by setting t = 1.

De�nition 5.17 De�ne �-max�2I f (�) as the maximum of the �rst � elements in the ordered list

of elements in the set ff (�) : � 2 Ig : When � = jIj, �-max�2I f (�) reduces to max�2I f (�).
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Theorem 5.18 (P. of I. E. for Psi-Processes) Suppose S is a sample space and S is the power

set of S. Let G;A1, A2, : : :, Ar 2 S with Ai � G 8i 2 f1; : : : ; rg. Suppose a function f : S !

Z+ [ f0g and a function T : Sr ! Z+ [ f0g is given by

T (A1; : : : ; Ar) = min
fi1;:::;itg�f1;:::;rg

max
i2fi1;:::;itg

T (Ai) , (5.22)

where the minimum is over all subsets fi1; : : : ; itg of f1; : : : ; rg, and T (A) = maxa2A (f (a)) �

�-maxg2G (f (g)). Then

P (T (A1; : : : ; Ar) = k) =
rX
s=t

(�1)s�1
�
s� 1
t� 1

� X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
, (5.23)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. For two events A1; A2 2 S,

max fT (A1) , T (A2)g

= max

�
max
a12A1

ff (a1)g � �-max
g12G

ff (g1)g , max
a22A2

ff (a2)g � �-max
g22G

ff (g2)g
�

= max

�
max
a12A1

ff (a1)g , max
a22A2

ff (a2)g
�
� �-max

g2G
ff (g)g

= max
a2A1[A2

ff (a)g � �-max
g2G

ff (g)g

= T (A1 [A2) .

Thus T satis�es the condition for Theorem 5.16 to apply and the result is obtained.

Corollary 5.19 Suppose S is a sample space and S is the power set of S. Let G;A1, A2, : : :,

Ar 2 S with Ai � G 8i 2 f1; : : : ; rg. Suppose a function f : S ! Z+ [ f0g, and a function

T : Sr ! Z+ [ f0g is given by

T (A1; : : : ; Ar) = min
i2f1;:::;rg

T (Ai) , (5.24)

where

T (A) = max
a2A
ff (a)g � �-max

g2G
ff (g)g . (5.25)

Then

P (T (A1; : : : ; Ar) = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
, (5.26)
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where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. The result follows from Theorem 5.18 by setting t = 1.
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6.1. Introduction

6.1 Introduction

In this chapter, we investigate the standard without-replacement 	1-process, which is described in

Chapter 3. There is one arrival per trial, and there are no taboo states. Variations and extensions

are investigated in Section 9; these consist of Waiting for a Minimum Number of Completions,

Taboo Sets, Blocking: No Path Available, Incomplete Arrival Stream, Requiring Only a Partial

Completion of A-Sets, Requiring Only a Partial Completion of the G-set, Batch Arrivals, and

Varieties (Complexes) (both simultaneous and randomised).

We begin in Section 6.2 with the simple case of r = 1 and � = �. There are three main

reasons for doing so. It shows how to derive the distribution for the original HT-model in a concise

and generic fashion using a combinatorial argument, it provides a combinatorial analysis whose

technique is applicable to other situations (including those discussed later in this chapter and in

the chapter on extensions), and it is used as a building block for extending the results to r � 1.

This distribution is transformed to an alternative form that is numerically more e¢ cient � the

sum of N terms is reduced to a sum containing only � terms � and enables a simpli�ed formula

for the rising factorial moments to be found in Section 11.2. The distribution for � � � is produced

in Section 6.5, prior to simplifying the formula in Section 6.6.

A consequence of deriving the distribution combinatorially, is that there is now a heretofore

unknown combinatoric proof of a well-known identity that is normally proved by mathematical

induction. This identity and a substantial generalisation of it are provided in Chapter 8, along

with several other identities that give alternative expressions for the summation involved in the

distribution formula when particular conditions prevail on the parameters.

Section 6.7 discusses the model for r � 1. It provides a way to determine the results in terms

of the distribution for r = 1.

Then there are four main sections on the distribution theory for the case r � 1. The �rst,

Section 6.7, �nds the distribution as a function of unions of A-sets using the Principle of Inclusion

and Exclusion for the Mini-Max of Section 5.3. The second, Section 6.8, de�nes a collection of

numbers based on the distribution for the case r = 1. These numbers are called 	-numbers of

�rst kind. They are used like basis vectors from which the distribution for r � 1 may be written

as a linear combination. The third, Section 6.9, formalises the use of the 	-numbers of �rst kind

to represent a 	-distribution, and discusses its computational bene�ts. The fourth, Section 6.10,

considers the possibility that an A-set may be redundant, in the sense that the completion of A

may have already necessarily occurred by the completion of another A-set; this is formally stated in

the Minimal Covering Theorem. This is particularly useful in reducing the number of calculations
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required; an example is provided in Section 13.6.2.4.

The Cumulative Distributions are provided in Section 6.11. The Number Still Required upon

Arrival is provided in Section 6.13. Waiting for the � th Arrival of G Measured from the �th

Arrival of G is provided in Section 6.14.

The next three sections are on estimating one parameter given the others. For example, one

might observe the waiting time and wish to estimate the size of the population. Estimating N for

r = 1 and � = 1 is provided in Section 6.15, Estimating N for � > 1, � = 1 and m = 0 is provided

in Section 6.16, and Estimating � for m = 0 given � and � is provided in Section 6.17.

It is often useful to have knowledge about the micro-structure of the state changes that occur

during a process, and in this case, this is accomplished by providing a Markov Chain for the

Waiting-Time Process in Section 6.18. This is done for the case � = � and r = 1. We have

provided the states, absorbing states and their counts, transition probabilities, the characteristic

equation, �rst passage times, and show how to determine distribution properties from the Markov

Chain.

In the Hauer-Templeton parking lot model [43], which is described in Section 2.2.1, cars will

be able to depart their lanes in groups. This means that platoons of vehicles will arrive at the

exits to the parking lot. An investigation of the congestion at the exits might include determining

the distribution of the size of these platoons. We do this in Section 6.19 on Distribution for the

Completions of G-Sets (Platoon Size). This includes a Minimal Covering Theorem for Platoon

Size.

Finally, we look at the static distribution in Sections 6.20.2 on Occupancy Numbers for Disjoint

G-sets and 6.21 on the Markov Chain for the State of G-sets.

6.2 Distribution for a Single A-Set: � = �

Let us begin with r = 1 and put A1 = A, a single subset of N containing G and m > 0 distinct

other states. We pose the question: What is the distribution of the completion time T (A), possibly

zero, from the instant the process has visited all the states of G to the instant it has visited all the

states of A? It is clear from the selection procedure that the distribution of T (A) depends only

on the values of N;m; � and we may write T (A) = T (m) : The reason for omitting N and �; and

later �, from the list of parameters of T is provided in Section 3 on The Random Processes. This

generalises the result of Hauer and Templeton [43] by extending the number of arrivals required

for the vehicle of interest to � � 1.

We �rst de�ne what we mean by a special sequence of elements of N , and then derive the
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number of ways in which these elements may be arranged in order that T (m) = k. The result

is also derived in a manner di¤erent to the above authors, one which is simpler, is immediately

applicable to elements that are not in lines, allows further generalisations to be easily obtained,

and can be applied equally-well in the with-replacement models.

De�nition 6.1 For �xed N , call a sequence of m elements of AnG, � of G and N � m � � of

NnA an (N;m; �)-sequence. For verbal convenience, we refer to this loosely as a sequence of m

a�s, � g�s and N �m� � s�s.

Theorem 6.2 The number of distinguishable (N;m; �)-sequences is given by

#(Total) =
N !

m!�! (N �m� �)! : (6.1)

Proof. The number of distinguishable (N;m; �)-sequences is given by the number of ways m

indistinguishable a�s, � indistinguishable g�s, and N �m� � indistinguishable s�s can be arranged

in a straight line to produce distinguishable orderings. This clearly provides the result.

De�nition 6.3 Let (N;m; �)k = the number of (N;m; �)-sequences for which T (m) = k.

Remark 6.4 Note that in the following theorem, the expression for �(N;m; �)0 has purposefully

not been simpli�ed. This theorem provides a technique that can be, and is, applied to many and

more-complex models. Its simpli�cation is provided as a corollary.

Theorem 6.5 For 1 � k � N � �,

(N;m; �)k =

N�kX
`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

�
; (6.2)

and for k = 0,

(N;m; �)0 =

NX
`=m+�

�
`� 1
�� 1

��
`� �
m

�
. (6.3)

Proof. The event T (m) = k occurs if and only if the last a or g is exactly k places after the

last g; for k � 1, the event T (m) = k means that the last a is k places after the last g, and for

k = 0, this means that the last g occurs after the last a.

The last of the g�s can be in any position from max f�;m+ �� kg to N � k. Let this position

be `. The lower limit is derived by noting that � g�s must occur in the �rst ` positions, and � g�s

plus m a�s must occur in the �rst `+ k positions.
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Now distribute the � � 1 remaining g�s among the �rst ` � 1 positions. For k � 1, we must

place one a in position `+ k, and distribute the remaining m� 1 a�s among the �rst `+ k� �� 1

places not occupied by g�s. For k = 0, we must place all of the a�s in the �rst `� � positions not

occupied by g�s.

For �xed `, the numbers of ways that these operations can be performed are
�
`�1
��1
��
`+k���1
m�1

�
and

�
`�1
��1
��
`��
m

�
, respectively. Hence the result.

Corollary 6.6 For k = 0,

(N;m; �)0 =

�
m+ �� 1
�� 1

��
N

m+ �

�
. (6.4)

Proof. From Equation 6.3 we have

(N;m; �)0 =

NX
`=m+�

�
`� 1
�� 1

��
`� �
m

�

=

NX
`=m+�

(`� 1)!
(�� 1)! (`� �)! �

(`� �)!
m! (`�m� �)!

=
(m+ �� 1)!
m! (�� 1)!

NX
`=m+�

(`� 1)!
(`�m� �)! (m+ �� 1)!

=

�
m+ �� 1
�� 1

� NX
`=m+�

�
`� 1

m+ �� 1

�

=

�
m+ �� 1
�� 1

�N�m��X
`=0

�
`+m+ �� 1
m+ �� 1

�
=

�
m+ �� 1
�� 1

��
N

m+ �

�
by Result 5.8

as required.

Corollary 6.7 The probability that T (m) = k is given by

P (T (m) = k) = (N;m; �)k
�!m! (N �m� �)!

N !
; (6.5)

where (N;m; �)k is given by Equations 6.2 and 6.3.

Proof. The result follows by dividing the number of (N;m; �)-sequences for which T (m) = k

by the number of such sequences which are not restricted by the condition that T (m) = k:

The expressions given in Equations 6.2 and 6.3 are computationally disadvantageous for large

N and small m; �; this is quanti�ed in Section 15.2. For example, in the application to vehicle
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parking, typically N > 1 000�. This, together with the fact that the expression for the probability

given by Equation 6.5 and the two Equations 6.2 and 6.3 of Theorem 6.5 does not easily lend itself

to the calculation of the moments of T , provides the motivation for �nding an alternative formula

for (N;m; �)k :

6.3 The Transformation Formula

6.3.1 Introduction

This section provides a combinatorial identity that is used to convert some probability distributions

to an alternative form. The alternative form is much more e¢ cient than the original form, and is

also used to determine simple expressions for the rising factorial moments. This identity has not

been observed in the literature, and generalises a well-known identity. This new identify is called

the transformation formula.

This transformation formula is proved in two ways; both provide useful techniques. The �rst,

which is the original derivation method, uses formal power series expansions. The second uses the

technique of summation by parts. We also show that the power series is an analytic function of

two complex variables in a suitable domain, in case there ever were to arise a need to determine

analytic information from it.

Wilf ([87, Preface]) remarks that the former method is often useful for �nding proofs of com-

binatorial theorems. In this case, generating function methodology was used to determine an

equivalent formula that proved to be extremely useful. The latter method provides a working

tool for manipulating many combinatorial sums that appear in the context of this work, and, in

particular, is used to provide the identity in Theorem 8.9. This technique is described, because it

shows the power of using �nite mathematical techniques for �nite mathematical problems.

6.3.2 The Formula

Lemma 6.8 For f � 0, put


 (L; f; c; e) =
LX
`=0

�
`+ f

f

��
`+ c

e

�
. (6.6)

Then


 (L; f; c; e) = (�1)e
eX

n=0

(�1)n
�
L+ c+ 1

n

��
L+ f + e� n+ 1
f + e� n+ 1

�
. (6.7)

108



The Stochastic Process: Without-Replacement 109

6.3. The Transformation Formula

Equation 6.7 is proved in two ways. The �rst is a demonstration of the original derivation

of the result, as described in the previous section, and the second provides us with a useful tool,

namely the method of repeated summation by parts (Jordan [47, Ch. 3, Section 34]). This tool

will be used again later.

Although it is unnecessary to be concerned with the convergence of power series or whether

they represent functions when they are treated as a formal power series and not used to determine

analytic properties of the series they represent (Wilf [87, pp 33, 46]), we demonstrate that the

corresponding complex power series are analytic in a suitable domain. This is in case there arises

a need to determine analytic information.

6.3.3 Derivation using Generating Functions

Proof. 1. The original derivation.

Expanding
�
`+c
e

�
in Equation 6.6 and multiplying by e! gives

e!
 (L; f; c; e) =
LX
`=0

(`+ c) (`+ c� 1) � � � (`+ c� e+ 1)
�
`+ f

f

�

= lim
z!1

de

dze
zc

LX
`=0

�
`+ f

f

�
z`: (6.8)

Form the ordinary power series generating functions

F (f; z) =
LX
`=0

�
`+ f

f

�
z` (6.9)

and G (w; z) =
1X
f=0

F (f; z)wf : (6.10)

(We show in Section 6.3.3.1 that G has a positive radius of convergence.)

Equation 6.8 may now be written as

e!
 (L; f; c; e) = lim
z!1

de

dze
zcF (f; z)

= lim
w!0

1

f !

df

dwf

1X
n=0

�
lim
z!1

de

dze
zcF (n; z)

�
wn

= lim
w!0

1

f !

df

dwf

�
lim
z!1

de

dze
zcG (w; z)

�
: (6.11)

Now we �nd G (w; z) via a recurrence relationship for F (f; z). By employing the standard
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formula of Result 5.8, and noting that
�
n
�m
� def
= 0 for m > 0, we have

F (f; z) =

LX
`=0

�
`+ f

f

�
z`

=

LX
`=0

X̀
n=0

�
n+ f � 1
f � 1

�
z` by Equation 5.7 with j = `; r = f � 1

=
LX
n=0

�
n+ f � 1
f � 1

� LX
`=n

z`

=
LX
n=0

�
n+ f � 1
f � 1

�
zn
1� zL�n+1
1� z : (6.12)

Equation 6.12 can be written by recourse to Equations 5.7 and 6.9 as

(1� z)F (f; z) = F (f � 1; z)� zL+1
�
L+ f

f

�
:

Multiplying the above by wf , summing over f from 1 to1, and employing the de�nition of G (w; z)

in Equation 6.10 gives

(1� z) (G (w; z)� F (0; z)) = w G (w; z)� zL+1
1X
f=1

�
L+ f

f

�
wf .

By Newton�s binomial theorem (Rudin [71, p201]),
P1

f=0

�
L+f
f

�
wf = 1

(1�w)L+1 . Therefore we have

(1� w � z)G (w; z) = (1� z) 1� z
L+1

1� z � zL+1

(1� w)L+1
+ zL+1.

This recurrence relation can be solved for G for w+z 6= 1. In order to derive a generating function

for G from this recurrence that corresponds to its original de�nition, it is necessary to determine

G for w + z = 1. Substituting w = 1 � z into Equation 6.10, simplifying the result by swapping
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the order of summation, and applying Newton�s binomial theorem (Rudin [71, p201]) gives

G (w; z) =
1X
f=0

LX
`=0

�
`+ f

f

�
z` (1� z)f

=
LX
`=0

z`
1X
f=0

�
`+ f

f

�
(1� z)f

=

LX
`=0

z` � 1

z`+1

=
L+ 1

z
.

Thereby we can represent G as

G (w; z) =

8><>:
1

(1�w�z) �
zL+1

(1�w�z)(1�w)L+1 w + z 6= 1

L+1
z w + z = 1

: (6.13)

From Equation 6.11, we have e!
 (L; f; c; e) is the coe¢ cient of wf in lim
z!1

de

dze z
cG (w; z), and

from Equation 6.13, this is the coe¢ cient of wf in

lim
z!1

de

dze

"
zc

(1� w � z) �
zL+c+1

(1� w � z) (1� w)L+1

#

= lim
z!1

"
eX

n=0

�
e

n

�
dn

dzn
zc
de�n

dze�n
(1� w � z)�1

� 1

(1� w)L+1
eX

n=0

�
e

n

�
dn

dzn
zL+c+1

de�n

dze�n
(1� w � z)�1

#
,

by the utilisation of Leibnitz�Theorem (Jordan [47]).

Evaluate dn

dzn z
c as n!

�
c
n

�
zc�n and dn

dzn z
L+c+1 as n!

�
L+c+1
n

�
zL+c+1�n, and observe that the former

applies even if n � c, and the latter if n � L+ c+ 1. Also observe that limz!1 d
n

dzn z
c =limz!1 n!

�
c
n

�
zc�n

for n � c, and similarly for the latter term. The right hand side may now be written, after taking
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the limit, as

=

eX
n=0

n!

�
e

n

��
c

n

�
(e� n)! (�w)�(e�n)�1

� 1

(1� w)L+1
eX

n=0

n!

�
e

n

��
L+ c+ 1

n

�
(e� n)! (�w)�(e�n)�1

= e!
eX

n=0

�
c

n

�
(�1)e�n+1w�(e�n)�1

� e!

(1� w)L+1
eX

n=0

�
L+ c+ 1

n

�
(�1)e�n+1w�(e�n)�1,

and by using the Binomial formula again,

= �(�1)
e e!

we+1

24 eX
n=0

(�1)n
�
c

n

�
wn �

eX
n=0

(�1)n
�
L+ c+ 1

n

�
wn

1X
q=0

�
L+ q

q

�
wq

35 : (6.14)

Since the function G, as de�ned in Equation 6.10, multiplied by zc has only non-zero exponents

for non-negative powers of w, the terms in wk for negative k derived from the �rst summation must

cancel with terms in the second summation. Thus, for f � 0, the coe¢ cient of wf in Equation

6.14 occurs when q = f + e� n+ 1, and is equal to

(�1)e e!
eX

n=0

(�1)n
�
L+ c+ 1

n

��
L+ f + e� n+ 1
f + e� n+ 1

�
: (6.15)

From Equation 6.11 and Equation 6.15 we have Equation 6.7 as required.

6.3.3.1 The Generating Functions are Analytic

F (f; z) is a polynomial in z and is therefore analytic when considered as a complex function of

the complex variable z. Consider G (w; z) in Equation 6.13 as a complex valued function in two

complex variables. According to Osgood�s Lemma (Gunning and Rossi [41, pp3-4]), if a complex

function of n complex variables is continuous on an open set, D 2 Cn, and analytic in each variable

separately, then it is analytic on D.

Our interest is on the domain D that satis�es j(w; z)� (0; 1)j < 1. G is clearly continuous on

C2. Therefore we need to show that G is analytic in each variable separately on D. If we can show

that G converges on D, then it must converge in each variable separately and the result follows.
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This is accomplished as follows. From Equation 6.13,

G (w; z) =
(1� w)L+1 � zL+1

(1� w � z) (1� w)L+1

=

(1� w � z)
LP
i=0
(1� w)L�i zi

(1� w � z) (1� w)L+1

=
Q (w; z)

(1� w)L+1
, where Q is a polynomial in w and z,

if and only if G has removable singularities on the domain w+ z = 1 in the vicinity of (0; 1). This

condition is satis�ed, since from Equation 6.10, on w + z = 1 and jwj < 1;

jG (w; z)j =

������
1X
f=0

LX
`=0

�
`+ f

f

�
z`wf

������
<

1X
f=0

�
`+ f

f

�
j1� wj` jwjf

<
LX
`=0

1X
f=0

�
`+ f

f

�
2` jwjf as jwj < 1

< 2L
LX
`=0

1X
f=0

�
`+ f

f

�
jwjf

= 2L
LX
`=0

1

(1� jwj)`+1

< 1 as jwj < 1:

Hence the result.

6.3.4 Derivation using Finite Di¤erences

Proof. 2. An alternative derivation of 
:

In this proof, an alternative derivation of Equation 6.7 for 
 (L; f; c; e) is given. The method

employs the calculus of �nite di¤erences and repeated summation by parts; see Jordan [47, Section

34]. Jordan discusses the inverse operation of di¤erences and their relationship to sums in chapter

three of his book. We repeat here the basic requirements necessary to understand the usage of

repeated summation by parts, which may be interpreted as the inverse of the di¤erence operator.

However it is not necessary for the reader to understand the method of �nite di¤erences and inverse

di¤erences for the remainder of the text, but the results need to be known.
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6.3. The Transformation Formula

By its de�nition in Equation 6.6, 
 can be written in the form


 (L; f; c; e) =
LX
`=0

U (`)V0 (`) , (6.16)

where U (`) =
�
`+c
e

�
and V0 (`) =

�
`+f
f

�
.

The operation of di¤erences is de�ned by

�f (x) = f (x+ 1)� f (x)

= ' (x) , say. (6.17)

The inverse operation is de�ned by

��1' (x) = f (x) + ! (x) , (6.18)

where ! (x) is an arbitrary function whose di¤erence is equal to zero. Just as the inverse operation

of di¤erentiation is called inde�nite integration, the operation ��1 is called inde�nite summation,

and the symbol
P
is used.

One can justify this name for ��1 by �nding the de�nite sum
Px�1

n=a�f (n), which is f (x)�

f (a). This is shown by replacing �f (n) by f (n+ 1) � f (n) and collapsing the sum. We can

also consider Equation 6.17 as a di¤erence equation of �rst order, and write down the equivalent

system of x� a equations as in Equation 6.19 and sum them:

f (x)� f (x� 1) = ' (x� 1)

f (x� 1)� f (x� 2) = ' (x� 2)
...

f (a+ 1)� f (a) = ' (a) ; (6.19)

where x, a are integers and a is arbitrary. The sum results in

f (x)� f (a) =
x�1X
n=a

' (n) : (6.20)

If we wish to �nd the sum of a product, start with the di¤erence of a product, perform the

operation of ��1 on both sides of the equation, and rearrange it to give the inde�nite sum obtained
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6.3. The Transformation Formula

by summation by parts, which is given by the following.

�[U (x)V1 (x)] = U (x+ 1)V1 (x+ 1)� U (x)V1 (x)

= (U (x+ 1)� U (x))V1 (x+ 1)

+U (x) (V1 (x+ 1)� V1 (x))

= U (x)� V1 (x) + V1 (x+ 1)� U (x)

) ��1 [U (x)� V1 (x)] = U (x)V1 (x)���1 [V1 (x+ 1)� U (x)] : (6.21)

If we replace � V1 (x) by V0 (x) we have

��1 [U (x)V0 (x)] = U (x)V1 (x)���1 [V1 (x+ 1)� U (x)] : (6.22)

Equation 6.22 is particularly useful if the inde�nite sum of the �rst member is unknown while

that of the second member may be determined, or, as in our case, a more attractive form is

produced for computational purposes. We introduce the notation ��1Vi (x) = Vi+1 (x). Repeated

application of Equation 6.22 yields

��1 [V0 (x)U (x)] =
d�1X
m=0

(�1)m Vm+1 (x+m)�mU (x)

+ (�1)d��1
h
Vd (x+ d)�

dU (x)
i
: (6.23)

Equation 6.23 is especially useful if U (x) is a polynomial, for then the last item can be made

to vanish by choosing d to be the degree of the polynomial plus one; this is indeed the case here,

for inspection of Equation 6.16 reveals that U is a polynomial in `:

In order to calculate de�nite sums, consider Equation 6.20 as

f (a+m)� f (a) =
a+m�1X
n=a

' (n) : (6.24)

Hence, to calculate the sum of ' (x) from x = a to x = a+m� 1, it is su¢ cient to determine

f (x), the inde�nite sum of ' (x), replace x by a + m and a for the upper and lower limits,

respectively, and subtract, just as in de�nite integration.

Before we use Equation 6.23 to perform repeated summation by parts on 
, as given by
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6.3. The Transformation Formula

Equation 6.16, we need the following simple result.

�

�
x

n

�
=

�
x+ 1

n

�
�
�
x

n

�
=

�
x

n� 1

�
. (6.25)

By applying this result with induction on n, allows us to write

�nU (`) = �n

�
`+ c

e

�
=

�
`+ c

e� n

�
; (6.26)

which implies

�e+1U (`) = 0, (6.27)

and

Vi (`) =
�
��1

�i
V0 (`)

=

�
`+ f

f + i

�
. (6.28)

Thus, using Equation 6.23 with d = e+ 1, m = n, x = `, Equation 6.16 becomes


 (L; f; c; e) =

eX
n=0

(�1)n Vn+1 (`+ n)�n U (`)
���`=L+1
`=0

, (6.29)

where the vertical bar indicates that the summation is to be evaluated at ` = L + 1 and ` = 0,

with the latter subtracted from the former; because of this, the constants of inde�nite summation

are not included, as in the case of de�nite integration. Simplifying Equation 6.29 yields


 (L; f; c; e)

=

eX
n=0

(�1)n
�
`+ f + n

f + n+ 1

� �
`+ c

e� n

�����`=L+1
`=0

=

eX
n=0

(�1)n
�
L+ f + n+ 1

f + n+ 1

��
L+ c+ 1

e� n

�
�

eX
n=0

(�1)n
�

f + n

f + n+ 1

��
c

e� n

�
:

Since
�
m
n

�
= 0 for m < n, the second term is zero. Replacing n by e� n reverses the order of the

sum, giving


 (L; f; c; e) = (�1)
eX

n=0

(�1)n
�
L+ c+ 1

n

��
L+ f + e� n+ 1
f + e� n+ 1

�
. (6.30)
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6.4. Simpli�ed Distribution for a Single A-Set: � = �

This completes the proof.

6.4 Simpli�ed Distribution for a Single A-Set: � = �

6.4.1 Introduction

The distribution of T for general �, provided in Theorem 6.9 below, is proved in two ways. The

�rst shows how the result was initially derived by the author: The second uses a combinatorial

argument that was developed after the result had been observed.

Two examples are provided. The �rst is the special case � = 1, which is equivalent to the

Hauer-Templeton distribution. The second shows how a uniform distribution can occur in this

context.

6.4.2 Statement of the Theorem

Theorem 6.9 The distribution of T (m) is, for 1 � k � N � �,

P (T (m) = k) =
(�1)��1

hP��1
s=0 (�1)

s �N�k
s

��
N�s�1
N�m��

�
�
�

k�1
m+��1

�i
N !

m!�!(N�m��)!
, (6.31)

and for k = 0,

P (T (m) = 0) =
�

m+ �
: (6.32)

6.4.3 The Original Derivation

6.4.3.1 For k � 1

Proof. From Theorem 6.5, we can write

(N;m; �)k =
N�kX

`=m+��k

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�
�

��1X
`=m+��k

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�

=

N�m��X
n=0

�
n+m� 1
m� 1

��
n+m+ �� k � 1

�� 1

�

�
k�m�1X
n=0

�
n+m� 1
m� 1

��
n+m+ �� k � 1

�� 1

�
= 
(N �m� �;m� 1;m+ �� k � 1; �� 1)

�
 (k �m� 1; m� 1; m+ �� k � 1; �� 1) ,
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6.4. Simpli�ed Distribution for a Single A-Set: � = �

where 
 (L; f; c; e) is given by Equation 6.6, and c, e, f are replaced by �+m�k�1, ��1, m�1,

respectively. Thus, by using Equation 6.7 of Lemma 6.8, we can write

(N;m; �)k = (�1)��1
��1X
s=0

(�1)s
�
N � k
s

��
N � s� 1
N �m� �

�

� (�1)��1
��1X
s=0

(�1)s
�
�� 1
s

��
k + �� s� 2
m+ �� s� 1

�
: (6.33)

Now, identity II 12.15 of Feller [29] is, for a; n; r non-negative integers,

X
�

(�1)�
�
a

�

��
n� �
r

�
=

�
n� a
n� r

�
, (6.34)

where the sum is over all � for which the summands are non-zero.

With the substitutions � � 1, k + � � 2, k �m � 1 for a; n; r, respectively, Equation 6.33 be-

comes Equation 6.31 upon dividing by N !
m!�!(N�m��)! , the total number of distinguishable (N;m; �)-

sequences.

6.4.3.2 For k = 0

Proof. From Equation 6.5, we have

P (T (m) = 0) = (N;m; �)0
m!�! (N �m� �)!

N !

=

�
m+ �� 1
�� 1

��
N

m+ �

�
m!�! (N �m� �)!

N !
by Corollary 6.4

=
(m+ �� 1)!
m! (�� 1)! �

N !

(m+ �)! (N �m� �)! �
m!�! (N �m� �)!

N !

=
�

m+ �
,

which is Equation 6.32 as required.

6.4.4 Produced by a Direct Combinatoric Argument

An important facet of this second approach, is that it uses none of the conventional combinatorial

relationships in, for example, Feller [29], Jordan [47] or Riordan [70], and in fact proves some of

these and derives other combinatorial identities in a very simple combinatorial manner1.

1This approach was presented in [44], where the contribution of Dr. J. Pitman was acknowledged for the combi-
natorial proof for general �.
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6.4. Simpli�ed Distribution for a Single A-Set: � = �

6.4.4.1 For k � 1

Proof. There are two parts to the proof: (N;m; 1)k will be calculated �rst, followed by (N;m; �)k

for general �. For k � 1, the event T (m) = k can be constructed as follows. Take any of the�
N�1
m

�
sequences of the m a�s and N �m � 1 s�s, and insert the g k places before the last of the

a�s. This can be done in all but the
�
k�1
m

�
sequences in which all the a�s are among the �rst k � 1

places. That is

(N;m; 1)k =

�
N � 1
m

�
�
�
k � 1
m

�
: (6.35)

Equation 6.35 with Equation 6.5 yields the probability distribution given by Equation 6.31 for

� = 1, which can be written, for 1 � k � N � 1, as

P (T (m) = k) =
1

N

"
1�

�
k�1
m

��
N�1
m

�# : (6.36)

From Equation 6.5 and Equation 6.31, we need to prove that

(N;m; �)k =

��1X
s=0

(�1)s
�

N � k
�� 1� s

��
N � �+ s
m+ s

�
+ (�1)�

�
k � 1

m+ �� 1

�
, (6.37)

a result which follows easily from the identity

(N;m; �)k =

�
N � k
�� 1

��
N � �
m

�
� (N;m+ 1; �� 1)k , (6.38)

together with Equation 6.35 in the form

(N;m+ �� 1; 1)k =
�

N � 1
m+ �� 1

�
�
�

k � 1
m+ �� 1

�
: (6.39)

Equation 6.38 can be proved as follows. Consider an (N � 1;m; �� 1)-sequence in which all

the g�s are in the �rst N � k places, k > 0. If the number of places between the last g and the

last a is less than or equal to k� 1, another a can be placed k places after the last g. This creates

one of the (N;m+ 1; �� 1)k sequences. On the other hand, if the number of places between the

last g and the last a is greater than or equal to k, then another g can be placed k places before

the last a to create one of the (N;m; �)k sequences. Every one of the (N;m+ 1; �� 1)k and

(N;m; �)k sequences can be constructed in this manner; therefore (N;m+ 1; �� 1)k + (N;m; �)k
is the number of (N � 1;m; �� 1)-sequences in which all of the g�s are in the �rst N � k places,

which is in fact
�
N�k
��1
��
N��
m

�
. This proves Equation 6.37, and therefore Equation 6.31.
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Remark 6.10 Note in particular that for 1 � k � m (when � = 1), Equation 6.31 reduces to

P (T (m) = k) =
(N � 1)!

m! (N �m� 1)! �
m! (N �m� 1)!

N !
=
1

N
: (6.40)

This may be taken as stating that if integers 1; 2; : : : ; N are ordered by being chosen by uniform

random sampling without-replacement, m of which are considered special and another integer is

classed as extra-special, then the probability that the extra-special integer is placed k integers earlier

than the last of the m special integers is 1
N whenever 0 < k � m. This is a particularly striking

result, independent of the precise values of k and m.

Remark 6.11 We also observe that 1 �
�
k�1
m

�
=
�
N�1
m

�
is the probability that the m a�s and N �

m� 1 s�s are ordered so that it is possible to insert the g k places before the last of the a�s. Hence,

Equation 6.36 may be interpreted as saying that for k > 0, conditional on the choice of the a�s from

N � 1 ordered elements being such that it is possible to insert g to give T (m) = k, the probability

that T (m) = k is 1
N . This generalises the observation expressed in Equation 6.40.

6.4.4.2 For k = 0

Proof. We require that the last g or a in the (N;m; �)-sequence is a g. This gives Equation 6.32

trivially.

6.4.5 Distribution for a Single A-Set: � = 1

Corollary 6.12 For � = 1, the distribution of T (m) is, for 1 � k � N � 1,

P (T (m) = k) =
1

N
� 1

N

�
k�1
m

��
N�1
m

� , (6.41)

and for k = 0,

P (T (m) = 0) =
1

m+ 1
: (6.42)

Proof. For k = 0, setting � = 1 in 6.9 gives the result immediately. For k > 0, setting � = 1

in Equation 6.31 gives

P (T (m) = k) =

�
N�1

N�m�1
�
�
�
k�1
m

�
N
�

N�1
N�m�1

�
from which the result follows trivially.
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6.4.6 Example: The Hauer-Templeton Model

For the Hauer-Templeton model of a single lane of cars, which is described in Section 2.2.1, the

driver of the jth vehicle in the lane must wait for the drivers of the j � 1 vehicles parked in

front of it. In this case � = 1 and m = j � 1. From Corollary 6.12, the distribution of T is, for

1 � k � N � 1,

P (T = k) =
1

N
� 1

N

�
k�1
j�1
��

N�1
j�1
� , (6.43)

and for k = 0,

P (T = 0) =
1

j
, (6.44)

which are equations (4) and (5) in the article by Hauer and Templeton [43], with k replaced by r.

6.4.7 Example: District Postal Service

The District Postal Service is described in Section 2.2.9. In this model, each person posting a

parcel must wait for all other parcels to be posted, so m = N � 1. From Corollary 6.12 the

distribution of T is, for 1 � k � N � 1,

P (T = k) =
1

N
� 1

N

�
k�1
N�1

��
N�1
N�1

� (6.45)

=
1

N
, (6.46)

and for k = 0,

P (T = 0) =
1

N
. (6.47)

6.5 Distribution for a Single A-Set: � < �

6.5.1 Introduction

One reason for considering the case � < � is to enable the determination of the total wait for all

arrivals. Another is to measure the wait of the �rst arrival, which might determine when a service

begins. Another application arises when an alert or warning signal occurs upon the �th arrival.
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6.5.2 Preliminaries

The distribution for � = � has been provided in Section 6.2, so assume that � < �. Observe that

the wait cannot be zero for � < �. Generalise T to allow for � < �.

A direct combinatoric argument to produce a simpli�ed expression is not provided in this

case. It is more straightforward to specify the initial formula in a similar way to that speci�ed in

Theorem 6.5 for � = �, and then convert it using the transformation formula provided by Lemma

6.8.

Notation 6.13 Let (N;m; �; �)k be the number of (N;m; �)-sequences for which T (m) = k when

� � �. When � = �, (N;m; �; �)k may be written as (N;m; �)k.

6.5.3 Results

Theorem 6.14 For � < � and k 2 f�� �; : : : ; N � �g,

(N;m; �; �)k

=

N�kX
`=max(�;m+��k)

��
`+ k � �

m

��
k � 1

�� � � 1

�
+

�
`+ k � �� 1

m� 1

��
k � 1
�� �

���
`� 1
� � 1

�
. (6.48)

Proof. The lower bound on k, namely � � �, occurs as a result of the �th arrival having to

wait till at least the remaining g�s have arrived. The upper bound occurs when the �rst � arrivals

are for elements of G, and the last g to arrive is the last of all arrivals.

The event T (m) = k occurs if and only if the last a or g is exactly k places after the �th g.

Suppose the �th g occurs at position ` in the arrival stream. The lower limit of the summation is

derived by noting that � g�s must occur in the �rst ` positions, and � g�s plus m a�s must occur

in the �rst ` + k positions. Clearly ` + k � N , giving the upper limit. Now distribute � � 1 g�s

among the �rst `� 1 positions.

If the last a or g is a g, then place one g in position `+ k, distribute the remaining �� � � 1

g�s among the k� 1 positions between ` and `+ k, and distribute the a�s among the �rst `+ k� �

places not occupied by g�s: This can be done in
�
`�1
��1
��

k�1
����1

��
`+k��
m

�
ways.

If the last a or g is an a, then place one a in position `+ k, distribute the remaining �� � g�s

among the k � 1 positions between ` and ` + k and distribute the remaining a�s among the �rst

`+ k � �� 1 places not occupied by g�s: This can be done in
�
`�1
��1
��
k�1
���
��
`+k���1
m�1

�
ways.

Summing the counts for the two disjoint cases over the possible values of k, then factorising,

and then rearranging the terms, produces the result.
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Remark 6.15 Observe that Equation 6.48 reduces to Equation 6.2 when � = �. Therefore, for

k � 1, we may use Equation 6.48 for � � � and not just for � < �. This is now proved formally.

Theorem 6.16 For � � � and k 2 fmax (�� �; 1) ; : : : ; N � �g,

(N;m; �; �)k (6.49)

=

N�kX
`=max(�;m+��k)

��
`+ k � �

m

��
k � 1

�� � � 1

�
+

�
`+ k � �� 1

m� 1

��
k � 1
�� �

���
`� 1
� � 1

�
. (6.50)

Proof. For � < �, Theorem 6.14 applies. For � = �, put � = � in Equation 6.48, and remove

the zero term involving
�
k�1
�1
�
, to give

(N;m; �)k =
N�kX

`=max(�;m+��k)

�
`+ k � �� 1

m� 1

��
`� 1
� � 1

�
,

which, after minor rearrangement, is Equation 6.2, as required.

Corollary 6.17 The probability that T (m) = k is given by

P (T (m) = k) = (N;m; �; �)k
�!m! (N �m� �)!

N !
, (6.51)

where (N;m; �; �)k is given by Equation 6.48.

Proof. The result follows by dividing the number of (N;m; �; �)-sequences for which T (m) = k

by the number of such sequences which are not restricted by the condition that T (m) = k:

6.5.4 Example: Warning Signals in Medical Experiments

Section 2.26 on Warning Signals describes the general problem of a rat in a cage eating pellets,

where there are special pellets that generate a signal as they pass by a feeding tube.

Here, we suppose there are b 2 f1; 2; 3g containers with each containing 100 pellets, so that

N = 100b, and � = 10 special pellets. Here m = 0 as there is no A-set to consider. The possible

values of � are � 2 f1; 2; : : : ; 10g :

We calculate the mean, E�, directly from the distribution given by Equation 6.51. Table 6.1

provides the expected waiting times for the possible values of � and b 2 f1; 2; 3g, and also the

values of D1;2;20 = 2E� � 20. From the table, jD1;2;20j is minimised when � = 9, with a value of

�1:6 minutes. If M = 30, then the minimum value of 6:8 minutes occurs when � = 8.
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� b = 1 b = 2 b = 3 D1;2;20 (�) D1;2;30 (�)

1 82: 6 164: 5 246: 3 145: 2 135: 2

2 73: 5 146: 2 218: 9 127: 0 117: 0

3 64: 3 127: 9 191: 5 108: 6 98: 6

4 55: 1 109: 6 164: 2 90: 2 80: 2

5 45: 9 91: 4 136: 8 71: 8 61: 8

6 36: 7 73: 1 109: 5 53: 4 43: 4

7 27: 5 54: 8 82: 1 35: 0 25: 0

8 18: 4 36: 5 54: 7 16: 8 6: 8

9 9: 2 18: 3 27: 4 �1: 6 �11: 6
10 0: 0 0: 0 0: 0 �20: 0 �30: 0

Table 6.1: Expected Waits for a Medical Alert

6.6 Simpli�ed Distribution for a Single A-Set

Theorem 6.18 (Reduction Theorem for 	1-Processes) For � � � and k 2 fmax (�� �; 1) ;

: : : ; N � �g,

(N;m; �; �)k = (�1)
��1

0@ �
k�1

����1
� �P��1

s=0

�
(�1)s

�
N�k
s

��
N��+��s
N�m��

��
�
�
k��+�
m+�

��
+
�
k�1
���
� �P��1

s=0

�
(�1)s

�
N�k
s

��
N��+��s�1
N�m��

��
�
�
k��+��1
m+��1

��
1A . (6.52)

Proof. We begin with Equation 6.49, separate it into two parts, then factorise out the com-

binatorial term involving k � 1, then convert each sum by �rst applying Lemma 6.8, and �nally

apply Theorem 5.10.

The �rst term is converted according to the above form as follows.

N�kX
`=max(�;m+��k)

�
`+ k � �

m

��
`� 1
� � 1

�

=
N�kX

`=m+��k

��
`+ k � �

m

��
`� 1
� � 1

��
�

��1X
`=m+��k

��
`+ k � �

m

��
`� 1
� � 1

��

=

N�m��X
`=0

��
`+m

m

��
`+m+ �� k � 1

� � 1

��

�
k�m��+��1X

`=0

��
`+m

m

��
`+m+ �� k � 1

� � 1

��

= (�1)��1
��1X
s=0

�
(�1)s

�
N � k
s

��
N � �+ � � s
N �m� �

��

� (�1)��1
��1X
s=0

�
(�1)s

�
� � 1
s

��
k � �+ � � 1 + � � s
k �m� �+ � � 1

��
,
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by applying Lemma 6.8 to each term. Now

��1X
s=0

(�1)s
�
� � 1
s

��
k � �+ � � 1 + � � s
k �m� �+ � � 1

�
=

�
k � �+ �
m+ �

�
,

since by Equation 5.9 we have

��1X
s=0

(�1)s
�
� � 1
s

��
k � �+ � � 1 + � � s
k �m� �+ � � 1

�

=
m+�X
i=0

(�1)i
�
� � 1
i

��
(m+ �) + (k �m� �+ � � 1)� i

k �m� �+ � � 1

�
= (�1)m+�

�
(� � 1)� (k �m� �+ � � 1)� 1

m+ �

�
= (�1)m+�

�
�k +m+ �� 1

m+ �

�
= (�1)m+�

�
� (k �m� �+ 1)

m+ �

�
=

�
(k �m� �+ 1) + (m+ �)� 1

m+ �

�
,

which simpli�es to the speci�ed expression. Thus we have

N�kX
`=max(�;m+��k)

�
`+ k � �

m

��
`� 1
� � 1

�

= (�1)��1
��1X
s=0

�
(�1)s

�
N � k
s

��
N � �+ � � s
N �m� �

��
� (�1)��1

�
k � �+ �
m+ �

�
.

The second term is very similar, and if we consider the �rst as the function f (�;m), then the

second is given by f (�+ 1;m� 1) : Hence

N�kX
`=max(�;m+��k)

�
`+ k � �

m

��
`� 1
� � 1

�

= (�1)��1
��1X
s=0

�
(�1)s

�
N � k
s

��
N � �+ � � s� 1

N �m� �

��
� (�1)��1

�
k � �+ � � 1
m+ � � 1

�
,

and the required result is obtained.

6.6.1 Distribution for m = 0, k > 0

When m = 0, the waiting time is measure from the �th arrival of G till the �th arrival of G,

without the need to wait for the completion of any A-sets. Putting m = 0 in Equation 6.52 does

125



The Stochastic Process: Without-Replacement 126

6.6. Simpli�ed Distribution for a Single A-Set

not appear to o¤er an immediate simpli�cation for the expression. However, in Section 6.14 on

Waiting for the � th Arrival of G Measured from the �th Arrival of G, Remark 6.66 points out

the equivalence of the distribution discussed therein when � = � and the distribution for m = 0

here.

Corollary 6.19 For � � � and k 2 fmax (�� �; 1) ; : : : ; N � �g,

(N; 0; �; �)k =

�
k � 1

�� � � 1

��
N � k
�

�
. (6.53)

Proof. See Remark 6.66.

6.6.2 Distribution for the First Arrival: � = 1 < �

The case � = 1 is of special interest, because it corresponds to the �rst arrival for the G-set. For

example, it represents the �rst member of a group to arrive on a bus, or the �rst stamp to be

collected for a page, the cause of a cake to be on display, the �rst bag received by a person at the

baggage carousel at an airport, or the �rst intersection to be impassable.

6.6.2.1 For m � 0

Corollary 6.20 For � = 1 < � and k 2 f�� 1; : : : ; N � 1g,

(N;m; �; 1)k =

�
k � 1
�� 2

���
N � �+ 1
m+ 1

�
�
�
k � �+ 1
m+ 1

��
+

�
k � 1
�� 1

���
N � �
m

�
�
�
k � �
m

��
. (6.54)

Proof. Substituting � = 1 into Equation 6.52 gives

(N;m; �; 1)k =

�
k � 1
�� 2

���
N � �+ 1
N �m� �

�
�
�
k � �+ 1
m+ 1

��
+

�
k � 1
�� 1

���
N � �

N �m� �

�
�
�
k � �
m

��
,

from which the result follows by applying
�
m
n

�
=
�
m

m�n
�
to
�
N��+1
N�m��

�
and

�
N��

N�m��
�
.

6.6.2.2 For m = 0

Corollary 6.21 For � = 1 < �, m = 0 and k 2 f�� 1; : : : ; N � 1g,

(N; 0; �; 1)k =

�
k � 1
�� 2

�
(N � k) . (6.55)
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Proof. Observing that the second term in Equation 6.54 corresponds to the last a or g being

an a, it is identically zero when m = 0. Substituting m = 0 into Equation 6.54 without the second

term gives

(N; 0; �; 1)k =

�
k � 1
�� 2

���
N � �+ 1

1

�
�
�
k � �+ 1

1

��
,

which, for k = �� 1, becomes

(N; 0; �; 1)��1 = (N � �+ 1)� (0) ,

and for k � �, becomes

(N; 0; �; 1)k =

�
k � 1
�� 2

�
((N � �+ 1)� (k � �+ 1))

=

�
k � 1
�� 2

�
(N � k) .

Although the derivation has produced these two results from di¤erent parts of the original formula,

the results for k = �� 1 and k � � may be combined to give the required result.

6.7 Distribution for Multiple A-Sets

6.7.1 Introduction

The Parking Lot Design with Bi-Directional Exiting, which is described in Section 2.2.3, has al-

ternative ways for vehicles to exit a lane. In this situation there are two A-sets, with one possibly

empty, corresponding to vehicles in front of and behind each vehicle. If vehicles were permitted

to exit sideways instead of limiting the directions to forward and backward, then there would be

four such A-sets. This is one motivation for extending the model to consider r � 1 A-sets. In the

general case, the A-sets need not mutually intersect in a single G-set.

As the maximum possible wait depends on the relationship between the A-sets, this is deter-

mined �rst. After the Fundamental Theorem is provided, it is specialised to the case of the A-sets

mutually intersecting in G. Then this is further specialised to the case when the A-sets are of equal

size. This provides an interesting formula that is much more e¢ cient to use in this specialised case.

Applications include Queueing in Lanes in Section 13.2, the Zig-Zagging Problems in Section

13.6, and the game SET in Section 13.7.
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6.7.2 Preliminaries

We �nd the distribution of the time to completion, T , of at least one of a collection of sets

A1; : : : ; Ar in N , each containing G with jAinGj > 0, measured from time the �th state of G

has been visited. Observe that T is not simply a function of the numbers of elements in the sets

Ai unless Ai \ Aj � G. The theorem provides the distribution for both the general case and

this special case. Following this is the specialisation to A-sets that intersect trivially in G and

which are of equal size; this is provided due to its importance and use in applications such as

attribute-matching.

A theorem-like tag of type formularisation is used to specify T in terms of the arrival positions

for elements of the A-sets. This is not used in what follows except when applying the principle of

inclusion and exclusion for 	-processes of Theorem 5.18.

Formularisation 6.22 Let � (a) be the arrival position for a 2 N . Then

T (A1; : : : ; Ar) = min
i2f1;:::;rg

T (Ai) , (6.56)

where

T (A) = max
a2A

(� (a))� �-max
g2G

(� (g)) (6.57)

or, equivalently,

T (A) = max

�
0; max
a2AnG

(� (a))� �-max
g2G

(� (g))

�
. (6.58)

Remark 6.23 The principle of inclusion and exclusion can not be applied directly in this case.

To illustrate why, consider a pair of A-sets A1 and A2 with m1 > 0 and m2 > 0, and k > 0. When

the wait for the completion of A1 is k, measured from the completion time of G, then A2 may

have already been completed earlier. The same can be said of the reverse order of completion of

these sets. It is therefore necessary to consider the probability of each being completed in each case.

This entails subtracting two values from the sum of probabilities of each one occurring separately,

compared with just one when the principle of inclusion and exclusion is applied. These are combined

into the event that A1 [ A2 is completed at time k, measured from the completion time of G, but

the probability of both events occurring simultaneously is based on the number of visiting orders in

which both �nish at the same time. In the case A1 \A2 = G, this probability is zero, but it is still

possible for one of them to have �nished before k. Therefore the principle of inclusion and exclusion

is not directly applicable. In summary, two or more paths cannot be completed simultaneously with

a wait k > 0 when A1 \A2 = G and m1;m2 > 0.
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Also, we require the �rst of a collection of events to occur, whereas the standard principle of

inclusion and exclusion requires at least one of a collection of events to occur.

6.7.3 The Upper Bound of T

The random variable T has an obvious upper bound of N � �. However, due to the need to have

at least one element of all but one of the A-sets occur after the �rst A-set is completed, this upper

bound is diminished.

Notation 6.24 Let A be any subset of
Sr
i=1AinG for which A\ (AinG) 6= ; for all i 2 f1; : : : ; rg.

Let A be the collection of all such sets. Let A� 2 A such that jA�j � jAj 8A 2 A, and let

m� = jA�j � 1. (6.59)

Lemma 6.25 For � = �,

T (A1; : : : ; Ar) � N � ��m�, (6.60)

and for � < �,

T (A1; : : : ; Ar) � N � �. (6.61)

Proof. First consider � = �. For the maximum wait to occur, it is clearly necessary for the �

g�s to be visited �rst; that is, the �rst � states of G must be completed at time �. Suppose the last

element of the �rst completed A-set, A�, occurs at time �+k, observing that more than one A-set

may be completed at the this time. Then at least one element from each set AinG must occur at

time at least �+ k. Let A be any set containing at least one element from each of the sets AinG.

Then �+ k � N � jAj+ 1, so that k will be maximised when jAj is minimised, thereby providing

the result for � = �.

For � < � the maximum wait will occur if the �rst � arrivals are for states in G and one of the

remaining �� � states of G is the last to be visited. Hence the result.

Corollary 6.26 When � = � and Ai \Aj � G,

T (A1; : : : ; Ar) � N � �� r + 1. (6.62)

Proof. Since the A-sets have no elements in common other than the elements of G, any set A

containing at least one element from each of the sets AinG has at least r elements. Hence jAj is

minimised when jAj = r, giving N � ��m� = N � �� r + 1, as required.
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Notation 6.27 For � 2 f1; : : : ; �g, let N� be the maximum wait possible. By Lemma 6.25

N� =

8<: N � ��m� � = �

N � � � < �
. (6.63)

6.7.4 The Fundamental Theorem of 	1-Processes

Theorem 6.28 (Fundamental Theorem of 	1-Processes) For 0 � k � N�, the distribution

of T is given by

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
, (6.64)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg, and

P (T (A) = k) is given by Theorem 6.9 for � = � and Theorem 6.14 for � < �.

Proof. Equation 6.64 follows directly from Corollary 5.19 with f replaced by �(:) (as de�ned

in Formularisation 6.22).

Equation 6.64 is referred to as The Fundamental Formula for 	1-Processes orWithout-Replace-

ment Processes. When the context is clear, it is referred to brie�y as The Fundamental Formula.

The theorem is referred to in a similar manner.

Corollary 6.29 In the case Ai \Aj � G, Equation 6.64 may be expressed as

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ps

j=1mij

�
= k

�
. (6.65)

Proof. The speci�ed condition implies
���Ss

j=1AijnG
��� = Ps

j=1mij . Hence the result follows

from Equation 6.64 by the de�nitions of T (A) and T (m).

6.7.5 With A-Sets Mutually Intersecting in G and of Equal Size

There is a special case of Equation 6.65 that yields a simpli�cation that reduces the total number

of summands to r from the original number 2r � 1.

Before the reduction, the summations
Ps

j=1mij must be determined for all distinct subsets

fi1; : : : ; isg of f1; : : : ; rg. The number of additions involved in all of the sums
Ps

j=1mij is given

by
Pr

s=1

�
r
s

�
(s� 1) = (r � 2) 2r�1 + 1.

The next result provides the distribution for the case that all A-sets are the same size and

intersect trivially in G.
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Corollary 6.30 When Ai\ Aj � G and mi � m, the distribution of T is given by

P (T = k) =
rX
s=1

(�1)s�1
�
r

s

�
P (T (sm) = k) . (6.66)

Proof. Setting mi = m for i 2 f1; 2; : : : ; rg in Equation 6.65, and then simplifying, gives

P (T = k) =

rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ps

j=1m
�
= k

�
=

rX
s=1

(�1)s�1
�
r

s

�
P (T (sm) = k) ,

since the inner summand is independent of the i1; : : : ; is and there are
�
r
s

�
distinct subsets fi1; : : : ; isg

of f1; : : : ; rg.

6.8 	-Numbers of the First Kind

6.8.1 Introduction

The Fundamental Theorem 6.28 provides an expression for the probability of at least one event

occurring, in terms of the probability distribution for just one event occurring with possibly dif-

ferent values for one of the parameters. The term P
�
T
�Ss

j=1Aij

�
= k

�
is P (T (m) = k) where

m =
���Ss

j=1AijnG
���. It is possible that the same value of m appears more than once in the 2r � 1

terms of the double-summation. Reducing the number of times P (T (m) = k) is calculated, may

o¤er a signi�cant computational bene�t.

An example of this is provided in Section 6.7.5, in which the A-sets mutually intersect in G

and are of equal size; in that case, the resulting formula is more appealing than its original form.

The example on the 2-D Gap Problem in Section 13.5 provides a more-complex example.

These probabilities can also appear in other situations. Without going into details, here is an

example. If there were a probability distribution on the size of the G-set, say q� = P (jGj = �), then

the probability of waiting k would be given by
P

� q�P (T = k), where P (T = k) would depend on

the new values of N , �, r; A1, : : :, Ar and the new range of values based on the value of �.

The expressions for the probabilities P (T (m) = k) may therefore by considered as building

blocks for larger expressions, just as binomial coe¢ cients are. One could provide lookup-tables for

these.

These building blocks are referred to as the 	-probabilities of �rst kind, or more simply as

	1-probabilities. The processes that give rise to these distributions are similarly named.
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These numbers can be generalised in many ways; for example, limiting the number of arrivals

to produce an incomplete arrival set, or placing a distribution on the arrival size of batches. All of

these are variants of the 	-probabilities. However, we discuss only the simpler forms here; these

are the ones based on (N;m; �; �)k as given by Theorems 6.9 and 6.18.

6.8.2 The 	1-Numbers: � � �

The formulations in this section will be used in the following section to write a simpli�ed expression

for the Fundamental Formula.

De�nition 6.31 For the 	1-process with parameters N , m, � and �, de�ne the 	-numbers as

 1 (N;m; �; �; k) = (N;m; �; �)k (6.67)

whenever the parameters are valid and zero otherwise, and where (N;m; �; �)k is given by Theorems

6.5 or 6.18, depending on the value of �.

De�nition 6.32 For the 	1-process with parameters N , m, � and �, de�ne the 	-probabilities

as

	1 (N;m; �; �; k) =
 1 (N;m; �; �; k)

N !
m!�!(N�m��)!

(6.68)

whenever the parameters are valid.

Theorem 6.33 The Fundamental Formula may be expressed as follows. For 0 � k � N�, the

distribution of T is given by

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

	1

�
N;
���Ss

j=1AijnG
��� ; �; �; k� , (6.69)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. This is a restatement of Theorem 6.28 using 	1 (N;m; �; �; k).

When � = 1 it is possible to sum out parts of the Fundamental Formula to further reduce the

number of calculations required. To provide a representation of this, we introduce here the dashed

form of the 	-numbers and 	-probabilities.

Notation 6.34 For k 2 fmax (�� �; 1) ; : : : ; N � �g, let

 01 (N;m; �; �; k) = (�1)
��1

��
k � 1

�� � � 1

��
k � �+ �
m+ �

�
+

�
k � 1
�� �

��
k � �+ � � 1
m+ � � 1

��
. (6.70)
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Notation 6.35 Let

	
0
1 (N;m; �; �; k) �

 01 (N;m; �; �; k)
N !

m!�!(N�m��)!
. (6.71)

6.8.2.1 The 	1-Probabilities: � = �

When � = �, we write 	1 (N;m; �; �; k) as 	1 (N;m; �; k).

Corollary 6.36 When � = �, the 	1-probabilities satisfy the following.

For k = 0,

	1 (N;m; �; 0) =
�

�+m
, (6.72)

for k 2 f1; : : : ; N � �g,

N !

m!�! (N �m� �)!	1 (N;m; �; k)

= (�1)��1
 
��1X
s=0

�
(�1)s

�
N � k
s

��
N � s� 1
N �m� �

��
�
�

k � 1
m+ �� 1

�!
, (6.73)

and otherwise 	1 (N;m; �; k) = 0.

Proof. Equation 6.72 is Equation 6.31 of Theorem 6.9. Putting � = � in Equation 6.52 of

Theorem 6.18 provides Equation 6.73 after applying the facts that
�
k�1
�1
�
= 0 and

�
k�1
���
�
= 1.

Corollary 6.37 For � = � and k 2 f1; : : : ; N � �g, the 	01-numbers are given by

 01 (N;m; �; k) = (�1)
��1

�
k � 1

m+ �� 1

�
. (6.74)

Proof. Put � = � in Equation 6.70 and use the facts that
�
k�1
�1
�
= 0 and

�
k�1
���
�
= 1.

6.8.2.2 The 	-Probabilities: � = 1

When � = 1, we have the Hauer-Templeton model. Write 	1 (N;m; �; �; k) as 	1 (N;m; k).

Corollary 6.38 When � = 1, the 	1-probabilities are given by the following.

For k = 0,

	1 (N;m; 0) =
1

1 +m
, (6.75)

for k 2 f1; : : : ; N � 1g,

	1 (N;m; k) =
1

N
� 1

N

�
k�1
m

��
N�1
m

� , (6.76)

and otherwise 	1 (N;m; k) = 0.
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Proof. Apply Corollary 6.36 with � = 1 to give, for k = 0,

	1 (N;m; 0) =
1

1 +m
, (6.77)

as required, and for k 2 f1; : : : ; N � 1g,

N (N � 1)!
m! (N �m� 1)!	1 (N;m; k) =

�
N � 1

N �m� 1

�
�
�
k � 1
m

�
, (6.78)

from which the result for k > 0 follows trivially.

Corollary 6.39 For � = 1 and k 2 f1; : : : ; N � 1g, the 	01-numbers are given by

 01 (N;m; k) =

�
k � 1
m

�
. (6.79)

Proof. Putting � = 1 in Equation 6.74 provides the result.

As a consequence of these results for � = 1; we may write the 	1-probabilities as

	1 (N;m; k) =

8>>><>>>:
1
N �	

0
1 (N;m; k) for k > 0

1
m+1 for k = 0

(6.80)

or

	1 (N;m; k) =

8>>>><>>>>:
1
N �

 01(N;m;k)

N(N�1m )
for k > 0

1
m+1 for k = 0

. (6.81)

6.8.3 The Fundamental Formula in Terms of 	01-Numbers: � = 1

Given a lookup table for 	01-numbers, the speed and accuracy of calculating the probabilities

would be increased if they were written in terms of those numbers. We do this for the case � = 1.

Although a straightforward expression results for the more-general case of � � 1 and � � �, there

is a further simpli�cation that can be made when � = 1. In this case the term 1
N is no longer

involved in the calculation of each of the 2r � 1 terms; 2r � 1 subtractions will be replaced by a

single subtraction. The last result of this section specialises to the case Ai\Aj � G and the A-sets

are of equal size.
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6.8. 	-Numbers of the First Kind

Theorem 6.40 For � = 1, the Fundamental Theorem 6.28 may be written as follows. For k � 1,

P (T = k) =
1

N
�

Pr
s=1 (�1)

s�1P
i1;:::;is

 01

�
N;
���Ss

j=1AijnG
��� ; k�

N
�
N�1
m

� , (6.82)

and for k = 0,

P (T = 0) =

rX
s=1

(�1)s�1
X
i1;:::;is

	1

�
N;
���Ss

j=1AijnG
��� ; 0� , (6.83)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. For k � 1, �rst writing Equation 6.64 in terms of 	1-probabilities, and then in terms

of 	01-probabilities gives

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

	1

�
N;
���Ss

j=1AijnG
��� ; k�

=
rX
s=1

(�1)s�1
X
i1;:::;is

�
1

N
�	01

�
N;
���Ss

j=1AijnG
��� ; k��

=
1

N
�

rX
s=1

(�1)s�1
X
i1;:::;is

	01

�
N;
���Ss

j=1AijnG
��� ; k� ,

by applying Equation 5.6. Equation 6.82 follows by the de�nition of  01.

For k = 0,

P (T = 0) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= 0
�

=

rX
s=1

(�1)s�1
X
i1;:::;is

1

1 +
���Ss

j=1AijnG
��� ,

from which the result follows by the de�nition of 	1.

Corollary 6.41 Suppose Ai \ Aj � G and mi � m. Then the distribution of T becomes, for

k > 0,

P (T = k) =
1

N
�
Pr

s=1 (�1)
s�1 �r

s

�
 01 (N; sm; k)

N
�
N�1
m

� , (6.84)

and for k = 0,

P (T = 0) =
rX
s=1

(�1)s�1
�
r

s

�
	1 (N; sm; 0) . (6.85)
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Proof. Substituting the restricted conditions into Equation 6.82, and then simplifying, gives

P (T = k) =
1

N
�

rX
s=1

(�1)s�1
Pr

s=1 (�1)
s�1P

i1;:::;is
 01

�
N;
���Ss

j=1AijnG
��� ; k�

N
�
N�1
m

�
=

1

N
�
Pr

s=1 (�1)
s�1 �r

s

�
 01 (N; sm; k)

N
�
N�1
m

� ,

since the inner summand is independent of the i1; : : : ; is, and there are
�
r
s

�
distinct subsets

fi1; : : : ; isg of f1; : : : ; rg. Similarly, for k = 0, Equation 6.83 becomes

P (T = 0) =
rX
s=1

(�1)s�1
X
i1;:::;is

	1

�
N;
���Ss

j=1AijnG
��� ; 0�

=
rX
s=1

(�1)s�1
X
i1;:::;is

	1 (N; sm; 0)

=
rX
s=1

(�1)s�1
�
r

s

�
	1 (N; sm; 0)

as required.

Remark 6.42 The Hauer-Templeton result follows immediately from Corollary 6.41 by setting

r = 1.

6.9 Decomposition

6.9.1 Introduction

Here we write P (T = k) as a linear combination of 	-probabilities in a general way that may

be used to create an algorithm for a computer program. We choose 	-probabilities instead of

	-numbers for brevity, but the expressions should be converted to use 	-numbers to decrease

calculation times and increase accuracy. In practical terms, if this decomposition formula can

be found analytically, then calculating values for the distribution will have greater e¢ ciency and

accuracy. Di¤erent models may also be more easily compared.

Directly following the theory, the theory is applied to the 2-D Zig-Zag Problem in Section 6.9.4.

More examples occur in Section 13.6.3 on Waiting for Utilities to be Connected to Plots of Land.
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6.9. Decomposition

6.9.2 The Decomposition Formula

Theorem 6.43 (Decomposition Theorem) The probability distribution of T as given by the

Fundamental Formula may be written as a linear combination of distinct 	1-probabilities as

P (T = k) =

N��X
m=0

�(N;�;�) (m)	1 (N;m; �; �; k) , (6.86)

where

�(N;�;�) (m) =

rX
s=1

(�1)s�1
X
i1;:::;is

����Ss

j=1
Aij nG

���;m, (6.87)

where �i;j is Kronecker�s delta function (Archbold [4, p 344]), and the inner summation is over the�
r
s

�
distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. The term 	1 (N;m; �; �; k) occurs once in P (T = k) as given by Equation 6.69 for each

collection of Aij�s satisfying
���Ss

j=1AijnG
��� = m. Whether it is a positive or negative contribution

to �(N;�;�) (m) depends on whether s is odd or even, respectively. Hence the result.

De�nition 6.44 The coe¢ cients, �(N;�;�) (m), of the 	1-numbers in the Decomposition Formula

(Equation 6.86) are called decomposition coe¢ cients.

Remark 6.45 The decomposition coe¢ cients are immediately generalisable to all forms of 	-

processes, even without further decomposition theorems.

When the context is clear, �(N;�;�) (m) is written as � (m).

Corollary 6.46 Suppose Ai \Aj � G, and jAinGj � m > 0. Then, for � 2 f0; : : : ; N � �g,

�(N;�;�) (�) = (�1)d�1
�
r

d

�
for � = dm for some d 2 Z (6.88)

and

�(N;�;�) (�) = 0 otherwise. (6.89)

Also, the Decomposition Formula may now be written as

P (T = k) =
rX

d=1

(�1)d�1
�
r

d

�
	1 (N; dm; �; �; k) . (6.90)
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6.9. Decomposition

Proof. Applying the given conditions to Theorem 6.43 yields

�(N;�;�) (�) =

rX
s=1

(�1)s�1
X
i1;:::;is

�sm;�

=
rX
s=1

(�1)s�1
�
r

s

�
�sm;�.

Hence �(N;�;�) (�) 6= 0 only when � is an integral multiple of m, say m0 = dm. Then we have

�(N;�;�) (dm) =
rX
s=1

(�1)s�1
�
r

s

�
�sm;dm

= (�1)d�1
�
r

d

�
.

The new form of the Decomposition Formula follows from the original by summing over only

those values which provide a non-zero value.

6.9.3 Counts of Occurrences

In order to measure the gains made by calculating the decomposition coe¢ cients, we compare

these with the count of occurrences, �+(N;�;�) (m), of 	1 (N;m; �; �; k) in P (T = k) for each value

of m. This is provided by Equation 6.91. We also compare the total number of 	1 terms over all

m for both � and �+.

Notation 6.47 For m 2 f0; : : : ; N � �g, let �+(N;�;�) (m) be the number of occurrences of the term

	1 (N;m; �; �; k) in P (T = k). When the context is clear, �+(N;�;�) (m) is written as �
+ (m).

Theorem 6.48 For m 2 f0; : : : ; N � �g,

�+(N;�;�) (m) =

rX
s=1

X
i1;:::;is

����Ss

j=1
Aij nG

���;m. (6.91)

Proof. The result occurs as a consequence of considering the number of occurrences as in

Equation 6.87, but without the sign.

Notation 6.49 Let _�
+
(N;�;�) be the total number of terms containing 	1 (N;m; �; �; k) in P (T = k)

over all m.

Theorem 6.50

_�
+
(N;�;�) =

N��X
m=0

�+(N;�;�) (m) . (6.92)
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6.9. Decomposition

Proof. The result follows by summing the counts given by Equation 6.91 over all m.

Clearly _�
+
(N;�;�) = 2

r � 1, and therefore
PN��

m=0 �
+
(N;�;�) (m) = 2

r � 1.

Remark 6.51 Greater gains would occur when � > 1, as we would then need to use the more-

general 	1-number, namely 	1 (N;m; �; �; k), which requires more operations, unless precalculated

and stored as a lookup table. Also, the larger the value of N is, the larger the number of probability

calculations are required as k 2 f0; : : : ; N�g. One could determine the ��s once and use them once

for each value of k and �.

Remark 6.52 By reducing the number of operations, especially of �oating-point multiplications

and divisions, this decomposition also improves accuracy.

6.9.4 Example: The 2-D Zig-Zag Problem

In the 5 � 5 2-D Zig-Zag Problem discussed in Section 13.6.2, the parameters for the centre cell,

(3; 3), are N = 25, � = 1, � = 1, r = 20 and m 2 f0; : : : ; 20g. Table 6.2 provides the counts

of occurrences for each m and the decomposition coe¢ cients. Observe that the decomposition

coe¢ cients for m 2 f1; 21; 22; 23; 24g are zero.

Using the Decomposition Formula; with 	1-probabilities not replaced by 	1-numbers and

therefore also not doing a single division by the denominator, provided a decrease in calculation

time from 55 minutes to 35 minutes; this is a percentage reduction of approximately 36%. This

is not as much as expected, because the times include both the calculations required for each

	1-probability and the decomposition coe¢ cients, and not just the �nal summations.

In this case, there are 1 048 575� 19 = 1 048 556 duplicate calculations required for each value

of k when applying the Fundamental Formula directly, when compared with using the decompo-

sition formula. Since the coe¢ cients of the 	-probabilities must be determined once, and as the

bene�t is for each value of k 2 f0; : : : ; 20g bar one, the total number of additional calculations is

1 048 556�20 = 20 971 120. In this case, the decomposition formula provides an order of magnitude

improvement in the number of calculations required. If � were 20, and we wanted to determine

the probabilities for each �, then there would be further order of magnitude in the reduction in

the number of calculations required.
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6.10. Minimal Covering

m �+m �m
2 4 4

3 16 16

4 38 �38
5 116 �36
6 300 60

7 768 208

8 1 913 �305
9 4 396 �292
10 9 502 746

11 19 812 �140
12 39 244 �620
13 71 700 364

14 119 512 376

15 178 768 �584
16 222 749 299

17 205 288 �48
18 124 472 �16
19 43 416 8

20 6 561 �1
jTotalj 1048575

Table 6.2: Decomposition Coe¢ cients with Counts of Occurrences for the Centre Cell, (3; 3)

6.10 Minimal Covering

6.10.1 Introduction

Given a collection of A-sets, an A-set A may be redundant in the sense that the completion of

A may already be necessarily satis�ed by the completion of another A-set. The purpose of the

Minimal Covering Theorem is eliminate the unnecessary inclusion of these redundant A-sets from

calculations. Such sets are exhibited in Section 13.6.2 on the 2-D Zig-Zag Problem. Following the

theorem, we provide a theoretical explanation of the gains to be made.

6.10.2 Minimal Covering Theorem

Theorem 6.53 (Minimal Covering Theorem) Suppose A-sets A1; : : : ; Ar and Ar+1 have the

property that there exists i� 2 f1; : : : ; rg for which Ai� � Ar+1. Then

P (T (A1; : : : ; Ar; Ar+1) = k) = P (T (A1; : : : ; Ar) = k) . (6.93)
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6.10. Minimal Covering

Proof. By Equation 6.64,

P (T (A1; : : : ; Ar; Ar+1) = k) =
r+1X
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
. (6.94)

Every s-tuple Ai1 ; : : : ; Ais of A-sets appears uniquely in Equation 6.94 as the term

(�1)s�1 P
�
T
�Ss

j=1Aij

�
= k

�
: (6.95)

For any such s-tuple that includes Ar+1, we may assume, without loss of generality, that is = r+1.

For any i� 2 f1; : : : ; rg for which Ai� � Ar+1, there is an s-tuple, A, of A-sets that contains Ar+1
and not Ai� i¤ there exists an (s+ 1)-tuple of A-sets equal to A augmented by Ai� .

The former appears in Equation 6.94 as

(�1)s�1 P
�
T
�
Ar+1 [

Ss�1
j=1Aij

�
= k

�
, (6.96)

and the latter as

(�1)s P
�
T
�
Ar+1 [Ai� [

Ss�1
j=1Aij

�
= k

�
, (6.97)

which, by assumption, reduces to

(�1)s P
�
T
�
Ar+1 [

Ss�1
j=1Aij

�
= k

�
: (6.98)

The two values cancel each other out in the sum of all terms, thereby providing the result.

6.10.3 Gains Made by Application of the Minimal Covering Theorem

Theorem 6.54 The reduction in terms provided by the Minimal Covering Theorem is exponential

in the number of sets eliminated.

Proof. Given that the Fundamental Formula, Equation 6.64 of Theorem 6.28, for r + 1 sets

has 2r+1 � 1 terms, eliminating just one set from the calculation reduces the number of terms by

a factor of 2
r+1�1
2r�1 = 2 + 1

2r�1 � 2. Hence the result.
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6.11. Cumulative Distributions

6.11 Cumulative Distributions

6.11.1 Introduction

Although the cumulative distribution can be calculated by determining the probability distribution

�rst, an individual cumulative value would be better calculated from an expression that is converted

to a form that doesn�t involve a sum over k. This section provides this, �rst for multiple A-sets

and � � �, and then derives from this the cumulative distribution for the Hauer-Templeton model.

6.11.2 Multiple A-Sets

Theorem 6.55 The cumulative distribution for T (A1; : : : ; Ar) is given by

P (T � K) = P (T = 0)

+ (�1)��1
rX
s=1

(�1)s�1
X
i1;:::;is

mis !�! (N �mis � �)!
N !

C (N;mis ; �; �;K) , (6.99)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg,

C (N;m; �; �;K)

= (1� ���)
��1X
t=0

(�1)t
�
N � �+ � � t
N �m� �

� tX
n=0

�
N �K � t+ n� 1

n

��
K + t� n

�� � + t� n

�
�
�
�+m� 1
�� � � 1

��
K

�+m

�
+
��1X
t=0

(�1)t
�
N � �+ � � t� 1

N �m� �

� tX
n=0

�
N �K � t+ n� 1

n

��
K + t� n

�� � + t� n+ 1

�
�
�
�+m� 1
�� �

��
K

�+m

�
, (6.100)

where, for is = (i1; : : : ; is),

mis =
���Ss

j=1AijnG
��� . (6.101)

For � = �,

P (T = 0) =

rX
s=1

(�1)s�1
X
i1;:::;is

�

�+mis

, (6.102)

and for � < �,

P (T = 0) = 0. (6.103)

Proof. Equation 6.102 follows directly from Theorems 6.28 and 6.9. Equation 6.103 is the

statement that the wait must be positive when � < �.
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For K 2 fmax (�� �; 1) ; : : : ; N � �g, we need

S =

KX
k=1

rX
s=1

(�1)s�1
X
i1;:::;is

(N;mis ; �; �)k
N !

mis !�!(N�mis��)!
, (6.104)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg, and

(N;m; �; �)k = (�1)
��1

0@ �
k�1

����1
� �P��1

t=0

�
(�1)t

�
N�k
t

��
N��+��t
N�m��

��
�
�
k��+�
m+�

��
+
�
k�1
���
� �P��1

t=0

�
(�1)t

�
N�k
t

��
N��+��t�1
N�m��

��
�
�
k��+��1
m+��1

��
1A .
(6.105)

Rearrange S to become

S =
rX
s=1

(�1)s�1
X
i1;:::;is

mis !�! (N �mis � �)!
N !

KX
k=1

(N;mis ; �; �)k , (6.106)

and let

(�1)��1C (N;m; �; �;K) =
KX
k=1

(N;m; �; �)k . (6.107)

Separate this sum into four parts as

S1 =

KX
k=1

�
k � 1

�� � � 1

� ��1X
t=0

(�1)t
�
N � k
t

��
N � �+ � � t
N �m� �

�
, (6.108)

S2 =
KX
k=1

�
k � 1

�� � � 1

��
k � �+ �
m+ �

�
, (6.109)

S3 =

KX
k=1

�
k � 1
�� �

� ��1X
t=0

(�1)t
�
N � k
t

��
N � �+ � � t� 1

N �m� �

�
, (6.110)

S4 =
KX
k=1

�
k � 1
�� �

��
k � �+ � � 1
m+ � � 1

�
, (6.111)

and reduce each of them to a form without a summation over k as follows.

S1 =

��1X
t=0

(�1)t
�
N � �+ � � t
N �m� �

�
S01, (6.112)
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where

S01 =

KX
k=1

�
k � 1

�� � � 1

��
N � k
t

�

=
KX
k=1

�
k � 1

�� � � 1

�
(�1)t

�
k �N + t� 1

t

�
by Equation 5.1

= (�1)t
KX

k=���

�
k � 1

�� � � 1

��
k �N + t� 1

t

�

= (�1)t
K��+�X
k=0

�
k + �� � � 1
�� � � 1

��
k + �� � �N + t� 1

t

�
.

For � = �, S01 = 0, and for � < � we can apply Lemma 6.8 with L = K � �+ �, f = �� �� 1,

c = �� � �N + t� 1 and e = t to give, after amalgamating the two identical terms (�1)t,

S01 = (1� ���)
tX

n=0

(�1)n
�
K � �+ � + �� � �N + t� 1 + 1

n

�
�
�
K � �+ � + �� � � 1 + t� n+ 1

�� � � 1 + t� n+ 1

�
=

tX
n=0

(�1)n
�
� (N �K � t)

n

��
K + t� n

�� � + t� n

�

=
tX

n=0

�
N �K � t+ n� 1

n

��
K + t� n

�� � + t� n

�
by Equation 5.1: (6.113)

The expression for S2 can be expanded and simpli�ed to give

S2 =

KX
k=1

�
k � 1

�� � � 1

��
k � �+ �
m+ �

�

=
KX
k=1

(k � 1)!
(�� � � 1)! (k � �+ �)! �

(k � �+ �)!
(m+ �)! (k � ��m)!

=

�
�+m� 1
�� � � 1

� KX
k=1

�
k � 1

�+m� 1

�

=

�
�+m� 1
�� � � 1

� �
k � 1
�+m

�����k=K+1
k=1

=

�
�+m� 1
�� � � 1

��
K

�+m

�
. (6.114)
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From Equation 6.110, we can write

S3 =
��1X
t=0

(�1)t
�
N � �+ � � t� 1

N �m� �

�
S03, (6.115)

where

S03 =
KX
k=1

�
k � 1
�� �

��
N � k
t

�
. (6.116)

Observing that S03 is S
0
1 with � replaced by �� 1, we can make the same replacement in Equation

6.113 to give

S03 =
tX

n=0

�
N �K � t+ n� 1

n

��
K + t� n

�� � + t� n+ 1

�
. (6.117)

Note that there is no need to include the factor (1� ���) in this case, as the value of f in Lemma

6.8 is �� �, which is � 0.

Observing that S4 is S2 with � replaced by � � 1, we can make the same replacement in

Equation 6.114 to give

S4 =

�
�+m� 1
�� �

��
K

�+m

�
. (6.118)

Combining the expressions for S1, S2, S3 and S4 provides the expression for Equation 6.100,

thereby obtaining the �nal part of Equation 6.99.

6.11.3 A Single A-Set and � = 1

The cumulative distribution for the Hauer-Templeton model is derived here from the general model

by letting r = 1 and � = � = 1.

Corollary 6.56 The cumulative distribution for T (A) and � = � = 1, with m = jAnGj, is given

by

P (T � K) = 1

m+ 1
+
K

N
�

�
K
m+1

�
(m+ 1)

�
N
m+1

� (6.119)

Proof. Applying Theorem 6.55 with r = 1, A1 = A, � = � = 1 and m = jAnGj, gives

P (T � K) = P (T = 0) +
m! (N �m� 1)!

N !
C (N;m; 1; 1;K) , (6.120)

where

C (N;m; �; �;K) =

�
N � 1

N �m� 1

��
K

1

�
�
�

K

m+ 1

�
(6.121)

and

P (T = 0) =
1

1 +m
. (6.122)
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Hence

P (T � K) = 1

1 +m
+
m! (N �m� 1)!

N !

�
K

�
N � 1

N �m� 1

�
�
�

K

m+ 1

��
, (6.123)

from which the result follows trivially.

6.12 Approximations

6.12.1 Introduction

The main cost in calculating the probabilities (and the expectations) occurs when there are multiple

A-sets with large values of r after applying the Minimal Covering Theorem to eliminate redundant

A-sets. It is shown in Section 13.6.4 on the 3-D Zig-Zag Problem - Parked Flying Saucers that a

value of r as low as 40 takes a signi�cantly long time on a desktop computer.

We consider two approaches to solving this problem, and explain why the �rst fails and the

second requires further investigation.

6.12.2 Using Bonferroni�s Inequalities

Section 4.3 provides a theoretical reason why Bonferroni�s Inequalities are not useful at all for

these probabilities. It includes an illustrative example based on the 2-D Zig-Zag Problem, with a

complete list of successive bounds provided by the inequalities. For emphasis, we provide here the

�rst three terms for a zero waiting time.

P (T = 0) =
20X
i=1

P (T (Ai) = 0)�
19X
i1=1

20X
i2=i1+1

P (T (Ai1 [Ai2) = 0) + : : :

=

�
4� 1

3
+ 16� 1

4

�
�
�
38� 1

5
+ 72� 1

6
+ 80� 1

7

�
+

�
40� 1

6
+ 172� 1

7
+ 448� 1

8
+ 352� 1

9
+ 128� 1

10

�
: : :

= 513 � 31
1
35 + 139

47

315
� : : : . (6.124)

6.12.3 Using Incremental Addition of Paths

This has not been investigated theoretically, but the following anecdotal evidence gathered from

the 2-D Zig-Zag Problem, which is discussed in Section 13.6.2, suggests that iterative inclusion of

paths provides an asymptotic result. This has been included because it was not obvious and was

observed coincidentally while optimising the source code for the calculations of the probabilities.

146



The Stochastic Process: Without-Replacement 147

6.12. Approximations

Number of
Paths

Random
Selection

Shortest
Paths

Longest
Paths

1 0: 333 0: 333 0: 250

2 0: 383 0: 467 0: 300

3 0: 400 0: 543 0: 360

4 0: 420 0: 594 0: 380

5 0: 429 0: 605 0: 430

6 0: 479 0: 615 0: 446

7 0: 496 0: 620 0: 481

8 0: 547 0: 626 0: 495

9 0: 558 0: 632 0: 517

10 0: 563 0: 636 0: 526

11 0: 583 0: 642 0: 547

12 0: 591 0: 646 0: 557

13 0: 622 0: 648 0: 570

14 0: 628 0: 654 0: 577

15 0: 632 0: 657 0: 586

16 0: 642 0: 663 0: 591

17 0: 647 0: 665 0: 617

18 0: 654 0: 669 0: 638

19 0: 657 0: 671 0: 657

20 0: 674 0: 674 0: 674

Table 6.3: Convergence in the 2-D Zig-Zag Problem: P (T = 0)

However, in Section 13.6.4 on the 3-D Zig-Zag Problem, Tables 13.22 and 13.23 illustrate that

the labelling order of the A-sets produces quite di¤erent sequences to each other. They also show

the convergence to be not as rapid as one would wish. The processing times, which are included

for some numbers of paths, are so large that a numerical investigation of convergence for even

relatively small zig-zag problems is unlikely.

The sequences provided in Table 6.3 occur when incrementally including the paths in the order

provided by the path generator algorithm described in Section 13.6.2.2.1. The starting position

for these calculations is the centre cell. Observe that the rate of convergence depends on the order

in which the paths of di¤erent lengths are included.

This example suggests that including the shortest paths �rst produces a better approximation

than either a random selection or longest paths.
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Number of
Paths

Random
Selection

Shortest
Paths

Longest
Paths

1 0: 032 0 0: 032 0 0: 036 7

2 0: 030 0 0: 025 3 0: 034 7

3 0: 028 8 0: 019 7 0: 032 2

4 0: 027 3 0: 015 0 0: 030 7

5 0: 026 4 0: 013 8 0: 028 7

6 0: 024 4 0: 012 7 0: 027 4

7 0: 023 2 0: 012 0 0: 025 1

8 0: 018 7 0: 011 3 0: 023 7

9 0: 017 5 0: 010 5 0: 022 0

10 0: 016 8 0: 010 1 0: 021 0

11 0: 015 3 0: 009 3 0: 019 0

12 0: 014 4 0: 008 9 0: 017 9

13 0: 011 3 0: 008 6 0: 016 4

14 0: 010 5 0: 007 9 0: 015 6

15 0: 010 0 0: 007 6 0: 014 5

16 0: 009 0 0: 006 9 0: 013 8

17 0: 008 4 0: 006 6 0: 011 1

18 0: 007 5 0: 006 1 0: 009 0

19 0: 007 1 0: 006 0 0: 007 1

20 0: 005 7 0: 005 7 0: 005 7

Table 6.4: Convergence in the 2-D Zig-Zag Problem: P (T = 100)

6.13 The Number Still Required upon Arrival

6.13.1 Introduction

As a measure of the expected frustration for the arrivals of G, one might use the distribution of

the number of states in the A-sets that have not arrived when the �th state of G arrives.

For r > 1, there are several choices as to what to measure. It could be the number of a�s for

the A-set with the minimal number not yet visited, or it could be the total number of all a�s not

yet visited. It could be the state of all A-sets. The distributions for the �rst two events can be

determined from the distribution for the third event, although a simpler form for the distribution

might be found by deriving them directly. We provide a distribution for the �rst case, but for a

speci�ed number of states not yet visited.

6.13.2 For r = 1

Notation 6.57 Let � be the number of states in A that are yet to be visited at the instant when

the �th state of G is visited.

Notation 6.58 Let Pm (�) = P (� states of AnG have not been visited at the instant the �th state
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of G is visited).

Remark 6.59 Observe that for � = 0, there is no waiting required, so that Corollary 6.17 may be

used to determine Pm (0) as P (T (m) = 0).

Theorem 6.60 For 0 � � � m

Pm (�) =

�
���+�

�

��
��1+m��

m��
��

�+m
�

� . (6.125)

Proof. It matters only where the � g�s and m a�s are in relation to each other, and not where

they occur in the entire arrival stream. There are
�
�+m
�

�
ways of arranging the g�s and a�s amongst

themselves. We are interested in those which have � a�s distributed amongst the last (�� � � �)

g�s and a�s, and the remaining (m� �) a�s distributed amongst the �rst (� � 1 +m� �) g�s and

a�s. The numbers of ways of achieving these are
�
���+�

�

�
and

�
��1+m��

m��
�
, respectively. Applying

the multiplication principle completes the proof.

6.13.3 For r � 1

Notation 6.61 Let �i be the number of states in AinG that are yet to arrive at the instant when

the �th state of G arrives. Let � = (�1, : : : , �r).

Notation 6.62 Let P (�) = P (�i states of AinG have not been visited for all i 2 f1; : : : ; rg at the

instant the �th state of G arrives).

We consider the case Ai \ Aj � G, because otherwise the distribution has not yet been deter-

mined.

Remark 6.63 Observe that for and �i = 0, there is no waiting required, so that Equation 6.65

may be used to determine P (�) as P (T = 0).

Theorem 6.64 Suppose Ai \Aj � G: Then, for 0 � �i � mi, i 2 f1; : : : ; rg,

P (�) =

�
���+

Pr
i=1 �i

�1;�2;:::;�r

��
��1+

Pr
i=1(mi��i)

m1��1;m2��2;:::;mr��r
��

�+
Pr
i=1mi
�

� . (6.126)

Proof. It matters only where the � g�s and mi ai�s are in relation to each other, and not

where they occur in the entire arrival stream. The denominator in Equation 6.126 provides the

number of ways of arranging the g�s and a�s amongst themselves. We are interested in those

which have �i ai�s, for all i, distributed amongst the last (�� � �
Pr

i=1 �i) g�s and a�s, and the
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remaining
Pr

i=1 (mi � �i) a�s distributed amongst the �rst (� � 1 +
Pr

i=1 (mi � �i)) g�s and a�s.

The numbers of ways of achieving these arrangements are multinomial in nature, thereby providing

the result.

6.14 Waiting for the �th Arrival of G Measured from the �th

Arrival of G

6.14.1 Introduction

Consider a group of people arriving independently and at random at a collection of buses in a

narrow lane, and suppose that a bus may only depart once all arrivals for all buses in front of it

have occurred. Once a person has arrived, one measure of interest might be how long till the bus

one is in has all of its passengers.

Here we provide a slight generalisation for this, which is the distribution of the waiting time from

the time of the �th arrival till the time of the �th arrival. Although the result has a combinatoric

interpretation, we illustrate the use of the technique used in Section 6.2 followed by application of

The Transformation Formula of Section 6.3.

6.14.2 Results

Theorem 6.65 The distribution of the waiting time for the � th element of G to arrive, measured

from the time of the �th arrival, is given, for 1 � � < � � � and k 2 f� � �, : : : , N � �+ � � �g,

by

P�� (k) =

�
k�1

����1
��

N�k
���+�

��
N
�

� . (6.127)

Proof. The bounds on k occur as follows. As there must be enough arrivals between the �th

and �th arrivals for G, k � � ��. To maximise the wait, the �th arrival for G must occur as early

as possible, which is at the �th arrival. It is also necessary that � � � elements of G must arrive

after the �th arrival for G. Hence it is necessary to have � + k � N � (�� �), which implies the

upper bound on k.

The distribution of the � arrivals of G into arbitrary positions within the arrival stream can

be done in
�
N
�

�
ways. To determine the number of ways in which a wait of k will occur, measured

from the �th arrival for G to the �th arrival for G, suppose the �th arrival for G occurs at the `th

arrival. Then the �rst �� 1 arrivals for G must occur in the �rst `� 1 arrivals, the �th arrival for

G must occur at arrival `+ k, � � �� 1 arrivals for G must occur between the `th arrival and the
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(`+ k)th arrival, and the remaining �� � arrivals for G must occur in the N � k� ` arrivals after

the �th arrival for G.

The numbers of ways that these occur are, respectively, 1,
�
`�1
��1
�
, 1,

�
k�1

����1
�
and

�
N�k�`
���

�
.

Multiplying these together and summing over the possible values of ` provides the numerator. As

the �th arrival for G cannot occur before the �th arrival, ` � �, and as �th arrival for G cannot

occur before the kth arrival after the �th, ` + k � � . However, as k � � � �, ` � � implies

`+ k � � + (� � �) = � , so the condition `+ k � � does not provide an additional restriction on

the values of `. As there must be � � � arrivals for G after its �th arrival, ` + k � N � (�� �).

Thus the probability satis�es

�
N

�

�
P�� (k) =

�
k � 1

� � � � 1

�N�k��+�X
`=�

�
`� 1
� � 1

��
N � k � `
�� �

�
. (6.128)

Convert the summation to a form suitable for applying The Transformation Formula given by

Lemma 6.8 as follows.

N�k��+�X
`=�

�
`� 1
� � 1

��
N � k � `
�� �

�

=

N�k��+���X
`=0

�
`+ � � 1
� � 1

��
N � k � `� �

�� �

�

= (�1)���
N�k��+���X

`=0

�
`+ � � 1
� � 1

��
`�N + k + � + �� � � 1

�� �

�
= (�1)��� 
 (N � k � �+ � � �; � � 1;�N + k + � + �� � � 1; �� �) . (6.129)

As � � 1 � 0, apply Equation 6.7 of Lemma 6.8 to give

(�1)��� (�1)���
���X
n=0

(�1)n

�
�
N � k � �+ � � � �N + k + � + �� � � 1 + 1

n

�
�
�
N � k � �+ � � � + � � 1 + �� � � n+ 1

� � 1 + �� � � n+ 1

�
=

���X
n=0

(�1)n
�
0

n

��
N � k � n

� + �� � � n

�
=

�
N � k

� + �� �

�
.
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Thus

P�� (k) =

�
k�1

����1
��

N�k
���+�

��
N
�

� (6.130)

as required.

Remark 6.66 Observe that P�� (k) has the same interpretation as P (T (0) = k) as given by Corol-

lary 6.17. Hence, for k � 1,

(N; 0; �; �)k =

�
k � 1

�� � � 1

��
N � k
�

�
, (6.131)

so that from Theorem 6.18 we have

(�1)��1
0@ �

k�1
����1

� �P��1
s=0

�
(�1)s

�
N�k
s

��
N��+��s

N��
��
�
�
k��+�

�

��
+
�
k�1
���
� �P��1

s=0

�
(�1)s

�
N�k
s

��
N��+��s�1

N��
��
�
�
k��+��1

��1
��
1A

=

�
k � 1

�� � � 1

��
N � k
�

�
. (6.132)

6.14.3 Example: Duration of a Cake on Display

The Non-Unique-Cake Display Problem is described in Section 2.7. A detailed analysis of the

theory on allowing for multiple cakes of the same kind is provided in Section 11.6 on Moments for

Cumulative Measures of State.

Suppose a cake type with � slices has d slices per cake with dj�, and suppose that we want to

know the waiting time for the completion of the jth cake of this type, measured from the purchase

of the �rst slice of the jth cake. This provides the duration of time that the cake is on display.

This corresponds to � = (j � 1) d+ 1 and � = jd. Theorem 6.65 provides the distribution as

P (the jth cake is on display for k orders) =

�
k�1
d�2
��

N�k
��d+1

��
N
�

� . (6.133)

Observe that this is independent of j.

6.15 Estimating N for r = 1 and � = 1

It is not possible to determining the inverse of the distribution, but we can �nd best estimates

for the number of elements in N . Under certain conditions, we can �nd the maximum likelihood

estimate, N�, for the number of elements in N ; see Silvey [78] for a mathematical discussion of

maximum likelihood estimation.
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We do this only for a simple case, namely for r = 1 and � = 1, and when a single observation,

k, has been made for an A-set with jAnGj = m > 0. In the Queueing in Lanes model, this

corresponds to driver m+ 1 having waited for k other drivers after arriving, before being able to

depart. When m = 0, the wait is always zero regardless of the number of elements in N , so there

is no information about the size of N in this case. This is why we assume m > 0.

Estimating the number of elements in N based on observations for more than one G-set within

the same trial requires the joint distribution of the waits for each G-set involved, which is outside

the scope of this work. A possible alternative to knowing the joint distribution is suggested in

Section 6.15.5.

6.15.1 Preliminaries

Suppose 1 � m < N and 0 � k < N . Consider the likelihood function

p (k;N) =

8>>><>>>:
1

m+1 for k = 0

1
N for 0 < k � m

1
N

�
1� (k�1)m

(N�1)m

�
for k � m+ 1

. (6.134)

We are going to determine the value of N that maximises p (k;N), if it exists, over each of the

three intervals for k.

Notation 6.67 Let G (N) =
Qm
i=1 (N � i).

Notation 6.68 Let F (N) = NG (N).

Notation 6.69 Let c = G (k).

Notation 6.70 Let f (N) = 1
N �

c
F (N) .

Notation 6.71 Let D = [k;1); D+ = (k;1) and D� = (k � 1;1).

Notation 6.72 Let Q (N) = f 0 (N)F (N).

6.15.2 Results for a Single Observation

For the case k � m+ 1, we need some preliminary results2. Observe that c > 0 and N > m.

2A rough outline of the proof that there is precisely one local maximum and that it is the global maximum on
D was suggested in a private communication by Ian Goldberg, University of Berkeley. The author has made several
changes, �lled in the missing parts and provided all justi�cations.
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Lemma 6.73 F (N) > 0 on D�.

Proof. As N > m on D�, and N � i � N �m for m � i, we have

F (N) = N

mY
i=1

(N � i)

> m

mY
i=1

(N �m)

> 0

as required.

Lemma 6.74 F 0 (N) = F (N)
Pm

i=0
1

N�i on D
�.

Proof. F is clearly di¤erentiable on D�, and

F 0 (N) =
d

dN

mY
i=0

(N � i)

=
mX
j=0

Qm
i=0 (N � i)
N � j

= F (N)
mX
i=0

1

N � i

as required.

Lemma 6.75 f 0 (N) = � 1
N2 +

c
F (N)

Pm
i=0

1
N�i on D

�.

Proof. f is clearly di¤erentiable on D� since F (N) > 0 on D� (by Lemma 6.73) and N > m

(as N > k and k � m+ 1). Di¤erentiating f gives

f 0 (N) = � 1

N2
+ c

F 0 (N)

(F (N))2
,

from which the result follows by applying Lemma 6.74.

Lemma 6.76 f 0 (k) > 0.
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Proof. Since k 2 D�, we can use the Lemma 6.75 to give

f 0 (k) = � 1
k2
+

c

F (k)

mX
i=0

1

k � i

=
1

k2

 
k2c

k
Qm
i=1 (k � i)

mX
i=0

1

k � i � 1
!

=
1

k2

 
k

mX
i=0

1

k � i � 1
!

=
1

k

mX
i=1

1

k � i
> 0 since k > i for i � m

as required.

Lemma 6.77 On D+, f 0 (N) is +ve,-ve or zero i¤ Q (N) is +ve, -ve or zero, respectively:

Proof. By de�nition, Q (N) = f 0 (N)F (N), and by Lemma 6.73, F is +ve on D�, and hence

on D+. Hence the signs of f 0 (N) and Q (N) are identical on D+.

Lemma 6.78 Q (k) > 0.

Proof. By de�nition, Q (k) = f 0 (k)F (k). By Lemma 6.76, f 0 (k) > 0, and by Lemma 6.73,

F (k) > 0 as k 2 D�, from which the result follows.

Lemma 6.79 There exists N1 > k s.t. Q (N1) < 0.

Proof. For N > m and c > 0, we can use Lemma 6.75 to give

Q (N) = f 0 (N)F (N)

=

 
� 1

N2
+

c

F (N)

mX
i=0

1

N � i

!
F (N)

= c

mX
i=0

1

N � i �
1

N

mY
i=1

(N � i)

� c

mX
i=0

1

N �m �
1

N
(N � 1)

= c
m+ 1

N �m �
(N � 1)
N

=
�N2 + (c+ 1) (m+ 1)N �m

(N �m)N

<
�N (N � (c+ 1) (m+ 1))

(N �m)N .
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We are interested in the region N > 0, so putting N1 = max ((c+ 1) (m+ 1) ; k) + 1 su¢ ces to

prove the result.

Lemma 6.80 Q0 (N) < 0 on D�.

Proof. Q is clearly di¤erentiable on D�, and by Lemma 6.75 we have

Q0 (N) =
d

dN
� F (N)

N2
+ c

mX
i=0

d

dN

1

N � i

= �F
0 (N)N � 2F (N)

N3
� c

mX
i=0

1

(N � i)2

= �
NF (N)

Pm
i=0

1
N�i � 2F (N)

N3
� c

mX
i=0

1

(N � i)2
by Lemma 6.74

< F (N)

 
2�N

mX
i=0

1

N � i

!
as c > 0 and N > 1

= F (N)

 
1�N

mX
i=1

1

N � i

!

< F (N)

�
1�N 1

N � 1

�
as F (N) > 0 , N > m > 0

< 0

as required.

Lemma 6.81 Q is strictly decreasing on D.

Proof. Observe that Q has a derivative on D�, and hence on any �nite interval (k;N2), Q is

continuous on any �nite interval [k;N2], and Q0 (N) < 0 on any �nite interval [k;N2] by Lemma

6.80. Theorem 5.14 of Apostol [3] can be applied to show that Q is strictly decreasing on any �nite

interval [k;N2]. The result then follows by letting N2 !1.

Lemma 6.82 The equation Q (N) = 0 has at least one zero on D+.

Proof. By Lemmas 6.78 and 6.79, there exists N1 > k s.t. Q (N1) < 0 < Q (k), so by the

Intermediate-value theorem for real functions (Apostol [3, Theorem 4.38]), there existsN0 2 (k;N1)

s.t. Q (N0) = 0, as required.

Lemma 6.83 The equation Q (N) = 0 has precisely one zero on D+.

Proof. By Lemma 6.82, Q has at least one zero on D+; let N1 be one of these zeros. Suppose

there exists N2 s.t. Q (N2) = 0. Then by the strict monotonicity of Q on D (and hence on D+)
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provided by Lemma 6.81, Q (N2) = 0 and Q (N1) = 0 ) N2 = N1, thereby demonstrating the

uniqueness of the zero.

Lemma 6.84 f has precisely one local extremum on D+ and it is a local maximum.

Proof. A consideration of Lemmas 6.77 and 6.83 shows that f has precisely one local extremum

on D+, at N0 say. A consideration of the two Lemmas 6.77 and 6.81 shows that f 0 (N) < 0 for

N < N0 and f 0 (N) > 0 for N > N0. Hence the local extremum is a local maximum (Apostol [3,

Theorem 13.8]).

Lemma 6.85 The local maximum of f on D+ is the global maximum on D.

Proof. Since the only boundary value on D is at N = k, and since f (k) = 0 < f (N) 8N > k,

the result follows.

As a result of Lemma 6.85, we know that for N > k, m � 1 and k � m + 1, a single point

exists for the maximum value of 1
N

�
1� (k�1)m

(N�1)m

�
. Now we can provide the maximum likelihood

estimates for N for each of the intervals.

Theorem 6.86 The maximum likelihood estimates for N in each of the domains is given by N�

where

N� is any value � m+ 1 for k = 0,

N� = m+ 1 for 0 < k � m,

and N� is the value of N that satis�es f 0 (N) = 0 on (k;1) for k � m+ 1.

(6.135)

Proof. For k = 0, the likelihood function provides no information about N , so any value of

N � m + 1 will do. For 0 < k � m, p (k;N) = 1
N , which is a decreasing function of N on D. In

this case, the maximum likelihood estimate is the least value of N over its possible range of values,

which is m+ 1. For k � m+ 1, observe that p (k;N) � f (N), and apply Lemma 6.85 to provide

the result.

Remark 6.87 In general, for k � m + 1, the maximum likelihood estimate, N0, is non-integral.

Since the likelihood function increases on (k;N0) and decreases on (N0;1), it is reasonable to �nd

max (p (k; bN0c) ; p (k; dN0e)) in order to determine the integral value of N that best estimates the

true value.

In order to determine the maximum likelihood estimate for k � m + 1, one could plot the

function using a graphical package such as Maple and visually select the maximum likelihood

estimate, or use an iterative method such as the Newton-Raphson method (e.g. Fröberg [35]).
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6.15. Estimating N for r = 1 and � = 1

Theorem 6.88 An approximation for small values of m and a large population is

N�
1 =

m

2
+ (c (m+ 1))1=m . (6.136)

Proof. By Lemma 6.75, f 0 (N) = � 1
N2 +

c
F (N)

Pm
i=0

1
N�i , so that

f 0 (N) = � 1

N2
+

c

N
Qm
i=1 (N � i)

mX
i=0

1

N � i

! � 1

N2
+

c

N
Qm
i=1 (N � i)

m+ 1

N

=
1

N2

�
c (m+ 1)Qm
i=1 (N � i)

� 1
�

! 1

N2

 
c (m+ 1)�
N � m

2

�m � 1
!
,

from which the result follows.

6.15.3 Example: The Precise Integral Value

Consider m = 2 and k = 9. Then

f (N) =
1

N

�
1� (k � 1) (k � 2)

(N � 1) (N � 2)

�
=

N2 � 3N � 54
N (N � 1) (N � 2)

and

f 0 (N) = �N
4 � 6N3 � 155N2 + 324N � 108

N2 (N � 1)2 (N � 2)2
.

In the interval [9;1), f 0 (N) = 0 when n = 14: 9. Therefore the maximum likely integral value

of N is either 14 or 15. As f (14) = 4: 578 8� 10�2 and f (15) = 4: 615 4� 10�2, we �nd N� = 15.

Figure 6.1 illustrates the graph of f , scaled by a factor of 100.

6.15.4 Example: The Asymptotic Value

Continuing from the previous example, apply Theorem 6.88 to approximate the maximum likeli-

hood estimate by the asymptotic value N�
1 = 2

2+
��Q2

i=1 (9� i)
�
� 3
� 1
2
= 2

2+(56� 3)
1
2 = 13: 961.

This indicates that N might not be large enough for the asymptotic result to apply, but it is quite

close.
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6.16. Estimating N and the Number of G-sets for � > 1, � = 1 and m = 0

1

0

1

2

3

4

8 10 12 14 16 18 20 22 24 26 28 30N

Figure 6.1: Example: The Likelihood Function for the HT-Model with m = 2: 100f (N)

6.15.5 Results for Multiple Observations

As the observations are not independent and we don�t have the joint distribution, we could use

some function of the observations, since more information is available with the more observations

included in our estimation process. For example, the minimum and maximum values provide

something like a maximum likelihood spread. Another function that might be useful is the average.

6.16 Estimating N and the Number of G-sets for � > 1, � = 1 and

m = 0

6.16.1 Introduction

The case � > 1, � = 1 and m = 0 applies to the Cake Display problem, if one were watching

the cakes being brought out and one wondered how many cakes were originally available based on

how long a given cake took to be eaten. It also applies to the sock-matching problem, in which

one might want to estimate the total number of socks in the basket. It equally applies to the

problem of estimating the number of skeletons from the partial skeletons already excavated, which

is describe in Section 2.17; the example in Section 6.16.5 uses this problem�s terminology.

6.16.2 Preliminaries

For � = 1 < �, m = 0 and k 2 f�� 1; : : : ; N � 1g, the distribution is given by Corollary 6.21 as

P (T (0) = k) =

�
k�1
��2
�
(N � k)�
N
�

� . (6.137)

There are two cases to consider, namely k = � � 1 and k � �. In the former case, the �rst �
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6.16. Estimating N and the Number of G-sets for � > 1, � = 1 and m = 0

arrivals are all for a single G-set, whereas in the latter case, at least two G-sets are observed. In

the problem of excavating skeletons, these correspond to observing the bones of only one skeleton

and at least two skeletons, respectively.

In both cases, the maximum likelihood estimates of N are determined, and the integral-valued

values of N that produce values closest to the maximum are speci�ed. Then in the case of mutually

non-intersecting G-sets of the same size, the maximum likelihood estimate of the number of whole

G-sets is determined.

6.16.3 Results for Estimating N

Theorem 6.89 For � = 1 < � and k = �� 1, the maximum value of the probability P (T (0) = k)

occurs when N� = �.

Proof. Putting k = �� 1 in Equation 6.137 gives

P (T (0) = k) =
(N � �+ 1)�

N
�

�
=

�!

(N)��1
, (6.138)

which is a decreasing function of N , as N � �, so the maximum occurs when N is at a minimum,

implying N� = � as required.

Lemma 6.90 For � = 1 < � and k 2 f�; : : : ; N � 1g, the function f (N) = (N�k)
(N)�

�rst strictly

monotonically increases to a single local maximum, which occurs at N = �
��1k�1, and then strictly

monotonically decreases to zero.

Proof. As N � �+ 1, observe that f is continuous on [k;1), f (k) = 0, f (N) > 0 for N > k,

and limN!1 f (N) = 0, so the maximum will be �nite. Consider the ratio f (N + 1) =f (N).

f (N + 1)

f (N)
=

(N + 1� k)
(N + 1)�

�
(N)�
(N � k)

=
(N + 1� k)
(N � k) �

(N)��1 (N � �+ 1)
(N + 1) (N)��1

=
(N + 1� k)
(N � k) � (N � �+ 1)

(N + 1)
(6.139)

which is >, = or < 1 according as

(N + 1� k) (N � �+ 1) > , = or < (N � k) (N + 1) . (6.140)
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6.16. Estimating N and the Number of G-sets for � > 1, � = 1 and m = 0

That is, when

(N � k) (N + 1)� (N + 1� k) (N � �+ 1) > , = or < 0

() (�� 1)N + �� 1� k� < , = or > 0

() N < , = or > �
��1k � 1,

(6.141)

from which the result follows.

Theorem 6.91 For � = 1 < � and k 2 f�; : : : ; N � 1g, the maximum value of P (T (0) = k)) for

integral values of N occurs when

N� = max

��
�

�� 1k � 1
�
; k + 1

�
(6.142)

or N� = max

��
�

�� 1k � 1
�
; k + 1

�
, (6.143)

whichever produces the larger value of P (T (0) = k)).

Proof. For k � �, rewrite Equation 6.137 as

P (T (0) = k) = �!

�
k � 1
�� 2

�
(N � k)
(N)�

. (6.144)

From this it is clear that we seek the value of N � (�+ 1; k + 1) = k + 1 that maximises

f (N) =
(N � k)
(N)�

, (6.145)

which was shown in Lemma 6.90 to occur when N = �
��1k � 1. As N is an integer, the maximum

value occurs at either N� =
j

�
��1k � 1

k
or N� =

l
�
��1k � 1

m
, whichever produces the greater value

of f . Since N � k + 1, if either of these values for N� is � k, then the smallest valid value of N

must be used, which is N = k + 1. Hence the result.

6.16.4 Results for Estimating the Number of G-Sets

Theorem 6.92 Suppose N = _[i=1Gi with jGij � �, and � = 1 < �. For k = �� 1, the maximum

likelihood estimate of the number  is � = 1, and for k 2 f�; : : : ; N � 1g the maximum likelihood

estimate of  for integral values of  occurs when

� = max

���
�

�� 1k � 1
�
=�

�
; d(k + 1) =�e

�
(6.146)

or � = max

���
�

�� 1k � 1
�
=�

�
; d(k + 1) =�e

�
, (6.147)
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6.16. Estimating N and the Number of G-sets for � > 1, � = 1 and m = 0

whichever produces the larger value of P (T (0) = k).

Proof. For k = � � 1, the maximum likelihood estimate of N is N� = �, by Theorem 6.89.

Dividing N� by � provides the number of G-sets as � = 1, as required.

For k 2 f�; : : : ; N � 1g, Lemma 6.90 and the proof of Theorem 6.91 show that it is necessary

to determine the value of N � k + 1 that is a multiple of � that maximises

f (N) =
(N � k)
(N)�

. (6.148)

These choices are

N� = �max

���
�

�� 1k � 1
�
=�

�
; d(k + 1) =�e

�
(6.149)

and N� = �max

���
�

�� 1k � 1
�
=�

�
; d(k + 1) =�e

�
; (6.150)

from which the possible values of � are determined by simply dividing by �, giving the required

result.

6.16.5 Example: Estimating the Number of Skeletons

The problem of estimating the number of skeletons at an archæological site is described in Section

2.17.

The likelihood function for N when � = 7 and k = 300 is provided in Figure 6.2. Table 6.5

provides a sample of the maximum likely numbers of skeletons for various values of � and k. A

value of � = 206 is included because this has been used as the number of bones in the human body.

300 320 340 360 380 400 420 440 460 480 500 520 540
0.000

0.002

0.004

0.006

0.008

0.010

N

Figure 6.2: Likelihood for the Number of Skeletal Bones: � = 7, k = 300
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6.17. Estimating � for m = 0 given � and �

kn� 2 3 4 5 10 50 100 206

1 1 n/a n/a n/a n/a n/a n/a n/a
2 2 1 n/a n/a n/a n/a n/a n/a
3 3 2 1 n/a n/a n/a n/a n/a
4 4 2 2 1 n/a n/a n/a n/a
5 5 2 2 2 n/a n/a n/a n/a
10 10 5 3 3 2 n/a n/a n/a
50 50 25 17 12 6 2 n/a n/a
100 100 50 33 25 11 3 2 n/a
200 200 100 67 50 22 5 3 n/a
300 300 150 100 75 33 7 4 2

500 500 250 166 125 56 11 6 3

1 000 1 000 500 333 250 111 21 11 5

10 000 10 000 5 000 3 333 2 500 1 111 204 101 49

Table 6.5: Maximum Likelihood Estimates for the Number of Skeletons

6.16.6 Multiple Observations

As the observations are not independent and we don�t have the joint distribution, we could use

some function of the observations, since more information is available with the more observations

included in our estimation process. For example, the minimum and maximum values provide

something like a maximum likelihood spread. Another function that might be useful is the average.

6.17 Estimating � for m = 0 given � and �

Consider the situation in which A-sets are not involved and one knows when the �th and �th

arrivals of G have occurred, and one wants to estimate the size of G.

For example, when excavating skeletons at an archæological dig, one might be identifying bones

for a single animal after unearthing all the bones of hundreds of animals. In this case one might

ask what the expected number of bones the animal has, given the number of bones necessary to

be checked is k, measured from the instant the �th bone is selected till the time the �th bone is

selected.

6.17.1 Preliminaries

The distribution given by Theorem 6.65 may be written as

P�� (k) =

�
k�1

(���)�1
��

N�k
��(���)

��
N
�

� , (6.151)
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6.17. Estimating � for m = 0 given � and �

which makes it clear that it depends on � and � only through their di¤erence. Hence the resulting

prediction of � will depend only the di¤erence, and not on the precise values of � and � .

The maximum likelihood estimate of � is determined and the integral-valued value of � that

produce values closest to the maximum are speci�ed.

6.17.2 Results

Lemma 6.93 For 1 � � < � � N , k 2 f� � �; : : : ; N � �g and � 2 f� , : : :, N � k + � � �g,

f (�) =
( N�k
��(���))

(N� )
�rst strictly monotonically increases to a single local maximum, which occurs at

�� = (���)(N+1)
k � 1, and then strictly monotonically decreases.

Proof. As � � � , it is also true that � � ���, and � � N�k+��� implies ��(� � �) � N�k.

Also � � N . Observe that f is continuous and f (�) > 0 on [� � �;N � k + � � �). Hence the

maximum will be �nite. Consider the ratio f (�+ 1) =f (�) with � = � � �.

f (�+ 1)

f (�)
=

�
N�k
�+1��

��
N
�+1

� =

�
N�k
���

��
N
�

� (6.152)

=

(N�k)!
(�+1��)!(N�k���1+�)!

N !
(�+1)!(N��+1)!

�
N !

�!(N��)!
(N�k)!

(���)!(N�k��+�)!

=

1
(�+1��)

1
(�+1)

�
1

(N��)
1

(N�k��+�)

=
(�+ 1) (N � k � �+ �)
(�+ 1� �) (N � �) , (6.153)

which is >, = or < 1 according as

(�+ 1) (N � k � �+ �) > , = or < (�+ 1� �) (N � �) . (6.154)

That is, when

(�+ 1) (N � k � �+ �)� (�+ 1� �) (N � �) > , = or < 0

() �k + k � �� �N > , = or < 0

() � < , = or > �(N+1)
k � 1,

(6.155)

from which the result follows.

Theorem 6.94 For 1 � � < � � N and k 2 f� � �; : : : ; N � �g, the maximum value of P�� (k)
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6.18. Markov Chain for the Waiting-Time Process

for integral values of � occurs when

�� = max

��
(� � �) (N + 1)

k
� 1
�
; �

�
(6.156)

or

�� = max

��
(� � �) (N + 1)

k
� 1
�
; �

�
, (6.157)

whichever produces the larger value.

Proof. It is clear from Equation 6.151 that we seek the value of � 2 f� , : : : , Ng that maximises

f (�) =

�
N�k

��(���)
��

N
�

� , (6.158)

which was shown in Lemma 6.93 to occur when �� = (���)(N+1)
k � 1. As � is an integer, the

maximum value occurs at either �� =
j
(���)(N+1)

k � 1
k
or �� =

l
(���)(N+1)

k � 1
m
, whichever

produces the greater value of f . Since � � � , if either of these values for �� < k, then the smallest

valid value of � must be used, which is N = � . Hence the result.

6.17.3 Example: Voting

Section 2.22 describes A Voting System. Suppose there are N = 10 000 ballots to be counted, and

it is observed during counting that there is a wait of 1 000 votes between a particular candidate�s

� = 100th vote and � = 300th vote.

The most likely number of votes that this candidate can expect to receive is determined by

�rst calculating ��1 = max
�j

(���)(N+1)
k � 1

k
; �
�
and ��2 = max

�l
(���)(N+1)

k � 1
m
; �
�
, which are

��1 = 1999 and �
�
2 = 2000. As f (�

�
1) < f (��2), this candidate will most likely receive 1 999 votes.

6.18 Markov Chain for the Waiting-Time Process

6.18.1 Introduction

Distribution formulae provide no details about the step-wise transition process used to achieve

a particular state. Since 	-processes involve dependent events in which the state of the process

after an arrival point is su¢ cient to determine the future behaviour of the process, modelling them

by Markov Chains is an appropriate consideration. The global viewpoint is considered in Section

6.21. In this section we consider the process from a single cell�s viewpoint.
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6.18. Markov Chain for the Waiting-Time Process

For a single cell, the process may be considered to have stopped or ceased to be relevant once

the A-set has been completed. Therefore there are many absorbing states; these are described

below. Here we consider the state transitions, and describe the process as a Markov Chain. A

major bene�t of de�ning the process as a Markov Chain is the ability to apply standard Monte

Carlo simulation techniques to it, especially using existing software packages. For large systems,

this may provide reasonable approximate results; this is not investigated here. Also, once the

characteristics of the Markov Chain have been determined, it can be categorised and compared

with other Markov Chains.

The classical allocation problem has been modelled (Feller [29, XV (2.g)]) with the number of

cells occupied determining the states of the process: for N cells, the non-zero one-step transition

probabilities are given by pj;j = j=N and pj;j+1 = (N � j) =N with the initial state j = 0.

Here we consider the 	1-process with � � 1, � = �, r = 1, and m � 0.

First we examine the states of the system and determine their number. This is followed

by determining the transition probabilities and the characteristic equation. Although the �rst

passage time probabilities are trivial, they are supplied. Then we examine how some of the general

distribution properties can be determined from the Markov Chain. Finally, we provide an example

for � = 1, m = 2 and N = 4 that incorporates all of these things.

6.18.2 States, Absorbing States and Their Number

Represent the occupancy numbers of G, AnG and NnA by g, a, and s, respectively. As we intend

to measure the waiting time from the arrival of the last of the elements of G, a fourth parameter

is added, namely the waiting time, k. We represent a state in the process as the vector (g; a; s; k).

The initial state is (0; 0; 0; 0). For g < �, the states are of the form (g; a; s; 0), as the wait has not

begun. As the wait can only be as great as the number of elements in AnG and NnA that have

been visited, it is necessary that k 2 f0; : : : ; a+ sg. Having determined the possible states, we

formalise the de�nition of a valid state to be one of these possible states.

De�nition 6.95 De�ne a valid state to be an element of {(g; a; s; k) : 0 � g � �, 0 � a � m,

0 � s � N � ��m, 0 � k � a+ s}.

Lemma 6.96 The absorbing states are of the form (�;m; s; k), where s 2 f0; : : : ; N � ��mg and

k 2 f0; : : : ;m+ sg.

Proof. The absorbing states are valid states in which the A-set (which includes the G-set) has

an arrival for each cell, because the wait is then over.
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6.18. Markov Chain for the Waiting-Time Process

Theorem 6.97 The total number of valid states, ns, is given by

ns = � (m+ 1) (N � ��m+ 1) +

�
N � �+ 3

3

�
�
�
N � ��m+ 2

3

�
�
�
m+ 1

3

�
. (6.159)

Proof. The total number of valid states is calculated as the sum of the number of valid states

for the two cases g < � and g = �. For g < �, the wait has not begun, so k = 0 and the number of

valid states is given by

��1X
g=0

mX
a=0

N���mX
s=0

1 = � (m+ 1) (N � ��m+ 1) . (6.160)

For g = �, the number of valid states is given by

mX
a=0

N���mX
s=0

s+aX
k=0

1 =

mX
a=0

N���mX
s=0

�
s+ a+ 1

1

�

=
mX
a=0

�
(N � ��m+ 1) + a+ 1

2

�
�

mX
a=0

�
(0) + a+ 1

2

�
=

��
N � ��m+ (m+ 1) + 2

3

�
�
�
N � ��m+ (0) + 2

3

��
�
��
(m) + 1

3

�
�
�
(0) + 1

3

��
=

�
N � �+ 3

3

�
�
�
N � ��m+ 2

3

�
�
�
m+ 1

3

�
. (6.161)

Adding the quantities for the two cases provides the result.

Theorem 6.98 The number of absorbing states, na, is

na =

�
N � �+ 2

2

�
�
�
m+ 1

2

�
: (6.162)

Proof. An absorbing state has g = � and a = m, so the number of absorbing states is

�X
g=�

mX
a=m

N���mX
s=0

s+aX
k=0

1 =

N���mX
s=0

�
s+m+ 1

1

�
=

�
(N � ��m+ 1) +m+ 1

2

�
�
�
(0) +m+ 1

2

�
=

�
N � �+ 2

2

�
�
�
m+ 1

2

�

as required.
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6.18. Markov Chain for the Waiting-Time Process

It is clear from the nature of the 	-process that at most N steps are required for one of the

absorbing states to be reached.

6.18.3 Transition Probabilities

Notation 6.99 Let P (�)ij be the probability of the process going from state i to state j in � steps.

De�nition 6.100 De�ne a valid transition as a transition from a valid state to a valid state that

has positive probability, and de�ne a valid �-step transition as a valid transition that occurs in �

steps.

Notation 6.101 Let Si (j) be the jth element of a state vector Si = (g; a; s; k).

Lemma 6.102 The valid �-step transitions, from the valid state (g1; a1; s1; k1) to the valid state

(g2; a2; s2; k2), are those for which the following conditions hold:(a) g1 � g2; (b) a1 � a2; (c)

s1 � s2; (d) (g2 � g1) + (m2 �m1) + (s2 � s1) = � if one of the previous three conditions is a

strict inequality; (e) k1 � k2, with equality when the �rst two conditions are equalities: g1 = g2

and a1 = a2; (f) if g2 < �, then k2 = 0; (g) if g1 < � and g2 = �, then k1 = 0 and k2 2

f0; : : : ; (a2 � a1) + (s2 � s1)g; (h) if g1 = � and a1 < m, then k2 � k1 = (a2 � a1) + (s2 � s1); (i)

if g1 = � and a1 = m, then s2 = s1 and k2 = k1.

Proof. First consider necessity. The conditions g1 � g2, a1 � a2 and s1 � s2 are necessary, as

at each time-point there are arrivals until all the states of A have been visited. Hence, each change

of the parameters forms part of a monotonic increasing sequence. Once all of type g and a have

been visited, there is no further change in state. In the former case, at least one of the inequalities

is strict, and in the latter case, equality holds for all three conditions. Also in the former case, the

condition g2 � g1 +m2 �m1 + s2 � s1 = � is necessary, as there are � arrivals after � steps.

As the process does not have a mechanism for reducing the wait, we must have k1 � k2, with

equality holding when all the states of A have been visited. As the wait begins once all � elements

of G have been visited, k2 = 0 for g2 < �.

Moving from a state in which not all the states of G have been visited to one in which all of

them have been visited, does not provide su¢ cient information to determine when the wait begins.

The last elements of G could have been the next elements to be visited, in which case the wait

must be increased by (a2 � a1) + (s2 � s1), or the last one to be visited, in which case the wait

will be zero.

Moving from a state in which all the states of G have been visited to another such state implies

that all of the transitions are for elements of AnG or NnA, so that the wait must increase by
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(a2 � a1) + (s2 � s1). However, if a1 = m (in addition to g1 = �), then the process has terminated

as far as the cell of interest is concerned, so that s2 = s1 and k2 = k1 are necessary conditions.

To prove su¢ ciency, we consider any pair of valid states, S0 = (g1; a1; s1; k1) and Sn =

(g2; a2; s2; k2) that satisfy the conditions and provide a sequence of steps from the former to the

latter in which each step has positive probability. In the speci�cation of a sequence of states, sets

may appear of the form fi; : : : ; jg with j < i. When they do, the set is considered empty, and

corresponds to requiring no change of state.

We consider the three cases (1) g2 < �, (2) g1 < � and g2 = �, and (3) g1 = � separately.

For the case g2 < �, consider the sequence of states (g1 + g; a1 + a; s1 + s; 0) produced by �rst

setting (g; a; s; k) to (0; 0; 0; 0), followed by increasing in steps of 1 �rst s 2 f1; : : : ; s2 � s1g, then

a 2 f1; : : : ; a2 � a1g, and �nally g 2 f1; : : : ; g2 � g1g :

For the case g1 < �, g2 = �, k1 = 0 and k2 2 f0; : : : ; (a2 � a1) + (s2 � s1)g consider the two

sub-cases k2 � s2�s1 and k2 > s2�s1. For the sub-case k2 � s2�s1, consider the sequence of states

(g1 + g; a1 + a; s1 + s; k) produced by �rst setting (g; a; s; k) to (0; 0; 0; 0), followed by increasing in

steps of 1 �rst s 2 f1; : : : ; (s2 � s1)� k2g, then a 2 f1; : : : ; a2 � a1g, then g 2 f1; : : : ; g2 � g1g, and

�nally s 2 f(s2 � s1)� k2 + 1; : : : ; (s2 � s1)g. In this sequence, k increases from zero to the number

of elements in the last set, which is (s2 � s1) � ((s2 � s1)� k2 + 1) + 1 = k2. For the sub-case

k2 > s2�s1 consider the sequence of states (g1+g; a1+a; s1+s; k) produced by �rst setting (g; a; s)

to (0; 0; 0), followed by increasing in steps of 1 �rst a 2 f1; : : : ; (a2 � a1)� (k2 � (s2 � s1))g, then

g 2 f1; : : : ; g2 � g1g, then s 2 f1; : : : ; (s2 � s1)g, and �nally a 2 f(a2 � a1) � (k2 � (s2 � s1)) +

1; : : : ; (a2 � a1)g. Note that (a2 � a1) � (k2 � (s2 � s1)) � 0, as k2 � (a2 � a1) + (s2 � s1), by

assumption. In this sequence, k increases from zero to the number of elements in the last two sets,

which is (s2 � s1) + [(a2 � a1)� ((a2 � a1)� (k2 � (s2 � s1)) + 1)� 1] = k2.

For the case g1 = �, a1 < m and k2�k1 = (a2 � a1)+(s2 � s1), consider the sequence of states

(g1; a1 + a; s1 + s; k1 + k) produced by �rst setting (a; s; k) to (0; 0; 0), followed by increasing in

steps of 1 �rst s 2 f1; : : : ; s2 � s1g and then a 2 f1; : : : ; a2 � a1g : In this sequence, k increases

from zero to the number of elements in the both sets, which is (s2 � s1) + (a2 � a1) = k2.

For the case g1 = �, a1 = m, s2 = s1 and k2 = k1, the state does not change over time, so

consider the sequence of states to consist of a single step from (�;m; s1; k1) to itself.

In any of these sequences, other than for the last case, the number of steps is � = (g2 � g1) +

(m2 �m1) + (s2 � s1), and the initial and �nal states are S0 and S� , respectively. For the last

case, the number of steps is not con�ned, as the state is an absorbing state.
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For i 2 f0; : : : ; �g, let Si be the ith state in one of these sequences. The 1-step transition

probabilities for i 2 f0; : : : ; � � 1g are calculated by dividing the number of possible choices for

selecting the type of element being visited, by the number of elements available at the time the

transition takes place, except for the last sequence, which has probability one of occurring. These

are given by

Pi;i+1 =

8>>>>>>>>><>>>>>>>>>:

N���m�s1
N�g1�a1�s1 for Si+1 (3) > Si (3)

m�a1
N�g1�a1�s1 for Si+1 (2) > Si (2)

��g1
N�g1�a1�s1 for Si+1 (1) > Si (1)

1 otherwise

, (6.163)

and these are positive for each transition in the speci�ed sequence of states, as required.

Theorem 6.103 For a pair of valid states (g1; a1; s1; k1) and (g2; a2; s2; k2) for which a valid �-step

transition exists between them, the �-step transition probabilities are given by

P
(�)
(g1;a1;s1;k1);(g2;a2;s2;k2)

=

�
(g2 � g1) + (m2 �m1) + (s2 � s1)

g2 � g1;m2 �m1; s2 � s1

�
�
(�� g1)g2�g1 (m� a1)m2�m1

(N � ��m� s1)s2�s1
(N � g1 � a1 � s1)(g2�g1)+(m2�m1)+(s2�s1)

. (6.164)

For all other pairs of valid states, the transition probability is zero.

Proof. For an absorbing state, the �-step transition probability of stepping to itself is one,

and the right-hand side of Equation 6.164 re�ects this as (0)0 = 1; and the expression becomes�
0

0;0;0

� (0)0(0)0(N���m�s1)0
(N���m�s1)0

. Now consider non-absorbing states. Consider the second term in Equa-

tion 6.164 �rst. At the ith transition, i 2 f1; : : : ; �g, there are N � g1 � a1 � s1 � i+ 1 states that

have not been visited. Multiplying these for each i produces the denominator as

(N � g1 � a1 � s1)(g2�g1)+(m2�m1)+(s2�s1) . (6.165)

Also, at the ith transition from (g1; a1; s1; k1), an element of exactly one of the sets G, AnG and

NnA is visited with a total of g2 � g1 elements from the remaining � � g1 elements of G, a total

of m2 �m1 elements from the remaining m� a1 elements of AnG, and s2 � s1 elements from the

remaining N � � �m � s1 elements of NnA that have not been visited. After any one of these

has been visited, the corresponding number of remaining elements decreases by one. Regardless

of the order of these � arrivals, the multiplication principle provides the numerator in Equation
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6.164. The �rst term appears as the number of di¤erent arrival orders of the g2 � g1 elements of

G, m2�m1 elements of AnG, and s2� s1 elements of NnA that provide a sequence of states from

the initial state to the �nal state.

For pairs of valid states for which no valid �-step transition exists between them, the �-step

transition probabilities are by de�nition zero. This completes the proof.

6.18.4 Characteristic Equation

We de�ne a norm that induces equivalence classes in which the number of arrivals is constant. This

provides a simple way to specify the relative times at which states can occur, and, in particular,

which states may possibly occur in one step from other states.

De�nition 6.104 For a valid state (g; a; s; k), de�ne the norm k(g; a; s; k)k = g + a+ s.

Theorem 6.105 The characteristic polynomial of the Markov Chain is

Xns�na (X � 1)na . (6.166)

Proof. Consider the matrix representation of the Markov Chain. As only the absorbing states

can step to themselves, there will be a zero in the diagonal for each non-absorbing state. Each

absorbing state gives rise to a one in the diagonal. There are ns� na non-absorbing states and na
absorbing states. These statements will remain true whatever labelling the states are given. Thus,

if a labelling of the states is speci�ed that produces an upper-triangular matrix for the Markov

Chain then the result is proved.

List the states as S1; : : : ; Sns so that kSik � kSjk for i < j: We need to show that P (1)ij = 0 for

j < i. By Lemma 6.102, a valid transition is possible from a state Si to a distinct state Sj only

when kSjk = kSik+ 1. Combining this with the listed order of the states provides the result.

6.18.5 First Passage Times

Notation 6.106 Let f (�)ij be the probability of the process going from state i to state j for the �rst

time at the �th step.

Theorem 6.107 The �rst passage time probabilities, f (�)i;j , for valid states Si = (gi; ai; si; ki) and
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Sj = (gj ; aj ; sj ; kj), are given by

f
(�)
i;j =

8>>>><>>>>:
P
(�)
i;j for j 6= i

1 for j = i, gi = � and ai = m

0 otherwise

. (6.167)

Proof. As the process may reach any non-absorbing state only once, the result for j 6= i is

immediate. Observe that for j 6= i, P (�)i;j = 0 for � > N , so it is unnecessary to treat this as a

separate case. For j = i, P (�)i;j = 0 unless Si is an absorbing state, in which case f
(�)
i;j = 1. This

proves the result.

6.18.6 Determining Distribution Properties from the Markov Chain

Theorem 6.108 The probability distribution of the waiting time is given by

P (T (m) = k) =

N�m��X
s=0

P
(N)
(0;0;0;0);(�;m;s;k). (6.168)

Proof. The event T (m) = k occurs when, after all N arrivals have occurred, (g; a; s; k) =

(�;m; s; k) for an s 2 f0; : : : ; N �m� �g. Summing the probabilities of reaching these valid states

in N steps from the initial state provides the result.

A measure of the degree of completion of the A-set when G has been completed, is given by

the following theorem.

Theorem 6.109

P (At time � there are � occupied cells of G and � of A) =
N�m��X
s=0

�+sX
k=0

P
(�)
(0;0;0;0);(�;�;s;k). (6.169)

Proof. Summing the �-step transition probabilities of reaching the valid states in which g = �

and a = �, provides the result.

A measure of the degree of completion of the A-set when G is �rst completed, is given by the

following theorem.
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Theorem 6.110

P (At the instant that G is completed � of A have been visited)

=

N�m��X
s=0

�+sX
k=0

�+�+sX
�=�+�

f
(�)
(0;0;0;0);(�;�;s;k). (6.170)

Proof. The speci�ed event can occur only after �+ � arrivals, and not later than the number

of arrivals that have occurred, which is �+ �+ s. Summing the �rst passage time probabilities of

reaching the valid states in which g = � and a = �, and over the �rst times at which the event can

occur, provides the result.

6.18.7 Variations

Other 	-processes may be modelled by altering the Markov Chain model in very simple ways.

For example, for the �th arrival, k begins being incremented after the �th arrival. For partial

completions of A-sets (as described in Section 9.6), k is no longer incremented after the minimal

requirement has been achieved. If not all states are visited (as described in Section 9.7), then

limit the upper bound of s. For taboo states (as described in Section 9.3), modify the state of

the process to include whether or not a taboo state has occurred, and if so, set k to be a value

larger than its otherwise maximum legal value. Multiple A-sets can be incorporated by counting

the number of cells in each of the A-sets, and by incrementing k until the time of the completion

of the �rst A-set.

6.18.8 Example

6.18.8.1 States

Consider N = 4, � = 1 and m = 2. The states of the process are of the form (g; a; s; k) with

g 2 f0; 1g, a 2 f0; 1; 2g, s 2 f0; 1g and k 2 f0; : : : ; 1 + sg. They are displayed in Table 6.6, which

also contains their index and the possible states they can jump to.

Figure 6.3 displays the tree of possible transitions of the process from its initial state, and

provides the waiting times for each �nal state.

6.18.8.2 Transition Matrices

The transition matrix, P , is provided in Table 6.7. We are interested in the top row of the 4-

step transition matrix, P 4. As the �rst 14 entries in the top row are zero, that is P (4)1j = 0 for
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Figure 6.3: Example: A Markov Chain for the Waiting-Time Process
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Index State Transition States
1 0000 2, 3, 7
2 0010 4, 8
3 0100 4, 5, 10
4 0110 6, 12
5 0200 6, 15
6 0210 18
7 1000 9, 11
8 1010 13
9 1011 14
10 1100 13, 16
11 1101 14, 17
12 1110 19
13 1111 20
14 1112 21
15 1200 15
16 1201 16
17 1202 17
18 1210 18
19 1211 19
20 1212 20
21 1213 21

Table 6.6: Example: Markov Chain Transition States

j 2 f1; : : : ; 14g, we supply the results without those columns in Table 6.8; this table includes the

actual states for clarity.

6.18.8.3 Distribution

From Table 6.8 the waiting time distribution is given by summing the probabilities for each value

of k; this is provided in Table 6.9

Remark 6.111 These results illustrate that although more work is required to manipulate the

Markov Chain, it does provide more information than the combinatorial result. For example, it

is possible with the Markov Chain to �nd the probabilities of being absorbed into any one of the

absorbing states at any time-point in the process. For example,

P
(3)
(0;0;0;0);(1;2;0;2) =

(�� g1)g2�g1 (m� a1)m2�m1
(N � ��m� s1)s2�s1

(N � g1 � a1 � s1)g2�g1+m2�m1+s2�s1

=
(1� 0)1 (2� 0)2 (4� 1� 2� 0)0

(4� 0� 0� 0)1+2+0
=

2

24

=
1

12
. (6.171)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0
1
4

2
4 0 0 0

1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0
2
3 0 0 0

1
3 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0
1
3

1
3 0 0 0 0

1
3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0
1
2 0 0 0 0 0

1
2 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0
1
3 0

2
3 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0

1
2 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0

1
2 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6.7: Example: Transition Matrix for the Markov Chain of the Waiting-Time Process

15 16 17 18 19 20 21

1200 1201 1202 1210 1211 1212 1213

1 1
12

1
12

1
12

1
4

1
6

1
6

1
6

Table 6.8: 4-Step Transition Probabilities for the Markov Chain

k 0 1 2 3

P (T (m) = k) 1
12 +

1
4 =

1
3

1
12 +

1
6 =

1
4

1
12 +

1
6 =

1
4

1
6

Compare 1
2+1

1
4

�
1� (

1�1
2 )

(4�12 )

�
1
4

�
1� (

2�1
2 )

(4�12 )

�
1
4

�
1� (

3�1
2 )

(4�12 )

�
Table 6.9: Probability Distribution Determined by the Markov Chain
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6.18.8.4 Characteristic Polynomial and Eigenvectors

The characteristic polynomial is given by Theorem 6.105 as

X14 (X � 1)7 . (6.172)

Maple provides the eigenvectors are for X = 1 as
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. (6.174)

6.19 Distribution for the Completions of G-Sets (Platoon Size)

6.19.1 Introduction

In Queueing in Lanes, for example, the number of matches that occurs at the kth arrival equates

to the departure size of platoons of cars. This is examined in Section 13.2.7 for both uni- and

bi-directional models.

In attribute-matching problems, one may ask how many matches appear at the kth arrival, or

what the total number of matches would appear by the kth arrival. The latter question has two

variations.

The �rst of these is associated with the total number of choices for making triads once k cards
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are on the table. In the Standard Game of SET, particular interest has been with k = 12 cards,

since this is the number of cards placed on the table at the beginning of the game.

The second of these is associated with the number of mutually-exclusive triads that could

be made in sequence and removed from the table as the k cards are played. This latter result

appears to be unknown, and is considered to be too complex to calculate. In fact, the rule for

choosing the matching triads to remove when there is a choice, has an e¤ect on the outcome. The

rule could be to choose a triad at random to remove, or it could be to choose the triad based

on the �rst card placed. In principle, the distribution for a speci�ed rule could be calculated by

an inclusion-exclusion formulation, but the current necessity to count the number triads in each

possible intersection of subsets of all possible sets of k cards, would put this calculation well beyond

reach � unless the formula can be simpli�ed by exploiting the symmetric nature of the problem, or

the expression can be simpli�ed by algebraic means, but as yet, an expression for the probabilities

remains elusive.

The results for the game SET with a attributes are provided as examples of the general theory.

The speci�c results for the Standard Game are provided in Section 13.7.

Here we provide the general distributions for a single G-set with an arbitrary collection of

associated A-sets. The distributions required to answer the above questions, other than the SET

game in which triads are removed, are provided as special cases in examples. The joint distribution

for a pair of G-sets is also provided, in order that the variance for the number of completions can

be calculated.

Worthy of note is that the joint distribution for arbitrary numbers of G-sets is not necessary

to answer the above questions. This is explained in Section 11.5.

The results for the examples that follow the theorems have been raised to the status of corol-

laries, because they are considered so important within their respective applications. One of the

results will be used to solve a previously unsolved problem of a high degree of complexity in

attribute-matching.

6.19.2 Preliminaries

Remark 6.112 In attribute-matching, the G-sets corresponding to matching sets that are not

necessarily mutually-exclusive. When considering a speci�c card, that card�s G-set�s corresponding

A-sets are non-trivial, but intersect pairwise trivially in G, which is a consequence of the Set

Construction Theorem 2.12.

Remark 6.113 In lane-queueing problems, the G-sets are mutually-exclusive, but not only are the
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A-sets non-trivial, but those corresponding to di¤erent G-sets may intersect non-trivially.

We �rst provide the probability distribution for the completion time of a single G-set with a

single A-set, and then use principle of inclusion and exclusion to provide the distribution when

there are r � 1 A-sets. This distribution is used in Section 11.5 to determine the expected number

of G-sets that complete at time k with at least one of their corresponding A-sets also completed.

Notation 6.114 Let A = (A1, : : : , Ar). For r � 1, let Pk (G;A) be the probability that the

�rst of the r sets G [ As, s 2 f1, : : : , rg, to complete, occurs at the kth arrival. For r = 0, let

Pk (G) = Pk (G;A) be the probability that G completes upon the kth arrival. When r = 1, we may

write Pk (G;A) as Pk (G;A), where A = A1.

The reason for specifying the parameters G, and A or A explicitly, is to allow a reference to the

probability for a number of G-sets and their corresponding A-sets. The explicit speci�cation of A

is required in the distribution for r � 1, and both are required when determining the expectations

in Section 11.5.

6.19.3 Distribution for a Single A-set

The distribution for a single A-set is provided by the following theorem. Two forms of the dis-

tribution are provided as they o¤er di¤erent bene�ts. The �rst form makes it easier to write and

manipulate expressions for applications in which there are multiple A-sets, as the denominators

will be equal. The combinatoric reasoning behind it is also directly applicable to the determination

of the joint distribution. The second form would be more appropriate for numerical calculations

for �xed � and m, and varying k, whereas the �rst form would be more favourable when varying

� or m for �xed k.

The second form can be easily produced from the �rst algebraically, but is proved instead using

a complementary combinatorial viewpoint to the �rst.

Theorem 6.115 For a single A-set, A, with m = jAnGj and � = jGj,

Pk (G;A) =
(�+m)

�
N���m
k���m

�
N
�
N�1
k�1
� (6.175)

and Pk (G;A) =
(�+m)

�
k�1

�+m�1
�

N
�
N�1
�+m�1

� . (6.176)

Proof. For G [ A to complete upon the kth arrival, distribute the �rst k � 1 arrivals into N

cells so that �+m�1 of the elements of G[A have an arrival, the remaining (k � 1)�(�+m� 1)
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of the �rst k � 1 arrivals are distributed amongst the N � � �m elements of NnA, and the kth

arrival is for the last element of G [A.

The probability for the distribution of the �rst k � 1 arrivals is given by the hypergeometric

distribution as
�
�+m
�+m�1

��
N���m
k���m

�
=
�
N
k�1
�
, and the probability for the �nal placement is 1

N�k+1 .

Multiplying together the probabilities of these two independent events provides Equation 6.175,

after observing that (N � k + 1)
�
N
k�1
�
= N

�
N�1
k�1
�
.

For G[A to complete upon the kth arrival, one of the �+m elements of G[A must occur as

the kth arrival; this has probability (�+m) =N . Of the
�
N�1
�+m�1

�
ways of distributing the remaining

arrivals for elements of G [ A among the remaining N � 1, there are
�

k�1
�+m�1

�
ways of choosing

them to be among the �rst k � 1 arrivals; this has probability
�

k�1
�+m�1

�
=
�
N�1
�+m�1

�
. Multiplying the

probabilities for the two independent events provides Equation 6.175.

6.19.3.1 Example: Parallel Lanes with Uni-Directional Exiting

Corollary 6.116 For the model of Queueing in Lanes with Uni-Directional Movement as dis-

cussed in Section 13.2.4.1,

Pk (G;A) =
j
�
N�j
k�j
�

N
�
N�1
k�1
� . (6.177)

Proof. For any car we have � = 1, and in any lane m = j� 1 for the jth car in that lane. The

result follows by Theorem 6.115

6.19.3.2 Example: The Game SET : Triad Point of View

Corollary 6.117 For the Standard Game of SET with a attributes

Pk (G;A) =

�
k�1
2

�
3a�1

�
3a�1
2

� . (6.178)

Proof. There are N = 3a cards. For a triad of three distinct cards fg1, g2, g3g � f1, : : : , Ng ;

G = fg1, g2, g3g, r = 1 and A = G. Hence � = 3 and m = 0.

The result follows by Theorem 6.115

Remark 6.118 Equation 6.178 provides the probability that a particular triad will be completed

at k. However, it is possible that one or two cards in the triad may have already been picked up

prior to laying the third card of the triad on the table. Therefore, this distribution is not associated

with the number of cards that may be picked up when a card is placed on the table. However, it can

be used to determine the expected number of matches in any k cards chosen at random and placed

on the table. This is done in Section 6.19.4.2.
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6.19.4 Distribution for Multiple A-sets

Theorem 6.119 (Platoon Size Distribution Theorem) For r A-sets, A1; : : : ; Ar,

Pk (G;A) =
rX
s=1

(�1)s�1
X
i1;:::;is

Pk

�
G;
Ss
j=1Aij

�
, (6.179)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg, and

Pk (G;A) is given by Theorem 6.115.

Proof. The result follows by applying the principle of inclusion and exclusion.

6.19.4.1 Example: Parallel Lanes with Bi-Directional Exiting

Corollary 6.120 For the model of Queueing in Lanes with Bi-Directional Movement as discussed

in Section 2.2,

Pk (G;A) =
j
�
N�j
k�j
�
+ (s� j + 1)

�
N�s+j�1
k�s+j�1

�
� s
�
N�s
k�s
�

N
�
N�1
k�1
� . (6.180)

Proof. For the jth car in a lane of s cars, we have G = fjg, r = 2, A1 = f1, : : : , j � 1g and

A2 = fj + 1, : : : , sg.

Applying Theorem 6.119 gives

Pk (G;A) = Pk (G;A1) + Pk (G;A2)� Pk (G;A1 [A2)

=
j
�
N�j
k�j
�
+ (s� j + 1)

�
N�s+j�1
k�s+j�1

�
� s
�
N�s
k�s
�

N
�
N�1
k�1
�

as required.

6.19.4.2 Example: The Game SET : Card Point of View

Corollary 6.121 For the Standard Game of SET with a attributes, the probability that a partic-

ular card becomes part of a completed triad for the �rst time at k, is given by

Pk (G;A) =
rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
N�1�2s
k�1�2s

�
N
�
N�1
k�1
� (6.181)

and =

rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
k�1
2s

�
N
�
N�1
2s

� , (6.182)

where N = 3a and r = N�1
2 .
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Proof. A card is able to form a set when at least one of the r non-intersecting matching pairs

have also been placed on the table. Therefore we have N = 3a, G = fgg for a card g 2 f1, : : : , Ng,

r = N�1
2 , jAinGj = 2 and the A-sets intersect trivially in G (by the Set Construction Theorem).

Hence � = 1, mi � 2 and
���Ss

j=1AijnG
��� = 2s. Applying Theorem 6.119 gives

Pk (G;A) =
rX
s=1

(�1)s�1
X
i1;:::;is

Pk

�
G;
Ss
j=1Aij

�
(6.183)

where

Pk

�
G;
Ss
j=1Aij

�
=

�
�+

���Ss
j=1AijnG

���� �N������Ss

j=1
Aij nG

���
k���

���Ss

j=1
Aij nG

���
�

N
�
N�1
k�1
� (6.184)

=
(1 + 2s)

�
N�1�2s
k�1�2s

�
N
�
N�1
k�1
� , (6.185)

which is independent of ij 8j 2 f1, : : : , sg. Combining these two expressions produces Equation

6.181.

The alternative form follows trivially by using the expression in Equation 6.176 for Pk (G;A)

instead of the expression in Equation 6.175.

Remark 6.122 Equation 6.181 provides the probability that a particular card will be part of a

completed set for the �rst time at k. This card could have appeared before the kth card. This is

a truly remarkable result, yet it is just a simple application of the powerful Theorem 6.119. From

this distribution it is possible to determine the expected number of cards making a set for the �rst

time at k, and from this it is possible to determine an upper bound for the expected number of

whole triads as each card is played during a game that includes removing non-intersecting triads

as they appear.

Corollary 6.123 For a � 2 and k � N+5
2 ,

Pk (G;A) =
1

N
. (6.186)

Proof. The method used here is to write Pk (G;A) as given by Equation 6.181, in such a way

as to be able to apply Lemmas 5.4 and 5.6: Observe that r � 4 for a � 2, so that r � 2.

Writing
�
N�1�2s
k�1�2s

�
as
�
N�1�2s
N�k

�
, observing that N � 1� 2s may be written as 2 (r � s), writing
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�
r
s

�
as
�
r
r�s
�
, and then changing the summation index to t = r � s gives

N

�
N � 1
k � 1

�
Pk (G;A)

=
rX
s=1

(�1)s�1
�

r

r � s

�
(1 + 2s)

�
2 (r � s)
N � k

�

= (�1)r�1
r�1X
t=0

(�1)t
�
r

t

�
(1 + 2r � 2t)

�
2t

N � k

�

= (�1)r�1
"
(1 + 2r)

r�1X
t=0

(�1)t
�
r

t

��
2t

N � k

�
� 2

r�1X
t=0

(�1)t
�
r

t

�
t

�
2t

N � k

�#
.

The �rst sum may be written as

r�1X
t=0

(�1)t
�
r

t

��
2t

N � k

�
=

rX
t=0

(�1)t
�
r

t

��
2t

N � k

�
� (�1)r

�
2r

N � k

�
= 0 + (�1)r�1

�
2r

N � k

�
when N � k � r � 1 by Lemma 5.4,

and the second sum may be written as

r�1X
t=0

(�1)t
�
r

t

�
t

�
2t

N � k

�
=

rX
t=0

(�1)t
�
r

t

�
t

�
2t

N � k

�
� (�1)r r

�
2r

N � k

�
= 0� (�1)r r

�
2r

N � k

�
when N � k � r � 2

by Lemma 5.6 with j = 1 and m = N � k.

Therefore, for N � k � r � 2,

N

�
N � 1
k � 1

�
Pk (G;A) = (�1)r�1

�
(1 + 2r) (�1)r�1

�
2r

N � k

�
� 2r (�1)r�1

�
2r

N � k

��
=

�
2r

N � k

�
,

so that

Pk (G;A) =

�
2r
N�k

�
N
�
N�1
k�1
� for k � N � r + 2,

from which the result follows, as r = N�1
2 .

Remark 6.124 Corollary 6.123 states that after a certain point in the game, namely for k � r+3,

which is 2 cards past the half-way point, the probability that a new card being placed on the table

completes a set is 1=N , independent of the number of cards already placed, and independent of the
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number and speci�cs of sets already formed.

6.19.5 Minimal Covering Theorem for Platoon Size

When determining platoon size distributions, it is useful to know the minimal number of A-sets

necessary to calculate them, just as for the waiting-time distributions for 	-processes. The next

theorem provides a way to remove unnecessary A-sets from calculations. This is particularly useful

in zig-zag models.

It is also useful to know that the contribution by a G-set that has a trivial A-set, that is, equal

to G, to the platoon size distribution depends only on the G-set and all A-sets can be ignored.

This result is provided as a corollary to the theorem. This is useful in models like parking-in-lanes

with bi-directional exits, because this means that for a boundary cell, alternative exit paths to the

path of zero length need not be considered.

Theorem 6.125 (Minimal Covering Theorem for Platoons) Suppose A-sets A1; : : : ; Ar

and Ar+1 are such that there exists i� 2 f1; : : : ; rg for which Ai� � Ar+1. Let Ar+1 = (A1; : : : ;

Ar+1) and Ar = (A1, : : : , Ar). Then

Pk (G;Ar+1) = Pk (G;Ar) , (6.187)

where Pk (G;A) is given by Theorem 6.115.

Proof. By Theorem 6.119,

Pk (G;Ar+1) =
r+1X
s=1

(�1)s�1
X
i1;:::;is

Pk

�
G;
Ss
j=1Aij

�
, (6.188)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; r + 1g,

and Pk (G;A) is given by Theorem 6.115.

Every s-tuple Ai1 ; : : : ; Ais of A-sets appears in Equation 6.188 as the term

(�1)s�1 Pk
�
G;
Ss
j=1Aij

�
: (6.189)

For any such s-tuple that includes Ar+1, we may assume, without loss of generality, that is = r+1.

For any i� 2 f1; : : : ; rg for which Ai� � Ar+1, there is an s-tuple, A, of A-sets that contains Ar+1
and not Ai� i¤ there exists an (s+ 1)-tuple of A-sets equal to A augmented by Ai� .
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The former appears in Equation 6.188 as

(�1)s�1 Pk
�
G;Ar+1 [

Ss�1
j=1Aij

�
and the latter as

(�1)s Pk
�
G;Ar+1 [Ai� [

Ss�1
j=1Aij

�
,

which, by assumption, reduces to

(�1)s Pk
�
G;Ar+1 [

Ss�1
j=1Aij

�
.

The two values cancel each other out in the sum of all terms, thereby providing the result.

Corollary 6.126 For r+1 distinct A-sets, A1; : : : ; Ar+1 with Ar+1 = G, A = (A1, : : :, Ar; Ar+1)

and � = jGj,

Pk (G;A) =
�
�
N��
k��
�

N
�
N�1
k�1
� (6.190)

and Pk (G;A) =
�
�
k�1
��1
�

N
�
N�1
��1
� . (6.191)

Proof. As G � Ai 8i and Ar+1 = G, apply Theorem 6.125 r times to give Pk (G;A) =

Pk (G;Ar+1) : Now apply Theorem 6.115 with m = jAr+1nGj = 0 to give the required results.

6.19.6 Joint Distribution for G1 and G2 for Single A-sets

In order to determine the variance for the number of completions at time k, it is necessary to have

the covariance between a pair of G-sets. In order to determine the variance for the cumulative

number of completions by time K, it is necessary to have the covariance between distinct pairs of

G-sets at times k1 and k2.

Notation 6.127 For a pair of G-sets G1 and G2 with corresponding A-sets A1 and A2, let Pk;n1;n2(

(G1; A1); (G2; A2)) be the joint probability distribution for the completion of G1 [A1 and G2 [A2
upon the kth arrival, where n1; n2 2 f0; 1g, with a value of 1 indicating completion and 0 indicating

non-completion.

Theorem 6.128 For n1 = n2 = 1,

Pk;1;1 ((G1; A1) ; (G2; A2)) =

� jA1\A2j
jA1\A2j�1

��N�jA1[A2j
k�jA1[A2j

�
N
�
N�1
k�1
� , (6.192)
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for n1 = 1 and n2 = 0,

Pk;1;0 ((G1; A1) ; (G2; A2)) =

jA2nA1j�2X
�=0

� jA1\A2j
jA1\A2j�1

��jA2nA1j
�

��N�jA1[A2j
k�jA1j��

�
N
�
N�1
k�1
�

+

jA2nA1j�1X
�=0

� jA1nA2j
jA1nA2j�1

��jA2nA1j
�

��N�jA1[A2j
k�jA1j��

�
N
�
N�1
k�1
� , (6.193)

for n1 = 0 and n2 = 1,

Pk;0;1 ((G1; A1) ; (G2; A2)) = Pk;1;0 ((G2; A2) ; (G1; A1)) (6.194)

and

Pk;0;0 ((G1; A1) ; (G2; A2)) = 1�
1X

n1=0

1X
n2=0

n1+n2>0

Pk;n1;n2 ((G1; A1) ; (G2; A2)) . (6.195)

Proof. For n1 = n2 = 1, the �rst k � 1 arrivals must be distributed to include the elements

of A1 and A2, which contain G1 and G2, respectively, so that both sets are short of completion

by one arrival. This one arrival must therefore be in their intersection, and all the other elements

of both A-sets must have arrivals. The result is now obtained using the same argument as in the

proof of Theorem 6.115.

For n1 = 1 and n2 = 0, it is necessary to complete A1 except for one arrival, and to not

complete A2. If the �rst k � 1 arrivals include arrivals for all of A1 \ A2 except for one arrival,

then the kth arrival must be for an element of A1 \ A2. This implies that at least two elements

of A2nA1 do not have arrivals in the �rst k � 1; let this number be � 2 f0,1, : : : , jA2nA1j � 2g.

If the �rst k � 1 arrivals include arrivals for all of A1 \ A2, then the kth arrival must be for an

element of A1nA2. This implies that at least one element of A2nA1 does not have an arrival in

the �rst k � 1; let this number be � 2 f0,1, : : : , jA2nA1j � 1g. The two cases produce the �rst

and second terms in Equation 6.193, respectively, by using a similar argument to that used in the

proof of Theorem 6.115 and summing over the possible values of � in each case.

The case n1 = 0, n2 = 1 results from symmetry, and n1 = 0, n2 = 0 is the last case in the

sample space.

Notation 6.129 For a pair of G-sets G1 and G2 with corresponding A-sets A1 and A2, let Pk1;k2(

(G1; A1); (G2; A2)) be the joint probability distribution for the completion of G1 [A1 at arrival k1
and G2 [A2 at arrival k2.
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Theorem 6.130 For k1 = k2 = k,

Pk;k ((G1; A1) ; (G2; A2)) = Pk;1;1 ((G1; A1) ; (G2; A2)) , (6.196)

where Pk;1;1 ((G1; A1) ; (G2; A2)) is given by Theorem 6.128.

For k1 < k2,

Pk1;k2 ((G1; A1) ; (G2; A2)) =
jA1j jA2nA1j

�
k1�1
jA1j�1

��k2�jA1j�1
jA2nA1j�1

�
N (N � 1)

�
N�2
jA1j�1

��N�jA1j�1
jA2nA1j�1

� , (6.197)

and for k1 > k2,

Pk1;k2 ((G1; A1) ; (G2; A2)) = Pk2;k1 ((G2; A2) ; (G1; A1)) . (6.198)

When A1 \A2 = ;, Equation 6.197 becomes

Pk1;k2 ((G1; A1) ; (G2; A2)) =
(�1 +m1) (�2 +m2)

�
k1�1

�1+m1�1
��
k2��1�m1�1
�2+m2�1

�
N (N � 1)

�
N�2

�1+m1�1
��
N��1�m1�1
�2+m2�1

� . (6.199)

Proof. For k1 = k2 = k, Theorem 6.128 is applicable. For k1 < k2, one of the elements

of A1 must arrive at k1, with the remaining elements of A1 arriving in the �rst k1 � 1 arrivals,

and one of the element of A2 that is not in A1 must arrive at k2, with the remaining elements of

A2nA1 arriving in the �rst k2�1 arrivals that are not occupied by elements of A1. Multiplying the

numbers of ways of doing each of these, provides the numerator. For the denominator, consider the

number of possible arrival sequences when there is no restriction. The arrival for the last element

of A1 [ G1 could arrive at any one of N positions, the arrival for the last element of A2 [ G2
could arrive in any one of remaining N � 1 positions, the remaining elements of A1 could arrive

in any one of N � 2 positions, and the remaining elements of A2 could arrive in any one of the

remaining N � jA1j � 1 positions. For k1 > k2, Equation 6.198 follows by the symmetric nature of

the de�nition of Pk1;k2 ((G1; A1) ; (G2; A2)).

When A1 \ A2 = ;, we have jA2nA1j = �2 +m2. Equation 6.199 is obtained by providing the

numbers of elements in each of the sets involved.
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6.19.6.1 Example: The Game SET : Triad Point of View

Consider two distinct triads

G1 = fg11, g12, g13g (6.200)

and G2 = fg21, g22, g23g (6.201)

for fg11, g12, g13g, fg21, g22, g23g � f1, : : : , Ng. Put A1 = G1 and A2 = G2. As G1 6= G2,

there are two cases to consider. By the Set Construction Theorem 2.12, either G1 \ G2 = ; or

jG1 \G2j = 1.

For G1 \ G2 = ;, we have jA1 \A2j = 0, jA2nA1j = jA1nA2j = 3 and jA1 [A2j = 6, and for

jG1 \G2j = 1 we have jA1 \A2j = 1, jA2nA1j = jA1nA2j = 2 and jA1 [A2j = 5.

Corollary 6.131 Let G1 and G2 be two distinct triads. For G1 \G2 = ;,

Pk;1;1 ((G1; A1) ; (G2; A2)) = 0 (6.202a)

Pk;1;0 ((G1; A1) ; (G2; A2)) =
2X

�=0

3
�
3
�

��
N�6
k�3��

�
N
�
N�1
k�1
� (6.202b)

Pk;0;1 ((G1; A1) ; (G2; A2)) = Pk;1;0 ((G2; A2) ; (G1; A1)) (6.202c)

Pk;0;0 ((G1; A1) ; (G2; A2)) = 1�
1X

n1=0

1X
n2=0

n1+n2>0

Pk;n1;n2 ((G1; A1) ; (G2; A2)) (6.202d)

and for jG1 \G2j = 1,

Pk;1;1 ((G1; A1) ; (G2; A2)) =

�
N�5
k�5
�

N
�
N�1
k�1
� (6.203a)

Pk;1;0 ((G1; A1) ; (G2; A2)) =

�
N�5
k�3
�

N
�
N�1
k�1
� + 1X

�=0

2
�
2
�

��
N�5
k�3��

�
N
�
N�1
k�1
� (6.203b)

Pk;0;1 ((G1; A1) ; (G2; A2)) = Pk;1;0 ((G2; A2) ; (G1; A1)) (6.203c)

Pk;0;0 ((G1; A1) ; (G2; A2)) = 1�
1X

n1=0

1X
n2=0

n1+n2>0

Pk;n1;n2 ((G1; A1) ; (G2; A2)) . (6.203d)

Proof. The results follow by applying Theorem 6.128 and substituting the values into the

formulae provided by it.

Corollary 6.132 For k1 = k2 = k,

Pk;k ((G1; A1) ; (G2; A2)) = Pk;1;1 ((G1; A1) ; (G2; A2)) , (6.204)
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where Pk;1;1 ((G1; A1) ; (G2; A2)) is given by Corollary 6.131.

For k1 < k2 and G1 \G2 = ;,

Pk1;k2 ((G1; A1) ; (G2; A2)) =
9
�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

� , (6.205)

for k1 < k2 and jG1 \G2j = 1,

Pk1;k2 ((G1; A1) ; (G2; A2)) =
6
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

� , (6.206)

and for k1 > k2,

Pk1;k2 ((G1; A1) ; (G2; A2)) = Pk2;k1 ((G2; A2) ; (G1; A1)) . (6.207)

Proof. The results follow by applying Theorem 6.130 and substituting the values into the

formulae provided by it.

6.19.7 Joint Distribution for G1 and G2 for Multiple A-sets

Notation 6.133 For a pair of G-sets G1 and G2 with corresponding collections of associated A-

sets A11, : : :, A1r1 and A21, : : :, A2r2, let Pk;n1;n2 ((G1;A1) ; (G2;A2)) be the joint probability that

G1[A1s1 completes upon the kth arrival for at least one of A11, : : :, A1r1, and G2[A2s2 completes

upon the kth arrival for at least one of A21, : : :, A2r2, where n1; n2 2 f0; 1g with a value of 1

indicating completion and 0 indicating non-completion.

Theorem 6.134 (Joint Distribution Theorem) For n1; n2 2 f0; 1g,

Pk;n1;n2 ((G1;A1) ; (G2;A2))

=

r1X
s1=1

r2X
s2=1

(�1)s1+s2
X

i11;:::;i1s1

X
i21;:::;i2s2

Pk;n1;n2

��
G1;

Ss1
j1=1

A1ij1

�
;
�
G2;

Ss2
j2=1

A2ij2

��
, (6.208)

where the two innermost summations on the right are over all distinct subsets fi11; : : : ; i1s1g of

f1; : : : ; r1g and fi21; : : : ; i2s2g of f1; : : : ; r2g, and Pk;n1;n2 ((G1; A1) ; (G2; A2)) is given by Theorem

6.128.

Proof. Apply the principle of inclusion and exclusion in two dimensions.

Notation 6.135 For a pair of G-sets G1 and G2 with corresponding collections of associated A-

sets A11, : : :, A1r1 and A21, : : :, A2r2, let Pk1;k2 ((G1;A1) ; (G2;A2)) be the joint probability that
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G1[A1s1 completes upon the k1th arrival for at least one of A11, : : :, A1r1, and G2[A2s2 completes

upon the k2th arrival for at least one of A21, : : :, A2r2.

Theorem 6.136 For k1 = k2 = k,

Pk1;k2 ((G1;A1) ; (G2;A2)) = Pk;1;1 ((G1;A1) ; (G2;A2)) , (6.209)

where Pk;1;1 ((G1;A1) ; (G2;A2)) is given by Theorem 6.134,

for k1 < k2,

Pk1;k2 ((G1;A1) ; (G2;A2))

=

r1X
s1=1

r2X
s2=1

(�1)s1+s2
X

i11;:::;i1s1

X
i21;:::;i2s2

Pk1;k2

��
G1;

Ss1
j1=1

A1ij1

�
;
�
G2;

Ss2
j2=1

A2ij2

��
, (6.210)

where the two innermost summations on the right are over all distinct subsets fi11; : : : ; i1s1g of

f1; : : : ; r1g and fi21; : : : ; i2s2g of f1; : : : ; r2g, respectively, and Pk1;k2 ((G1; A1) ; (G2; A2)) is given

by Theorem 6.136,

and for k1 > k2,

Pk1;k2 ((G1;A1) ; (G2;A2)) = Pk2;k1 ((G2;A2) ; (G1;A1)) . (6.211)

Proof. For k1 = k2 = k, Theorem 6.134 is applicable. For k1 < k2, apply the principle of

inclusion and exclusion in two dimensions to provide the result. For k1 > k2, the symmetric nature

of the de�nition provides the result.

Remark 6.137 By combining the methods for determining the joint distributions for k1 = k2 and

k1 6= k2, it would be fairly straightforward to determine the full joint distribution for any �nite

number of combinations of pairs (G;A) at times k1 � k2 � � � � � k : From this, one could derive

the full joint distribution at any speci�ed times for the number of completions of triads in the

game SET. As this is not needed for determining the mean and standard deviation of the number

of completions in the �rst K cards, this full joint distribution is omitted. Also, the number of

calculations required would be incredibly high.
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6.20 Static Distribution

6.20.1 Introduction

For N = _[i=1Gi, this section provides the distribution for the occupancy numbers of the G-sets

after k arrivals. From this, one may readily determine the joint distribution of having � G-sets

unoccupied, j G-sets full and the state of the remainingG-sets. From the �rst of these distributions,

one can determine the probability that n G-sets have at least � arrivals. The results in this section

are probably known, but have not been observed in the literature in the generality provided here.

These distributions provide a static view at time k, but can also provide a dynamic view

by observing how the distributions change as k increases. For example, the former allows the

determination of how many sets of socks or cakes are completed, partially completed or not started,

whereas the latter can provide a measure of the maximum number of cakes on display. From this,

one can determine, for example, the expected waiting time till the number of cakes on display with

just one slice is a speci�ed number.

As the moments are determined in Section 11.6 through the use of indicator functions and the

linearity of expectation over sums of random variables, this section provides only a brief discussion

of the distributions, enough to illustrate how di¢ cult it might be to work directly with them, and

also how e¢ cient it is to use indicator functions to determine moments. Those formulae are far

more e¢ cient for calculating moments from. In the same section, adaptation to completions of

equi-sized partial subsets of G-sets with size dij�i is a straightforward generalisation of the following

results, but to incorporate that generalisation here is messy, and as it is not used, it is omitted.

In the case �i � 2, Daniel Bernoulli [9, 1776] determined the distribution of the number of

completed and orphaned pairs. Here we provide the distribution of the occupancy numbers at

time k for general �i, from which it is straightforward to specify the joint distribution of the

number open, closed and completed. One can also determine probabilities and moments for any

associated events, such as having at least 4 cakes with at least 3 slices on display.

6.20.2 Occupancy Numbers for Disjoint G-Sets

Notation 6.138 For � = (�1; : : : ; �) with �i 2 f0; : : : ; �ig, and for k 2 f1; : : : ; Ng, let P (�; k)

be the probability that at time k each G-set Gi, i 2 f1, : : : ,g, has �i arrivals. Clearly P (�; k) = 0

if
P

i=1 �i 6= k.
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Theorem 6.139 The distribution of the occupancy numbers is given by

P (�; k) =

Q
i=1

�
�i
�i

��
N
k

� (6.212)

and by

P (�; k) =

�
k

�1;:::;�

��
N�k

�1��1;:::;���
��

N
�1;:::;�

� . (6.213)

Proof. The �rst form is a simple application of the generalised hypergeometric distribution as

described by Feller [29, II.7]. The second form�s numerator arises as the number of distinguishable

sequences of the N arrivals such that, for all i, �i arrivals of Gi occur within the �rst k arrivals

and �i � �i arrivals occur within the remaining N � k arrivals. Its denominator is the number of

distinguishable sequences of arrivals.

From this distribution, it is straightforward to determine the joint distribution at time k of the

number of completed G-sets, the number of G-sets not yet started and the state of the remaining

G-sets.

Remark 6.140 Generalising the distribution of the occupancy numbers to measure the completion

of non-mutually-exclusive G-sets or one or more A-sets, which could also be non-mutually-exclusive

apart from G, is beyond the scope of this work. It is required, though, for determining the distrib-

ution of occupancy numbers in the game SET.

6.21 Markov Chain for the State of G-sets

6.21.1 Introduction

The external view of the process we consider is the state of each G-set, G1, G2, : : :, G , as each

arrival occurs. The state of a G-set, Gi, with �i elements, is a number in the range 0, : : :, �i,

together with an indication of when at least one of its corresponding ri A-sets, Ai1, Ai2, : : :, Airi

has also completed. Let ~ be this indication, which is made clear by the example in the next

section.

The vector state of all G-sets cannot be determined by simply placing the state of the ith

G-set in its ith ordinate, because of the inter-relationship between the G-sets that is caused by the

A-sets; the example in Section 6.21.2 illustrates this. Therefore no attempt is made here to create

a description of the states that describes the general case. Instead, we describe a special case that

corresponds to a simple model of Parking in Lanes.
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6.21.2 Example: Comparison of the States in Two Cases

Suppose N = 3, G1 = f1g, G2 = f2g and G3 = f3g. There are two examples here, with each

having ri = 1 for i = 1; 2; 3, but with di¤erent contents for each A-set. Not only do they have

di¤erent states, but they have a di¤erent number of states.

For A11 = f2; 3g, A21 = f1; 3g, A31 = f1; 2g, the states are (0; 0; 0), (0; 0; 1), (0; 1; 0), (0; 1; 1),

(1; 0; 0), (1; 0; 1), (1; 1; 0), (1; 1; 1) and (~;~;~).

For A1 = ;, A2 = f1g, A3 = f1; 2g, the states are (0; 0; 0), (0; 0; 1), (0; 1; 0), (0; 1; 1), (~; 0; 0),

(~; 0; 1), (~;~; 0) and (~;~;~).

6.21.3 Parking in a Lane

6.21.3.1 Preliminaries

Consider N = 3 vehicles parked in a lane with uni-directional exiting and with one driver per

vehicle. Clearly �i = 1 for i 2 f1; : : : ; Ng. As ri = 1 for i 2 f1; : : : ; Ng, we may drop the second

index from the labelling of the A-sets. In order to indicate the relationship of vehicle dependencies,

we de�ne the A-sets recursively as A1 = ;, and for i 2 f2; : : : ; Ng, Ai = Ai�1 [ fi� 1g.

We supply a brief overview of one way to approach this problem without going into great detail.

Notation 6.141 Let b (i) be the sum of the bits in the binary representation of the integer i.

Notation 6.142 Let � (i) be the number of left-most bits of i that are positive in its binary rep-

resentation.

We exploit the appearance of the vector states to be the binary representation of the number

by labelling the states as the single numbers i = 0; 1; : : : ; 2N � 1 and interpreting � (i) as the

number of departures that have occurred in state i. This obviates the need for a separate label to

indicate the state of having a G-set and its corresponding A-set completed. It also makes it easy

to provide a simple formula for the transition probabilities.

6.21.3.2 Transition Probabilities

Notation 6.143 Let Pij (n) be the n-step probability of moving from state i to state j.

Lemma 6.144 The one-step transition probabilities are given by

Pij (1) =

8><>:
1

(N�b(i)1 )
for b (j) = b (i) + 1

0 otherwise
. (6.214)
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0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

0 : 000 0 1
3

1
3 0 1

3 0 0 0

1 : 001 0 0 0 1
2 0 1

2 0 0

2 : 010 0 0 0 1
2 0 0 1

2 0

3 : 011 0 0 0 0 0 0 0 1

4 : 100 0 0 0 0 0 1
2

1
2 0

5 : 101 0 0 0 0 0 0 0 1

6 : 110 0 0 0 0 0 0 0 1

7 : 111 0 0 0 0 0 0 0 1

Table 6.10: Example of the State of G-sets: Transition Matrix for Parking in a Lane

Proof. The state changes only when a driver arrives, which turns one bit on in the binary

representation of the state. Hence the result.

Lemma 6.145 The n-step transition probabilities are given by

Pij (n) =

8><>:
1

(N�b(i)n )
for b (j) = b (i) + n

0 otherwise
. (6.215)

Proof. The state changes only when a driver arrives, which turns one bit on in the binary

representation of the state. In n steps, n drivers will arrive, thereby turning on n bits in the binary

representation of the state. Hence the result.

6.21.3.3 Example: Transition Matrix for Parking in a Lane

The 1-step transition probabilities for the Parking in a Lane model with N = 3 are calculated

using Equation 6.215, and presented in Table 6.10. The table provides the bit-representation of

the states.
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7.1 Introduction

This chapter considers the process that is the with-replacement equivalent of the non-taboo 	1-

process of Chapter 6. Examples of this process include Coupon-Collecting (Section 2.3.1), the

Coupon-Collector�s Page Problem (Section 2.3.6), The Bird-Watcher�s Problem (Section 2.3.6.2.1),

Random Graphs (Section 2.11), Reliability Theory (Section 2.11.2) and the Bombing Raid (Section

2.11.6).

After the process is described formally in Section 7.2, some preliminary de�nitions, notation

and results have been provided in Section 7.3. This is followed by the distribution for a single

A-set in Section 7.4, which, in Section 7.5, is then specialised to apply to the �rst arrival and then

further specialised to the case A = G.
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Then the distribution for a positive wait is converted to an expression whose sums are inde-

pendent of the number of arrivals in Section 7.6. This is simpler due to the orders of magnitude

reduction in the number of calculations required.

In Section 7.7, the distribution for multiple A-sets is produced in a similar way to the without-

replacement model. Just as there are 	1-numbers and 	1-probabilities, 	2-numbers and 	2-

probabilities are de�ned and used in Section 7.8 to provide a decomposition formula for the dis-

tribution of multiple A-sets. This can be used to remove the need for duplicate calculations and

improve accuracy. This is followed in Section 7.10 by theMinimal Covering Theorem, which allows

one to ignore A-sets that are subsets of another A-set.

Asymptotic results may be used to speed up calculations when numbers are quite large. They

also provide some insight into the e¤ect of increasing various parameters. In Section 7.11, we

consider the e¤ect of increasing the number of elements in the population, N , and increasing

the number of arrivals, n, in direct proportion. An example use of this would be to allow rapid

calculations to provide a fairly accurate determination of the e¤ect of varying the number of distinct

coupons being distributed upon the number of prizes being awarded to those who complete the

collection, assuming the coupon-collector increases or decreases the number of purchases of coupons

in direct proportion to the number of distinct coupons that have been distributed. Numerical

examples are provided.

Purchasers of products with coupons might not know initially how many distinct coupons

there are to be collected, and after collecting a number of coupons, attempt to guess the number

of distinct coupons in the collection. In the case of bird-watching, one might not know the number

of distinct birds in the region. In both cases it might be useful to estimate the number of distinct

coupons or birds. This is examined in Section 7.12. In another situation, one might know the

number of distinct coupons collected (or birds sighted) and want to know how many have been

collected (or sighted). This is examined in Section 7.13. Both of these are investigated by using

the asymptotic distribution to provide an approximation to the maximum likelihood estimates of

the unknown parameters.

Finally, the micro-structure of the waiting-time process is investigated by modelling the process

by a Markov Chain in Section 7.14.

Examples of the theory are provided in order to illustrate it. Some of these are to applications

and some are to illustrate the nature of the expressions involved and to provide insight.
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7.2 Process Description

Consider the with-replacement 	-process described in Section 3. Each element of N is distinguish-

able. Arrivals to each element may occur more than once. The number of arrivals is n, which may

be more or less than N . This process is the 	2-process.

Let T be the random variable for this process. There are two new states possible for T . The

�rst corresponds to there being insu¢ cient distinct elements of G having been visited, so the

wait has not begun; this is represented by T = �1. The second corresponds to su¢ cient distinct

elements of G having been visited, but not su¢ cient distinct elements of at least one of the r sets

AinG; this is represented by T =1.

Notation 7.1 Let #(T = k) be the number of ways in which the waiting time of the random

variable T is k.

As we are interested here only in the situation in which it is at least possible to complete at

least one of r A-sets, we assume N � 2 and n � �+mini2f1;:::;rg jAinGj.

Initially, consider there to be a single A-set. In the without-replacement 	-process, the state

of the process at time k is determined by the number of arrivals for both G and AnG. In the

with-replacement 	-process discussed here, the state of the process at time k is determined by

the number of distinct arrivals, so an arrival stream consists of m types of a�s, � types of g�s

and (N �m� �) types of s�s. Therefore the concept and notational convenience of an (N;m; �)-

sequence as being a sequence of m a�s, � g�s and (N �m� �) s�s does not apply here. It is

necessary to know how many repetitions of arrivals to each individual cell there are. This could

be generalised to a triple of vectors, with the number of arrivals, n, as a fourth component, as an

(n;N;m;�)-sequence that consists of mi ai�s, �j gj�s and Nk sk�s with mi � 0, �j � 0, Nk � 0

and
Pm

i=1mi+
P�

j=1 �j +
PN�m��

k=1 Nk = n, but there is an alternative, and better, approach that

is available for this.

In the classical occupancy problem (Feller [29]), r balls are distributed among n cells and all

of the nr possible distributions have equal probability. This is a static process. In the 	2-process,

we are observing this classical occupancy problem one ball at a time, and measuring the waiting

time from the observance of a state satisfying one or more conditions till the observance of a state

satisfying one or more other conditions. Here, each of these cells is designated as an a, g or s (in

the case of a single A-set). When the rth ball is placed, we will need the probability that a certain

number of cells of each of types a, g and s are occupied.

Result 7.2 The probability that N given cells are occupied in the classical occupancy problem is
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given by

u (r; n) =
NX
v=0

(�1)v
�
N

v

��
1� v

n

�r
. (7.1)

Proof. This is Feller [29, II 11.11].

This is a generalisation of Maunsell�s result [59, 1938], which looks the same, but it applied

only to the totality of cells. Equation 7.1 provides a fundamental tool for use in waiting-time

	-processes.

Here it is more convenient to be concerned with the numerators of the probability distributions,

as the denominator is always of the form nr.

7.3 Preliminaries

For the convenience of representing formulae and deriving results, we specify special boundary

values for Equation 7.1.

De�nition 7.3 Let v (r; n;N) be the number of ways of leaving each of N given cells occupied in

the classical occupancy problem (Boltzmann-Maxwell statistics) with r balls and n cells giving nr

possible distributions. De�ne v (r; n;N) = 0 for either N > n, r < N or n < 0.

Notation 7.4 Within the context of reduction formulae for with-replacement waiting-time distri-

butions and moments, we adopt the convention that 00 = 1.

Remark 7.5 De�ning 00 = 1 avoids having to process special cases in the reduction formulae, as

this means that the general formula for v, as provided by the next lemma, will give v (r; 0; 0) = 0

for r > 0, and v (0; 0; 0) = 1, which makes sense based on the general de�nition of v given by (7.2).

This will occur in two places in the expressions for the distribution of the random process and

in its moments. One occurrence occurs near the end of the proof of Theorem 7.9; it is v (`� 1; 0; 0)

when N = m+ �, � = 1 and j = 0, which corresponds to A = N , the waiting time being measured

from the �rst arrival, all arrivals for elements of AnG occurring after the �rst arrival for G, and

the `th arrival being for the �rst arrival of G. When ` = 1, we want v (`� 1; 0; 0) = 1, as there is

one way of placing no arrivals of AnG before the �rst arrival of G. The other possible occurrence

is v (k � 1; N � 1;m� j + �� 2), but, as N > 1, this potential problem has been avoided.

Lemma 7.6 For r � 0, n � N and n � 0,

v (r; n;N) =
NX
�=0

(�1)�
�
N

�

�
(n� �)r . (7.2)
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Proof. For n > 0, the number of possible distributions, nr, times the numerator of the

probability distribution given by Equation 7.1 provides the result. For N < 0, there is no way to

have N given cells occupied, and by de�nition,
PN

�=0 = 0. Now consider n = 0, in which case

N = 0, as n � N is given. This means v (r; n;N) = nr, which is 1 if r = 0 (by the local de�nition

of nr) and is 0 if r > 0.

Remark 7.7 As
PN

�=0 (�1)
� �N

�

�
(n� �)r = 0 for r < N (Feller [29, II.12, problem 12.17(c)]), it

is not necessary to de�ne v as zero for r < N . This sum is also zero for N < 0; this was shown

in the proof of Lemma 7.6. These are two less cases that need to be considered when justifying the

use of the general expression for v, given by Equation 7.2 in the expressions below.

Remark 7.8 The Stirling numbers of second kind provide the number of ways of partitioning a

set of r objects into n non-empty subsets. Although it is often written as

�
r

n

�
=
1

n!

nX
�=0

(�1)n��
�
n

�

�
�r, (7.3)

a simple change of variable produces

�
r

n

�
=
1

n!

nX
�=0

(�1)�
�
n

�

�
(n� �)r . (7.4)

Therefore Equation 7.2 can be seen as generalising Stirling�s numbers of second kind in the sense of

specifying that a particular N of the n subsets are non-empty but in the case of ordered subsets. It

therefore follows that number of ways of partitioning a set of r objects into n non-empty subsets in

which N speci�ed subsets are non-empty is given by v (r; n;N) =n!. Observe also that v (r; n; n) =

n!
�
r
n

	
.

We use k = �1 to represent the situation in which the G-set is not completed by the time n

arrivals have occurred, and use k =1 to represent the situation in which the G-set is completed,

but the A-set is not (or A-sets have not) completed by the time n arrivals have occurred.

7.4 Distribution of a Single A-Set: � � �

7.4.1 Introduction

In this section, the distribution of T is provided for � � �. Following this, is the number of ways

of completing, and then the odds of having to wait versus not having to wait, given A completes;

these odds provide a measure of frustration.
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The distributions for � = � and m = 0 are very similar to the general distribution, so they are

not provided separately as was done in the without-replacement model.

7.4.2 Results

Theorem 7.9 The distribution of T is given by the following.

The total number of ways of distributing the n arrivals amongst the N distinct elements of N

with repetition is given by

#(Total) = Nn. (7.5)

For k = �1,

#(T = �1) = Nn �
�X
i=�

�
�

i

�
v (n;N � �+ i; i) (7.6)

and also =
��1X
i=0

�
�

i

�
v (n;N � �+ i; i) . (7.7)

For k = �2;

#(T = �2) =
��1X
i=�

�
�

i

�
v (n;N � �+ i;m+ i) . (7.8)

For k =1,

#(T =1) =
�X
i=�

�
�

i

�
v (n;N � �+ i; i)�

�X
i=�

�
�

i

�
v (n;N � �+ i;m+ i) . (7.9)

When � < �, for k 2 f0; 1; : : : ; �� � � 1g,

#(T = k) = 0. (7.10)

When � = �, for k = 0,

#(T = 0) = �

nX
`=�+m

v (`� 1; N � 1; �+m� 1)Nn�` (7.11)

and also =
�

�+m
v (n;N; �+m) . (7.12)
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For k 2 fmax (�� �; 1) ; : : : ; n� �g,

#(T = k) = �

�
�� 1
� � 1

�
m

n�kX
`=max(�;�+m�k)

Nn�`�k

�

0BBB@
Pmin(m�1;`��)

j=0

�
m�1
j

�
� v (`� 1; N � ��m+ � � 1 + j; � � 1 + j)

� v (k � 1; N � 1;m� 1� j + �� �)

1CCCA
+ � (�� 1)

�
�� 2
� � 1

� n�kX
`=max(�;�+m�k)

Nn�`�k

�

0BBB@
Pmin(m;`��)

j=0

�
m
j

�
� v (`� 1; N � ��m+ � � 1 + j; � � 1 + j)

� v (k � 1; N � 1;m� 1� j + �� �)

1CCCA . (7.13)

Proof. As the distribution of the n arrivals to the N cells without restriction is the classical

occupancy problem (Feller [29]), #(Total) = Nn.

For k = �1, at most � � 1 elements of G have at least one arrival. For a speci�c i elements

having at least one arrival, the number of ways to distribute the n arrivals amongst the i+(N � �)

elements that may have arrivals such that the speci�c i elements of G have at least one arrival

is v (n; i+ (N � �) ; i). There are
�
�
i

�
ways to choose the speci�c i elements of G to have at

least one arrival. Summing the product of these two numbers over the valid values of i, namely

i 2 f0; : : : ; � � 1g, provides Equation 7.6. Equation 7.7 is produced by considering the event that

at least � elements of G have at least one arrival, and subtracting the number of ways that can

occur from the total number of possible distributions.

For k = �2; between � and � � 1, inclusive, elements of G have at least one arrival, and all

elements of A have an arrival. For a speci�c i elements of G having at least one arrival, the number

of ways to distribute the n arrivals amongst the i+ (N � �) elements that may have arrivals such

that the speci�c i elements of G have at least one arrival, and all elements of A have at least one

arrival, is v (n; i+ (N � �) ;m+ i). There are
�
�
i

�
ways to choose the speci�c i elements of G to

have at least one arrival. Summing the product of these two numbers over the valid values of i,

namely i 2 f�; : : : ; �� 1g, provides Equation 7.8.

For k = 1, there must be at least � elements of G with at least one arrival, but not all the

elements of A have at least one arrival. The number of the former was calculated above to beP�
i=�

�
�
i

�
v (n;N � �+ i; i), and as the latter must also have at least � elements of G visited, its

number is
P�

i=�

�
�
i

�
v (n;N;m+ i). Subtracting the latter from the former provides Equation 7.9.
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When � < �, the wait must be at least ���. Hence, for k 2 f0; 1; : : : ; �� � � 1g, #(T = k) =

0, which is Equation 7.10.

When � = � and k = 0, suppose the last element of G to receive an arrival, receives it at the

`th arrival. Then ` 2 f�+m; : : : ; ng, as there must be at least one arrival for each element of

A, and the last element of G may be visited when the last arrival occurs. There are � ways to

choose this last element. Of the �rst `� 1 arrivals to the remaining N � 1 elements of N , at least

one arrival must be for each of the remaining elements of A; there are v (`� 1; N � 1;m+ �� 1)

ways of achieving this. The remaining n� ` arrivals may be for any element of N ; there are Nn�`

ways of achieving this. Multiplying these three numbers together and summing over ` provides

Equation 7.11. Another view of this is to consider the number of ways in which the elements of

A each have an arrival at the end of the process, and an element of G is the last element of A.

As these two events are independent of each other, multiplying their numbers together provides

Equation 7.11.

Consider now the case of the wait being a �nite positive number. The lower bound on k

occurs as a result of the �th element of G to receive its �rst arrival having to wait till at least the

remaining ��� elements of G receive their �rst arrival, and if � = �, then the wait is at least zero,

but we are considering here the case k > 0. The upper bound occurs when the �rst � arrivals are

for distinct elements of G; and the last element of G to receive an arrival is the last of all arrivals.

Hence k 2 fmax (�� �; 1) ; : : : ; n� �g.

The event T = k occurs if and only if the last element of A to receive an arrival is k places after

the �th element of G receives its �rst arrival. Suppose the �th element of G to receive its �rst

arrival occurs at position ` in the arrival stream. The lower limit of the summation is derived by

noting that � elements of G must receive their �rst arrival in the �rst ` positions, and all elements

of A must receive their �rst arrival in the �rst `+ k positions. Clearly `+ k � n, giving the upper

limit.

As more than one arrival to each element of AnG may occur, it is necessary to consider how

many of these elements��rst arrivals occur before position ` and how many between ` and `+ k.

Let the number that occur before ` be j. Then clearly j + � � `. If the element of A that occurs

in position ` + k is in AnG, then j � m � 1, otherwise j � m. The number of ways of choosing

these j elements of AnG are
�
m�1
j

�
and

�
m
j

�
, respectively.

There are � ways to choose the element of G that arrives at position `. If the arrival at `+ k

is an element of AnG, then there are m ways to choose which element it is, and
�
��1
��1
�
ways to

choose which �� 1 elements of G have their �rst arrival before position `: If the arrival at `+ k is

204



The Stochastic Process: With-Replacement 205

7.4. Distribution of a Single A-Set: � � �

an element of G, then there are ��1 ways to choose which element it is, and
�
��2
��1
�
ways to choose

which � � 1 elements of G have their �rst arrival before position `:

Now distribute � � 1 �rst arrivals to elements of G and j �rst arrivals to elements of AnG

among the �rst ` � 1 positions. There are v (`� 1; (� � 1) + j + (N � ��m) ; (� � 1) + j) ways

to do this.

If the arrival at ` + k is an element of AnG, then distribute the remaining � � � �rst arrivals

for G and m � 1 � j �rst arrivals for AnG among the k � 1 positions between ` and ` + k: This

can be done in v (k � 1; N � 1;m� 1� j + �� �) ways.

If the arrival at `+ k is an element of G, then distribute the remaining �� � � 1 �rst arrivals

for G and m� j �rst arrivals for AnG among the k� 1 positions between ` and `+ k: This can be

done in v (k � 1; N � 1;m� j + �� � � 1) ways.

The arrivals for positions after ` + k may be for any element of N , and this can be done in

Nn�`�k ways.

Summing the counts for the two disjoint cases over the possible values of k and j produces the

result.

Remark 7.10 In Section 8.4 on With-Replacement Identities; the alternatives for the case � = �

and k = 0, which are given by Equations 7.11 and 7.12, are used to derive a recursive relationship

for the occupancy numbers in terms of a sum of the occupancy numbers when there are from N to

r balls to be placed into n� 1 cells leaving each of N � 1 given cells occupied.

Theorem 7.11 The number of ways of leaving is

#(leaving) = v (n;N; �+m) . (7.14)

Proof. The number of ways of leaving is the number of ways of distributing n arrivals to N

cells with each of the �+m elements of A receiving at least one arrival. The result follows by the

de�nition of v.

The next result provides the odds of having to wait given completion when � = �.

Theorem 7.12 For � = �, the odds of having to wait given can leave, Owc, are

Owc =
m

�
. (7.15)
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mnk -1 0 1 2 3 4 5 6 1 Total
1 128 966 364 242 160 104 64 32 127 2 187

2 2 187 3 402 1 302 1 612 1 480 1 176 812 422 3 991 16 384

3 16 384 6 300 2 940 3 420 3 966 3 834 3 030 1 710 36 541 78 125

Table 7.1: Example: A With-Replacement Distribution

Proof.

Owc =
P (T > 0jT � 0 )
P (T = 0jT � 0 )

=
1� P (T = �1)� P (T =1)� P (T = 0)

P (T = 0)

=
Nn �#(T = �1)�#(T =1)

# (T = 0)
� 1

=
v (n;N; �+m)
�

�+mv (n;N; �+m)
� 1 from Theorem 7.9

=
�+m

�
� 1

=
m

�

as required.

7.4.3 Example: Illustrative Counts using a Small System

Table 7.1 provides the counts for m 2 f1; 2; 3g, � = 1, n = 7 and N = m + � + 1. This example

shows that #(T = �1) and #(T =1) can increase exponentially for even low values of n : N as

m increases. It also indicates the relative values of #(T = k).

7.4.4 Example: Coupon-Collectors Page Problem: Probability of Filing a Page

Suppose a coupon collector has a book of 60 coupons with 6 coupons on a page, and wants to know

how many coupons need to be collected to give various chances of being able to �le the second

page if one must be able to �le the �rst page �rst. The probability of this is given by dividing the

number of ways in which this can occur, which is given by Theorem 7.11 by the total number of

possible ways as included in Theorem 7.9. The result is v (n;N; �+m) =Nn, where v (n;N; �+m)

is given by Lemma 7.6. The �nal result is

P (Filing the page) =

P�+m
�=0 (�1)

� ��+m
�

�
(N � �)n

Nn
. (7.16)

In this case N = 60, m = 6, � = 6, and n will be determined to give various probabilities
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P Minimum n

50% 173

60% 190

70% 211

80% 239

90% 283

95% 325

98% 381

99% 422

Table 7.2: Minimum Value of n for the Required Probability of Filing.

of completing the page. Table 7.2 provides the results. Observe the rate of increase in n for a

decreasing increase in P .

50 60 70 80 90 100
0

100

200

300

400
n

p

Figure 7.1: Minimum Number of Coupons for the Required Probability of Filing.

7.5 Distribution for the First Arrival: � = 1 < �

7.5.1 Introduction

In the Coupon-Collector�s Page Problem and similar problems, the waiting time for the completion

of a page, which may require the completion of one or more other pages, is measured from the time

the �rst coupon on the page is observed. Hence it is relevant to explicitly state the distribution

based on the �rst arrival.

We �rst provide the distribution for the general case m � 0, and then specialise this to the case

m = 0. We choose to base this on the original distribution formula rather than the reduced distri-

bution formula that appears in Section 6.6, as this provides greater insight into the distribution�s

values.
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7.5.2 For m � 0

Corollary 7.13 For � = 1 < �, the distribution of T is given by the following.

The total number of ways of distributing the n arrivals amongst the N distinct elements of N

with repetition is given by

#(Total) = Nn. (7.17)

For k = �1,

#(T = �1) = (N � �)n . (7.18)

For k = �2;

#(T = �2) =
��1X
i=1

�
�

i

�
v (n;N � �+ i;m+ i) . (7.19)

For k =1,

#(T =1) = Nn � (N � �)n � v (n;N; �+m) . (7.20)

When � = 1 < �, for k 2 f0; 1; : : : ; �� 2g,

#(T = k) = 0. (7.21)

For k 2 f�� 1; : : : ; n� 1g,

#(T = k) = �m
n�kX

`=max(1;�+m�k)
Nn�`�k

0BBB@
Pmin(m�1;`�1)

j=0

�
m�1
j

�
� v (`� 1; N � ��m+ j; j)

� v (k � 1; N � 1;m� j + �� 2)

1CCCA

+ � (�� 1)
n�kX

`=max(1;�+m�k)
Nn�`�k

0BBB@
Pmin(m;`�1)

j=0

�
m
j

�
� v (`� 1; N � ��m+ j; j)

� v (k � 1; N � 1;m� j + �� 2)

1CCCA . (7.22)

Proof. Set � = 1 in Theorem 7.9 and simplify each corresponding expression, if possible.

Equations 7.17 and 7.21 are immediate as the values are unchanged. For k = �2, the result

follows immediately from Equation 7.8 by setting � = 1. For k = �1,

#(T = �1) =

0X
i=0

�
�

i

�
v (n;N � �+ i; i)

= v (n;N � �; 0)

= (N � �)n by Lemma 7.6
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as required. For k =1,

#(T =1) =

�X
i=1

�
�

i

�
v (n;N � �+ i; i)� v (n;N; �+m)

= Nn � v (n;N � �; 0)� v (n;N; �+m)

= Nn � (N � �)n � v (n;N; �+m) by Lemma 7.6

as required. For k 2 f�� 1; : : : ; n� 1g, Equation 7.22 is obtained by setting � = 1 and observing

that
�
��1
��1
�
=
�
��2
��1
�
= 1:

7.5.3 For m = 0

Corollary 7.14 For � = 1 < � and m = 0, the distribution of T is given by the following.

The total number of ways of distributing the n arrivals amongst the N distinct elements of N with

repetition is given by

#(Total) = Nn. (7.23)

For k = �1,

#(T = �1) = (N � �)n . (7.24)

For k = �2;

#(T = �2) =
��1X
i=1

�
�

i

�
v (n;N � �+ i; i) . (7.25)

For k =1,

#(T =1) = Nn � (N � �)n � v (n;N; �) . (7.26)

When � = 1 < �, for k 2 f0; 1; : : : ; �� 2g,

#(T = k) = 0. (7.27)

For k 2 f�� 1; : : : ; n� 1g,

#(T = k) = (�� 1) v (k � 1; N � 1; �� 2)
�
Nn�k � (N � �)n�k

�
. (7.28)

Proof. The expressions for #(Total) and k 2 f�1; 0; 1; : : : ; �� 2g are identical to those in

Corollary 7.13, and Equation 7.25 for k = �2 follows trivially by setting m = 0. For k = 1,

Equation 7.26 is Equation 7.20 with m = 0.

For k 2 f�� 1; : : : ; n� 1g, setm = 0 in Equation 7.22. The �rst summation term is eliminated.
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7.5. Distribution for the First Arrival: � = 1 < �

As k � �� 1, max (1; �� k) = 1. Therefore min (m; `� 1) = 0. After setting j = 0 and observing�
0
0

�
= 1; we have

#(T = k) = � (�� 1)
n�kX
`=1

Nn�`�kv (`� 1; N � �; 0) v (k � 1; N � 1; �� 2) ,

which, by Lemma 7.6 and rewriting the summation term in order to apply the sum of a geometric

series, becomes

#(T = k) = � (�� 1) v (k � 1; N � 1; �� 2)Nn�k�1
n�kX
`=1

�
N � �
N

�`�1

= � (�� 1) v (k � 1; N � 1; �� 2)Nn�k�1
1�

�
N��
N

�n�k
1�

�
N��
N

�
= (�� 1) v (k � 1; N � 1; �� 2)

�
Nn�k � (N � �)n�k

�
as required.

7.5.4 Example: Coupon-Collector�s Single Page Problem

The Coupon-Collector�s Single Page Problem is described in Section 2.3.6. Suppose there are

N = 100 distinct coupons to collect and � = 10 distinct coupons per page. We determine the

waiting-time distribution for a single page to be completed measured from the time the page is

�rst begun.

From Corollary 7.14 we have

P (T = �1) = 0:9n, (7.29)

P (T = �2) =

9X
i=1

�
10

i

�
v (n; 90 + i; i) , (7.30)

#(T =1) = 1� 0:9n �
10X
�=0

(�1)�
�
10

�

��
1� �

100

�n
, (7.31)

for k 2 f0; 1; : : : ; 8g ;

#(T = k) = 0,

and for k 2 f9; : : : ; n� 1g,

P (T = k) = 9

�
1

100k
� 0:9

n

90k

� 8X
�=0

(�1)�
�
8

�

�
(99� �)k�1 . (7.32)
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n P (T = �1) P (T =1) P (T 2 D) P (completion)
10 3: 487� 10�1 6:513� 10�1 3: 629� 10�14 3: 629� 10�14
20 1: 212� 10�1 8:784� 10�1 2: 270� 10�12 4: 031� 10�9
50 5: 154� 10�3 9:948� 10�1 2: 117� 10�10 5: 146� 10�5
100 2: 656� 10�5 9:910� 10�1 1: 169� 10�8 8: 942� 10�3
200 7: 055� 10�10 7:680� 10�1 1: 060� 10�6 2: 321� 10�1
500 1: 322� 10�23 6: 389� 10�2 4: 456� 10�4 9: 361� 10�1
1000 1: 748� 10�46 4: 316� 10�4 2: 202� 10�2 9: 996� 10�1

Table 7.3: Example: Coupon Collector�s Page Display Problem: N = 100, � = 10

The probability of completing is determined from Theorem 7.11 to be

P (completing) =
v (n; 100; 10)

100n

=
10X
�=0

(�1)�
�
10

�

��
1� �

100

�n
. (7.33)

Table 7.3 provides examples of probabilities for various numbers of coupons collected. The set

D =
n
9; : : : ; 9 +

j
(n�8)
10

ko
contains the �rst 10% of the waiting times in f9; : : : ; n�1g, and is used

to provide a measure of the probability of waiting a short time.

Some observations from the table are as follows. The probability of not starting, P (T = �1),

decreases extremely rapidly with increasing n. The probability of starting but not �nishing,

P (T =1), �rst increases and then decreases. The probability of completion increases extremely

rapidly at �rst and then the rate of increase decays to a slow rate.

With 100, 200 and 500 coupons, respectively, collected at random for 100 distinct coupons, the

chances of completing a particular page of coupons are 0:9%, 23:2% and 93:6%. This means that

the additional 100 coupons purchased after the �rst 100 produces a 26-fold increase in the chance

of completion, whereas the additional 300 coupons purchased after the �rst 200 produces a mere

4-fold increase in the chance of completion. This illustrates how rapidly the rate in the gains to

be made decreases when purchasing ever-more coupons.

With n = 1000; only 2:2% of the collectors will not need to wait longer than for 10% of the

coupons collected.

7.6 Simpli�ed Distribution for a Single A-Set

The aim in �nding an alternative expression for #(T = k) in Theorem 7.20, is to remove the

summations that depend on n, in order to both reduce the number of calculations required and
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to enhance the ability to produce an e¢ cient formula for the moments, the latter of which is

accomplished in Section 12.1.3.3. It would also be useful if it were possible to remove the summa-

tions that depend on N , but as that is not possible for v (r; n;N), it is also not possible for the

distribution.

In order to simplify the expressions used in the main theorem, we de�ne two functions, '1 and

'2. The former is converted in Lemma 7.17 to an alternative form that will be used in Theorem

7.20 to convert the summations that depend on n to summations whose indices are bounded below

by zero and above by m.

Remark 7.15 Although the new expressions being produced look more complicated, they are sim-

pler in the sense of there being a reduced number of calculations required, and also they enable the

creation of a vastly more-e¢ cient formula for the moments.

Notation 7.16 Let

'1 (a; b; �; �) =
bX
`=a

N�`v (`� 1; �; �) : (7.34)

Observe that v is a sum of (� + 1) terms. In order to perform the sum over ` in #(T = k), we

convert the formula for '1 from a sum of (b� a+ 1) (� + 1) terms into a sum of (� + 1) terms.

When b is large, this provides improved e¢ ciency in calculations. It also allows us to simplify

the expression for the conditional rising factorial moments in Section 12.1.3.3, and then �nd the

limiting form of those moments as the number of arrivals increases inde�nitely.

Lemma 7.17 For b � a, b > 0, � � 0 and N > � � �,

'1 (a; b; �; �) =

�X
�=0

(�1)�
�
�

�

�����
N

�max(a�1;0) � ����N �b
N � �+ � . (7.35)
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Proof.

'1 (a; b; �; �) =

bX
`=a

N�`v (`� 1; �; �) be de�nition

=

bX
`=min(a;1)

N�`v (`� 1; �; �) as v (r; �; �) = 0 for r < 0

=

�X
�=0

(�1)�
�
�

�

� bX
`=max(a;1)

N�` (�� �)`�1 as ` � 1, � � � and � � 0

=

�X
�=0

(�1)�
�
�

�

�
N�1

b�1X
`=max(a�1;0)

�
�� �
N

�`

=

�X
�=0

(�1)�
�
�

�

�
N�1

�
���
N

�max(a�1;0) � ����N �b
1�

�
���
N

� as b � a and b > 0

=

�X
�=0

(�1)�
�
�

�

�����
N

�max(a�1;0) � ����N �b
N � �+ �

as required.

Notation 7.18 Let

'2 (k; j; a; b; �; �) = v (k � 1; N � 1;m� j + �� � � 1)Nn�k'1 (a; b; �; �) : (7.36)

Notation 7.19 For brevity, let �j = N �m� �+ � + j � 1.

Theorem 7.20 (Reduction Theorem for 	2-Processes) For k 2 fmax (�� �; 1) ; : : : ; n� �g,

#(T = k) = �

�
�� 1
� � 1

�
m

min(m�1;max(�;�+m�k)���1)X
j=0

�
m� 1
j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+�

�
�� 1
� � 1

�
m

min(m�1;n�k��)X
j=max(�;�+m�k)��

�
m� 1
j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

�min(m;max(�;�+m�k)���1))X
j=0

�
m

j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

� min(m;n�k��)X
j=max(�;�+m�k)��

�
m

j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j) . (7.37)
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Proof. The derivation begins with the expression for #(T = k) given by Equation 7.13, in

which the explicit double summations are given by

n�kX
`=max(�;�+m�k)

min(m�1;`��)X
j=0

(7.38)

and
n�kX

`=max(�;m+��k)

min(m;`��)X
j=0

. (7.39)

The second summation in each of these may be written more simply without using the minimum

function for the upper limit as
P`��

j=0 , since the combinatorial terms
�
m�1
j

�
and

�
m
j

�
are zero for

`� � > m� 1 and `� � > m, respectively. Now we swap the order of summation. As `� � � 0,

both summations may be written as

n�kX
`=max(�;�+m�k)

`��X
j=0

=

max(�;�+m�k)���1X
j=0

n�kX
`=max(�;�+m�k)

+
n�k��X

j=max(�;�+m�k)��

n�kX
`=j+�

. (7.40)

Now, the factor
�
m�1
j

�
in the �rst term of Equation 7.13 enables the summations in that �rst

term to be written as

min(m�1;max(�;�+m�k)���1)X
j=0

n�kX
`=max(�;�+m�k)

+

min(m�1;n�k��)X
j=max(�;�+m�k)��

n�kX
`=j+�

. (7.41)

Similarly, the factor
�
m
j

�
enables the summations in the second term to be written as

min(m;max(�;�+m�k)���1)X
j=0

n�kX
`=max(�;�+m�k)

+

min(m;n�k��)X
j=max(�;�+m�k)��

n�kX
`=j+�

. (7.42)

These summations provide the limits of the summations as required by the theorem, and are

omitted from the expressions in the rest of this proof. Instead, we write the outer sums in the four

double-sums as
P
1,
P
2,
P
3 and

P
4, respectively.

In order to use the de�nition of '2, we need to demonstrate that the conditions are satis�ed

for '1 (a; b; �; �). These conditions are b � a, b > 0, � � 0 and N > � � �. In each of the four

summations, b = n� k, � = � � 1 + j +N � ��m and � = � � 1 + j.

In the �rst and third summation, we have a = max (�; �+m� k) and b = n� k, which means

that b � a, as these are the lower and upper bounds, respectively, for the possible positions, `, of

the �th arrival that enables a wait of k 2 fmin (�� �; 1) , : : : , n� �g. In the second and fourth
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summations, we have a = j + � and b = n � k. In this case b � a = n � k � � � j, which is a

minimum when j takes on its largest possible value, namely j = n�k��. Thus we have b�a � 0.

b > 0, as k � n� � and � � 1.

As N � m + �, � � 1 and j � 0, it is clear that � � 0. As j � m, it is clear that

N � � = �� � +m+ 1� j > 0.

Finally, �� � = N � ��m, and as N � �+m, we have � � �.

By incorporating these changes and the de�nitions of '2 and �j , and with a little rearrangement,

we may write #(T = k) as

#(T = k) = �

�
�� 1
� � 1

�
m
X

1

�
m� 1
j

�
'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+�

�
�� 1
� � 1

�
m
X

2

�
m� 1
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

�X
3

�
m

j

�
'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

�X
4

�
m

j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j) (7.43)

as required.

7.7 Distribution for Multiple A-Sets

7.7.1 Introduction

In this section, the model with r � 1 A-sets is considered. The distribution for this model is

determined in a similar way to the without-replacement model of Section 6.7, but in this case the

proof of the Fundamental Theorem is complicated by the need to consider the additional values of

k 2 f�1;1g.

An example is provided to illustrate the theorem. It determines the waiting times directly from

the arrival sequences, as well as by use of the Fundamental Theorem.

Applications include the Bombing Raid, which is described in Section 2.11.6. The application

to No Path in a Network in Section 14.3 provides an illustration of the taboo model, which is an

extension of the model discussed here.

7.7.2 Preliminaries

Let T (A1; : : : ; Ar) be the natural extension of T to multiple A-sets for the with-replacement

process. We are interested here only in the situation in which it is possible to complete at least
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one A-set, so we assume N � 2 and n � �+mini2f1;:::;rg jAinGj.

Formularisation 7.21 Let � (a) be the arrival position for the �rst occurrence of a 2 N . Then,

given all the states of G and all the states of at least one A-set are visited,

T (A1; : : : ; Ar) = min
i2f1;:::;rg

T (Ai) , (7.44)

where

T (A) = max
a2A

(� (a))� �-max
g2G

(� (g)) (7.45)

or, equivalently,

T (A) = max

�
0; max
a2AnG

(� (a))� �-max
g2G

(� (g))

�
. (7.46)

7.7.3 The Upper Bound of T

In the without-replacement model, the maximum �nite wait depended on the relationship between

the A-sets, as shown in Lemma 6.25. Here, however, it does not, as is demonstrated by the

following Lemma.

Lemma 7.22 For � � �, the maximum �nite wait is given by

T (A1; : : : ; Ar) = n� �. (7.47)

Proof. The maximum �nite wait occurs when the �rst � arrivals are for distinct elements of

G, and the nth arrival is either for an element of G that does not have an arrival prior to that

arrival, or for an element of A that does not have an arrival prior to that arrival, and all other

A-sets have received no arrivals. The latter condition is possible as repetitions are allowed. Hence

the result.

Lemma 7.23 For � = �, T (A1; : : : ; Ar) 2 f�1; 0; : : : ; n� �;1g, and for � < �, T (A1; : : : ; Ar) 2

f�1; �� �; : : : ; n� �;1g :

Proof. It is possible that G does not complete or all of the A-sets do not complete, giving

values of �1 and 1 for T , respectively. For � = �, at least one A-set could complete with the last

distinct arrival being for the G-set, giving T = 0. For � < �, at least �� � arrivals are required to

complete the G-set, giving T � �� �. Lemma 7.22 provides the maximum �nite wait.
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7.7.4 The Fundamental Theorem of 	2-Processes

Theorem 7.24 (Fundamental Theorem of 	2-Processes) The #(T = k) is given by

#(T = k) =

rX
s=1

(�1)s�1
X
i1;:::;is

#
�
T
�Ss

j=1Aij

�
= k

�
, (7.48)

where #(T (A) = k) is given by Theorem 7.9, and where the inner summation is over all distinct

subsets fi1; : : : ; isg of f1; : : : ; rg. In the case where Ai \ Aj � G, Equation 7.48 may be expressed

as

#(T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

#
�
T
�Ps

j=1mij

�
= k

�
: (7.49)

Proof. The range of values of T is provided by Lemma 7.23. The case k = �1 occurs when

less than � of the g�s are visited, which is independent of visits to elements of A-sets. Therefore

the result for r > 1 is identical to the result for r = 1, so that one form of #(T = �1) is

#(T = �1) = Nn �
�X
i=�

�
�

i

�
v (n; i+N � �; i) . (7.50)

From Equation 7.48,

#(T = �1) =
rX
s=1

(�1)s�1
X
i1;:::;is

"
Nn �

�X
i=�

�
�

i

�
v (n; i+N � �; i)

#

=

"
Nn �

�X
i=�

�
�

i

�
v (n; i+N � �; i)

#
rX
s=1

(�1)s�1
X
i1;:::;is

1

= Nn �
�X
i=�

�
�

i

�
v (n; i+N � �; i) by Equation 5.6,

which is the same as Equation 7.50. This means Equation 7.48 holds for k = �1.

The #(T = �2) is the number of ways in which at least � distinct g�s are visited, but not all

� distinct g�s. This is independent of the A-sets. Therefore the result for r > 1 is identical to the

result for r = 1, namely

#(T = �2) =
��1X
i=1

�
�

i

�
v (n;N � �+ i; i) . (7.51)

Hence, the result for k = �2 follows in the same way as for k = �1.
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The #(T =1) is the number of ways in which at least � distinct g�s are visited, but not all

states of any A-set. Hence, by the principle of inclusion and exclusion,

#(T =1) =
�X
i=�

�
�

i

�
v (n; i+N � �; i)�

rX
s=1

(�1)s�1
X
i1;:::;is

v

0@n;N; �+
������
s[
j=1

�
AijnG

�������
1A , (7.52)

where the inner summation is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg. Observing that

the �rst summand is independent of A-sets, Equation 5.6 may be applied to give

#(T =1) =
rX
s=1

(�1)s�1
X
i1;:::;is

"
�X
i=�

�
�

i

�
v (n; i+N � �; i)

#

�
rX
s=1

(�1)s�1
X
i1;:::;is

v

0@n;N; �+
������
s[
j=1

�
AijnG

�������
1A

=
rX
s=1

(�1)s�1
X
i1;:::;is24 �X

i=�

�
�

i

�
v (n; i+N � �; i)� v

0@n;N; �+
������
s[
j=1

�
AijnG

�������
1A35

=
rX
s=1

(�1)s�1
X
i1;:::;is

#
�
T
�Ss

j=1Aij

�
=1

�
by Theorem 7.9

as required.

For T (A1; : : : ; Ar) 2 f0;max (�� �; 1) ; : : : ; n� �g, Equation 7.48 follows directly from Corol-

lary 5.19 with f replaced by �. Equation 7.49 follows trivially.

Equation 7.48 is sometimes referred to as The Fundamental Formula for 	2-Processes orWith-

Replacement Processes. When the context is clear, it is referred to brie�y as The Fundamental

Formula. The theorem is referred to in a similar manner.

7.7.5 Example: Distribution for a Small System with r = 2

Consider N = 4, � = 1, � = 1, r = 2, m1 = 1, m2 = 1 and n = 2. Then we could let G = fgg,

A1nG = fa11g, A2nG = fa21g and N = fg; a11; a21; sg. Table 7.4 provides the waiting times and

counts for all possible arrival sequences; in the table, a is used to represent an element of an A-set

other than those in G. Table 7.5 provides the counts based on the Fundamental Theorem 7.24.

When determining counts for a single A-set, N is of the form fg; a; s1,s2g, and when for the

union of the A-sets, N is of the form fg; a1; a2; sg with AnG = fa1; a2g.
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Arrival Sequence k #(T (A1; A2)= k)

ss or sa or as or aa �1 9

<none> �2 0

ag 0 2

ga 1 2

gg or gs or sg 1 3

Table 7.4: Example: Multiple A-sets: Waiting-Times and Counts based on Arrival Sequences

k #(T (A1)= k) # (T (A2)= k) # (T (A1 [A2)= k) # (T (A1; A2)= k)

�1 9 9 9 9 + 9� 9 = 9
�2 0 0 0 0 + 0� 0 = 0
0 1 1 0 1 + 1� 0 = 2
1 1 1 0 1 + 1� 0 = 2
1 5 5 7 5 + 5� 7 = 3

Table 7.5: Example: Multiple A-sets: Waiting-Times based on the Fundamental Theorem

7.8 	-Numbers of the Second Kind

7.8.1 Introduction

The 	-numbers of second kind, which are also referred to more simply as 	2-numbers, are de�ned

and used for the with-replacement process in the same way as those of �rst kind are de�ned and

used for the without-replacement process in Section 6.8; similarly for 	2-probabilities. The 	2-

numbers and 	2-probabilities are discussed here in outline only, because of the similarities with

	1-numbers and 	1-probabilities in both de�nition and role.

An example of their use is provided in Section 14.3 on No Path in a Network (Bombing Raid),

in which the A-sets do not mutually intersect in G and are of unequal sizes.

7.8.2 The 	2-Numbers

De�nition 7.25 For the 	2-process with the parameters N , m, �, � and n, de�ne the 	-numbers

as

 2 (N;n;m; �; �; k) = # (T (m) = k) , (7.53)

where #(T (m) = k) is given by Theorem 7.9.

De�nition 7.26 For the 	2-process with the parameters N , m, �, � and n, de�ne the 	-proba-

bilities as

	2 (N;n;m; �; �; k) = P (T (m) = k) , (7.54)

where P (T (m) = k) = # (T (m) = k) =Nn, where #(T (m) = k) is given by Theorem 7.9.
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7.9. Decomposition

Theorem 7.27 The Fundamental Formula may be expressed as follows.

P (T = k) =

rX
s=1

(�1)s�1
X
i1;:::;is

	2

�
N;n;

���Ss
j=1AijnG

��� ; �; �; k� (7.55)

and, equivalently,

P (T = k) =

Pr
s=1 (�1)

s�1P
i1;:::;is

 2

�
N;n;

���Ss
j=1AijnG

��� ; �; �; k�
Nn

, (7.56)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg.

Proof. This is a restatement of Theorem 7.24 using 	2 and  2:

From Theorem 7.27, one sees that P (T = k) is a linear combination of 	2-probabilities or

	2-numbers.

Corollary 7.28 Suppose Ai \Aj � G and mi � m. Then the distribution of T becomes

P (T = k) =
rX
s=1

(�1)s�1
�
r

s

�
	2 (N;n; sm; �; �; k) . (7.57)

Proof. Substituting the restricted conditions into Equation 7.55, and then simplifying, gives

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

	2

�
N;n;

���Ss
j=1AijnG

��� ; �; �; k�
=

rX
s=1

(�1)s�1
�
r

s

�
	2 (N;n; sm; �; �; k) ,

since the inner summand is independent of the i1; : : : ; is, and there are
�
r
s

�
distinct subsets

fi1; : : : ; isg of f1; : : : ; rg, as required.

7.9 Decomposition

The Decomposition Formula will be of the same form as for 	1-processes, as are the bene�ts of

determining this formula in a particular application. This was discussed in Section 6.9.

The application No Path in a Network in Section 14.3 includes a determination of the decom-

position coe¢ cients as a linear combination of distinct 	2-probabilities.

220



The Stochastic Process: With-Replacement 221

7.10. Minimal Covering Theorem

7.10 Minimal Covering Theorem

Minimal coverings are discussed for the without-replacement process in Section 6.10. The form of

the result is identical here and so is the proof. The Theorem is reproduced here for emphasis.

Theorem 7.29 (Minimal Covering Theorem) Suppose A-sets A1; : : : ; Ar and Ar+1 have the

property that there exists i� 2 f1; : : : ; rg for which Ai� � Ar+1. Then

P (T (A1; : : : ; Ar; Ar+1) = k) = P (T (A1; : : : ; Ar) = k) . (7.58)

Proof. The proof is identical to that of Theorem 6.53.

7.11 Asymptotic Results for Constant Ratio n : N

7.11.1 Introduction

Suppose the size of the population, N , increases, and the number of arrivals, n, increases in direct

proportion to it; that is, n = �N for a �xed � > 0. What would be the new waiting time till

a G-set is completed and at least one of r corresponding A-sets is completed, measured from the

time the �th element of G is �rst visited?

Using the terminology of the coupon-collector�s problem, this corresponds to increasing the

number of purchases in direct proportion to the number of distinct coupons being distributed.

This allows one to investigate the e¤ects of increasing the number of distinct coupons under the

assumption that consumers would increase their purchases in direct proportion.

Intermediary results can be determined by computing values based on the probability distri-

bution given by Theorem 7.9 and the Reduced Distribution Formula given by Theorem 7.20. In

some situations the limiting distribution would be adequate and far quicker to calculate.

Here we consider r = 1. The Fundamental Formula of 	2-Processes may be used to generalise

the results to r � 1.

7.11.2 Preliminaries

The following result will be used several times during the determination of the limiting distribution.

Lemma 7.30 Given � � 0, a constant a, � > 0 and n = �N

lim
N!1

v (n;N + a; �)

Nn
= ea�

�
1� e��

�� . (7.59)

221



The Stochastic Process: With-Replacement 222

7.11. Asymptotic Results for Constant Ratio n : N

Proof. As N and n are large and � � 0, we may use the general formula for v as given by

Lemma 7.6 and simplify to produce

v (n;N + a; �)

Nn
=

P�
i=0 (�1)

i ��
i

�
(N + a� i)n

Nn

=

�X
i=0

(�1)i
�
�

i

��
1� i� a

N

�n

=

�X
i=0

(�1)i
�
�

i

� �
1� i� a

N

�N!�
as n = �N

!
�X
i=0

(�1)i
�
�

i

�
e�(i�a)� as N !1

= ea�
�X
i=0

(�1)i
�
�

i

�
e�i�,

from which the result follows upon applying Newton�s binomial formula (Feller [29, II 8.7]).

7.11.3 Results

Theorem 7.31 For r = 1, the limiting distribution for T as N !1, with n = �N for � > 0, is

given by

P (T = �1) ! 1�
�X
i=�

�
�

i

�
e(i��)�

�
1� e��

�i (7.60)

and also !
��1X
i=0

�
�

i

�
e(i��)�

�
1� e��

�i , (7.61)

P (T = �2) !
��1X
i=�

�
�

i

�
e(i��)�

�
1� e��

�m+i , (7.62)

P (T =1) !
�X
i=�

�
�

i

�
e(i��)�

�
1� e��

�i
�
�
1� e��

��+m , (7.63)

P (T = k) = 0 for k 2 f0; : : : ; �� � � 1g , (7.64)

P (T = 0) ! �

�+m

�
1� e��

��+m if � = �, (7.65)

P (T 2 fmax (�� �; 1) ; : : : ; n� �g) !

8<: m
�+m (1� e

��)
�+m for � = �

(1� e��)�+m for � < �
, (7.66)

P (T = k) ! 0 for k 2 fmax (�� �; 1) ; : : : ; n� �g , (7.67)
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and the limiting probability of completion is given by

P (ever leaving)!
�
1� e��

��+m . (7.68)

Proof. For k = �1, Theorem 7.9 provides

P (T = �1) = 1�
�X
i=�

�
�

i

�
v (n;N � �+ i; i)

Nn

and also P (T = �1) =

��1X
i=0

�
�

i

�
v (n;N � �+ i; i)

Nn
,

from which the result follows upon application of Lemma 7.30 with a = i� � and � = i.

For k = �2, Theorem 7.9 provides

P (T = �2) =
��1X
i=�

�
�

i

�
v (n;N � �+ i;m+ i)

Nn
,

from which the result follows upon application of Lemma 7.30 with a = i� � and � = m+ i.

For k =1, Theorem 7.9 provides

P (T =1) =
�X
i=�

�
�

i

�
v (n;N � �+ i; i)

Nn
� v (n;N; �+m)

Nn
,

from which the result follows upon application of Lemma 7.30 with a = i � � and � = i for the

�rst occurrence of v, and with a = 0 and � = �+m for the second occurrence of v.

For k 2 f0; : : : ; �� � � 1g, Theorem 7.9 has P (T = k) = 0. For k = 0 and � = �, Theorem

7.9 provides

P (T = 0) =
�

�+m

v (n;N; �+m)

Nn
,

from which the result follows upon application of Lemma 7.30 with a = 0 and � = �+m.

To �nd P (T 2 fmax (�� �; 1) ; : : : ; n� �g), �rst write

P (T 2 fmax (�� �; 1) ; : : : ; n� �g) = 1� P (T = �1)� P (T =1)� P (T = 0) ,

and substitute the limits just obtained for each of the three terms and simplify to produce the

result.

To show that P (T = k) ! 0 for k 2 fmax (�� �; 1) ; : : : ; n� �g, consider the reduced distri-

bution formula for #(T = k) given by Theorem 7.20, and observe that the upper-index of each
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sum is bounded above by m. It follows that the number of terms is bounded as n;N ! 1. It is

therefore su¢ cient to show that

lim
N!1

'2 (k; j; a; n� k;N � c; d)
v (n;N;m+ �)

= 0 (7.69)

for a � 1, c � 1, d � 0 and 0 � j � m. By de�nition,

'2 (k; j; a; n� k;N � c; d)

= v (k � 1; N � 1;m� j + �� � � 1)Nn�k'1 (a; n� k;N � c; d) . (7.70)

In order to apply Lemma 7.17 for the '1 in 7.70, we need n � k � a, n � k > 0, N � c � 0

and N > N � c � d. The �rst condition holds because n ! 1, the second condition occurs as a

result of the range of values for k, and the third and fourth hold as c � 1. The �nal condition,

N � c � d, holds because N !1. Hence we may write the limit in Equation 7.69 as

lim
N!1

'2 (k; j; a; n� k;N � c; d)
v (n;N;m+ �)

= lim
N!1

Nn

v (n;N;m+ �)

v (k � 1; N � 1; f)
Nk

'1 (a; n� k;N � c; d) , (7.71)

where �1 � f � N � 2. If f = �1, then the limit is trivially zero, as v (r;N;�1) = 0. Now

consider f � 0. By Lemma 7.59, limN!1
Nn

v(n;N;m+�) = (1� e
��)

�(m+�). For the second factor we

have

lim
N!1

v (k � 1; N � 1; f)
Nk

= lim
N!1

Pf
i=0 (�1)

i �f
i

�
(N � 1� i)k�1

Nk

= lim
N!1

1

N

fX
i=0

(�1)i
�
f

i

��
1� i+ 1

N

�k�1

= lim
N!1

1

N

fX
i=0

(�1)i
�
f

i

��
1� i+ 1

N

�k�1
,

which is clearly zero if k = 1, as i+ 1 � f + 1 � N � 2 < N . For k > 1, we obtain the limit as

lim
N!1

1

N

fX
i=0

(�1)i
�
f

i

�
= 0. (7.72)

If we now show that the third factor, '1 (a; n� k;N � c; d), is bounded as N ! 1 (and

n = �N), then the limit would have been shown to be zero. As the conditions for the application
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of Lemma 7.17 have been shown to be satis�ed, we may write

'1 (a; n� k;N � c; d) =
dX

�=0

(�1)�
�
d

�

��N�c��
N

�max(a�1;0) � �N�c��N

�n�k
c+ �

,

which is clearly bounded, as it was shown above that N � c � d and c � 1. Hence the result.

The probability of completion is given by Theorem 7.9 as

P (ever leaving) =
v (n;N; �+m)

Nn
(7.73)

from which the result is obtained upon application of Lemma 7.30 with a = 0 and � = �+m.

Remark 7.32 Although for n = �N we have

lim
N!1

P (T = k) = 0 for k 2 fmax (�� �; 1) ; : : : ; n� �g, (7.74)

observe that

lim
N!1

n��X
k=max(���;1)

P (T = k) > 0. (7.75)

7.11.4 Example: Comparisons for Various m and �

Tables 7.6 and 7.7 provide some examples of the limiting distribution provided by Theorem 7.31,

with the former having � = 1 and the latter having � = 2; in both cases � = �. Observe that as �

increases, P (T = �1) and P (T =1) decrease, and P (T = 0) and P (T > 0) increase. In coupon-

collector terms, this means that, in the limiting case, the likelihood of completing a particular set

increases as the ratio of purchased cards to the number of unique cards increases. The e¤ect is

more pronounced for higher values of �, and less pronounced for higher values of m.

7.11.5 Example: Comparison with Precise Values

This example compares precise values for The Bird-Watcher�s Problem with the asymptotic values,

in order to provide a measure of the degree of accuracy that the asymptotic probabilities provide.

Suppose N = 1000, n = 5000, m = 10, � = 10 and � = 5; this implies � = 5. Theorem 7.31

225



The Stochastic Process: With-Replacement 226

7.11. Asymptotic Results for Constant Ratio n : N

� m � P (T = �1) P (T =1) P (T = 0) P (T > 0)

1 1 1 0: 368 0: 233 0: 200 0: 200

1 1 2 0: 135 0: 117 0: 374 0: 374

1 1 3 0: 050 0: 047 0: 451 0: 451

1 1 4 0: 018 0: 018 0: 482 0: 482

1 1 5 0: 007 0: 007 0: 493 0: 493

1 2 1 0: 368 0: 380 0: 084 0: 168

1 2 2 0: 135 0: 218 0: 215 0: 431

1 2 3 0: 050 0: 092 0: 286 0: 572

1 2 4 0: 018 0: 036 0: 315 0: 631

1 2 5 0: 007 0: 013 0: 327 0: 653

1 3 1 0: 368 0: 472 0: 040 0: 120

1 3 2 0: 135 0: 306 0: 140 0: 419

1 3 3 0: 050 0: 135 0: 204 0: 611

1 3 4 0: 018 0: 053 0: 232 0: 697

1 3 5 0: 007 0: 020 0: 243 0: 730

Table 7.6: Example: Asymptotic Values: � = 1

� m � P (T = �1) P (T =1) P (T = 0) P (T > 0)

2 1 1 0: 600 0: 147 0: 168 0: 084

2 1 2 0: 252 0: 101 0: 431 0: 215

2 1 3 0: 097 0: 045 0: 571 0: 286

2 1 4 0: 036 0: 018 0: 631 0: 315

2 1 5 0: 013 0: 006 0: 653 0: 327

2 2 1 0: 600 0: 240 0: 080 0: 080

2 2 2 0: 252 0: 189 0: 280 0: 279

2 2 3 0: 097 0: 088 0: 408 0: 408

2 2 4 0: 036 0:035 0: 464 0: 464

2 2 5 0: 013 0: 013 0: 487 0: 487

2 3 1 0: 600 0: 299 0: 040 0: 061

2 3 2 0: 252 0: 264 0: 193 0: 290

2 3 3 0: 097 0: 128 0: 310 0: 465

2 3 4 0: 036 0: 052 0: 365 0: 547

2 3 5 0: 013 0: 020 0: 387 0: 580

Table 7.7: Example: Asymptotic Values: � = 2
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k Relative Error
�1 9:38%

�2 0:18%

1 0:20%

f5; : : : ; 4995g 2:95%

P (ever leaving) 2:95%

Table 7.8: Relative Errors due to using the Limiting Distribution

provides

P (T = �1) ! 1�
10X
i=5

�
10

i

�
e5(i�10)

�
1� e�5

�i
= 1: 920 103 852� 10�11,

P (T = �2) !
9X
i=5

�
10

i

�
e5(i�10)

�
1� e�5

�10+i
= 0:061 099 155,

P (T =1) !
10X
i=5

�
10

i

�
e5(i�10)

�
1� e�5

�i � �1� e�5�20 = 0: 126 471 907,
P (T 2 f5; : : : ; 4995g) !

�
1� e�5

�20
= 0: 873 528 093,

and P (ever leaving) !
�
1� e�5

�20
= 0: 873 528 093.

Theorem 7.9 provides the precise values as

P (T = �1) = 1: 755 518 302� 10�11,

P (T = �2) = 0: 060 989 801,

P (T =1) = 0: 126 213 756,

P (T 2 f5; : : : ; 4995g) = 0: 873 786 244,

and P (ever leaving) = 0: 873 786 244.

Observe how close the limiting values are to the precise values. The relative errors produced

by approximating the true values by the limiting values are provided in Table 7.8.

7.12 Estimating N

7.12.1 Introduction

Estimating the Abundance of Wildlife is described in Section 2.25. Here we estimate the abundance

of wildlife based on the asymptotic distribution of Section 7.11, which allows for � � 1, m � 0 and

an observed waiting time of k 2 f�1; 0; 1; : : : ; n� �;1g. Here, we assume � = �.
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Suppose for a given G and A, it was observed that T = k after n arrivals, and one wants

to estimate N . In the Bird-Watcher�s Problem, this corresponds to estimating the number of

distinct birds when it is known that after n birds were sighted, the wait between completing the

page corresponding to G and the completion of the pages corresponding to AnG is T = k, where

k 2 f�1; 0; 1; : : : ; n� �;1g.

One could use Theorem 7.9 to plot the likelihood function for N , or use a numerical method,

but it could be computationally expensive. Since the limiting distribution is quite close to the true

values, it seems reasonable to use it to estimate N . This is what is done here. Only the non-trivial

case, m > 0, is considered here.

7.12.2 Results

Theorem 7.33 Given � � 1 and m > 0, suppose that after n arrivals a wait of T = k is observed.

Then the maximum likelihood estimate of N , N�
k , based on the limiting distribution of Theorem

7.31, is given by the following.

For k = �1,

N�
�1 is the largest possible value of N � �+m that makes physical sense. (7.76)

For k =1,

N�
1 = � n

ln
�
1� m

q
�

�+m

� . (7.77)

For k 2 f0; : : : ; n� �g,

N�
k is the smallest possible value of N � �+m that makes physical sense. (7.78)

Proof. For k = �1, P (T = �1) s 1 �
�
1� e�n=N

��
, which is an increasing function of N ,

implying the result.

For k =1, P (T =1) s
�
1� e�n=N

�� � �1� e�n=N��+m. Taking the derivative and factoris-
ing, and then setting to zero gives

� ne�
n
N

N2

�
1� e�

n
N

���1 h
�� (�+m)

�
1� e�

n
N

�mi
= 0, (7.79)
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and solving for N gives, as n > 0,

�
�+m �

�
1� e� n

N

�m
= 0

=)
�
1� e� n

N

�
= m

q
�

�+m

=) e�
n
N = 1� m

q
�

�+m

=) � n
N = ln

�
1� m

q
�

�+m

�
=) N�

1 = � n

ln
�
1� m

q
�

�+m

� ,

which is the required value if we can show this turning point to be a local maximum. The �rst

derivative as given in Equation 7.79 is clearly continuous for N on (0;1), positive for N < N�
1

and negative for N > N�
1, as required.

For k = 0, P (T = 0) s �
�+m

�
1� e�n=N

��+m
, which is a decreasing function of N , implying

the result.

For k 2 f1; : : : ; n� �g, the limiting total probability is given by m
�+m

�
1� e�n=N

��+m
, which is

a decreasing function of N , implying the result for k 2 f1; : : : ; n� �g as a whole.

For each k 2 f1; : : : ; n� �g, in the proof to Theorem 7.31 it is shown that P (T = k) ! 0 at

the same rate as 1=N , implying that, close to the limit, it is a decreasing function of N . Hence

the result for individual values of k 2 f1; : : : ; n� �g.

7.12.3 Example: The Bird-Watcher�s Problem

Consider the Bird-Watcher�s Problem with � = 10 and m = 50 (i.e. 5 pages) with n = 500

observations that included the completion of page 6, but not all of the �rst 5 pages. Then k =1.

A graph of the likelihood function for the limiting distribution for k = 1 is provided in Figure

7.2.

The maximum likelihood estimate of the number of distinct birds is given by Theorem 7.33 as

N�
1 = � n

ln
�
1� m

q
�

�+m

�
= � 500

ln
�
1� 50

q
10

10+50

�
' 149:4

For N = 149, P (T =1) s
�
1� e�n=N

�� � �1� e�n=N��+m ' 0: 582 337 1, and for N = 150 is

' 0: 582 314 3. Therefore choose N = 149 as the most likely whole number of distinct birds. This

implies the most likely number of pages required is 15.
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Figure 7.2: Likelihood Function for N using the Limiting Distribution for k =1.

7.13 Estimating n

7.13.1 Introduction

Suppose for a given N , G and A that a wait of T = k was observed, and one wants to estimate

n. Here we assume � = �. In The Bird-Watcher�s Problem, this corresponds to estimating the

number of all sightings of birds at the instant that T = k is observed, where k 2 f�1; 0; 1; : : : ;1g.

One could use Theorem 7.9 to plot the likelihood function for n or use a numerical method,

but it could be computationally expensive. Since the limiting distribution is quite close to the true

values, it seems reasonable to use it to estimate n. This is what is done here. Only the non-trivial

case, m > 0, is considered.

7.13.2 Results

Theorem 7.34 Given N , � and m > 0, suppose that after a number of arrivals, a wait of T = k

is observed. Then the maximum likelihood estimate of n, n�k, based on the limiting distribution of

Theorem 7.31, is given by the following.

For k = �1,

n��1 is the smallest possible value of n � �+m that makes physical sense. (7.80)
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For k =1,

n�1 = �N ln
�
1� m

r
�

�+m

�
. (7.81)

For k 2 f0; 1; : : :g and �nite,

n�k is the largest possible value of n � �+m that makes physical sense. (7.82)

Proof. For k = �1, P (T = �1) s 1 �
�
1� e�n=N

��
, which is a decreasing function of n,

implying the result.

For k =1, P (T =1) s
�
1� e�n=N

�� � �1� e�n=N��+m. Taking the derivative and factoris-
ing, and then setting to zero gives

e�
n
N

N

�
1� e�

n
N

���1 h
�� (�+m)

�
1� e�

n
N

�mi
= 0. (7.83)

Solving for n gives, as n > 0,

�
�+m �

�
1� e� n

N

�m
= 0

=)
�
1� e� n

N

�
= m

q
�

�+m

=) e�
n
N = 1� m

q
�

�+m

=) � n
N = ln

�
1� m

q
�

�+m

�
=) n�1 = �N ln

�
1� m

q
�

�+m

�
,

which is the required value, if we can show this turning point to be a local maximum. The �rst

derivative as given in Equation 7.83 is clearly continuous for n on (0;1), positive for n < n�1 and

negative for n > n�1, as required.

For k = 0, P (T = 0) s �
�+m

�
1� e�n=N

��+m
, which is an increasing function of N , implying

the result.

For k 2 f0; 1; : : :g and �nite, the limiting total probability is given by m
�+m

�
1� e�n=N

��+m
,

which is a decreasing function of n, implying the result for k 2 f1; 2; : : : ; g and �nite as a whole.

The meaning of T = k for an individual k 2 f1; 2; : : :g is that at some point in the process the

� elements of G have been visited and the last of the m elements of AnG was visited. This could

occur at any time in the process from the (�+m)th arrival without an upper bound. Therefore,

if n were set to a �nite number, then some of the probability associated with this value of k would

instead be associated with k = 1, because there will be cases in which the arrival point for k

arrivals after the last of the elements of G is visited no longer exist in the arrival stream, due to
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truncation after the nth arrival. Hence n must be in�nite. Since that is not physically possible,

n�k is taken as the largest possible value of n � �+m that makes physical sense, as required.

7.13.3 Example: The Bird-Watcher�s Problem

Consider the Bird-Watcher�s Problem with � = 10 and m = 50 (i.e. 5 pages) with N = 150, and

suppose k =1 at the instant that all � elements of G have been visited. A graph of the likelihood

function for the limiting distribution for k =1 is provided in Figure 7.3.
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Figure 7.3: Likelihood Function for n using the Limiting Distribution for k =1.

The maximum likelihood estimate of the number of bird sightings is given by Theorem 7.34 as

n�1 = �N ln
�
1� m

r
�

�+m

�
= �150 ln

 
1� 50

r
10

10 + 50

!
' 502: 003 4

For n = 502, P (T =1) s
�
1� e�n=N

�� � �1� e�n=N��+m ' 0: 582 355 9, and for n = 503 is
' 0: 582 345 7. Therefore choose n = 502 as the most likely whole number of birds sighted.
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7.14 Markov Chain for the Waiting-Time Process

7.14.1 Introduction

Here we consider the 	2-process with � � 1, � = �, r = 1 and m � 0.

We could consider the process to go on forever, as there is no physical limit to the number of

arrivals, n, as there is in the without-replacement model. In this case, there would be an in�nite

number of states. However, we choose to model the process as if n were �nite. By an initial

assumption, P (T = k) > 0 for k 2 f0; : : : ; n�m� �g.

As a result of the complexity of v-step transition probabilities, which is discussed below, the

�rst passage time probabilities are also going to be complex. As they have not been found and

they are not required later, they are not provided.

7.14.2 States, Absorbing States and Their Number

The number of each of the cells occupied in G, AnG and NnA are all relevant, as the number

of arrivals for cells in one of these sets is not su¢ cient to determine the cells have at least one

arrival. This a¤ects the transition probabilities, but not the whether or not a cell is occupied. As

we are not interested in the numbers of arrivals for each cell, we let g, a, and s, be the number of

occupied cells in G, AnG and NnA, respectively. As we intend to measure the waiting time from

the arrival of the last of the elements of G, a fourth parameter is added, namely the waiting time,

k. We represent a state in the process as the vector (g; a; s; k). The initial state is (0; 0; 0; 0). For

g < �, the wait has not begun, so the states of the form (g; a; s; 0) with g < � are associated with

P (T = �1). When g = � and a < m, we interpret the states (�; a; s; k) as providing an in�nite

wait; that is, associated with P (T =1).

De�nition 7.35 De�ne a valid state to be an element of f(g; a; s; k) : 0 � g < �, 0 � a � m,

0 � s � n� ��m, k = 0g [ f(g; a; s; k) : g = �, 0 � a � m, 0 � s � n� ��m, 0 � k � n� �g.

Lemma 7.36 The absorbing states are of the form (�;m; s; k), where s 2 f0; : : : ; n� ��mg and

k 2 f0; : : : ;m+ sg.

Proof. The absorbing states are valid states in which the A-set (which includes the G-set) has

an arrival for each cell, for then the wait is over.

Theorem 7.37 The total number of valid states, ns, is given by

ns = (m+ 1) (n+ 1) (n� ��m+ 1) . (7.84)
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Proof. The total number of valid states is calculated as the sum of the number of valid states

for the two cases g < � and g = �. For g < �, the wait has not begun, so k = 0 and the number of

valid states is given by

��1X
g=0

mX
a=0

n���mX
s=0

1 = � (m+ 1) (n� ��m+ 1) . (7.85)

For g = �, the number of valid states is given by

mX
a=0

n���mX
s=0

n��X
k=0

1 = (m+ 1) (n� ��m+ 1) (n� �+ 1) . (7.86)

Factorising the sum of the two quantities provides result.

Theorem 7.38 The number of absorbing states, na, is

na =

�
n� �+ 2

2

�
�
�
m+ 1

2

�
: (7.87)

Proof. As an absorbing state has g = �, a = m, s 2 f0; : : : ; n� ��mg and k 2 f0; : : : ;m+ sg,

the number of absorbing states is

�X
g=�

mX
a=m

n���mX
s=0

m+sX
k=0

1 =

n���mX
s=0

�
s+m+ 1

1

�
=

�
n� �+ 2

2

�
�
�
m+ 1

2

�

as required.

7.14.3 Transition Probabilities

De�nition 7.39 De�ne a valid transition as a transition from a valid state to a valid state that

has positive probability, and de�ne a valid �-step transition as a valid transition that occurs in �

steps.

Theorem 7.40 The valid 1-step transitions with their probabilities; P , from (g1; a1; s1; k1) to (g2;
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a2; s2; k2) for g1 < �, are

(g1; a1; s1; 0)!

8>>>>>>>>><>>>>>>>>>:

(g1; a1; s1; 0) P = g1+a1+s1
N

(g1 + 1; a1; s1; 0) P = ��g1
N

(g1; a1 + 1; s1; 0) P = m�a1
N

(g1; a1; s1 + 1; 0) P = N���m�s1
N

, (7.88)

for g1 = � and a1 < m, are

(�; a1; s1; k)!

8>>>>><>>>>>:
(�; a1; s1; k + 1) P = �+a1+s1

N

(�; a1 + 1; s1; k + 1) P = m�a1
N

(�; a1; s1 + 1; k + 1) P = N���m�s1
N

, (7.89)

and for g1 = � and a1 = m, is

(�;m; s1; k)!
n
(�;m; s1; k) P = 1. (7.90)

Proof. For g1 < �, the wait has not begun, so k1 = 0: In state (g1; a1; s1; 0), an arrival

may be for one of the cells that contains an arrival already, for an empty cell of G, an empty

cell of AnG or an empty cell of NnA, with probabilities for these being the number of cells

corresponding to the requirement. These correspond, respectively, to the transitions in the �rst

table. For example, P ((g1; a1; s1; 0)! (g1; a1 + 1; s1; 0)) =
m�a1
N ; it is unnecessary to consider the

case a1 = m separately, because the probability formula correctly provides a probability of zero.

For g1 = � and a1 < m, any arrival increases the wait by one, so k must increase by one. The

probabilities arise in the same way as in the �rst table.

Finally, for g1 = � and a1 = m, the state (�;m; s1; k) is an absorbing state.

Hence the results.

Scholium 7.41 The without-replacement v-step transition probabilities are much simpler than

those for the with-replacement process. This is due to the possible sequences of arrivals for

cells that are possible for the transitions. For example, the 2-step transition (�; a1; s1; k) !

(�; a1 + 1; s1; k + 2) could occur in the latter case, and not in the former, as

(�; a1; s1; k)! (�; a1 + 1; s1; k + 1)! (�; a1 + 1; s1; k + 2)

235



The Stochastic Process: With-Replacement 236

7.14. Markov Chain for the Waiting-Time Process

or as

(�; a1; s1; k)! (�; a1; s1; k + 1)! (�; a1 + 1; s1; k + 2) .

The former transition corresponds to an arrival for an element of A that has not already been

visited, followed by an arrival for an element of A that has already been visited, whereas in the

latter case the arrivals occur in the opposite order. These have probabilities m�a1
N � �+(a1+1)+s1

N

and �+a1+s1
N � m�a1

N , respectively. With more than one arrival, that is for an occupied cell, the

formulae become somewhat unwieldy for arbitrary n.

De�nition 7.42 For a valid state (g; a; s; k), de�ne the norm k(g; a; s; k)k = g + a+ s+ k. This

norm induces equivalence classes in which the number of occupied cells plus the wait is constant.

Lemma 7.43 The number of states i such that 0 < P
(1)
ii < 1 is

nr = � (m+ 1) (N �m� �+ 1)� 1. (7.91)

Proof. From Theorem 7.40, the required states are of the form (g; a; s; 0) for g 2{0, : : :, ��1},

a 2 f0; : : : ;mg and s 2 f0; : : : ; N � ��mg, with (g; a; s; 0) 6= (0; 0; 0; 0). Hence the result.

7.14.4 Characteristic Equation

Theorem 7.44 The characteristic polynomial of the Markov Chain is

Xns�na�nr (X � 1)na
��1Y
g=0

mY
a=0

N���mY
s=0

g+s+a>0

�
X � g + a+ s

N

�
. (7.92)

Proof. Consider the matrix representation of the Markov Chain. There are na absorbing

states, and these have a one in the leading diagonal and zeros elsewhere, nr non-absorbing states

with a non-zero value in the leading diagonal and zeros elsewhere, and the remaining ns�na�nr
states have a zero in the leading diagonal; this set of values on the leading diagonal remains the

same, regardless of the labelling of the states. Thus, if a labelling of the states is speci�ed that

produces an upper-triangular matrix for the Markov Chain, then the result is proved.

List the states as S1; : : : ; Sns , where kSik � kSjk for i < j: We need to show that P (1)ij = 0

for j < i. By Theorem 7.40, a valid transition is possible from a state Si to a distinct state Sj

only when kSjk � kSik 2 f1; 2g. Combining this with the listed order of the states produces and

upper-triangular matrix for the Markov Chain. Hence the result.
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7.14.5 Determining Distribution Properties from the Markov Chain

Notation 7.45 Let P (�)ij be the probability of the process going from state i to state j in � steps.

Theorem 7.46 The probability distribution of the waiting time is given by

P (T (m) = k) =

n�m��X
s=0

P
(n)
(0;0;0;0);(�;m;s;k). (7.93)

Proof. The event T (m) = k occurs when after n arrivals have occurred and (g; a; s; k) =

(�;m; s; k) for s 2 f0; : : : ; n�m� �g. Summing the probabilities of reaching these valid states in

N steps from the initial state provides the result.

A measure of the degree of completion of the A-set when G has been completed is given by the

following theorem.

Theorem 7.47

P (At time � there are � occupied cells of G and � of A) =
n�m��X
s=0

�+sX
k=0

P
(�)
(0;0;0;0);(�;�;s;k). (7.94)

Proof. Summing the �-step transition probabilities of reaching the valid states in which g = �

and a = � provides the result.
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Combinatorially Derived Identities

and Some Generalisations
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8.1 Introduction

This chapter digresses from our main topic, which is taken up again in the next chapter. Combi-

natorial identities are used ubiquitously to simplify summations or to provide an alternative form

that is more amenable to application. For example, the re�ective property of Pascal�s triangle is

often the �rst combinatorial identity one is introduced to. It can be used to reduce the number of

terms signi�cantly. For example, students might be given
�
m
n

� def
=

(m)n
n! , in which case

�
100
99

�
would

have 99 terms in both the numerator and the denominator. Applying the alternative form, namely�
100
99

�
=
�
100
1

�
, would produce just one term in both numerator and denominator, namely (100)1

1! ,

thereby providing an improvement of two orders of magnitude. Calculating the former expression

with a simple calculator would highlight the advantage of using the alternative expression.

Here we provide some alternative ways of calculating some combinatorial sums, and also provide

a combinatorial derivation for some identities. In particular, a very simple, common identity is

derived combinatorially for the �rst time, using the 	1-process as a basis. It is also generalised.
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8.2. Sums of Single Binomial Coe¢ cients

Result 8.14 provides a result that looks like some other combinatorial identities, but it has not

been observed in the literature; it is proved as Theorem 5.10.

In deriving the distribution for the basic 	1-process, which is Theorem 6.9 in Section 6.4, by

the �rst method, that is, the original proof, use was made of the well-known result
Pj

s=0

�
s+r
r

�
=�

j+r+1
r+1

�
. In the second proof, of a purely combinatoric nature, no use was made of any standard

identities. It therefore follows that this well-known result is derivable from Theorem 6.9, and in

doing so provides us with a heretofore unknown combinatoric argument leading to its derivation.

This is provided as the �rst result in Section 8.2, along with a simple generalisation. A signi�cant

generalisation of it, not found in the literature, is given by Corollary 8.7 in Section 8.3; that section

contains other combinatorial identities for products of pairs of binomial coe¢ cients.

Section 8.4 provides a recursive relationship for the classical occupancy numbers. Section 8.5

documents an identity that occurs naturally by comparing two results that have existed for a long

time for the expected number of coupons that need to be collected before a complete set of coupons

has been collected. Section 8.6 provides two identities from investigations in the 2-D Gap Problem;

the �rst is a strange ad-hoc result that was discovered whilst trying to simplify the main formula,

and the second results from looking at the problem from two di¤erent combinatorial points of view.

8.2 Sums of Single Binomial Coe¢ cients

Corollary 8.1

jX
s=0

�
s+ r

r

�
=

�
j + r + 1

r + 1

�
r; j � 0: (8.1)

jX
s=i

�
s+ t

r

�
=

�
j + t+ 1

r + 1

�
�
�
i+ t

r + 1

�
i; r � 0; j � i: (8.2)

Proof. Comparing Equation 6.35 with Equation 6.2 for � = 1 and m = k gives

N�mX
`=1

�
`+m� 2
m� 1

�
=

�
N � 1
m

�
,

and by putting ` = s+ 1, m = r + 1, N = j +m+ 1 gives

jX
s=0

�
s+ r

r

�
=

�
j + r + 1

r + 1

�
,

which is Equation 8.1 as required.
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For Equation 8.2 rewrite the left sum as the di¤erence of two sums, which are then written in

the form of Equation 8.1; then use the latter relationship on both these sums. That is

jX
s=i

�
s+ t

r

�
=

jX
s=r�t

�
s+ t

r

�
�

i�1X
s=r�t

�
s+ t

r

�

=

j�r+tX
s=0

�
s+ r

r

�
�
i�r+t�1X
s=0

�
s+ r

r

�
=

�
j + t+ 1

r + 1

�
�
�
i+ t

r + 1

�
by Equation 8.1,

which is Equation 8.2 as required.

Remark 8.2 Thus Equation 8.1, and therefore Equation 5.7, results here from a purely combina-

torial argument, whereas it is usually derived ex nihilo by mathematical induction (see, for example,

Feller [29, II 12.8]).

Equation 8.2 is a useful standard generalisation of Equation 8.1. It is presented here as it

follows from Equation 8.1 and hence from a combinatoric argument; also, it is utilised several

times in this thesis. Note that the second term in Equation 8.2 is zero if i+ t � r, as often happens

when applying the formula.

8.3 Sums of Products of Pairs of Binomial Coe¢ cients

The �rst identity in this section is used in 	1- processes. Although the following result is derivable

from The Transformation Formula, it results from a purely combinatorial argument.

Theorem 8.3 For � � 1, m � 0, N � m+ �, 1 � k < N � �,

N�kX
`=max(�;m+��k)

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�

= (�1)��1
��1X
s=0

(�1)s
�
N � k
s

��
N � s� 1

m+ �� s� 1

�
�
�

k � 1
m+ �� 1

�
. (8.3)

Proof. The identity is from Theorem 6.9, which is proved by a combinatorial argument in

Section 6.4.4.

Remark 8.4 The combinatorial formula of Equation 8.3 can not be used to prove The Trans-

formation Formula for all possible values of the variables involved in the latter. This is due the
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restriction of possible values k may have, whereas the variable c in The Transformation Formula

is unrestricted; in particular, c may also be negative.

The Transformation Formula will now be proved by purely combinatorial means in the case

c � e.

Theorem 8.5 For f � 0, L � �f � 1 and c � e,

LX
`=0

�
`+ f

f

��
`+ c

e

�
= (�1)e

eX
n=0

(�1)n
�
L+ c+ 1

n

��
L+ f + e� n+ 1
f + e� n+ 1

�
. (8.4)

Proof. For e < 0 or �f � 1 � L < 0, Equation 8.4 is trivially true. Now assume e � 0 and

L � 0.

By Theorem 8.3, Equation 8.3 has been obtained by purely combinatorial means. Hence it is

true in particular for � � 1, m � 1, N � m+ � and 1 � k < min (N � �;m+ 1).

Putting e = ��1 � 0, f = m�1 (� 0), and using n instead of s for the index on the right-hand

side gives

N�kX
`=max(e+1;f+e+2�k)

�
`+ k � e� 2

f

��
`� 1
e

�
= (�1)e

eX
n=0

(�1)n
�
N � k
n

��
N � n� 1

f + e� n+ 1

�
: (8.5)

Now putting L = N � f � e� 2, which is � 0, as N � (m� 1)� (�� 1)� 2 = N �m� � � 0, and

c = f + e� k + 1 for k � m (=) c � e) gives

L+c+1X
`=c+1

�
`+ f � c� 1

f

��
`� 1
e

�
= (�1)e

eX
n=0

(�1)n
�
L+ c+ 1

n

��
L+ f + e� n+ 1
f + e� n+ 1

�
. (8.6)

Starting the �rst summation from zero produces Equation 8.4 as required.

Lemma 8.6 For w; x; y � 0,

xX
`=0

�
`+ y

y

��
x� `+ w

w

�
=

�
x+ y + w + 1

y + w + 1

�
. (8.7)

Proof. Applying Result 5.2 to
�
x�`+w
w

�
and using The Transformation Formula of Lemma 6.8

on the resultant sum gives

241



Combinatorially Derived Identities and Some Generalisations 242

8.3. Sums of Products of Pairs of Binomial Coe¢ cients

xX
`=0

�
`+ y

y

��
x� `+ w

w

�
= (�1)w

xX
`=0

�
`+ y

y

��
`� x� 1

w

�
= (�1)w 
 (x; y;�x� 1; w)

= (�1)w (�1)w
wX
n=0

(�1)n
�
0

n

��
x+ y + w � n+ 1
y + w � n+ 1

�
=

�
x+ y + w + 1

y + w + 1

�

as required.

We generalise Equation 8.1 to Equation 8.8 and Equation 8.9 in the following corollary to

Theorem 6.9 and Lemma 6.8.

Corollary 8.7 For j � 0, r � 0, ` � n and n � 0,

jX
s=0

�
s+ r

r

��
s+ `

n

�
=

nX
s=0

(�1)s+n
�
j + `+ 1

s

��
j + r + n+ 1� s

j

�
, (8.8)

and for j � 0, r � 0, ` � max (n; 0) and n � �1,

=

rX
s=0

(�1)s
�
j + r + 1

r � s

��
s+ j + `+ 1

s+ n+ 1

�
� (�1)r

�
`

r + n+ 1

�
: (8.9)

Proof. In the de�nition of 
 in Equation 6.6, replace ` with s, L with j, f with r, e with n,

and c with `; and in Equation 6.7 replace n with s; L with j, f with r, e with n, and c with `:

Lemma 6.8 the provides us with the result

jX
s=0

�
s+ r

r

��
s+ `

n

�
= (�1)n

nX
s=0

(�1)s
�
j + `+ 1

s

��
j + r + e� s+ 1
r + e� s+ 1

�
:

Place the factor (�1)n inside the summation sign, and use
�
m
n

�
=
�
m

m�n
�
on the right-most combi-

natorial coe¢ cient to give Equation 8.8 as required.

Compare Equations 6.2, 6.5 and 6.31 with the common denominator removed.

When k � m, the substitutions ` = s, � = r + 1, k = `+ 1, m = n+ 1 and N = j + r + `+ 2

give
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j+r+1X
s=r+1

�
s+ `� r � 1

n

��
s� 1
r

�
= (�1)r

rX
s=0

(�1)s
�
j + r + 1

s

��
j + `+ 1 + s

j + `� n

�
� (�1)r

�
`

n+ r + 1

�
;

which becomes Equation 8.9 by translating the left summation to begin at s = 0, reordering

the right summation to sum in the reverse order, and by using
�
m
n

�
=
�
m

m�n
�
on the second

combinatorial term in the second sum.

In Equations 8.8 and 8.9, the conditions can be derived from physical considerations as follows.

For 1 � k � m, we have used the substitutions n = � � 1, r = m � 1, ` � n = m � k and

j = N �m� �. Hence, r � 0, as there is at least one element in AnG; ` � n, as k � m; n � 0, as

� � 1; and j � 0, as there are �+m elements in A.

For k � max (m; 1), we have r = �� 1, ` = k� 1, n = m� 1 and j = N � k� �. Hence, r � 0,

as � � 1; n � �1, as m � 0; ` � max (n; 0), as k � max (n+ 1; 1); and j � 0, as the waiting time

to completion, k, plus the number of elements, �, in G is less than the number of states in N .

Note that n = �1 corresponds to the vehicle being in the front of its lane, so its driver has a

zero waiting time. In this case, both sides of Equation 8.9 are identically zero.

Through the use of the identity in Equation 8.8, we have another alternative evaluation for

P (T (m) = k) through (N;m; �)k, when k � m, given by the following theorem.

Theorem 8.8 For k � max (m; 1),

(N;m; �)k =
m�1X
s=0

(�1)s+m�1
�
N � �
s

��
N +m� k � 1� s

N � k � �

�
: (8.10)

Proof. From Equation 6.2 with k � max (m; 1) ;

(N;m; �)k =

N�kX
`=�

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�

=

N�k��X
s=0

�
s+ k � 1
m� 1

��
s+ �� 1
�� 1

�

=
m�1X
s=0

(�1)s+m�1
�
N � �
s

��
N +m� k � 1� s

N � k � �

�
by Equation 8.8.
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This formula may o¤er a computational simpli�cation to Equation 6.31 in the event thatm � �,

and, like Equation 6.31, o¤ers large savings in comparison with Equation 6.2. Equations 6.31 and

8.10 can actually be derived from the same formula, if we generalise Equation 8.8 to Equation

8.11, which is a more convenient version for this identity. This generalisation was generated from

�nding Equations 6.7, 8.8 and 8.9. Interchanging the pairs (n1; n2) and (n3; n4) in Equation 8.11

provides the two variant identities.

Theorem 8.9 For b � a,

bX
s=a

�
s+ n1
n2

��
s+ n3
n4

�
=

n2X
s=0

(�1)s+n2
��
b+ n1 + 1

s

��
b+ n2 + n3 + 1� s
n2 + n4 + 1� s

�
�
�
a+ n1
s

��
a+ n2 + n3 � s
n2 + n4 + 1� s

��
: (8.11)

Proof. We prove Equation 8.11 by summation by parts, as in the second proof of Theorem

6.9. Putting

U (s) =

�
s+ n1
n2

�
and

V0 (s) =

�
s+ n3
n4

�
allows us to write

bX
s=a

�
s+ n1
n2

��
s+ n3
n4

�
=

bX
s=a

U (s)V0 (s) : (8.12)

Now, by repeated application of taking di¤erences and inverse di¤erences,

�mU (s) =

�
s+ n1
n2 �m

�

and

Vi (s) = ��iV0 (s)

=

�
s+ n3
n4 + i

�
:

Thus

Vm+1 (s+m) =

�
s+m+ n3
n4 +m+ 1

�
,
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and by Equation 6.23 with d = n2 + 1 we have

bX
s=a

�
s+ n1
n2

��
s+ n3
n4

�
=

d�1X
m=0

(�1)m Vm+1 (s+m)�mU (s)

+ (�1)d��1
h
Vd (s+ d)�

dU (s)
i���s=b+1
s=a

=

n2X
m=0

(�1)m
�
s+m+ n3
n4 +m+ 1

��
s+ n1
n2 �m

����s=b+1
s=a

=

n2X
m=0

(�1)m
��
b+ n1 + 1

n2 �m

��
b+ n3 + 1 +m

n4 + 1 +m

�
�
�
a+ n1
n2 �m

��
a+ n3 +m

n4 + 1 +m

��
,

which gives Equation 8.11 upon putting m = n2 � s:

Remark 8.10 Although the identity provided by Theorem 8.9 is a natural generalisation of Equa-

tion 8.2, it does not appear to have been mentioned in the literature.

Corollary 8.11 For b � a,

bX
s=a

�
s+ n1
n2

��
n3 � s
n4

�
=

n2X
s=0

(�1)s+n2+n4
��
b+ n1 + 1

s

��
b+ n2 + n4 � n3 � s
n2 + n4 + 1� s

�
�
�
a+ n1
s

��
a+ n2 + n4 � n3 � 1� s

n2 + n4 + 1� s

��
: (8.13)

Proof. Applying Result 5.2 to
�
n3�s
n4

�
, followed by application of Theorem 8.9 yields

bX
s=a

�
s+ n1
n2

��
n3 � s
n4

�
=

bX
s=a

�
s+ n1
n2

�
(�1)n4

�
s� n3 + n4 � 1

n4

�

=

n2X
s=0

(�1)s+n2+n4
��
b+ n1 + 1

s

��
b+ n2 � n3 + n4 � s
n2 + n4 + 1� s

�
�
�
a+ n1
s

��
a+ n2 � n3 + n4 � 1� s

n2 + n4 + 1� s

��

as required.
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Corollary 8.12 For b � a,

bX
s=a

�
s+ n1
n2

��
n3 � s
n4

�
=

n4X
s=0

(�1)s
��
b� n3 + n4

s

��
b+ n1 + n4 + 1� s
n2 + n4 + 1� s

�
�
�
a+ n3
s

��
a+ n1 + n4 � s
n2 + n4 + 1� s

��
: (8.14)

Proof. Applying Result 5.2 to
�
n3�s
n4

�
, followed by application of Theorem 8.9 yields

bX
s=a

�
s+ n1
n2

��
n3 � s
n4

�
=

bX
s=a

�
s+ n1
n2

�
(�1)n4

�
s� n3 + n4 � 1

n4

�

= (�1)n4
bX

s=a

�
s� n3 + n4 � 1

n4

��
s+ n1
n2

�

= (�1)n4
n2X
s=0

(�1)s+n4
��
b� n3 + n4

s

��
b+ n4 + n1 + 1� s
n4 + n2 + 1� s

�
�
�
a+ n3
s

��
a+ n4 + n1 � s
n4 + n2 + 1� s

��

as required.

The next two results provide for a further choice for the method of calculation of (N;m; �)k as

given by De�nition 6.1, for particular values of the quantities involved.

We note that Equation 8.15 below has a very similar form to Equation 6.31. For the limited

range of values speci�ed in the theorem for k and N , the result is derived from our previous results.

However, the result is true for a more general range of values, and as such, has been proved for

the expanded range in Theorem 8.15 below.

Theorem 8.13 For max (m; 1) � k < �+m and N � m+ 2�,

(N;m; �)k =

��1X
r=0

(�1)r
�
N � �
r +m

��
N � k � r � 1
N � k � �

�
� (�1)��1

�
k � 1

m+ �� 1

�
. (8.15)
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Proof. From Theorem 8.8, we have

(N;m; �)k =
m�1X
s=0

(�1)s+m�1
�
N � �
s

��
N +m� k � 1� s

N � k � �

�

=

m+��1X
s=0

(�1)s+m�1
�
N � �
s

��
N +m� k � 1� s

N � k � �

�

�
m+��1X
s=m

(�1)s+m�1
�
N � �
s

��
N +m� k � 1� s

N � k � �

�

= (�1)�
m+��1X
t=0

(�1)t
�

N � �
m+ �� 1� t

��
t+N � k � �

t

�

�
��1X
u=0

(�1)u�1
�
N � �
u+m

��
N � k � 1� u
N � k � �

�
, (8.16)

where in the �rst summation, s + t = m + � � 1 and
�
t+N�k��
N�k��

�
=
�
t+N�k��

t

�
, and in the second

summation, the substitution s = u+m is made.

We shall now apply Equation 8.9 to the �rst summation in Equation 8.16 with r = m+ �� 1,

j = N �m� 2�, n = �1 and ` = �+m� k � 1. Note that ` � 0, as required by Equation 8.9, as

k < m + �, and that because n = �1, both sides of Equation 8.9 are identically zero, as pointed

out earlier. We have then

(N;m; �)k = (�1)
� (�1)m+��1

�
m+ �� k � 1
m+ �� 1

�
+

��1X
s=0

(�1)s
�
N � �
s+m

��
N � k � 1� s
N � k � �

�
:

Substituting a = 1� k and b = m+ �� 1 into Equation 5.1 gives

(�1)m+��1
�
m+ �� k � 1
m+ �� 1

�
=

�
k � 1

m+ �� 1

�
,

which, upon substitution into the above, yields

(N;m; �)k =

��1X
s=0

(�1)s
�
N � �
s+m

��
N � k � 1� s
N � k � �

�
� (�1)��1

�
k � 1

m+ �� 1

�
.

The condition k � max (m; 1) occurs in Equation 8.10, and is therefore necessary. Note the

restriction k < m+ � occurs, because Equation 8.9 requires ` � n, and N � m+ 2�, as Equation

8.9 requires j � 0:

The theorem that follows the next result provides another identity, Equation 8.18, which could

follow from a comparison of two ways of calculating the number of (N;m; �)-sequences for which

247



Combinatorially Derived Identities and Some Generalisations 248

8.3. Sums of Products of Pairs of Binomial Coe¢ cients

T (m) = k, namely from Equations 6.31 and 8.15. However, the derivation of those equations

placed restrictions on the range of values for which the identity is true; these restrictions may be

seen by referring to the two results. Yet it holds true for a wider range of values. As such, we

prove it on a more general range.

To do this, we use the following result that is proved in Section 5.2 as Equation 5.9 of Theorem

5.10. It is a generalisation of the well-known result that occurs when we replace j by zero (Feller

[29, II 12.7]). It is duplicated here because it involves a sum of pairs of binomial coe¢ cients.

Result 8.14 For n, m, j integers with m � 0, j � 0,

nX
i=0

(�1)i
�
m

i

��
n+ j � i

j

�
= (�1)n

�
m� j � 1

n

�
. (8.17)

Theorem 8.15 provides a further alternative expression that reduces the number of terms in

the sum for speci�c values of the variables.

Theorem 8.15 For �, N , m, k integers with k � N , m+ � � N ,

��1X
s=0

(�1)s+��1
�
N � k
s

��
N � 1� s
N �m� �

�
=

��1X
s=0

(�1)s
�
N � �
s+m

��
N � k � 1� s
N � k � �

�
. (8.18)

Proof. Both sides of Equation 8.18 are trivially zero for � < 1, so now suppose � � 1. Consider

the left-hand side of Equation 8.18. By changing the order of summation and using
�
m
n

�
=
�
m

m�n
�
,

��1X
s=0

(�1)s+��1
�
N � k
s

��
N � 1� s
N �m� �

�
=

��1X
s=0

(�1)s
�

N � k
�� 1� s

��
N � �+ s
s+m

�
,

and by using the hypergeometric distribution (Feller [29, II.6])

=

��1X
s=0

(�1)s
�

N � k
�� 1� s

� sX
j=0

�
s

j

��
N � �

s+m� j

�
,

followed by rearranging the order of the summation over j,

=

��1X
s=0

(�1)s
�

N � k
�� 1� s

� sX
j=0

�
s

j

��
N � �
j +m

�
,

and by switching the order of summation,

=

��1X
j=0

�
N � �
j +m

� ��1X
s=j

(�1)s
�

N � k
�� 1� s

��
s

j

�
.
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Comparing this with the right-hand side of Equation 8.18, the theorem is proved if it can be

established that
��1X
s=j

(�1)s
�

N � k
�� 1� s

��
s

j

�
= (�1)j

�
N � k � 1� j
N � k � �

�
:

Setting t = �� 1� s, the left-hand side can be rewritten as

��1�jX
t=0

(�1)t��+1
�
N � k
t

��
�� 1� t

j

�
,

which, by recourse to Equation 5.9 with n = �� 1� j and m = N � k,

= (�1)1�� (�1)��1�j
�
N � k � j � 1
�� 1� j

�
,

which is the required right-hand side.

In applications, these alternative formulae may be superior, and in some cases far superior, to

the original formulae for calculation purposes. For an example of such comparisons, see Section

15.2, in which both timing tests and asymptotic formulae for numbers of operations are provided.

The following identity arises from a comparison between the waiting time distribution for the

	1-process with m = 0 and the waiting time distribution for the arrival of the �th element of G

to arrive, measured from the �th element of G to arrive.

Theorem 8.16 For � � 1, N � �, 1 � � � � and k 2 fmax (�� �; 1) ; : : : ; N � �g,

(�1)��1
"�

k � 1
�� � � 1

� ��1X
s=0

�
(�1)s

�
N � k
s

��
N � �+ � � s

N � �

��
�
�
k � �+ �

�

�!

+

�
k � 1
�� �

� ��1X
s=0

�
(�1)s

�
N � k
s

��
N � �+ � � s� 1

N � �

��
�
�
k � �+ � � 1

� � 1

�!#

=

�
k � 1

�� � � 1

��
N � k
�

�
. (8.19)

Proof. Observe that P�� (k) as given by Theorem 6.65 has the same interpretation as P (T (0)

= k) as given by Corollary 6.17. Hence, for k 2 fmax (�� �; 1) ; : : : ; N � �g,

(N; 0; �; �)k =

�
k � 1

�� � � 1

��
N � k
�

�
, (8.20)

so that from Theorem 6.18 with m = 0 we have the result.
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8.4 Classical Occupancy Numbers: A Recursive Relationship

The occupancy numbers for leaving each of N given cells occupied in the classical occupancy

problem with r balls and n cells are given by Equation 7.2 as

v (r; n;N) =
NX
�=0

(�1)�
�
N

�

�
(n� �)r . (8.21)

The following result produces a recursive relationship for these numbers in terms of a sum of the

occupancy numbers when there are from N to r balls to be placed into n� 1 cells leaving each of

N � 1 given cells occupied.

Theorem 8.17 For r � 0 and n � N � 1,

v (r; n;N) = N

rX
`=N

v (`� 1; n� 1; N � 1)nr�`. (8.22)

Proof. Theorem 7.9 includes two alternative expressions for #(T = 0). These are given by

Equations 7.11 and 7.12, as follows. For m � 0; � � 1 and N � m+ �,

�

nX
`=�+m

v (`� 1; N � 1; �+m� 1)Nn�` =
�

�+m
v (n;N; �+m) . (8.23)

Putting � = m+ �, which is � 1, and then multiplying both sides by � produces

v (n;N; �) = �
nX
`=�

v (`� 1; N � 1; �� 1)Nn�`. (8.24)

Replacing `; n;N and � by �; r; n and N , respectively, produces the result.

8.5 A Coupon Identity

The following result occurs by equating two formulae for the expected waiting time until all coupons

are collected. It is appears as a theorem because the identity has not been observed in the literature,

and also because the comparison between the two results from the two di¤erent techniques used

to derive them has also not been observed.

Theorem 8.18 For N � 2

N�2X
i=0

(�1)i

(i+ 1)2

�
N � 1
i

�
(N � i� 1)N�1 [(i+ 2)N � i� 1] = NN�1

NX
i=1

1

i
. (8.25)
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Proof. In Section 2.3.1 on Coupon Collecting, comparing Maunsell�s Equation 2.32 and Feller�s

Equation 2.34 with r = N gives

1

NN�2

N�2X
i=0

(�1)i

(i+ 1)2

�
N � 1
i

�
(N � i� 1)N�1 [(i+ 2)N � i� 1]

= N

�
1

N
+

1

N � 1 + � � �+
1

1

�
, (8.26)

from which the result follows trivially.

8.6 Identities Resulting from the 2-D Gap Problem

Some identities have been determined as a need to determine, or as a result of determining, the

decomposition formula for the fundamental formula that corresponds to the distribution formula

for the 2-D Gap Problem of Section 13.5.

The intermediary results of Section 13.5.4 are provided here without proof.

Lemma 8.19 For integers � � 1, ` � 0 and � � 1,

�`X
s=0

(�1)s
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
= 0. (8.27)

Lemma 8.20 For integers � � 1, ` � 0, � � 2 and  � �`,

X
s=1

(�1)s�1
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
= (1� �)` . (8.28)

The next three identities are provided in Section 13.5.12, and are reproduced here because of

their intrinsic beauty, and because something so complex reduces to something so simple. Due to

their heavy dependency on context-dependent notation, see these results in context, rather than

trying to understand them here.

Theorem 8.21 For n = 2, ` � 0, �� � 2;

nLX
s=1

(�1)s�1 � (n; `;�; s) = (�1)` , (8.29)
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where � (n; `;�; s) is given via Equations 13.47 and 13.45 as

� (n; `;�; s) =

�1+:::+�`�`X
j=0

(�1)j
X

r1;:::;r`P`
�=1 r�=j
0�r�<��

"Ỳ
�=1

�
��

�� � r�

�#�Q`
�=1 (�� � r�)

s

�
. (8.30)

Conjecture 8.22 For n > 2, ` � 0, and the ���s forming a bounded (L; `; �; n; 1; 2)-partition,

nLX
s=1

(�1)s�1 � (n; `;�; s) = (�1)(
P`
�=1 ��)�` , (8.31)

where � (n; `;�; s) is given via Equations 13.47 and 13.45 as

� (n; `;�; s) =

�1+:::+�`�`X
j=0

(�1)j
X

r1;:::;r`P`
�=1 r�=j
0�r�<��

"Ỳ
�=1

�
��

�� � r�

�#�Q`
�=1 (�� � r�)

s

�
. (8.32)

Result 8.23 For n � 2,

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

LY
i=1

�
n

�i

�
= 1, (8.33)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

252



Chapter 9

Extensions: Without-Replacement

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.2 Waiting for a Minimum Number of Completions . . . . . . . . . . . 255
9.3 Taboo Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.3.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

9.3.3 The Upper Bound of T assuming R = 1 . . . . . . . . . . . . . . . . . 257

9.3.4 The Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

9.3.5 Example: All Elements of a Set are Taboo . . . . . . . . . . . . . . . . 263

9.3.6 Example: Some Network Paths Before Others . . . . . . . . . . . . . . 263

9.3.7 Example: Voting System . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.4 Blocking - No Path Available . . . . . . . . . . . . . . . . . . . . . . . 266
9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.4.4 Example: Using the Decomposition Formula with theMinimal Blockage
Covering Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.4.5 Example: The E¤ect of having (Ai \Aj) nG 6= ; . . . . . . . . . . . . 269

9.5 Incomplete Arrival Stream . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.5.2 The Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.6 Requiring Only a Partial Completion of A-Sets . . . . . . . . . . . . 271
9.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

9.6.2 Method 1: Applying the Fundamental Theorem . . . . . . . . . . . . . 272

9.6.3 Method 2: Employing the Standard Combinatorial Technique and the
Transformation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.7 Requiring Only a Partial Completion of the G-set . . . . . . . . . . . 274
9.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

9.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

9.8 Batch Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

253



Extensions: Without-Replacement 254

9.1. Introduction

9.8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.8.3 Results for a Single A-Set . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.8.4 For Batches of Size 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

9.8.5 Example: The Game SET : A Particular Match . . . . . . . . . . . . . 280

9.8.6 Multiple A-Sets and The Fundamental Theorem of Batch 	1-Processes 282

9.8.7 Example: The Game SET - Any Match . . . . . . . . . . . . . . . . . 283

9.9 Varieties (Complexes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

9.9.2 Simultaneous Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.9.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.9.4 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

9.9.5 Example: Queueing in a Lane . . . . . . . . . . . . . . . . . . . . . . . 287

9.9.6 Randomised Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Figures
9.1 Network for a Taboo Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Tables
9.1 Example: Taboo Probabilities: Terms in the Sum . . . . . . . . . . . . . . . . . 265

9.2 Example: Taboo Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.3 No Path in a Network: Blockage Sets . . . . . . . . . . . . . . . . . . . . . . . 269

9.4 #(T = k) for Waiting-Times for a Speci�c Card and a Particular Match . . . . 282

9.5 Waiting-Time Distribution for the Batch Game based on All Matches . . . . . 284

9.6 Queueing in a Lane with Varieties . . . . . . . . . . . . . . . . . . . . . . . . . 287

9.1 Introduction

In this chapter, the basic waiting-time model is extended or generalised in a variety of ways. The

�rst requires at least t of the A-sets to be completed rather than just a single A-set. The next

two sections consider the concept of completing at least one set before others sets, and the related

problem of being blocked from completing any A-sets.

The next section considers the e¤ect on the distribution when there is an incomplete arrival set.

Then the requirement that all elements of AnG or all elements of G are required for completion to

occur is relaxed.

The next section considers batch arrivals, and applies the theory to the game SET. The �nal

two sections consider a �xed number of independent arrival streams; the �rst of these has one

arrival from each stream occurring simultaneously, and the second relaxes this restriction.
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9.2 Waiting for a Minimum Number of Completions

Let Tq = Tq (A1; : : : ; Ar) be the random variable for the completion time, possibly zero, from the

instant the process has visited the �th state of G to the instant it has �rst visited all the states of

at least q of the sets A1; : : : ; Ar:

Formularisation 9.1 Let � (a) be the arrival position for a 2 N . Then

Tq (A1; : : : ; Ar) = min
fi1;:::;iqg�f1;:::;rg

max
i2fi1;:::;itg

T (Ai) , (9.1)

where the minimum is over all subsets fi1; : : : ; iqg of f1; : : : ; rg, and where

T (A) = max
a2A

(� (a))� �-max
g2G

(� (g)) . (9.2)

Theorem 9.2 The distribution of Tq is given by

P (Tq = k) =
rX
s=q

(�1)s�q
�
s� 1
q � 1

� X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
, (9.3)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg � f1; : : : ; rg, and

P (T (A) = k) is given by Theorem 6.9 for � = � and Theorem 6.14 for � < �.

Proof. The result follows from Theorem 5.18.

9.3 Taboo Sets

9.3.1 Introduction

In some situations, it is relevant to consider some states to be forbidden. Here we consider sets

of states, the completion of any one of which, is considered forbidden. These sets are called taboo

sets.

The determination of the probability of completing a speci�ed collection of states before the

completion of any taboo set, may be interpreted as being able to drive out forward before being

able to reverse out (of a lane), a win before a loss, one or more events before one or more other

events, or connection before failure, et cetera, depending on the application.

Remark 9.3 The probability distributions for this taboo process are also based on the 	-proba-

bil ities, and hence also on the 	-numbers.
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Remark 9.4 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.

Remark 9.5 Incorporating the partial completion of A-sets and/or G-sets can easily be done by

incorporating the arguments in Section 9.6.and 9.7, respectively.

9.3.2 Description

Let us return now to the de�nition of the stochastic process as described at the beginning of

Chapter 6, with subsets G, A1; : : : ; Ar of N as previously de�ned, and let further sets B1; : : : ; Bt

contain arbitrary elements which are chosen in advance from the set Nn (G [
Sr
i=1Ai). We refer

to the latter sets as B-sets.

We pose the following question: what is the distribution of the completion time, possibly zero,

from the instant the process has visited the �th state of G, to the instant it has �rst visited all the

states of at least one of the A-sets A1; : : : ; Ar, but not all the elements of any the B-sets B1; : : : ; Bt?

We do not analyse here the more general form of this in which this condition is relaxed to allow

at most w of the B-sets to be completed.

Generalise our random variable to T = T (A1; : : : ; Ar;B1; : : : ; Bt). Having taboo states implies

that success is not inevitable.

Notation 9.6 Let R = R (A;B) be the random variable for the event that the process visits all

the states of at least one of the A-sets A1; : : : ; Ar, but not all the elements of any of the B-sets

B1; : : : ; Bt. The possible values of R are true and false, and are represented by 1 and 0, respectively.

Let �; �;m;m1;m2; : : : ;mr be de�ned as in Chapter 3. An element of a B-set is referred to

loosely as a b, in the same way that an element of an A-set is referred to as an a.

Formularisation 9.7 Let � (a) be the arrival position for a 2 N . Then

for R (A;B) = 1

T (A1; : : : ; Ar : B1; : : : ; Bt) = min
i2f1;:::;rg

T (Ai : B1; : : : ; Bt) (9.4)

where

T (A : B1; : : : ; Bt) = max
a2A

(� (a))� �-max
g2G

(� (g)) . (9.5)
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9.3.3 The Upper Bound of T assuming R = 1

The random variable T has an obvious upper bound of N � �. However, due to the need to have

at least one element of all but one of the A-sets and at least one element from each of the B-sets

occur after the �rst A-set is completed, this upper bound is diminished. In the case � < �, the

wait ends with an a or a g, not just an a, so it is not necessary that any of the a�s occur after the

last g.

De�nition 9.8 Let A be any subset of
Sr
i=1AinG for which A\ (AinG) 6= ; for all i 2 f1; : : : ; rg.

Let A be the collection of all such sets. Let B be any subset of
St
u=1Bu for which B \Bu 6= ; for

all u 2 f1; : : : ; tg. Let B be the collection of all such sets. For � = �, let A� 2 A and B� 2 B such

that jA� [B�j � jA [Bj 8A 2 A, 8B 2 B, and let m�
� = jA� [B�j � 1. For � < �, let B� 2 B

such that jB�j � jBj 8B 2 B, and let m�
� = jB�j.

Notation 9.9 For � 2 f1; : : : ; �g, let N� = N � � �m�
�.

Lemma 9.10 The maximum �nite wait is N�.

Proof. Let B 2 B. For the maximum to occur, it is clear that the �rst � arrivals must be for

elements of G. As there must be su¢ cient room in the arrival stream for visits to each element of

B to occur after the kth arrival after the �th arrival of G, the number of b�s after time � + k is

jBj.

To incorporate the A-sets, �rst consider � = �. Suppose the last element of the �rst completed

A-set, A�, occurs at time �+ k, observing that more than one A-set may be completed at the this

time. Then at least one element from each set AinG must occur at time at least �+ k. Let A be

any set containing at least one element from each of the sets AinG.

Then �+k � N �jA [Bj+1, so that k will be maximised when jA [Bj is minimised, thereby

providing the result for � = �.

For � < �, one way for the maximum to occur is having one of the ��� states of G that occurs

after the �rst �, being the last state to be visited in
Sr
i=1Ai. In this case, the total number of a�s,

g�s and b�s between times � and � + k is � � � � 1 +
��Sr

i=1 (AinG) [
St
u=1Bu

�� � jBj, which is a
maximum when B = B�. Hence the result for � < �.

9.3.4 The Distribution

We begin with the distribution for the case r = 1, t = 1 and use this result in the case r = 1,

t � 1, whose distribution is then used in the case r � 1, t � 1.
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9.3.4.1 The case r = 1, t = 1

Consider the case r = 1, t = 1 and let A = A1, B = B1 and � = jBnAj.

Theorem 9.11 For � = � and k = 0;

P (T (A;B) = 0) =
�

�+m
� �

�+m+ �
(9.6)

and also =
�

�+m
� �

�+m+ �
, (9.7)

for k 2 fmax (1; �� �) ; : : : ; N � � � 1g,

P (T (A;B) = k) = P (T (A) = k)� m

m+ �
P (T (A [B) = k) , (9.8)

where P (T (A) = k) is given by Theorem 6.9 for � = � and Theorem 6.14 for � < �,

for k = �3,

P (T (A;B) = �3) = �+m

�+m+ �
, (9.9)

and

P (R (A;B) = 1) =
�

�+m+ �
. (9.10)

Proof. The upper bound on k is given by N� = N � � � m�
�, where for r = 1 and t = 1,

we have by necessity for � = � and � < � that jA� [B�j = 2 and jB�j = 1, respectively. Hence

m�
� = 1 in both cases.

For � = � and k = 0, we can write

P (T (A;B) = 0) = P (T (A) = 0)� P (T (A [B) = 0) , (9.11)

from which the result follows by application of Equation 6.32 of Theorem 6.9, with m in that

equation replaced by m and m+ �, respectively, for P (T (A) = 0) and P (T (A [B) = 0).

The alternative expression for P (T (A;B) = 0), as given by Equation 9.7, follows trivially from

Equation 9.6. It may also be determined as P (T (A) = 0)� P (R (A;B) = 1).
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For k 2 fmax (1; �� �) ; : : : ; N � � � 1g, we have

P (T (A;B) = k)

= P

�
T (A) = k and max

b2B
� (b) > max

a2A
� (a)

�
= P (T (A) = k)� P

�
T (A) = k and max

b2B
� (b) � max

a2A
� (a)

�
= P (T (A) = k)� P

�
T (A [B) = k and max

b2B
� (b) � max

a2A
� (a)

�
= P (T (A) = k)

� P
�
max
b2B

� (b) � max
a2A

� (a) jT (A [B) = k

�
� P (T (A [B) = k)

= P (T (A) = k)� m

m+ �
P (T (A [B) = k)

as required.

Equation 9.9 follows by considering the last a, b or g to be an a or a g

Equation 9.10 follows by considering the last a, b or g to be a b.

Remark 9.12 Observe that setting B = ; in Theorem 9.11, which means � = 0, implies

P (T (A;B) = k) � 0 (9.12)

and P (R (A;B) = 1) = 0. (9.13)

Therefore this taboo model does not specialise to the non-taboo model it is based upon, simply by

specifying the B-sets.

Now we produce the taboo 	1-numbers.

Theorem 9.13 The taboo 	1-numbers for r = 1 and t = 1 are given by the following. For

k 2 f�3; 0; : : : ; N � � � 1g,

 1 (N;m; �; �; �; k) =
N !

�!m!�! (N � ��m� �)! � P (T (A;B) = k) (9.14)

where P (T (A;B) = k) is provided in Theorem 9.11.

Proof. The number of ways of distributing the � g�s, m a�s and � b�s into the N distinguishable

cells is multinomial. The results follow by the de�nitions of the terms.
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Remark 9.14 It is interesting to see how the original technique would apply to determining the

	1-numbers,  1 (N;m; �; �; �; k), for this model for � = � and k � 0. Without explanation,

although the technique has been made clear through earlier use of it, they are determined as follows.

For k 2 f1; : : : ; N � 2g,

 1 (N;m; �; �; �; k)

=
N�1�kX

`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

� NX
t=`+k+1

�
t� 1� ��m

� � 1

�
(9.15)

=

N�1�kX
`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

� �
t� 1� ��m

�

�����N+1
t=`+k+1

=
N�1�kX

`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

���
N � ��m

�

�
�
�
(`+ k + 1)� 1� ��m

�

��

=
N�1�kX

`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

���
N � 1�m

�

�
�
�
`+ k � ��m

�

��
. (9.16)

For � = 1, this reduces to

 1 (N;m; 1; 1; �; k)

=

�
N � 1�m

�

���
N � 2
m

�
�
�
k � 1
m

��
�
�
m+ � � 1

�

���
N � 2
m+ �

�
�
�
k � 1
m+ �

��
. (9.17)
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For � = � and k = 0

 1 (N;m; �; �; �; 0)

=
N�1X
`=m+�

�
`� 1
�� 1

��
`� �
m

� NX
t=`+1

�
t� 1� ��m

� � 1

�

=
1

(�� 1)!m!

N�1X
`=m+�

(`� 1)!
(`� ��m)!

��
N � ��m

�

�
�
�
`� ��m

�

��

=

�
N � ��m

�

��
m+ �� 1

m

� N�1X
`=m+�

�
`� 1

m+ �� 1

�
� (m+ �+ � � 1)!

(�� 1)!m!�!

N�1X
`=m+�

�
`� 1

m+ �+ � � 1

�

=

�
N � ��m

�

��
m+ �� 1

m

� �
`� 1
m+ �

�����N
`=m+�

� (m+ �+ �)!

(�� 1)!m!�!

�
`� 1

m+ �+ �

�����N
`=m+�

=

�
N � ��m

�

��
m+ �� 1

m

��
N � 1
m+ �

�
� (m+ �+ � � 1)!

(�� 1)!m!�!

�
N � 1

m+ �+ �

�
=

(N � ��m)!
�! (N � ��m� �)! �

(m+ �� 1)!
m! (�� 1)! �

(N � 1)!
(m+ �)! (N � ��m� 1)!

� (m+ �+ � � 1)!
(�� 1)!m!�! � (N � 1)!

(m+ �+ �)! (N � ��m� � � 1)! (9.18)

=
(N � 1)!

m!�! (�� 1)! (N � ��m� �)!

�
(N � ��m)
(m+ �)

� (N � ��m� �)
(m+ �+ �)

�
=

N !

m!�!�! (N � ��m� �)!

�
�

m+ �
� �

m+ � + �

�
. (9.19)

This provides us with the identical result of Equation 9.6 in Theorem 9.11, after dividing by the

number of ways of distributing the g�s, a�s and b�s without restriction.

9.3.4.2 The case r = 1, t � 1

We now generalise the distribution to the case r = 1, t � 1 as follows.

Theorem 9.15 For � = � and k = 0,

P (T (A;B) = 0) = P (T (A) = 0))

�
tX

u=1

(�1)u�1
X
i1;:::;iu

P
�
T
�
A [

Su
j=1Bij

�
= 0
�
, (9.20)
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for k 2 fmax (1; �� �) ; : : : ; N � � �m�
�g,

P (T (A;B) = k)

= P (T (A) = k)

�
tX

u=1

(�1)u�1
X
i1;:::;iu

jAnGj���(AnG) [Su
j=1Bij

���P
�
T
�
A [

Su
j=1Bij

�
= k

�
, (9.21)

for k = �3,

P (T (A;B) = �3) =
tX

u=1

(�1)u�1
X
i1;:::;iu

P
�
T
�
A;
Su
j=1Bij

�
= �3

�
, (9.22)

and

P (R (A;B) = 1) = 1�
tX

u=1

(�1)u�1
X
i1;:::;iu

P
�
R
�
A;
Su
j=1Bij

�
= 0
�
, (9.23)

where P (T (A) = k) is given by Theorem 6.9, and the inner summation on the right is over all

distinct subsets fi1; : : : ; iug � f1; 2; : : : ; tg.

Proof. Noting that the Bi�s are not necessarily disjoint, Equations 9.20, 9.21, 9.22 and 9.23

are straightforward generalisations of their counterparts in Theorem 9.11 by application of the

principle of inclusion and exclusion on the t sets B1; : : : ; Bt.

9.3.4.3 The Fundamental Theorem of 	1-Processes with Taboo Sets

Theorem 9.16 (Fundamental Theorem of 	1-Processes with Taboo Sets) For

r � 1, t � 1 and k 2 f�3; �� �; : : : ; N � � �m�
�g,

P (T (A;B) = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij ;B
�
= k

�
, (9.24)

with

P (R (A;B) = 1) =

rX
s=1

(�1)s�1
X
i1;:::;is

P
�
R
�Ss

j=1Aij ;B
�
= 1
�
, (9.25)

where the inner summations on the right are over all distinct subsets fi1; : : : ; isg � f1; 2; : : : ; rg,

and where P
�
T
�Ss

j=1Aij ;B
�
= k

�
and P (R (A;B) = 1) are provided by Theorem 9.15.

Proof. For Equation 9.24, use the same technique as applied in the proof of Theorem 6.28

using the Formularisation 9.7. For Equation 9.25, note that success will occur if at least one of
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Figure 9.1: Network for a Taboo Problem

the Ai�s is successful and apply the principle of inclusion and exclusion.

Remark 9.17 Observe that P (T (A;B) = �3) is the same as P (R (A;B) = 0). This occurs

because we are considering the case n = N for the without-replacement process, so either the

process is blocked or it has k 2 f�� �; : : : ; N � � �m�
�g. In the with-replacement process, there

are two other cases, namely k 2 f�2;�1g.

9.3.5 Example: All Elements of a Set are Taboo

Consider a process that has a set of t states, with any one of which being considered as taboo. To

model this by the above process, place each state into one of t distinct B-sets.

9.3.6 Example: Some Network Paths Before Others

Figure 9.1 illustrates a situation corresponding to one in which one might want a left path to be free

before a right path. This is modelled by setting N = 7, N = f1; 2; : : : ; 7g, G = f4g, A1 = f1; 2; 4g,

A2 = f1; 3; 4g, B1 = f5; 7g and B2 = f6; 7g.

Here � = 1, � = 1, r = 2, A1 [A2 = f1; 2; 3; 4g, t = 2 and B1 [B2 = f5; 6; 7g. As Ai \Bu � ;,

we have m�
� = jA�j + jB�j � 1 = 1 + 1 � 1, where A� = f1g and B� = f7g are unique. Thus

N� = N � 2. Hence k 2 f0; : : : ; 5g. By Theorem 9.16, and the use of symmetry,

P (T (A1; A2;B1; B2) = k) = 2P (T (A1;B1; B2) = k)� P (T (A1 [A2;B1; B2) = k) , (9.26)

where for k = 0,

P (T (A;B1; B2) = 0)

= P (T (A) = 0)�
2X

u=1

(�1)u�1
X
i1;:::;iu

P
�
T
�
A [

Su
j=1Bij

�
= 0
�

= P (T (A) = 0)� 2P (T (A [B1) = 0) + P (T (A [B1 [B2) = 0) , (9.27)
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and for k 2 f1; : : : ; 5g, using the fact that Ai \Bu � ;,

P (T (A;B1; B2) = k) = P (T (A) = k)� 2 jAnGj
jAnGj+ jB1j

P (T (A [B1) = k)

+
jAnGj

jAnGj+ jB1 [B2j
P (T (A [B1 [B2) = k) . (9.28)

The distribution for R is given by

P (R (A1; A2;B1; B2) = 1) = 2P (R (A1;B1; B2) = 1)� P (R (A1 [A2;B1; B2) = 1) , (9.29)

where

P (R (A;B1; B2) = 1) = 1�
2X

u=1

(�1)u�1
X
i1;:::;iu

jAj
jAj+

���Su
j=1Bij

���
= 1� 2 jAj

jAj+ jB1j
+

jAj
jAj+ jB1 [B2j

. (9.30)

Substituting the three di¤erent cases for A, considering i 2 f1; 2g, and providing actual values

when k = 0, gives

P (T (Ai;B1; B2) = 0) = P (T (2) = 0)� 2P (T (4) = 0) + P (T (5) = 0) (9.31)

and

P (T (A1 [A2;B1; B2) = 0) = P (T (3) = 0)� 2P (T (5) = 0) + P (T (6) = 0) , (9.32)

for k 2 f1; : : : ; 5g,

P (T (Ai; B1; B2) = k) = P (T (2) = k)� P (T (4) = k) +
2

5
P (T (5) = k) , (9.33)

and

P (T (A1 [A2; B1; B2) = k) = P (T (3) = k)� 6
5
P (T (5) = k) +

1

2
P (T (6) = k) . (9.34)

The values for R are

P (R (Ai;B1; B2) = 1) = 1� 2�
3

5
+
3

6
=
3

10
(9.35)
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A-set: A1 A2 A1 [A2
P (T (A) = k) 	1 (7; 2; k) 	1 (7; 2; k) 	1 (7; 3; k)

P (T (A [B1) = k) 1
2	1 (7; 4; k)

1
2	1 (7; 4; k)

3
5	1 (7; 5; k)

P (T (A [B2) = k) 1
2	1 (7; 4; k)

1
2	1 (7; 4; k)

3
5	1 (7; 5; k)

P (T (A [B1 [B2) = k) 2
5	1 (7; 5; k)

2
5	1 (7; 5; k)

1
2	1 (7; 6; k)

Table 9.1: Example: Taboo Probabilities: Terms in the Sum

and

P (R (A1 [A2;B1; B2) = 1) = 1� 2�
4

6
+
4

7
=
5

21
, (9.36)

from which

P (R (A1; A2;B1; B2) = 1) = 2�
3

10
� 5

21
=
38

105
, (9.37)

and therefore the probability of being blocked is

P (R (A1; A2;B1; B2) = 0) =
67

105
' 0: 638 1. (9.38)

Observe that P (T (A;B) = �3) = P (R (A;B) = 0) :

Table 9.1 provides the probabilities for k > 0 of each term of Equation 9.24 in terms of the

	-numbers of �rst kind. Omitting the fractional coe¢ cients provides the terms for k = 0. Table

9.2 displays the probabilities (to 4 d.p.). Observe that the sum of the probabilities in the table is

equal to P (R (A1; A2;B1; B2) = 0), as expected.

For example, we can write

P (T (A1; A2;B1; B2) = 0) = 2	1 (7; 2; 0)�	1 (7; 3; 0)� 4	1 (7; 4; 0)

+4	1 (7; 5; 0)�	1 (7; 6; 0) (9.39)

= 2� 1
3
� 1
4
� 4� 1

5
+ 4� 1

6
� 1
7

=
59

420

' 0: 140 5. (9.40)

9.3.7 Example: Voting System

Section 2.22 describes A Voting System. Suppose there are N ballots with t+1 candidates labelled

C0, C1, : : :, Ct, with the uth candidate receiving �u votes. The probability that candidate C0�s

votes will be counted prior to the completion of any of the other candidates votes can be found

using Equation 9.23 of Theorem 9.15 in the following way.

265



Extensions: Without-Replacement 266

9.4. Blocking - No Path Available

k P (T (A1;A2;B1;B2)= k)

0 0: 140 5

1 0: 071 4

2 0: 071 4

3 0: 052 4

4 0: 021 4

5 0: 004 8

Sum 0: 361 9

Table 9.2: Example: Taboo Probabilities

Let G be the set of C0�s votes, let A = G, and let Bu be the set of votes for the uth candidate.

Then � = �0 and m = 0. The probability is given by

P (R (A;B1; : : : ; Bt) = 1) = 1�
tX

u=1

(�1)u�1
X
i1;:::;iu

�0
�0 +

Pu
i=1 �ij

, (9.41)

where the inner summation on the right is over all distinct subsets fi1; : : : ; iug � f1; 2; : : : ; tg.

9.4 Blocking - No Path Available

9.4.1 Introduction

Suppose the waiting time of interest is measured until an event can no longer occur. For example,

during the process of randomly removing nodes from a complete graph, one might be interested

in the waiting time until there is no path from one or more nodes to one or more other nodes.

Examples include the Bombing Raid, which is described in Section 2.11.6, with applications using

without- and with-replacement models provided in Sections 13.4 and 14.3, respectively.

Remark 9.18 The probability distribution for this blocking process is a function of the 	-proba-

bilities and hence of the 	-numbers.

9.4.2 Preliminaries

Consider a non-empty set, B, that contains at least one element from each A-set, but no elements

of G. We consider that G cannot leave if this set B completes.

De�nition 9.19 Given a G-set G and A-sets A1; : : : ; Ar, a set B is de�ned to be a blockage set

of G for A-sets A1; : : : ; Ar if B � [ri=1AinG with B \Ai 6= ; 8i 2 f1; : : : ; rg.

Notation 9.20 Let Tb (A1; : : : ; Ar) be the random variable for the 	-process that measures the
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waiting time, possibly zero, from the completion time of the G-set G to the time when at least one

element has been visited from each set AinG.

De�nition 9.21 Let Nb be the number of distinct blockage sets of the G-set G for A-sets A1; : : : ;

Ar.

Lemma 9.22 For r = 1,

Nb = 2
m1 � 1. (9.42)

For r > 1,

Nb �
rY
i=1

(2mi � 1) (9.43)

and

Nb =

rY
i=1

(2mi � 1) i¤ Ai \Aj � G: (9.44)

Proof. For r = 1, any non-empty subset B of A1nG is a blockage set by de�nition, and there

are 2m1 � 1 of these subsets.

For r > 1, any non-empty subset B of [ri=1 (AinG) with B \ (AinG) 6= ; 8i is a blockage set.

There are clearly
Qr
i=1 (2

mi � 1) possible ordered r-tuples of sets formable by placing one or more

elements of AinG in the ith position within one of these r-tuples. As a blockage set is the union of

the r sets stored in one of these r-tuples, we have Nb �
Qr
i=1 (2

mi � 1). A blockage set formed as

such a union will be unique i¤ (AinG)\ (AjnG) = ; 8i 6= j, which is equivalent to Ai \Aj � G.

De�nition 9.23 Given a G-set G and A-sets A1; : : : ; Ar, a collection of t > 0 blockage sets, B =

fB1; : : : ; Btg, is de�ned to be a blockage covering of the G-set G for A-sets A1; : : : ; Ar if for any

blockage set B0 of G for A-sets A1; : : : ; Ar there exists B 2 B s.t. B0 � B.

Lemma 9.24 There exists at least one blockage covering for every G-set G and every collection

of A-sets A1; : : : ; Ar with Ai 6= G for some i.

Proof. The collection B of all blockage sets is a blockage covering as any blockage set is a

subset of itself.

De�nition 9.25 A blockage set, B, is said to be covered by a set B� if B� is a blockage set and

B� � B.

Remark 9.26 For a blockage set B to be covered by B�, we must have jBj > jB�j.
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9.4.3 Results

Remark 9.27 In the following theorem, new sets are formed as the union of a blockage set and G,

but this is not necessary, as the elements of G are always removed from A-sets when determining

	-probabilities or 	-numbers. However, this is done in order to make the need to remove elements

of G necessary in all cases.

Theorem 9.28 (Covering Theorem) Suppose B = fB1; : : : ; Btg is a blockage covering of G

for A-sets A1; : : : ; Ar, and let B0u = Bu [G for u 2 f1; : : : ; tg. Then

P (Tb (A1; : : : ; Ar) = k) = P
�
T
�
B01; : : : ; B

0
t

�
= k

�
. (9.45)

Proof. The random variable Tb (A1; : : : ; Ar) is the waiting time, possibly zero, from the

completion of the set G until the time when at least one element from each of the sets AinG

has been visited. By the de�nition of a covering set, this is equal to the waiting time, possibly

zero, from the completion of the set G until the time when at least one of the covering sets in B

is completed. Since the measurement of the waiting time begins from the completion of G, this is

equal to the waiting time, possibly zero, from the completion of the set G until the time when at

least one of the sets B0u = Bu [G for u 2 f1; : : : ; tg is completed. This is as required.

Remark 9.29 Even for small values of the parameters involved, the number of all blockage sets

can be quite large. For example, for r = 10 and mi � 2,
Qr
i=1 (2

mi � 1) = 59 049:

There are circumstances in which the waiting time probabilities may be calculated with a

substantially reduced number of blockage sets. The next theorem formalises this by writing the

waiting-time distribution for Tb (A1; : : : ; Ar) as a 	-distribution with parameters being the unions

of blockage sets in a minimal blockage covering and the G-set G.

De�nition 9.30 A minimal blockage covering, B; is a blockage covering for which jBj � jB0j for

any other blockage covering, B0.

Theorem 9.31 (Minimal Blockage Covering Theorem) SupposeB = fB1; : : : ; Btg is a min-

imal blockage covering of the G-set G for A-sets A1; : : : ; Ar, and let B0u = Bu[G for u 2 f1; : : : ; tg.

Then

P (Tb (A1; : : : ; Ar) = k) = P
�
T
�
B01 : : : ; B

0
t

�
= k

�
. (9.46)

Proof. A minimal blockage covering is a blockage covering, so Theorem 9.28 applies.

The following two examples and the No Path in a Network application in Section 13.4 illustrate

the concepts of blockage sets and the Minimal Blockage Covering Theorem.

268



Extensions: Without-Replacement 269

9.4. Blocking - No Path Available

j 1 2 3 4 5 6 7 8 9 10

Bj f1; 2g f1; 3g f1; 4g f1; 5g f2; 3g f2; 4g f2; 5g f3; 4g f3; 5g f4; 5g

Table 9.3: No Path in a Network: Blockage Sets

9.4.4 Example: Using the Decomposition Formula with the Minimal Blockage

Covering Theorem

Suppose r = 4; jAinGj � 2 and Ai \ Aj � G: The number of distinct blockage sets is provided

by Lemma 9.22 as Nb =
Q4
i=1

�
22 � 1

�
= 81. Therefore the number of terms in the Fundamental

Formula is 281 � 1 ' 2:4� 1024.

A minimal blockage covering is provided by ffa1; a2; a3; a4g jai 2 Aig, which contains t = 24

blockage sets. The number of terms in the Fundamental Formula is reduced to 216 � 1 = 65 535.

By the Minimal Blockage Covering Theorem 9.31 and the Corollary to the Decomposition

Formula of Theorem 6.43, the distribution is given by

P (Tb (A1; : : : ; A4) = k) = P
�
T
�
B01 : : : ; B

0
16

�
= k

�
=

16X
d=1

(�1)d�1
�
16

d

�
	1 (N; 2d; �; �; k) . (9.47)

Scholium 9.32 Observe how the number of terms involving 	1-probabilities has been reduced from

2:4� 1024 to 65 535 and then to just 16 terms.

Remark 9.33 The calculations will be faster and more accurate if the 	-numbers are used instead

of the 	-probabilities, so that only one division occurs for the entire sum.

9.4.5 Example: The E¤ect of having (Ai \ Aj) nG 6= ;

Suppose r = 4 and the A-sets are given by AinG as being f1; 2; 3; 4g, f1; 2; 3; 5g, f1; 2; 4; 5g and

f2; 3; 4; 5g for i 2 f1; 2; 3; 4g, respectively. By observation, a minimal covering is given by the 10

blockage sets provided in Table 9.3. Therefore t = 1023; which is signi�cantly lower than if there

were no intersections between A-sets other than G; the previous example shows this value to be

t = 65 536 minimal blockage sets.

Remark 9.34 This example demonstrates that the number of calculations might be reduced sig-

ni�cantly when there are intersections in common between the A-sets other than G.
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9.5 Incomplete Arrival Stream

9.5.1 Introduction

This section is included here merely to indicate the kinds of structural change in the formulae that

arise when not all arrivals appear, and is not purported to be complete.

Suppose n < N arrivals occur, and consider the case r = 1 and � = �. Let T be the random

variable for this model.

De�nition 9.35 De�ne an (N;n;m; �)-sequence as an (N;m; �)-sequence in which there are n �

N arrivals.

De�nition 9.36 De�ne (N;n;m; �)k to be the extension of (N;m; �)k to the case when there are

n � N arrivals.

In this case, it is possible that not all g�s arrive or all g�s arrive but not all a�s. The former

case is represented by T = �1 and the latter by T =1.

Remark 9.37 The probability distribution for this process introduces a more-general form of the

	-numbers of Chapter 6, and uses the 	-numbers directly.

Remark 9.38 It is a straightforward exercise to incorporate the case � < �.

Remark 9.39 It is clear that the form of the fundamental theorem of 	-processes will apply in

this case, thereby extending it to r � 1 A-sets.

Remark 9.40 The extension to taboo sets and blocking sets is not immediate, but with care is

straightforward.

Remark 9.41 Incorporating the partial completion of A-sets and/or G-sets can easily be done by

incorporating the arguments in Section 9.6.and 9.7, respectively.

9.5.2 The Distribution

Theorem 9.42 The number of distinguishable (N;n;m; �)-sequences is given by

#(Total) =
�X

i1=0

mX
i2=0

N�m��X
i3=0

i1+i2+i3=n

�
n

i1; i2; i3

�
: (9.48)
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Proof. The number of distinguishable (N;n;m; �)-sequences is given by the number of ways i1

indistinguishable a�s, i2 indistinguishable g�s and i3 indistinguishable s�s subject to i1 � �, i2 � m,

i3 � N �m� � and i1 + i2 + i3 = n can be arranged in a straight line to produce distinguishable

orderings. Hence the result.

Theorem 9.43 For k = �1,

(N;n;m; �)�1 =

��1X
i1=0

mX
i2=0

N�m��X
i3=0

i1+i2+i3=n

�
n

i1; i2; i3

�
, (9.49)

for k =1,

(N;n;m; �)1 =

�X
i1=0

m�1X
i2=0

N�m��X
i3=0

i1+i2+i3=n

�
n

i1; i2; i3

�
, (9.50)

and for k 2 f0; 1; : : : n� �g,

(N;n;m; �)k = (n;m; �)k , (9.51)

where (n;m; �)k is given by Theorem 6.5 with N = n.

Proof. For k = �1, (N;n;m; �)k is the number of distinguishable (N;n;m; �)-sequences for

which not all g�s arrive.

For k =1, (N;n;m; �)k is the number of distinguishable (N;n;m; �)-sequences for which not

all a�s arrive.

For k 2 f0; 1; : : : n� �g, the determination of (N;n;m; �)k is identical to that provided for the

determination of (N;m; �)k in the proof of Theorem 6.5 with N replaced by n.

9.6 Requiring Only a Partial Completion of A-Sets

9.6.1 Introduction

Consider the basic model described in Section 6.2 in which r = 1 and � = �, and suppose that we

measure the waiting time from the completion of G until the completion of any � states of AnG.

Let T be the random variable for this modi�ed model, and extend (N;m; �; �)k to (N;m; �; �; �)k.

Two alternative methods of handling this situation are discussed. In the �rst of these, it is

necessary to determine all
�
m
�

�
subsets of A, and therefore all 2(

m
�) � 1 unions of those subsets.

In the second, the expression for (N;m; �; �; �)k for k > 0 has three summands that depend on

the summation index; in this case a simpli�ed expression has not been found. In both cases, it is
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expected that computing time would be large, even for moderate values of the parameters, with

the former exceeding the latter by a signi�cant amount.

Remark 9.44 The probability distribution for this process introduces a more-general form of the

	-numbers of Chapter 6.

Remark 9.45 It is a straightforward exercise to incorporate the case � < �.

Remark 9.46 It is clear that the form of the fundamental theorem of 	-processes will apply in

this case, thereby extending it to r � 1 A-sets.

Remark 9.47 The extension to taboo sets and blocking sets is immediate.

Remark 9.48 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.

Remark 9.49 Incorporating the partial completion of G-sets can easily be done by incorporating

the argument in Section 9.7.

9.6.2 Method 1: Applying the Fundamental Theorem

One way to determine the distribution of T is to specify the r =
�
m
�

�
A-sets that correspond to

the possible completion-sets for G, and apply the Fundamental Theorem of 	1-Processes 6.28.

9.6.3 Method 2: Employing the Standard Combinatorial Technique and the

Transformation Formula

Another way to determine the distribution of T , is to employ the same method as that used to

prove Theorem 6.5. We consider the case � = � to illustrate the di¤erences of this model with the

case � = m.

Remark 9.50 Although (N;m; �; �; �)0 may be determined by choosing � +m places for g�s and

a�s from the N places, � of m a�s to �nish before the last g, and then � � 1 g�s to �nish in the

remaining �+��1 places before the last g, the number is determined using the original technique.

This shows once again the applicability of the transformation formula; even though it does not look

to be immediately applicable.
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Theorem 9.51 For 1 � k � N � ��m+ �,

(N;m; �; �; �)k =

�
m

�

� N�k�m+�X
`=max(�;�+��k)

�
`� 1
�� 1

��
`+ k � �� 1

�� 1

��
N � `� k
m� �

�
(9.52)

and for k = 0,

(N;m; �; �; �)0 =

�
N

�+m

��
m

�

��
�+ �� 1
�� 1

�
. (9.53)

Proof. The event T = k occurs if and only if the �th a or last g is exactly k places after the

last g; for k � 1, the event T = k means that the �th a is k places after the last g, and for k = 0,

this means that the last g occurs after the �th a.

The last of the g�s can be in any position from max f�; �+ �� kg to N �k� (m� �). Let this

position be `. The lower limit is derived by noting that � g�s must occur in the �rst ` positions,

and � g�s plus � a�s must occur in the �rst ` + k positions. The upper limit is derived by noting

that the position of the �th a must leave room for m� � a�s.

Now we must distribute the �� 1 remaining g�s among the �rst `� 1 positions. For k � 1, we

must choose � of the a�s to be placed in the ` + k positions not occupied by g�s, place one a in

position ` + k, distribute � � 1 a�s among the �rst ` + k � � � 1 places not occupied by g�s, and

the remaining m � � a�s among the N � ` � k positions following the �th a: For k = 0, we must

place � of the a�s in the �rst `� � positions not occupied by g�s.

For �xed `, the numbers of ways that these operations can be performed are

�
m

�

��
`� 1
�� 1

��
`+ k � �� 1

�� 1

��
N � `� k
m� �

�
(9.54)

and �
m

�

��
`� 1
�� 1

��
`� �
�

��
N � `
m� �

�
, (9.55)

respectively. In the case k = 0, we can simplify the result using the transformation formula with

L = N �m� �, f = �+ �� 1, c = �N +m+ �� 1 and e = m� � as follows. First write

�
m

�

�N�m+�X
`=�+�

�
`� 1
�� 1

��
`� �
�

��
N � `
m� �

�
=

�
m

�

��
�+ �� 1
�� 1

�N�m+�X
`=�+�

�
`� 1

�+ �� 1

��
N � `
m� �

�
:

(9.56)
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Continue with

N�m+�X
`=�+�

�
`� 1

�+ �� 1

��
N � `
m� �

�

=
N�m+�X
`=�+�

�
`� 1

�+ �� 1

�
(�1)m��

�
`�N +m� �� 1

m� �

�
by Equation 5.1 with a = `�N

= (�1)m��
N�m��X
`=0

�
`+ �+ �� 1
�+ �� 1

��
`�N +m+ �� 1

m� �

�

=

m��X
n=0

(�1)n
�
N �m� ��N +m+ �� 1 + 1

n

��
N �m� �+ �+ �� 1 +m� �� n+ 1

�+ �� 1 +m� �� n+ 1

�

=
m��X
n=0

(�1)n
�
0

n

��
N � n

�+m� n

�
= (�1)n

�
0

n

��
N � n

�+m� n

�����
n=0

=

�
N

�+m

�
.

Hence the results.

9.7 Requiring Only a Partial Completion of the G-set

9.7.1 Introduction

Consider the basic model described in Section 6.2, in which r = 1, and suppose that for � � ! � �,

we measure the waiting time from �th arrival of G until both the !th arrival of G and the �th

arrival of AnG. Let T be the random variable for this modi�ed model, and extend (N;m; �; �)k to

(N;m; �; �; �; !)k via (N;m; �; �; �)k, which it de�ned in Section 9.6. Here we consider the case

� = � and � = m.

Remark 9.52 The probability distribution for this process introduces a more-general form of the

	-numbers of Chapter 6.

Remark 9.53 It is a straightforward exercise to incorporate the case � < �.

Remark 9.54 It is clear that the form of the fundamental theorem of 	-processes will apply in

this case, thereby extending it to r � 1 A-sets.

Remark 9.55 The extension to taboo sets and blocking sets is immediate.
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Remark 9.56 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.

Remark 9.57 Incorporating the partial completion of A-sets can easily be done by incorporating

the argument in Section 9.6.

9.7.2 Results

Theorem 9.58 For 1 � k � N � !

(N;m; �; �;m; !)k =

�
�

!

� N�kX
`=max(!;m+!�k)

�
`� 1
! � 1

�
(9.57)

�
m�1X
�=0

�
k � 1
�

��
`� !

m� 1� �

��
N � `� �
�� !

�
, (9.58)

and for k = 0,

(N;m; �; �;m; !)0 =

�
�

!

� NX
`=m+!

�
`� 1
! � 1

��
`� !
m

��
N � `
�� !

�
. (9.59)

Proof. The event T = k occurs if and only if the last a or !th g is exactly k places after the

last g. For k � 1, the event T = k, means that the last a is k places after the !th g, and for k = 0,

this means that the !th g occurs after the last a.

The !th of the g�s can arrive in any position from max f!;m+ ! � kg to N � k. Let this

position be `. The lower limit is derived by noting that ! g�s must occur in the �rst ` positions,

and ! g�s plus m a�s must occur in the �rst `+ k positions.

Now choose the ! g�s to be placed in the �rst ` positions, and distribute !� 1 of them among

the �rst ` � 1 positions. For k � 1, we must place one a in position ` + k and distribute the

remaining m � 1 a�s among the �rst ` + k � ! � 1 places not occupied by g�s, with � of these

between the `th position and the (`+ k)th position. For k = 0, we must place the !th g after the

last a. In both cases, the remaining g�s that are not already placed are to be placed after the `th

position, in a position not already occupied by g�s or a�s.

For �xed `, the number of ways that these operations can be performed is

�
�

!

��
`� 1
! � 1

�m�1X
�=0

�
k � 1
�

��
`� !

m� 1� �

��
N � `� �
�� !

�
(9.60)
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and �
�

!

��
`� 1
! � 1

��
`� !
m

��
N � `
�� !

�
, (9.61)

respectively. Hence the result.

9.8 Batch Arrivals

9.8.1 Introduction

Processes in which arrivals occur in batches abound. An example using the batch model developed

here, is provided in Section 9.8.5 for the game SET.

Here we consider adding this facility to the basic 	1-process in which there are N elements

in N , a G-set with � = jGj, r � 1 A-sets, and measure the time of the batch in which the last

element of G has arrived till the time of the batch in which the last element of at least one A-set

has arrived.

We begin with a single A-set, from which the original non-batch distribution of Corollary 6.7

is produced as a special case. This is applied to having a particular match in the game SET. Then

we provide the Fundamental Theorem of Batch 	1-processes, and this is applied to the game SET.

Adding the batch arrival capability is done as an adjunct rather than as the �rst formulation

of the problem because the 	-process is relatively new, and because special cases, simpli�cations,

and other properties for the earlier distributions are possible that do not occur with batch arrivals.

It also allows generalisations to develop in di¤erent directions that do not require a batch process,

or are incompatible with batch processes; an example of the latter is varieties; which is discussed

in Section 9.9.

Placing a probability distribution on the possible batch sequences, can easily be applied to

the distributions for batch arrivals to mimic a distribution on the number of arrivals in a batch,

but this is not provided here. This could be applied, for example, to a model for usage of ink in

ball-point pens.

Remark 9.59 The probability distribution for this process introduces a more-general form of the

	1-numbers of Chapter 6.

Remark 9.60 Careful thought is required to incorporate the case � < �.

Remark 9.61 The extension to taboo sets and blocking sets is fairly straightforward.

Remark 9.62 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.
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Remark 9.63 Incorporating the partial completion of A-sets and B-sets can be done by incorpo-

rating the arguments in Sections 9.6.and 9.7, respectively.

9.8.2 Preliminaries

Consider arrivals to occur in B batches of size nb, b 2 f1; : : : ; Bg, such that
PB

b=1 nb = N . Also,

the batches occur in the order b = 1; 2; : : : ; B.

Notation 9.64 Put �` =
P`

b=1 nb for ` 2 f1; : : : ; Bg, and put �0 = 0.

It is clear that �` represents the cumulative number of arrivals after the `th batch has arrived.

Notation 9.65 Put �0` =
PB

b=` nb for ` 2 f1; : : : ; Bg.

Let T = T (m) be the random variable for this new process. T (m) measures the time in

batches, possibly zero, from the time G is completed to the time when the �rst of r A-sets is

completed.

9.8.3 Results for a Single A-Set

Lemma 9.66

T � B � min
f`:�`��g

`: (9.62)

Proof. The maximum wait occurs when the � elements of G arrive �rst and the last element

of A occurs in the last batch. The number of batches the elements of G occupy is minf`:�`��g `.

The result follows.

Theorem 9.67 The distribution of T is given for 1 � k � B �minf`:�`��g ` by

#(T (m) = k) =

B�kX
`

�`��
�`+k�m+�

min(n`;�)X
�=1

min(n`+k;m)X
�=1

�
n`
�

��
n`+k
�

��
�`�1
�� �

��
�`+k�1 � �
m� �

�
(9.63)

and for k = 0 by

#(T (m) = 0) =
BX
`

�`�m+�

min(n`;�)X
�=1

min(n`��;m)X
�=0

�
n`
�

��
n` � �
�

��
�`�1
�� �

��
�`�1 � �+ �

m� �

�
. (9.64)
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The number of distinguishable sequences is

#(Total) =
X

�1;�2;:::;�B
m1;m2;:::;mB

BY
b=1

�
nb

�b;mb

�
, (9.65)

where for b 2 f1; : : : ; Bg, we have �b � 0, mb � 0, �b +mb � nb,
PB

b=1 �b = � and
PB

b=1mb = m.

Also

#(Total) =
�
N

�;m

�
. (9.66)

Proof. First consider k � 1. At time `, T (m) = k i¤ � � 1 elements of G are visited in batch

`, the remaining �� � elements of G are visited before batch `, � � 1 elements of A are visited in

batch `+ k, and the remaining m� � elements of A are visited prior to batch `+ k.

As there must be su¢ cient room for the elements of G in the �rst ` batches, and room for the

elements of A in the �rst (`+ k) after the � elements have already been placed, the lower bounds

for ` satisfy �` � � and �`+k � m+ �. Since G is completed in the `th batch and waits for k more

batches, `+ k is bounded above by B, giving the upper bound for `.

There are
�
n`
�

�
ways of choosing the � places in the `th batch for elements of G. The upper

bounds on � are provided by the batch size of the `th batch, n`, and the number of elements in G.

There are
�
n`+k
�

�
ways of choosing the � places in the (`+ k)th batch for elements of A. The

upper bounds on � are provided by the batch size of the (`+ k)th batch, n`+k, and the number of

elements in A.

The number of ways of choosing arrival places prior to ` for those �� � elements of G that did

not arrive in batch ` is
��`�1
���
�
. The number of ways of choosing places for those m�� elements of

A that must to arrive prior to batch ` + k is
��`+k�1��

m��
�
: Summing over all possible values of `, �

and � provides the result for k � 1.

Now consider k = 0. At time `, T = 0 i¤ � � 1 elements of G are visited in batch `, the

remaining � � � elements of G are visited before batch `, � � 0 elements of A are also visited in

batch `, and the remaining m� � elements of A are visited prior to batch `:

As there must be su¢ cient room for the elements of G and the elements of A in the �rst `

batches, the lower bound for ` satis�es �` � m+ �. Since G could be completed at the Bth batch,

and therefore have a wait of zero, ` is bounded above by B:

The upper bounds on � are determined in the same way as for the case k � 1. Since the last

� elements of A to arrive share the same batch as the last elements of G, there are
�
n`��
�

�
ways of

choosing them, and the upper bounds on � are provided by the remaining space in the batch after

placing � elements of G in it and the number of elements in A.
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The number of ways of placing those � � � elements of G that don�t arrive in batch ` into

batches prior to ` is
��`�1
���
�
. The number of ways of choosing batches for those m� � elements of

A that must to arrive prior to batch ` is
��`+k�1��

m��
�
: Summing over all possible values of `, � and

� provides the result for k = 0.

One way to determine the number of distinguishable distributions is to consider the static

random allocation problem of placing any number of the elements of G and AnG in each of the B

batches, subject to the number of each type in each batch being non-negative (�b � 0, mb � 0),

together do not exceed the size of a batch (�b + mb � nb), and distribute all of the elements

(
PB

b=1 �b = � and
PB

b=1mb = m). As there are
�

nb
�b;mb

�
ways of allocating �b elements of G and

mb elements of AnG to nb cells for any b 2 f1; : : : ; Bg, the number of ways of allocating the �

elements of G and m elements of AnG for a particular partition of � and m is
QB
b=1

�
nb

�b;mb

�
; as

these allocations are independent of each other once the partition has been speci�ed. Summing

over all possible partitions of � and m provides the number.

This distribution process is equivalent to distributing the elements of G and AnG in all possible

ways into N cells. This can be done in
�
N
�;m

�
ways.

Scholium 9.68 Consider the single arrival process corresponding to a batch process. Suppose the

last element of G arrives at time ` and waits k > 0 for the completion of A. Partitioning the

arrival stream into contiguous groups of cells with sizes corresponding to the batch sizes in the

batch arrival process, will place the `th arrival in a batch `0, say, and will place the last arrival for

A in a batch `0 + k0, for some k0 � 0. For k = 0, we must have k0 = 0. Summing the probabilities

over ` and k that give rise to a wait of k0 in the batch process would be another way to determine

the probability distribution for the batch process. This provides another reason why the number of

distinguishable sequences in the batch process is the same as for the non-batch process.

9.8.4 For Batches of Size 1

When the batch sizes are all 1, the distribution as provided by Theorem 9.67 should reduce to the

original non-batch distribution of Theorem 6.5.

Corollary 9.69 For nb � 1, the distribution of Theorem 9.67 specialises to the distribution of

Theorem 6.5.
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Proof. Observe what happens to Equations 9.63 and 9.64 if we set nb � 1. Then �` = ` and

we have

#(T (m) = k) =
N�kX
`
`��

`+k�m+�

1X
�=1

1X
�=1

�
1

�

��
1

�

��
`� 1
�� �

��
(`+ k � 1)� �

m� �

�

=
N�kX

`=max(�;m+��k)

�
`� 1
�� 1

��
`+ k � �� 1

m� 1

�
,

which is Equation 6.2, and

#(T (m) = 0) =

NX
`

`�m+�

1X
�=1

0X
�=0

�
1

�

��
1� �
�

��
`� 1
�� �

��
`� 1� �+ �

m� �

�

=

NX
`�m+�

�
`� 1
�� 1

��
`� �
m

�

which is Equation 6.3, as required.

The following result provides the alterations that are required for the case � < �.

Result 9.70 The distribution for the �th arrival is a modi�cation of the distribution for the �th

that takes into consideration that a wait of k occurs if �1 g�s arrive in the `th batch, �� �1 arrive

before the `th batch, �2 g�s arrive at and the remaining g�s arrive before the (`+ k)th batch, � a�s

arrive at the (`+ k)th batch with � + �2 � 1, and the remaining a�s arrive before the (`+ k)th

batch. This means that the sums are given by

B�kX
`

�`��
�`+k�m+�

min(n`;�)X
�1=1

min(n`+k;���)X
�2=0

min(n`+k��2;m)X
�=max(0;1��2)

, (9.67)

and the summand is given by

�
n`
�1

��
�`�1
� � �1

��
n`+k
�2

��
�`+k�1 � �
�� � � �2

��
n`+k � �2

�

��
�`+k�1 � (�� �2)

m� �

�
. (9.68)

9.8.5 Example: The Game SET : A Particular Match

This example models the Standard Game of SET as a batch process. By doing so, it permits one

to determine the distribution of the waiting times for a particular match to occur for a speci�ed

card, measured from the time the speci�ed card is dealt in a batch. Section 9.8.7 considers all
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possible matches.

In the Standard Batch Game of SET, the �rst batch has 12 cards and each of the remaining

batches have 3 cards. For a particular matching pair for a given card, N = 81, � = 1, m = 2,

B = 24, n1 = 12, nb = 3 for b 2 f2; : : : ; Bg, �b = 12 + 3 (b� 1) for b 2 f1; : : : ; Bg, and k � B � 1.

The number of distinguishable sequences is #(Total) =
�
N
�;m

�
=
�
81
1;2

�
= 255 960:

For k 2 f1; : : : ; 23g,

#(T = k) =

B�kX
`

�`��
�`+k�m+�

min(n`;�)X
�=1

min(n`+k;m)X
�=1

�
n`
�

��
n`+k
�

��
�`�1
�� �

��
�`+k�1 � �
m� �

�

=
24�kX
`=1

1X
�=1

2X
�=1

�
n`
�

��
3

�

��
�`�1
1� �

��
�`+k�1 � 1
2� �

�

=
2X

�=1

�
12

1

��
3

�

��
3k + 8

2� �

�
+
24�kX
`=2

2X
�=1

�
3

1

��
3

�

��
3`+ 3k + 5

2� �

�
, (9.69)

and for k = 0,

#(T = 0) =

BX
`

�`�m+�

min(n`;�)X
�=1

min(n`��;m)X
�=0

�
n`
�

��
n` � �
�

��
�`�1
�� �

��
�`�1 � �+ �

m� �

�

=
24X
`=1

1X
�=1

min(n`��;2)X
�=0

�
n`
�

��
n` � �
�

��
3`+ 6

1� �

��
3`+ 5 + �

2� �

�

=

2X
�=0

�
12

1

��
11

�

��
0

0

��
0

2� �

�
+

24X
`=2

2X
�=0

�
3

1

��
2

�

��
3`+ 6

2� �

�

=

�
12

1

��
11

2

�
+

�
3

1

� 24X
`=2

2X
�=0

�
2

�

��
3`+ 6

2� �

�
. (9.70)

Table 9.4 provides the computed values for #(T = k). As a simple check, observe thatP23
k=0 f (k) = 88 911 + 167 049 = 255 960, as required. The mean and standard deviation are

calculated to be

Mean ' 6: 60 (9.71)

and StdDev ' 6: 91. (9.72)
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k 0 1 2 3 4

#(T = k) 88 911 9 639 9 612 9 558 9 477

k 5 6 7 8 9

#(T = k) 9 369 9 234 9 072 8 883 8 667

k 10 11 12 13 14

#(T = k) 8 424 8 154 7 857 7 533 7 182

k 15 16 17 18 19

#(T = k) 6 804 6 399 5 967 5 508 5 022

k 20 21 22 23

#(T = k) 4 509 3 969 3 402 2 808

Table 9.4: #(T = k) for Waiting-Times for a Speci�c Card and a Particular Match

9.8.6 Multiple A-Sets and The Fundamental Theorem of Batch 	1-Processes

Consider now the same batch process with multiple A-sets A1; : : : ; Ar.

Formularisation 9.71 Let � (a) be the arrival batch for a 2 N . Then

T (A1; : : : ; Ar) = min
i2f1;:::;rg

T (Ai) , (9.73)

where

T (A) = max
a2A

(� (a))�max
g2G

(� (g)) . (9.74)

Notation 9.72 For m� de�ned by Equation 6.59, let

m�� = B � max
f`:�0`�m�g

`+ 1. (9.75)

Lemma 9.73 T (A1; : : : ; Ar) � B � ��m��.

Proof. Since m�� is the minimal number of batches required to place m� arrivals, the result

follows.

Theorem 9.74 (Fundamental Theorem for Batch 	1-Processes) For 0 � k � B���m��,

the distribution of T is given by

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij

�
= k

�
, (9.76)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg. In
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the case where Ai \Aj � G, Equation 6.64 may be expressed as

P (T = k) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ps

j=1mij

�
= k

�
. (9.77)

Proof. The form of the Fundamental Theorem in Section 6.7 applies to batch processes. The

upper bound for k is provided by Lemma 9.73.

The next result provides the result for the case in which all A-sets are the same size.

Corollary 9.75 When mi � m; the distribution of T reduces to

P (T = k) =
rX
s=1

(�1)s�1
�
r

s

�
P (T (sm) = k) . (9.78)

Proof. The corresponding Corollary to the Fundamental Theorem in Section 6.7 applies to

batch processes.

9.8.7 Example: The Game SET - Any Match

This example precisely models the waiting-time process in the Standard Game of SET, in that it

answers the question: What is the waiting time, possibly zero, for the completion of any set for a

speci�c card?

The parameters of the distribution are described in Section 11.2.7.2, except that now we con-

sider all 40 possible matches for the speci�c card. Thus N = 81, � = 1, r = 40, mi � 2,

B = 24, n1 = 12, nb = 3 for b 2 f2; : : : ; Bg, �b = 12 + 3 (b� 1) for b 2 f1; : : : ; Bg, �01 = 81,

�0b = 3 (B � b+ 1) for b 2 f2; : : : ; Bg, and k � B � 1�m��, where m�� = B �maxf`:�0`�m�g `+1.

Since m� = 39, the maxf`:�0`�m�g ` = 12. Hence m
�� = 13 and k � 10.

As none of these matches have cards in common other than the card of interest, the distribution

is given by Equation 9.78 as

P (T = k) =
40X
s=1

(�1)s�1
�
40

s

�
P (T (2s) = k) , (9.79)

where the distribution of T (m) is given by Theorem 9.67 with � = 1 as follows. For 1 � k � 10,

P (T (m) = k) =

24�kP̀
=1

3`�m�3k�8

min(3;m)P
�=1

�
n`
1

��
3
�

��
3`+3k+5
m��

�
�
81
1;m

� , (9.80)
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k 0 1 2 3

P (T = k) 9: 17� 10�1 3: 89� 10�2 2: 46� 10�2 1: 24� 10�2
k 4 5 6 7

P (T = k) 4: 85� 10�3 1: 39� 10�3 2: 74� 10�4 3: 36� 10�5
k 8 9 10

P (T = k) 2: 19� 10�6 5: 69� 10�8 3: 26� 10�10

Table 9.5: Waiting-Time Distribution for the Batch Game based on All Matches

and for k = 0;

P (T (m) = 0) =

24P̀
=1

3`�m�8

min(nl�1;m)P
�=0

�
n`
1

��
n`�1
�

���`�1
m��

�
�
81
1;m

� . (9.81)

The expressions for the probabilities were converted to a form suitable for use within Scienti�c

WorkPlace to pass to the Maple Engine. The distribution is provided in Table 9.5. The mean and

standard deviation were calculated to be

Mean ' 0: 154 (9.82)

and StdDev ' 0: 591. (9.83)

9.9 Varieties (Complexes)

9.9.1 Introduction

The term complex was used by Kolchin, Sevast�yanov and Christyakov [50] to refer to the allocation

of N particles v times independently of each other. They investigated the number of cells that

have a speci�ed number of particles as a function of v. Here we consider that each of the N cells

has v distinct attributes, called varieties, and each of the vN random arrivals is allocated to one

of the varieties in one of the N cells, with each variety accepting precisely one arrival. Each group

of N arrivals is termed a complex. We investigate the waiting time for the completion of one set

of cells till one or more other sets of cells are completed.

One view of the structure is to consider the elements of N to be a v-dimensional vector of cells,

with each dimension corresponding to a variety. For example, the elements of one variety could

be coloured blue and the another coloured red. In the car parking models, arrivals from di¤erent

sources may constitute a complex of di¤erent varieties.

A model in which each arrival for each variety occurs simultaneously at each of the N arrival-

points and whose arrival streams are independent of each other is discussed in Section 9.9.2 on
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Simultaneous Varieties.

A model in which there is no restriction on the number or type of varieties that can arrive

simultaneously is discussed in Section 9.9.6 on Randomised Varieties.

9.9.2 Simultaneous Varieties

Suppose each variety arrives simultaneously at each of the N arrival-points, and the arrival streams

for di¤erent varieties are independent of other varieties.

This process is dissimilar to the one described in Section 9.8 on the Batch Arrivals, because

here the batches must necessarily contain exactly one of each of the varieties, whereas the batch

process requires that no restrictions be placed on the contents of a batch. This necessitates the

determination of the distribution formulae ab initio.

To illustrate the new concepts associated with analysis of simultaneous varieties, we consider

the simple case � = � and a single A-set.

Remark 9.76 The probability distribution for this process introduces a more-general form of the

	-numbers of Chapter 6.

Remark 9.77 Careful thought is required to incorporate the case � < �.

Remark 9.78 It is clear that the form of the fundamental theorem of 	-processes will apply in

this case, thereby extending it to r � 1 A-sets.

Remark 9.79 The extension to taboo sets and blocking sets is fairly straightforward.

Remark 9.80 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.

Remark 9.81 Incorporating the partial completion of A-sets and B-sets can be done by incorpo-

rating the arguments in Sections 9.6.and 9.7, respectively.

9.9.3 Preliminaries

Consider a G-set with jGj = � and a single A-set with jAnGj = m. The arrival sequences for the

varieties are considered to be independent.

Let T be the random variable for the completion time, possibly zero, from the instant the

process has visited all the states of G to the instant it has �rst visited all the states of A:
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9.9.4 Distribution

Theorem 9.82 The distribution of T is given for k � 1 by

#(T = k) =
N�kX

`=max(�;m+��k)

��
`

�

�v
�
�
`� 1
�

�v�

�
��
`+ k � �

m

�v
�
�
`+ k � �� 1

m

�v�
, (9.84)

and for k = 0 by

#(T = 0) =
NX

`=m+�

��
`

�

�v
�
�
`� 1
�

�v��`� �
m

�v
, (9.85)

and the number of distinguishable sequences is

#(Total) =
�
N

m; �

�v
. (9.86)

Proof. The event T = k occurs if and only if the last a or g for each variety occurs on or

before k places after the last g of all varieties, and at least one of the a�s or g�s occurs exactly k

places after the last g of all varieties.

For k � 1, the last of the g�s can be in any position from max f�;m+ �� kg to N � k. Let

this position be `. The lower limit is derived by noting that for each variety, � g�s must occur in

the �rst ` positions, and � g�s plus m a�s must occur in the �rst `+ k positions. In this case, there

are
�
`
�

�v
ways to distribute the � g�s of each variety to the �rst ` positions, and

�
`�1
�

�v
ways to

distribute them to the �rst ` � 1 positions. Subtracting these two values provides the number of

ways of distributing them to the �rst ` positions so that at least one variety has at least one g in

position `. There are now
�
`+k��
m

�v
ways to distribute the m a�s of each variety to the remaining

`+k�� positions, and
�
`+k���1

m

�v
ways to distribute them to the remaining `+k���1 positions.

Subtracting these two values provides the number of ways of distributing them to the remaining

` + k � 1 positions so that at least one variety has at least one a in position ` + k. By summing

the product of the two di¤erences, we obtain the required result.

For k = 0, the last of the g�s and a�s from all varieties can be in any position from m + � to

N . Let this position be `. The lower limit is derived by noting that for each variety, � g�s and

m a�s must occur in the �rst ` positions. The number of ways of distributing them to the �rst `

positions so that at least one variety has at least one g in position ` is identical to the number for

k � 1. There are now
�
`��
m

�v
ways to distribute the m a�s of each variety to the remaining ` � �
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mnv 1 2 3 4 5 10 50

1 1: 83 1: 42 1: 12 0: 91 0: 76 0: 37 0: 005 2

2 2: 75 2: 02 1: 55 1: 24 1: 02 0: 46 0: 005 2

3 3: 30 2: 35 1: 77 1: 39 1: 13 0: 49 0: 005 2

4 3: 67 2: 54 1: 89 1: 47 1: 18 0: 49 0: 005 2

5 3: 93 2: 67 1: 96 1: 51 1: 20 0: 49 0: 005 2

6 4: 13 2: 76 2: 00 1: 53 1: 21 0: 49 0: 005 2

7 4: 28 2: 81 2: 02 1: 53 1: 21 0: 49 0: 005 2

8 4: 40 2: 84 2: 02 1: 53 1: 21 0: 49 0: 005 2

9 4: 50 2: 85 2: 03 1: 53 1: 21 0: 49 0: 005 2

Table 9.6: Queueing in a Lane with Varieties

positions. By summing the product of the two terms produces the required result.

The number of distinguishable distributions for one variety is given by Equation 6.1. The result

follows by applying the multiplication principle to the v independent 	1-processes.

9.9.5 Example: Queueing in a Lane

Section 2.2 describes Queueing in Lanes. Consider a uni-directional lane of N = 10 vehicles

with v occupants in each vehicle, and suppose occupants of each vehicle have visited one of v

di¤erent venues with no occupant from the same vehicle visiting the same venue. Suppose that

one occupant from each venue arrives at their vehicle at each of N time-points. Table 9.6 provides

a comparison of expected waiting times that each vehicle, once fully occupied, may have to wait.

The expectations have been calculated using the probabilities given by Theorem 9.82 with � = 1

to give

Ev (m) =

P9
k=1 k

P10�k
`=max(1;m+1�k)

h�
`
1

�v � �`�11 �vi h�`+k�1m

�v � �`+k�2m

�vi�
10
m;1

�v . (9.87)

For v = 1000, the values of Ev (m) are all zero to 18 decimal places.

Remark 9.83 Observe that the waiting time for the completion of the A-set measured from the

completion of the G-set becomes less as the number of varieties increases. One would expect the

�rst variety of G to be visited will have a signi�cantly increased waiting time whilst that of the last

variety will be signi�cantly reduced.

9.9.6 Randomised Varieties

Suppose there is no restriction on the number or type of arrivals that can appear at an arrival-point.

This lack of restriction implies the number of each variety in a batch is limited by the batch

size. An immediate consequence of this is that this model is equivalent to the non-variety batch
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model of Section 9.8 in which each of N G-sets speci�ed therein has � = v elements.
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10.1 Introduction

In this chapter, the basic waiting-time model is extended to taboo sets and blocking in a similar

way as for 	1 processes in Chapter 9. The generalisation to requiring at least t of the A-sets to

be completed rather than just a single A-set so closely parallels the without-replacement case that

it is omitted here.

10.2 Taboo Sets

10.2.1 Introduction

The with-replacement material on Taboo Sets is quite similar to the corresponding without-replace-

ment material provided in Section 9.3, which provides background material, de�nitions and nota-

tion for this section.

Remark 10.1 The probability distributions for this taboo process are also based on the 	-proba-

bil ities, and hence also on the 	-numbers.
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Remark 10.2 The extension to incomplete arrival streams can be incorporated using the analysis

of Section 9.5.

Remark 10.3 Incorporating the partial completion of A-sets and/or G-sets can easily be done by

incorporating the arguments in Section 9.6.and 9.7, respectively.

10.2.2 Distribution

We begin with the distribution for the case r = 1, t = 1, and use this result in the case r = 1,

t � 1, whose distribution is then used in the case r � 1, t � 1.

10.2.2.1 The case r = 1, t = 1

Consider the case r = 1, t = 1, and let A = A1, B = B1 and � = jBj.

Theorem 10.4 For k = �1,

P (T (A;B) = �1) =
��1X
i=0

�
�

i

�
v (n;N � �+ i; i)�

��1X
i=0

�
�

i

�
v (n;N � �+ i; � + i) , (10.1)

for k = �2,

P (T (A;B) = �2)

=

��1X
i=�

�
�

i

�
v (n;N � �+ i;m+ i)�

��1X
i=�

�
�

i

�
v (n;N � �+ i;m+ � + i) , (10.2)

for � = � and k = 0,

P (T (A;B) = 0) = P (T (A) = 0)� P (T (A [B) = 0) , (10.3)

for k 2 fmax (1; �� �) ; : : : ; n� �g,

P (T (A;B) = k) = P (T (A) = k)� m

m+ �
P (T (A [B) = k) , (10.4)
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for k =1,

P (T (A;B)=1) = P (T (A) =1)

�P (T (B) = �2)�
n��X
k=���

P (T (B) = k) (10.5)

+P (T (A [B) = �2) +
n��X
k=���

P (T (A [B) = k) , (10.6)

for k = �3,

P (T (A;B) = �3) = 1�
X

k2f�2;�1;���;:::;n��;1g
P (T (A;B) = k) , (10.7)

and

P (R (A;B) = 1) =
n��X
k=���

�
P (T (A) = k)� �+m

�+m+ �
P (T (A [B) = k)

�
, (10.8)

where P (T (A) = k) is given by Theorem 7.9.

Proof. For k = �1, there must be arrivals for less than � distinct elements of G and less than

� distinct elements of B. The count may therefore be determined by counting the number of ways

in which there are < � visited elements of G without restriction, and subtracting the number of

ways in which there are < � visited elements of G with all � elements of B being visited. In both

cases, the number of visited elements of G may be for any i 2 f0; : : : ; � � 1g, with the speci�c i

elements having
�
�
i

�
ways to be chosen. In the former case, the number of ways of distributing n

arrivals amongst the N��+i available elements with a speci�c i being visited is v (n;N � �+ i; i).

In the latter case, we need � + i speci�c elements visited, so the number is v (n;N � �+ i; � + i) :

The result for k = �1 follows trivially.

The result for k = �2 follows a similar reasoning as for the case k = �1; with the di¤erence

that the number of visited elements of G is at least � and at most �� 1; and all elements of AnG

must be visited.

For � = � and k = 0, the result follows by considering that A must be completed by a g but

A [B must not.

For k 2 fmax (1; �� �) ; : : : ; n� �g, the result follows in same way as in the without-replacement

model; see the proof of Theorem 9.11.

For k = 1, there must be arrivals for at least � elements of G, for less than m elements of

AnG; and for less than � elements of B. Consider �rst the case of � � of G and < m of AnG,

and then subtract the case of � � of G, < m of AnG and � of B. The former case has probability

P (T (A) =1). The latter case may be considered as the case � � of G and � of B subtract
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the case � � of G, m of AnG and � of B. The �rst of these two cases produces T (B) = k for

k 2 f�2; �� �; : : : ; n� �g, and the latter produces T (A [B) = k for k 2 f�2; �� �; : : : ; n� �g.

Hence the result for k =1.

The result for k = �3 is obtained by observing that it is the last case.

Equation 10.8 arises by considering that A must be completed but A[B must not be completed

with A being completed before B.

Remark 10.5 Observe that setting B = ; in Theorem 9.11, which means � = 0, implies

P (T (A;B) = k) � 0 (10.9)

and P (R (A;B) = 1) = 0. (10.10)

Therefore this taboo model does not specialise to the non-taboo model it is based upon, simply by

specifying the B-sets as empty.

10.2.2.2 The case r = 1, t � 1

We now generalise the distribution to the case r = 1, t � 1 as follows.

Theorem 10.6 For k = �1,

P (T (A;B1; : : : ; Bt) = �1)

=

��1X
i=0

�
�

i

�
v (n;N � �+ i; i)

�
tX

u=1

(�1)u�1
X
i1;:::;iu

��1X
i=0

�
�

i

�
v
�
n;N � �+ i;

���Su
j=1Bij

���+ i� , (10.11)

for k = �2,

P (T (A;B1; : : : ; Bt) = �2)

=

��1X
i=�

�
�

i

�
v (n;N � �+ i;m+ i)

�
tX

u=1

(�1)u�1
X
i1;:::;iu

��1X
i=�

�
�

i

�
v
�
n;N � �+ i;m+

���Su
j=1Bij

���+ i� , (10.12)
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for � = � and k = 0,

P (T (A;B1; : : : ; Bt) = 0)

= P (T (A) = 0)�
tX

u=1

(�1)u�1
X
i1;:::;iu

P
�
T
�
A [

Su
j=1Bij

�
= 0
�
, (10.13)

for k 2 fmax (1; �� �) ; : : : ; n� �g,

P (T (A;B1; : : : ; Bt) = k)

= P (T (A) = k)

�
tX

u=1

(�1)u�1
X
i1;:::;iu

jAnGj���(AnG) [Su
j=1Bij

���P
�
T
�
A [

Su
j=1Bij

�
= k

�
, (10.14)

for k =1; with B0 = (A [B1; : : : ; A [Bt),

P (T (A;B1; : : : ; Bt)=1) = P (T (A) =1)

� P (T (B) = �2)�
n��X
k=���

P (T (B) = k)

� P
�
T
�
B0
�
= �2

�
�

n��X
k=���

P
�
T
�
B0
�
= k

�
, (10.15)

for k = �3,

P (T (A;B1; : : : ; Bt) = �3) = 1�
X

i2f�2;�1;���;:::;n��;1g
P (T (A;B1; : : : ; Bt) = k) (10.16)

and

P (R (A;B1; : : : ; Bt) = 1) = 1�
tX

u=1

(�1)u�1
X
i1;:::;iu

P
�
R
�
A;
Su
j=1Bij

�
= 0
�
. (10.17)

where P (T (A) = k) is given by Theorem 7.9, and the inner summation on the right is over all

distinct subsets fi1; : : : ; iug � f1; 2; : : : ; tg.

Proof. For k = �1, there must be arrivals for less than � distinct elements of G, and less

than jBuj distinct elements of Bu for all u 2 f1; : : : ; tg. The count may therefore be determined

by counting the number of ways in which there are < � visited elements of G without restriction,

and subtracting the number of ways in which there are < � visited elements of G with all jBuj
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elements of Bu being visited for at least one u. Using the same argument as for the case t = 1, and

applying the principle of inclusion and exclusion provides the result. A similar argument applies

to the case k = �2.

The cases k = 0 and k 2 fmax (1; �� �) ; : : : ; n� �g follow by identical reasoning as used in

the without-replacement model, as does the result for P (R (A;B1; : : : ; Bt) = 1).

For k = 1, there must be arrivals for at least � elements of G, for less than m elements of

AnG, and for less than �u elements of Bu for all u. Consider �rst the case of � � of G and < m of

AnG, and then subtract the case of � � of G, < m of AnG and �u of Bu for at least one u. The

former case has probability P (T (A) =1). The latter case may be considered as the case � � of

G and �u of Bu for at least one u subtract the case � � of G, at least m of AnG, and �u of Bu
for at least one u. The �rst of these two cases produces T (B) = k for k 2 f�2; �� �; : : : ; n� �g,

and the latter produces T (A [Bu) = k for k 2 f�2; �� �; : : : ; n� �g for at least one u. Hence

the result for k =1.

The result for k = �3 is obtained by observing that it is the last case.

10.2.2.3 The Fundamental Theorem of 	2-Processes with Taboo Sets

We now generalise the distribution to the case r � 1, t � 1 as follows.

Theorem 10.7 (Fundamental Theorem of 	2-Processes with Taboo Sets) For k = �1,

P (T (A;B) = �1) = P (T (A;B) = �1) , (10.18)

for k 2 f�2; �� �; : : : ; N � �g,

P (T (A;B) = k) =

rX
s=1

(�1)s�1
X
i1;:::;is

P
�
T
�Ss

j=1Aij ;B
�
= k

�
, (10.19)

for k =1, with B00 = (A1 [B1; : : : ; A1 [Bt; A2 [B1; : : : ; A2 [Bt; : : : ; Ar [B1; : : : ; Ar [Bt),

P (T (A;B1; : : : ; Bt)=1) = P (T (A) =1)

� P (T (B) = �2)�
n��X
k=���

P (T (B) = k)

� P
�
T
�
B0
�
= �2

�
�

n��X
k=���

P
�
T
�
B0
�
= k

�
, (10.20)
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P (T (A;B)=1)

= P (T (A) =1)

� P (T (B) = �2)�
n��X
k=���

P (T (B) = k)

� P
�
T
�
B00
�
= �2

�
�

n��X
k=���

P
�
T
�
B00
�
= k

�
, (10.21)

for k = �3,

P (T (A;B) = �3) = 1�
X

i2f�2;�1;���;:::;n��;1g
P (T (A;B) = k) , (10.22)

and

P (R (A;B) = 1) =
rX
s=1

(�1)s�1
X
i1;:::;is

P
�
R
�Ss

j=1Aij ;B
�
= 1
�
, (10.23)

where the inner summations on the right are over all distinct subsets fi1; : : : ; isg � f1; 2; : : : ; rg,

and where P
�
T
�Ss

j=1Aij ;B
�
= k

�
and P (R (A;B) = 1) are provided by Theorem 10.6.

Proof. The case k = �1 corresponds to having < � elements of G with arrivals and < �

elements of B with arrivals, which is independent of the A-sets. Hence the probability is the same

for r � 1 as it is for r = 1.

The case k = �2 corresponds to having at least � elements of G with arrivals but not all � of

them, at least one A-set has arrivals for all elements, and no B-set has all arrivals. Applying the

principle of inclusion and exclusion to the case r = 1, t � 1 provides the result.

The principle of inclusion and exclusion similarly applies to k 2 f�� �; : : : ; N � �g and to

R (A;B) = 1.

For k = 1, there must be arrivals for at least � elements of G, for less than mi elements of

AinG for all i, and for less than �u elements of Bu for all u. Consider �rst the case of � � of

G and < mi of AinG 8i, and then subtract the case of � � of G, < mi of AinG 8i and �u of

Bu for at least one u. The former case has probability P (T (A) =1). The latter case may be

considered as the case � � of G and �u of Bu for at least one u, subtract the case � � of G, at

least mi of AinG for at least one i, and �u of Bu for at least one u. The �rst of these two cases

produces T (Bu) = k for k 2 f�2; �� �; : : : ; n� �g for at least one u, and the latter produces

T (Ai [Bu) = k for k 2 f�2; �� �; : : : ; n� �g for at least one pair of i and u. Hence the result

for k =1.

The result for k = �3 is obtained by observing that it is the last case.
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10.3 Blocking - No Path Available

The results for the without-replacement model are directly applicable to the with-replacement

model with 	2 replacing 	1. They are discussed in Section 9.4.

The No Path in a Network application in Section 14.3 illustrates the use of these results and

provides a numerical comparison with the without-replacement model.
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11.1 Maximum Total Wait

11.1.1 Introduction

Here we consider the model of the 	1-process described in Section 6.7 on the without-replacement

distribution for multiple A-sets, and determine the maximum possible total wait over all elements

of N in two particular cases. These are the models for uni-directional and bi-directional exiting in

parallel lanes.

Due to the complexity of the relationships that can occur between the A-sets, we make no

attempt to determine an explicit expression for the maximum wait in the general case. However,

a simple algorithm that considers each of the N ! permutations in turn can be used to �nd the

maximum wait. In the case of vehicles parked in lanes, there may be 10; 000 vehicles, so this

algorithm is practical only in smaller applications.

On the other hand, the form of the function to be maximised does provide a tool that is useful

for �nding the maximum in applications that have a structure that one can capitalise on. This is

demonstrated for Queueing in Lanes and Related Models in Section 11.1.4.

First we provide a general formulation of the problem of determining the maximum waits.

Following this is an example that illustrates the non-trivial nature of the problem. Finally, the

formulae for the maximum waits in parallel lanes with uni-directional exiting and bi-directional

exiting are determined.

11.1.2 General Formulation

To determine the maximum wait, properties of permutations are used. Each permutation will

represent a di¤erent visiting order of the cells in N . When considering the distribution of waiting

times in the 	1-process, a single G-set, G, was considered. Now we will suppose that N is

partitioned into  mutually-exclusive G sets and each of these G-sets has a di¤erent collection

of A-sets associated with it. We suppose each G-set begins measuring its wait from a di¤erent

starting point; that is, each G-set has its own value of �.
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Notation 11.1 Let � be the set of permutations on the N elements in N . An element � 2 �

represents an ordering of the visits to the elements of N .

Notation 11.2 For � 2 �, let � (�) be the position at which the visit to � occurs.

Notation 11.3 Suppose there are  G-sets Gg, g 2 f1; : : : ; g with Gi\Gj � ;, and let �g � jGgj.

Suppose also that each of these  sets have rg associated A-sets Ag� � N , with Gg � Ag� , �

2 f1; : : : ; rgg, which the elements of Gg wait for, measured from the completion time of the �gth

visit to Gg. Put � =(�1; : : : ; �).

Notation 11.4 For � 2 �, let �g (�;�) be the set of elements of Gg that are visited at or before

the �th element of Gg.

Notation 11.5 For � 2 �, let �g (�;�) be the wait by the �th element of Gg for the completion

of at least one of the A-sets Ag� , � = 1; : : : ; rg. When �g = �g this may be written as �g (�).

Notation 11.6 For � 2 �, let � (�;�) be the total wait by all elements of all G-sets Gg, g 2

f1; : : : ; g. When �g � �g, this may be written as � (�).

Theorem 11.7 For � 2 �,

�g (�;�) =

�
� 2 Gg : � (�) � �-max

�2Gg
� (�)

�
(11.1)

and when � = �g

�g
�
�g;�

�
= Gg: (11.2)

Also

�g (�;�) = max

�
0; min
�2f1;:::;rgg

max
�2Ag�n�g(�;�)

� (�)� max
�2�g(�;�)

� (�)

�
(11.3)

and

� (�;�) =

X
g=1

�g (�g;�) : (11.4)

When �g � �g, these may be written as

�g (�) = max

�
0; min
�2f1;:::;rgg

max
�2Ag�nGg

� (�)� max
�2Gg

� (�)

�
(11.5)
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and

� (�) =

X
g=1

�g (�) : (11.6)

Proof. By De�nition 5.17, �-max�2Gg � (�) is the maximum of the �rst � elements in the

ordered list of elements of the set f� (�) : � 2 Ggg : Hence f� 2 Gg : � (�) � �-max�2Gg � (�)g is

the set of elements of Gg that are visited not later than the �th element of Gg. This is �g (�;�).

When � = �g, �-max�2Gg � (�) reduces to max�2Gg � (�). As all elements of Gg must be

visited not later than the last visit to Gg,
�
� 2 Gg : � (�) � �-max�2Gg � (�)

	
= Gg.

The �th element of Gg need only wait for the last element of at least one of the sets Ag� , �

2 f1; : : : ; rgg. If � = � and the �rst of these A-sets completes before the �th element of Gg is

visited, then the wait is zero. Otherwise, the wait is given by the di¤erence between the maximum

of the visiting position of last element of the �rst A-set to be visited and visiting position of the

last element of the G-set to be visited, and the visiting position of the �th element of Gg; this is

given by

min
�2f1;:::;rgg

max
�2Ag�n�g(�;�)

� (�)� max
�2�g(�;�)

� (�) . (11.7)

As the G-sets are mutually exclusive, the total wait is given by summing the waits for each

G-set.

The last two equations follow from the de�nitions of �g (�) and � (�) when �g � �g and

Equation 11.2 of this Theorem.

Notation 11.8 The maximum total wait, ��, is given by the determination of a permutation, ��,

that maximises the total wait, �. This can be expressed as

�� = � (��) = max
�2�

� (�) . (11.8)

11.1.3 Example: Maximum Wait for A Non-Trivial Model

Here are three examples, (a), (b) and (c), that illustrate the di¢ culty of determining a simple

formula for the maximum wait. Table 11.1 provides three G-sets and their corresponding A-sets.

The �rst two have r = 1 for each G-set, and the third has r = 2 for g = 1; 2 and r = 1 for g = 3.

The total waits for each of the 3! arrival sequences are provided in tables 11.2, 11.3 and 11.4

for models (a), (b) and (c), respectively. The �rst column provides the arrival sequence from

left to right. The next three columns provide the wait that the gth G-set experiences for each

corresponding arrival sequence. The �nal column provides the total wait for each arrival sequence.
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g Gg A
(a)
g1 nGg A

(b)
g1 nGg A

(c)
g1 nGg; A

(c)
g2 nGg

1 f1g f2; 3g f2g f2g ; f3g
2 f2g f1; 3g f1g f1g ; f3g
3 f3g f1g f1g f1g

Table 11.1: Three Models to Illustrate the Calculation of Maximum Waits

Arrival Sequence g = 1 g = 2 g = 3 Total (a)
123 2 1 0 3*
132 2 0 0 2
213 1 2 0 3*
231 0 2 1 3*
312 1 0 1 2
321 0 1 2 3*

Table 11.2: Maxima for Model (a)

The asterisked totals indicate the maximum waits.

Due to the cyclic dependencies in the relationship between one G-set waiting for another, it is

di¢ cult to �nd a rule that works for all of these three simple models.

11.1.4 Queueing in Lanes and Related Models

11.1.4.1 Preliminaries

The description of Queueing in Lanes is provided in Section 2.2. In this context, with t parallel

lanes, each containing s > 1 vehicles, it is more convenient to label the sets G according to both the

lane and the position of the vehicle it that it corresponds to. Thus, for h 2 f1; : : : ; tg, j 2 f1; : : : ; sg

the G-set corresponding to the jth vehicle in lane h is given by

Ghj = f(h� 1) s+ jg , (11.9)

Arrival Sequence g = 1 g = 2 g = 3 Total (b)
123 1 0 0 1
132 2 0 0 2
213 0 1 0 1
231 0 2 1 3*
312 1 0 1 2
321 0 1 2 3*

Table 11.3: Maxima for Model (b)
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Arrival Sequence g = 1 g = 2 g = 3 Total (c)
123 1 0 0 1
132 1 0 0 1
213 0 1 0 1
231 0 1 1 2*
312 0 0 1 1
321 0 0 2 2*

Table 11.4: Maxima for Model (c)

its corresponding uni-directional A-set is given by

Ahj1 = f(h� 1) s+ i : i � jg , (11.10)

and its corresponding bi-directional A-sets are given by

Ahj1 = f(h� 1) s+ i : i � jg (11.11)

and Ahj2 = f(h� 1) s+ i : i � jg . (11.12)

Let �hj = � ((h� 1) s+ j). Continuing with this notational convenience, we have �hj = 1,

�hj = 1;  = ts and

�hj (�) = max

 
0; min
�2f1;:::;rhjg

max
�2Ahj�nGhj

� (�)� max
�2Ghj

� (�)

!

�h (�) =
sX
j=1

�hj (�)

and � (�) =
tX

h=1

�h (�) : (11.13)

Whether for the uni- or bi-directional model, the arrival sequence for vehicles within one lane

do not a¤ect the wait for arrivals to vehicles in other lanes. This is provided by the following

Lemma.

Lemma 11.9 The arrivals for vehicles in a single lane may be permuted amongst themselves

without a¤ecting the waits for vehicles in other lanes.

Proof. To demonstrate this for any � 2 �, consider the total wait provided by Equation 11.13

and observe that for any lane h the summand is a function only of the arrival positions in that

lane.
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We now determine the maximum possible waits for vehicles in lanes for both the uni- and

bi-directional models.

11.1.4.2 Maximum Possible Wait for the Uni-Directional Model

The lemmas and de�nitions in this section assume uni-directional exits.

With uni-directional exits, rhj = 1 and Ahj1 = f(h� 1) s+ i : i 2 f1; : : : ; j � 1gg [ Ghj , and

we can write

�hj (�) = max

�
0; max
i2f1;:::;j�1g

�hi � �hj
�

(11.14)

and

�h (�) =

sX
j=2

�hj (�) . (11.15)

11.1.4.2.1 Arrivals at the Front Must Arrive after Arrivals for the Others within a

Lane

Lemma 11.10 For any arrival sequence � 2 �, to provide the maximum wait, it is necessary for

arrivals to vehicles at the front of any lane to arrive after arrivals to the other vehicles in the lane.

That is, 8h 2 f1; : : : ; tg and 8j 2 f2; : : : ; sg, it is necessary that �h1 > �hj.

Proof. By Lemma 11.9, we need only consider the contribution to the total wait by a single

lane h. Without loss of generality assume h = 1, re-labelling if necessary. In order to prove the

contrapositive, consider increasing �1 (�) for permutations on f� (i) : i 2 f1; : : : ; sgg by exchanging

arrival orders so that �h1 > �hj 8j 2 f2; : : : ; sg.

If there exists j 2 f2; : : : ; sg s.t. �h1 < �hj , then there exists j� 2 f2; : : : ; sg s.t. � (j�) =

maxi2f1;:::;sg � (i). Let �0 be the arrival sequence after the exchange. Prior to the exchange we

have

�h (�) =

j��1X
j=2

max

�
0; max
i2f1;:::;j�1g

� (i)� � (j)
�
+

sX
j=j�+1

[� (j�)� � (j)] . (11.16)

After exchanging � (j�) with � (1), we have instead

�h
�
�0
�
=

j��1X
j=2

[� (j�)� � (j)] + [� (j�)� � (1)] +
sX

j=j�+1

[� (j�)� � (j)] . (11.17)
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The increase is

�h
�
�0
�
� �h (�) =

j��1X
j=2

�
[� (j�)� � (j)]�max

�
0; max
i2f1;:::;j�1g

� (i)� � (j)
��
+ [� (j�)� � (1)]

� � (j�)� � (1) , (11.18)

since � (j�)�� (j) = maxi2f1;:::sg � (i)�� (j) � max
�
0;maxi2f1;:::;j�1g � (i)� � (j)

�
8j 2 f2; : : : ; sg.

As � (j�)� � (1) > 0, an increase has been obtained by the exchange. Hence the result.

11.1.4.2.2 Independence of the Arrival Order to Non-Front Vehicles within a Lane

De�nition 11.11 An arrival sequence for queues in lanes is called a u1-sequence if the arrivals

for the front vehicle in each lane are the last to arrive. That is, � 2 � is a u1-sequence if

8h 2 f1; : : : ; tg

�h1 > max
i2f2;:::;sg

�hi: (11.19)

De�nition 11.12 Let �1 = f� 2 � : � is a u1-sequenceg.

Lemma 11.13 For � 2 �1, the total wait by arrivals to vehicles in lane h is independent of the

arrival sequence to vehicles 2; : : : ; s in that lane.

Proof. Without loss of generality, assume h = 1. For � 2 �1, the total wait is

� (�) =

sX
j=2

[� (1)� � (j)] +
tX

h=2

sX
j=2

[�h1 � �hj ]

= (s� 1)� (1)�
sX
j=2

� (j) +
tX

h=2

sX
j=2

[�h1 � �hj ] ,

which is clearly invariant under a permutation on f� (j) : j 2 f2; : : : ; sgg.

11.1.4.2.3 Arrivals to Front Vehicles Occur as the Last t Arrivals

Lemma 11.14 For any arrival sequence � 2 � to provide the maximum wait, it is necessary

for arrivals to vehicles at the front of each lane to occur as one of the last t arrivals. That is,

8h 2 f1; : : : ; tg �h1 > (s� 1) t.

Proof. By Lemma 11.10, we need only consider u1-sequences and t > 1. In order to prove the

contrapositive, consider a lane h for which �h1 � (s� 1) t. Since there are t lanes, there must be

an arrival j0 > 1 in another lane h0 for which �h0j0 > (s� 1) t. Without loss of generality, assume
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h = 1 and h0 = 2. Let �1 = �11 and �j0 = �2j0 ; note that �j0 > �1. Exchange these two arrival

positions to give the new sequence �0. Since �0 is still a u1-sequence the increase in total wait is

2X
h=1

sX
j=2

�
max

i2f1;:::;j�1g
�0hi � �0hj

�
�

2X
h=1

sX
j=2

�
max

i2f1;:::;j�1g
�hi � �hj

�
(11.20)

=

sX
j=2

�
�0 (1)� �0 (j)

�
+

sX
j=2

�
�0 (s+ 1)� �0 (s+ j)

�
�

sX
j=2

[� (1)� � (j)]�
sX
j=2

[� (s+ 1)� � (s+ j)] (11.21)

=
sX
j=2

�
�j0 � � (j)

�
+

sX
j=2
j 6=j0

[� (s+ 1)� � (s+ j)] + [� (s+ 1)� �1]

�
sX
j=2

[� (1)� � (j)]�
sX
j=2
j 6=j0

[� (s+ 1)� � (s+ j)]�
�
� (s+ 1)� �j0

�
(11.22)

=

sX
j=2

�
�j0 � �1

�
+
�
�j0 � �1

�
(11.23)

= s
�
�j0 � �1

�
. (11.24)

Since s
�
�j0 � �1

�
> 0, this completes the proof.

11.1.4.2.4 Independence of the Arrival Order to Non-Front Vehicles

De�nition 11.15 An arrival sequence for queues in lanes is called a u2-sequence if it is a u1-

sequence and the arrivals for the vehicles at the front in each lane occur as the last t to arrive.

That is, � 2 �1 is a u2-sequence if 8h 2 f1; : : : ; tg

�h1 � (s� 1) t: (11.25)

De�nition 11.16 Let �2 = f� 2 �1 : � is a u2-sequenceg.

Lemma 11.17 For � 2 �2, the total wait by arrivals to vehicles not at the front of a lane is

independent of a permutation on their arrival sequence.

Proof. Any permutation on a set of numbers may be represented as a �nite product of trans-

positions (Halmos [42, Section 27, Theorem 3]). Here, a transposition represents the interchange

of a pair of arrival orders between two vehicles. Therefore it is only necessary to demonstrate that

a single transposition of arrival orders for arrivals to vehicles not at the front of a lane makes no
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di¤erence to the total wait for any arbitrary � 2 �2. This result could then be applied to the new

u2-sequences a �nite number of times.

Consider exchanging �h1j1 with �h2j2 for j1; j2 > 1. Let �
0 be the new u2-sequence that results

from this exchange. For h2 = h1 employ Lemma 11.13. Consider h2 > h1 and without loss of

generality assume h1 = 1 and h2 = 2. The change in total wait becomes

�
�
�0
�
� � (�) =

2X
h=1

sX
j=2

�
�0h1 � �0hj

�
�

2X
h=1

sX
j=2

[�h1 � �hj ] (11.26)

=
2X

h=1

sX
j=2

�hj �
2X

h=1

sX
j=2

�0hj since �0h1 = �h1 (11.27)

= [�1j1 + �2j2 ]�
�
�01j1 + �

0
2j2

�
(11.28)

=
�
�1j1 � �02j2

�
+
�
�2j2 � �01j1

�
(11.29)

= 0.

That is, there is no change in the total wait.

11.1.4.2.5 Independence of the Arrival Order to Front Vehicles

Corollary 11.18 For � 2 �2, the total wait is independent of a permutation on the arrival order

for the front vehicles of the lanes.

Proof. Lemma 11.17 was proved for � 2 �2 without knowledge of the arrival order of arrivals

for the front vehicles. Therefore rearranging those arrivals amongst themselves will have no e¤ect

on the total wait.

11.1.4.2.6 The Maximum Total Wait

De�nition 11.19 An arrival sequence for queues in lanes is called a u3-sequence if it is a u2-

sequence and for � 2 �2; 8h 2 f1; : : : ; tg ;8j 2 f1; : : : ; sg

�hj = (s� j) t+ h. (11.30)

This speci�es a sequence that satis�es all the above criteria for the maximum wait to occur.

De�nition 11.20 Let �3 = f� 2 �2 : � is a u3-sequenceg.
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Theorem 11.21 The maximum total wait with t parallel lanes, each containing s vehicles, with

uni-directional exiting is given by

W (1)
max =

N2 (s� 1)
2s

. (11.31)

Proof. For s = 1, the result is immediate. For s > 1, Lemmas 11.10 and 11.14 require that

an optimal arrival order must be a u2-sequence. Lemma 11.17 and Corollary 11.18 demonstrate

that all u2-sequences provide the same total wait. That is, we need only consider u3-sequences as

candidates. Since �3 contains precisely one element, the maximum total wait is given by

�� =
tX

h=1

sX
j=2

max

�
0; max
i2f1;:::;j�1g

�hi � �hj
�

(11.32)

=

tX
h=1

sX
j=2

max (0; ((s� 1) t+ h)� ((s� j) t+ h)) (11.33)

=
tX

h=1

sX
j=2

(j � 1) t (11.34)

=
t2s (s� 1)

2
(11.35)

=
N2 (s� 1)

2s

as required.

11.1.4.3 Maximum Possible Wait for the Bi-Directional Model

The lemmas and de�nitions in this section assume bi-directional exits. We need only consider

s > 2.

With bi-directional exits, we have rhj = 2, Ahj1 = f(h� 1) s+ i : i 2 f1; : : : ; j � 1gg[Gh;j and

Ahj2 = f(h� 1) s+ i : i 2 fj + 1; : : : ; sgg [Gh;j . We can write

�hj (�) = max

�
0;min

�
max

i2f1;:::;j�1g
�hi; max

i2fj+1;:::;sg
�hi

�
� �hj

�
(11.36)

and �h (�) =

s�1X
j=2

�hj (�) . (11.37)

11.1.4.3.1 Arrivals at the Ends Must Arrive after Arrivals for the Others within a

Lane

Lemma 11.22 For any arrival sequence � 2 � to provide the maximum wait, it is necessary for

arrivals to vehicles at the ends of any lane to arrive after arrivals for the other vehicles in the lane.
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That is, 8h 2 f1; : : : ; tg and 8j 2 f2; : : : ; s� 1g it is necessary that min (�h1; �hs) > �hj.

Proof. By Lemma 11.9, we need only consider the contribution to the total wait by a single

lane h. Without loss of generality, assume h = 1 and �h1 < �hs, re-labelling if necessary. In order

to prove the contrapositive, consider increasing �1 (�) for permutations on f� (i) : i 2 f1; : : : ; sgg

by exchanging arrival orders so that min (�h1; �hs) > �hj 8j 2 f2; : : : ; s� 1g.

Assume, without loss of generality, that � (1) < � (s). If not, then simply label the vehicles in

each lane in reverse order.

Suppose there exists j 2 f2; : : : ; s� 1g s.t. min (�h1; �hs) < �hj . Then there exists j� 2

f2; : : : ; s� 1g s.t. � (j�) = maxi2f2;:::;s�1g � (i) and either � (1) < � (s) < � (j�) or � (1) < � (j�) <

� (s).

In the �rst case, � (1) < � (s) < � (j�), the maximum wait will be increased if � (1) and � (j�)

are interchanged. This can be seen as follows. Let �0 be the arrival sequence after the exchange.

Prior to the exchange the arrival for j� is the last to arrive, and therefore does not wait, so we

have

�h (�) =

s�1X
j=2
j 6=j�

max

�
0;min

�
max

i2f1;:::;j�1g
�hi; max

i2fj+1;:::;sg
�hi

�
� � (j)

�
. (11.38)

After exchanging � (j�) with � (1), arrivals for all vehicles behind vehicle j� will occur before those

in front, so that

min

�
max

i2f1;:::;j�1g
�0hi; max

i2fj+1;:::;sg
�0hi

�
= max

i2fj+1;:::;sg
�0hi, (11.39)

and therefore

�h
�
�0
�
=

s�1X
j=2

max

�
0; max
i2fj+1;:::;sg

�0hi � �0 (j)
�
. (11.40)

Observing that �0hi = �hi for i =2 f1; j�g and �0 (j) = � (j) for j 6= j�, and separating the term for

j = j� from the sum gives

�h
�
�0
�
=

s�1X
j=2
j 6=j�

max

�
0; max
i2fj+1;:::;sg

�0hi � � (j)
�
+

�
max

i2fj�+1;:::;sg
�hi � �0 (j�)

�
. (11.41)

After the exchange, we have �0 (j�) < �0 (s) < �0 (1), so that

max
i2fj+1;:::;sg

�0hi = max
i2fj+1;:::;sgnj�

�0hi (11.42)

= max
i2fj+1;:::;sgnj�

�hi. (11.43)
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Now we may write

�h
�
�0
�
=

s�1X
j=2
j 6=j�

max

�
0; max
i2fj+1;:::;sgnfj�g

�hi � � (j)
�
+

�
max

i2fj�+1;:::;sg
�hi � � (1)

�
. (11.44)

Observing that maxi2fj+1;:::;sgnfj�g �hi � min
�
maxi2f1;:::;j�1g �hi;maxi2fj+1;:::;sg �hi

�
, since, by as-

sumption, � (1) < � (s) < � (j�), the increase after the exchange is

�0h (�)� �h (�) � max
i2fj�+1;:::;sg

�hi � � (1) (11.45)

� � (s)� � (1) , (11.46)

which is > 0. Hence the exchange has produced an increase.

In the second case, � (1) < � (j�) < � (s), the maximum wait will be increased if � (1) and

� (j�) are interchanged. Let �0 be the arrival sequence after the exchange. Prior to the exchange,

all vehicles will be able to be driven out forward before being able to reverse out, and also the

arrival for j� is the last to arrive and therefore does not wait, so we have

�h (�) =

s�1X
j=2
j 6=j�

max

�
0; max
i2f1;:::;j�1g

�hi � � (j)
�
. (11.47)

This is also true after the exchange, giving

�h
�
�0
�
=

s�1X
j=2

max

�
0; max
i2f1;:::;j�1g

�0hi � �0 (j)
�
. (11.48)

Observing that �0hi = �hi for i =2 f1; j�g and �0 (j) = � (j) for j 6= j�, and separating the term for

j = j� from the sum gives gives

�h
�
�0
�
=

s�1X
j=2
j 6=j�

max

�
0; max
i2f1;:::;j�1g

�hi � � (j)
�
+

�
max

i2f1;:::;j��1g
�hi � �0 (j�)

�
. (11.49)

As �0 (j�) = � (1) and maxi2f1;:::;j��1g �hi = � (j�), we have

�h
�
�0
�
=

s�1X
j=2
j 6=j�

max

�
0; max
i2f1;:::;j�1g

�hi � � (j)
�
+ (� (j�)� � (1)) . (11.50)
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The increase is therefore

�h
�
�0
�
� �h (�) = � (j�)� � (1) , (11.51)

which is > 0. Hence the exchange has produced an increase. This completes the proof.

11.1.4.3.2 Independence of the Arrival Order to Non-End Vehicles within a Lane

De�nition 11.23 An arrival sequence for queues in lanes is called a b1-sequence if the arrivals

to vehicles at the ends in each lane are the last two to arrive. That is, � 2 � is a b1-sequence if

8h 2 f1; : : : ; tg

min (�h1; �hs) > max
i2f2;:::;s�1g

�hi: (11.52)

De�nition 11.24 Let �1 = f� 2 � : � is a b1-sequenceg.

Lemma 11.25 For � 2 �1, the total wait by arrivals to vehicles in lane h is independent of the

arrival sequence of vehicles 2; : : : ; s� 1 in that lane.

Proof. Without loss of generality assume h = 1. For � 2 �1, the total wait is

� (�) =
s�1X
j=2

[� (1)� � (j)] +
tX

h=2

s�1X
j=2

[�h1 � �hj ] (11.53)

= (s� 2)� (1)�
s�1X
j=2

� (j) +

tX
h=2

s�1X
j=2

[�h1 � �hj ] , (11.54)

which is clearly invariant under a permutation on f� (j) : j 2 f2; : : : ; s� 1gg

11.1.4.3.3 Arrivals to End Vehicles Occur as the Last 2t Arrivals

Lemma 11.26 For any arrival sequence � 2 � to provide the maximum wait, it is necessary

for arrivals to vehicles at the ends of each lane to occur as one of the last 2t arrivals. That is,

8h 2 f1; : : : ; tg, min (�h1; �hs) > (s� 2) t.

Proof. By Lemma 11.22, we need only consider b1-sequences and t > 1. In order to prove

the contrapositive, consider a lane h for which min (�h1; �hs) � (s� 2) t. Since there are t lanes,

there must be an arrival j0 =2 f1; sg in another lane h0 for which �hj0 > (s� 2) t. Without loss

of generality, assume h = 1 and h0 = 2. Let �1 = min (�11; �1s) and let �j0 = �2j0 ; observe that

�j0 > �1. Exchange these two arrival positions to give the new sequence �0. Since �0 is still a

b1-sequence (as �1, the position of the last arrival for an end vehicle, has been increased and �j0 ,
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the position of the arrival for a non-end vehicle, has been decreased), the increase in total wait is

2X
h=1

s�1X
j=2

�
max

i2f1;:::;j�1g
�0hi � �0hj

�
�

2X
h=1

s�1X
j=2

�
max

i2f1;:::;j�1g
�hi � �hj

�
(11.55)

=

s�1X
j=2

�
�0 (1)� �0 (j)

�
+

s�1X
j=2

�
�0 (s+ 1)� �0 (s+ j)

�
�

s�1X
j=2

[� (1)� � (j)]�
s�1X
j=2

[� (s+ 1)� � (s+ j)] (11.56)

=

s�1X
j=2

�
�j0 � � (j)

�
+

s�1X
j=2
j 6=j0

[� (s+ 1)� � (s+ j)] + [� (s+ 1)� �1]

�
s�1X
j=2

[� (1)� � (j)]�
s�1X
j=2
j 6=j0

[� (s+ 1)� � (s+ j)]�
�
� (s+ 1)� �j0

�
(11.57)

=
s�1X
j=2

�
�j0 � �1

�
+
�
�j0 � �1

�
(11.58)

= (s� 1)
�
�j0 � �1

�
. (11.59)

Since (s� 1)
�
�j0 � �1

�
> 0, this completes the proof.

11.1.4.3.4 Independence of the Arrival Order to Non-End Vehicles

De�nition 11.27 An arrival sequence for queues in lanes is called a b2-sequence if it is a b1-

sequence and the arrivals for the end vehicles in each lane occur as the last 2t to arrive. That is,

� 2 �1 is a b2-sequence if 8h 2 f1; : : : ; tg

min (�h1; �hs) > (s� 2) t: (11.60)

De�nition 11.28 Let �2 = f� 2 �1 : � is a b2-sequenceg.

Lemma 11.29 For � 2 �2, the total wait by arrivals to vehicles not at the ends of a lane is

independent of a permutation on their arrival sequence.

Proof. Any permutation on a set of numbers may be represented as a �nite product of trans-

positions (Halmos [42, Section 27, Theorem 3]). Here, a transposition represents the interchange

of a pair of arrival orders between two vehicles. Therefore it is only necessary to demonstrate that

a single transposition of arrival orders for arrivals to vehicles not at the ends of a lane makes no
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di¤erence to the total wait for any arbitrary � 2 �2. This result could then be applied to the new

s2-sequences a �nite number of times.

Consider exchanging �h1j1 with �h2j2 for j1; j2 2 f2; : : : ; s� 1g. Let �0 be the new s2-sequence

that results from this exchange. For h2 = h1, employ Lemma 11.25. Consider h2 > h1 and without

loss of generality assume h1 = 1 and h2 = 2. Furthermore, for our convenience, we may assume

�h1s > �h11 without loss of generality, re-labelling the vehicles if necessary. The change in total

wait becomes

�
�
�0
�
� � (�) =

2X
h=1

s�1X
j=2

�
�0h1 � �0hj

�
�

2X
h=1

s�1X
j=2

[�h1 � �hj ] (11.61)

=

2X
h=1

s�1X
j=2

�hj �
2X

h=1

s�1X
j=2

�0hj since �0h1 = �h1 (11.62)

= [�1j1 + �2j2 ]�
�
�01j1 + �

0
2j2

�
(11.63)

=
�
�1j1 � �02j2

�
+
�
�2j2 � �01j1

�
(11.64)

= 0.

That is, there is no change in the total wait.

11.1.4.3.5 Independence of the Arrival Order to End Vehicles

Corollary 11.30 For � 2 �2, the total wait is independent of a permutation on the arrival order

for the end vehicles of the lanes.

Proof. Lemma 11.29 was proved for � 2 �2 without knowledge of the arrival order of arrivals

for the end vehicles. Therefore rearranging those arrivals amongst themselves will have no e¤ect

on the total wait.

11.1.4.3.6 The Maximum Total Wait

De�nition 11.31 An arrival sequence for queues in lanes is called a b3-sequence if it is a b2-

sequence and for � 2 �2; 8h 2 f1; : : : ; tg

�hj =

8>>><>>>:
(s� 1� j) t+ h for j 2 f2; : : : ; s� 1g

(s� 2) t+ 2h� 1 for j = 1

(s� 2) t+ 2h for j = s

. (11.65)

This speci�es a sequence that satis�es all the above criteria for the maximum wait to occur.
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De�nition 11.32 Let �3 = f� 2 �2 : � is a b3-sequenceg.

Notation 11.33 Let W (2)
max be the maximum total wait with t parallel lanes, each containing s

vehicles, with bi-directional exiting.

Theorem 11.34

W (2)
max =

N (N � 1) (s� 2)
2s

. (11.66)

Proof. For s = 2, the result is immediate. For s > 2, Lemmas 11.22 and 11.26 require that

an optimal arrival order must be a b2-sequence. Lemma 11.29 and Corollary 11.30 demonstrate

that all b2-sequences provide the same total wait. That is, we need only consider b3-sequences as

candidates. Since �3 contains precisely one element, the maximum total wait is given by

�� =
tX

h=1

s�1X
j=2

max

�
0;min

�
max

i2f1;:::;j�1g
�hi; max

i2fj+1;:::;sg
�hi

�
� �hj

�
(11.67)

=

tX
h=1

s�1X
j=2

max (0; ((s� 2) t+ 2h� 1)� ((s� 1� j) t+ h)) (11.68)

=
tX

h=1

s�1X
j=2

[(j � 1) t+ h� 1] (11.69)

=

tX
h=1

�
t
(s� 1) (s� 2)

2
+ (s� 2) (h� 1)

�
(11.70)

= t2
(s� 1) (s� 2)

2
+ (s� 2) t (t� 1)

2
(11.71)

=
t (s� 2)
2

(st� 1)

=
N (N � 1) (s� 2)

2s

as required.

11.2 Moments for the 	1-Process

11.2.1 Preliminaries

In random processes, the state-space probability distribution provides a micro-level description of

the process. It is usual to determine a collection of statistics from which inferences about the

process may be made. Here we determine rising factorial moments of the probability distribution

of T (m) as given by Theorem 6.9, and follow this by the result for general r, for which the

probability distribution is given by Theorem 6.28. We provide an explicit formula for the case
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r = 2, because of its historical signi�cance and direct applicability to the bi-directional model of

queueing in lanes. Finally, we describe how moments about the origin can be determined from

rising factorial moments.

Scholium 11.35 The expressions for the rising factorial moments are simpli�ed by performing

the summation over the waiting-time variable, k. The result is a triangular sum in two variables

from 0 to �� 1. In general, values for � (and hence �) will be small and those for N will be large,

so there are likely to be signi�cant savings in the number of terms to be calculated. The number

of terms in the products used to calculate the combinatorial coe¢ cients is also a factor, but is

clearly independent of N . This is discussed in detail in Section 15.2. Brie�y, however, consider

an example in which � = 4: Then the calculation of the expectation in Equation 11.74 involves a

summation with a total of 10 terms, whereas a direct calculation of the expectation from Equation

6.31 has of the order of N terms, and from Equation 6.5 has of the order of N2 terms. With a

typical value of N = 10 000 in car parking applications, the savings are clearly enormous.

To derive explicit expressions for the moments of T , we follow the approach of Hauer and

Templeton, and de�ne the rising factorial as

[x]0 = 1

[x]` = x (x+ 1) � � � (x+ `� 1) for ` = 1; 2; : : :

= `!
�
x+`�1

`

�
.

The usual moments about the origin, E
�
T `
�
, may be determined as

E
h
T `
i
=
X̀
s=1

(�1)`�s Cs`E [[T ]s] , (11.72)

so that in particular,

E [T ] = E [[T ]1] . (11.73)

Here Cs` is a Stirling number of the second kind (Jordan [47]). For relations between moments

about the origin and those about the mean see David and Barton [23, Chapter 3].

11.2.2 For the �th Arrival (r = 1)

Theorem 11.36 For ` � 1, the `th rising factorial moments of T , E` = E [[T (m)]`], satis�es

(�1)��1N !
m!�! (N �m� �)!`!E` =

�
�� � � 1 + `

`

�
(C1 � C2) +

�
�� � + `

`

�
(C3 � C4) , (11.74)
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where

C1 =

��1X
s=0

(�1)s
�
N � �+ � � s
N �m� �

� sX
t=0

�
� � 1� s+ t

t

��
N � � + `+ s� t

N � �

�
, (11.75)

C2 =

�
m+ �+ `� 1

m+ �

��
N � � + `
m+ �+ `

�
, (11.76)

C3 =

��1X
s=0

(�1)s
�
N � �+ � � s� 1

N �m� �

�

�
sX
t=0

�
� � 1� s+ t

t

��
N � � + `+ s� t

N � �� 1

�
, (11.77)

C4 =

�
m+ �+ `� 1
m+ � � 1

��
N � � + `
m+ �+ `

�
. (11.78)

Proof. Using the simpli�ed distribution of T for k > 0 as given by Theorem 6.18, the `th

rising factorial moment, E`, satis�es

N !

m!�! (N �m� �)!E` = (�1)
��1 `!

N��X
k=���

�
k + `� 1

`

�

�

0@ �
k�1

����1
� �P��1

s=0

�
(�1)s

�
N�k
s

��
N��+��s
N�m��

��
�
�
k��+�
m+�

��
+
�
k�1
���
� �P��1

s=0

�
(�1)s

�
N�k
s

��
N��+��s�1
N�m��

��
�
�
k��+��1
m+��1

��
1A . (11.79)

This expression will now be converted to a form that has a signi�cant reduction in its calculation

requirement by summing over k. There are four components to this sum, which are

C 01 =
PN��

k=���
�
k+`�1
`

��
k�1

����1
�P��1

s=0 (�1)
s �N�k

s

��
N��+��s
N�m��

�
,

C 02 =
PN��

k=���
�
k+`�1
`

��
k�1

����1
��
k��+�
m+�

�
,

C 03 =
PN��

k=���
�
k+`�1
`

��
k�1
���
�P��1

s=0 (�1)
s �N�k

s

��
N��+��s�1
N�m��

�
,

C 04 =
PN��

k=���
�
k+`�1
`

��
k�1
���
��
k��+��1
m+��1

�
.

(11.80)

The �rst part of each summation uses the observation that

�
k + `� 1
a+ `

��
k � a� 1

b

�
=

�
k + `� 1
a+ b+ `

��
a+ b+ `

b

�
. (11.81)
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Then, for C 01 and C 03, Theorem 8.12 will be applied; the combinatorial identity it provides is

reproduced here for convenience:

bX
s=a

�
s+ n1
n2

��
n3 � s
n4

�
=

n4X
s=0

(�1)s
��
b� n3 + n4

s

��
b+ n1 + n4 + 1� s
n2 + n4 + 1� s

�
�
�
a+ n3
s

��
a+ n1 + n4 � s
n2 + n4 + 1� s

��
: (11.82)

For C 02 and C
0
4, Equation 11.81 is applied again, and the result is summed using Equation 8.2.

Sections 11.2.2.1, 11.2.2.2, 11.2.2.3 and 11.2.2.4 provide these simpli�cations. Once they have been

produced, Ci is determined from C 0i, for i 2 f1; 2; 3; 4g, by removing the appropriate factor, thereby

proving the result.

11.2.2.1 Simpli�cation for Component C 01

N��X
k=���

�
k + `� 1

`

��
k � 1

�� � � 1

� ��1X
s=0

(�1)s
�
N � k
s

��
N � �+ � � s
N �m� �

�

=
N��X
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�
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�� � � 1 + `

��
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(�1)s
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N � �+ � � s
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N � k
s

�
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�
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(�1)s
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N �m� �

� N��X
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��
N � k
s

�

=

�
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`

� ��1X
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(�1)s
�
N � �+ � � s
N �m� �

� sX
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(�1)t

�
��
(N � �)�N + s

t

��
(N � �) + (`� 1) + s+ 1� t
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�
�
�
(�� �) +N

t
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�
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� sX
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�
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t
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11.2.2.2 Simpli�cation for Component C 02

N��X
k=���

�
k + `� 1

`

��
k � 1

�� � � 1

��
k � �+ �
m+ �
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=
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=

�
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�
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�

=

�
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`
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� N��X
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�
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�

=

�
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���
(N � � + 1) + `� 1
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�
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�
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�

11.2.2.3 Simpli�cation for Component C 03
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=

�
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(�1)s
�
N � �+ � � s� 1

N �m� �

� sX
t=0

(�1)t

�
��
s� �
t

��
N � � + `+ s� t

�� � + `+ s+ 1� t

�
�
�
N + �� � + 1

t

��
�� � + `+ s� t

�� � + `+ s� t+ 1

��
=

�
�� � + `

`

� ��1X
s=0

(�1)s
�
N � �+ � � s� 1

N �m� �

� sX
t=0

�
� � 1� s+ t

t

��
N � � + `+ s� t

N � �� 1

�

318



Global Properties: Without-Replacement 319

11.2. Moments for the 	1-Process

11.2.2.4 Simpli�cation for Component C 04

N��X
k=���+1

�
k + `� 1

`

��
k � 1
�� �

��
k � �+ � � 1
m+ � � 1

�

=
N��X

k=���+1

�
k + `� 1
�� � + `

��
�� � + `
�� �

��
k � �+ � � 1
m+ � � 1

�

=

�
�� � + `

`

��
m+ �+ `� 1
m+ � � 1

� N��X
k=���+1

�
k + `� 1

m+ �+ `� 1

�

=

�
�� � + `

`

��
m+ �+ `� 1
m+ � � 1

���
(N � � + 1) + `� 1

m+ �+ `

�
�
�
(�� � + 1) + `� 1

m+ �+ `

��
=

�
�� � + `

`

��
m+ �+ `� 1
m+ � � 1

��
N � � + `
m+ �+ `

�
.

11.2.3 For � = � (r = 1)

The special case � = � provides the model described by Henderson, Kennington and Pearce in

[44] and [45]. The rising factorial moments for this model are derived here as a special case of the

result for � � �. This is possible because the distribution for � < � is identical to the distribution

for � = � when the former has � replaced by �, except for the P (T = 0), which does not appear

in the expressions for the rising factorial moments.

Corollary 11.37 For ` � 1, the rising factorial moments of T when � = � are given by

E [[T (m)]`]

=

"
��1X
s=0

(�1)s
�
N � s� 1
N �m� �

� sX
t=0

�
�� 1� s+ t

t

��
N � �+ `+ s� t

N � �� 1

�
+

�
�
m+ �+ `� 1

`

��
N + `� �
m+ `+ �

�#
� (�1)��1 m!�! (N �m� �)!`!

N !
: (11.83)

Proof. Substituting � = � into the result provided by Theorem 11.36 causes the binomial

coe¢ cient
�
����1+`

`

�
to become zero and

�
���+`

`

�
to become one. Thus E` satis�es

(�1)��1N !
m!�! (N �m� �)!`!E` = C3 � C4
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where

C3 =

��1X
s=0

(�1)s
�
N � s� 1
N �m� �

� sX
t=0

�
�� 1� s+ t

t

��
N � �+ `+ s� t

N � �� 1

�
(11.84)

C4 =

�
m+ �+ `� 1
m+ �� 1

��
N � �+ `
m+ �+ `

�
, (11.85)

from which Equation 11.83 follows by application of
�
m
n

�
=
�
m

m�n
�
.

11.2.4 For � = 1 (r = 1)

The case � = 1 with r = 1 is particularly suitable for the Coupon-Collector�s Page Display Problem

and the Airport Baggage Problem. If m = 0 too, then this is particularly suitable for the Cake

Display Problem; this case is considered in Section 11.2.5 as a specialisation of this case.

Corollary 11.38 For ` � 1, the rising factorial moments of T when � = 1 for r = 1 are given by

E` =
�
�
�2 + �`� �� `+ �m�m+m`

�
(N + `)!

(�+ `) (�+ `� 1) (m+ �+ `)N !
. (11.86)

Proof. Substituting � = 1 into the result provided by Theorem 11.36 gives

N !

m!�! (N �m� �)!`!E` =
�
�� 2 + `

`

�
(C1 � C2) +

�
�� 1 + `

`

�
(C3 � C4) , (11.87)

where
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�
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�
.
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The �rst term can be simpli�ed as follows.

�
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Multiplying by m!�!(N�m��)!`!
N ! allows further simpli�cation as follows.
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The second term can be simpli�ed as follows.
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Summing the two terms together and simplifying provides

E` =
� (�� 1) (N + `)!
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m� (N + `)!
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,

which is the required result.
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11.2.4.1 Mean and Variance

A single fraction for the variance is not provided as its numerator has a factor with 28 terms that

does not factorise.

Corollary 11.39 The mean and variance for � = 1 (r = 1) are given by

Mean =

�
�m+ �2 � 1

�
(N + 1)

(�+ 1) (m+ �+ 1)
(11.88)

and

V ariance =
�
�
�m+m+ �2 + �� 2

�
(N + 2) (N + 1)

(�+ 2) (�+ 1) (m+ �+ 2)
�Mean� (Mean)2 . (11.89)

Proof. Applying Corollary 11.38 with ` = 1 to give the mean and ` = 2 to determine E2 from

which the variance is determined as E2 � E1 � (E1)2, as required.

11.2.4.1.1 Example: Expected Duration of Open Pages

In the Coupon-Collector�s Page Problem described in Section 2.3.6, we have r = 1, m � 0 and

� � 1. Here we consider the without-replacement model of this problem. As the page is considered

open when any picture for the page is �rst sighted, � = 1. Suppose there are  pages with �

pictures each. Then N = �, and for the jth page, m = (j � 1) �.

Corollary 11.39 provides the mean and variance for waiting time of the jth page as

Meanj =

�
�2j � 1

�
(�+ 1)

(�+ 1) (�j + 1)
(11.90)

and

V ariancej =
�
�
�2j + j�� 2

�
(�+ 2) (�+ 1)

(�+ 2) (�+ 1) (j�+ 2)
�Meanj � (Meanj)

2 . (11.91)

11.2.5 For � = 1, m = 0 (r = 1)

The case � = 1 and m = 0 for r = 1 is particularly useful in the Cake Display Problem, the

Coupon-Collector�s Single Page Problem and the Sock-Matching Problem. The rising factorial

moments for their model are derived here as a special case of the result for � = 1 and m = 0 for

r = 1.

Corollary 11.40 For ` � 1 the rising factorial moments of T when � = 1 and m = 0 for r = 1
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are given by

E` =
� (�� 1) (N + `)!

(�+ `) (�+ `� 1)N ! . (11.92)

Proof. Substituting m = 0 into the result provided by Corollary 11.38 gives

E` =
�
�
�2 + �`� �� `

�
(N + `)!

(�+ `) (�+ `� 1) (�+ `)N !

=
� (�� 1) (�+ `) (N + `)!

(�+ `) (�+ `� 1) (�+ `)N !

=
� (�� 1) (N + `)!

(�+ `) (�+ `� 1)N !

as required.

11.2.5.1 Mean and Variance

Corollary 11.41 The mean and variance for � = 1 and m = 0 (r = 1) are given by

Mean =
(�� 1) (N + 1)

�+ 1
(11.93)

and

V ariance =
2 (�� 1) (N � �) (N + 1)

(�+ 1)2 (�+ 2)
. (11.94)

Proof. Applying Corollary 11.39 with m = 0 gives the mean as

Mean =

�
�2 � 1

�
(N + 1)

(�+ 1) (�+ 1)

=
(�� 1) (N + 1)

�+ 1

as required, and the variance as
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�
�
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�
(N + 2) (N + 1)

(�+ 2) (�+ 1) (�+ 2)
� (�� 1) (N + 1)

�+ 1
�
�
(�� 1) (N + 1)

�+ 1

�2
=

� (�� 1) (N + 2) (N + 1)

(�+ 1) (�+ 2)
� (�� 1) (N + 1)

�+ 1
� (�� 1)

2 (N + 1)2

(�+ 1)2

=
(�� 1) (N + 1)

(�+ 1)2 (�+ 2)

� [� (N + 2) (�+ 1)� (�+ 2) (�+ 1)� (�� 1) (N + 1) (�+ 2)]

=
(�� 1) (N + 1)

(�+ 1)2 (�+ 2)
[2N � 2�]

=
2 (�� 1) (N � �) (N + 1)

(�+ 1)2 (�+ 2)
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as required.

11.2.5.1.1 Example: Expected Duration of Cakes on Display

For the Cake Display Problem described in Section 2.7, we consider here that there are 

distinct cakes with �i slices in cake i; hence N =
P

i=1 �i. As we require the expected length of

time a cake is on display, � = 1. For cake i, the mean and variance for the length of time it remains

on display are given by Corollary 11.41 as

Meani =
(�i � 1) (N + 1)

�i + 1
(11.95)

and

V ariancei =
2 (�i � 1) (N � �i) (N + 1)

(�i + 1)
2 (�i + 2)

. (11.96)

Remark 11.42 These results can be used to determine the sizes of cakes that would minimise,

subject to some external criteria, the average expected length of time that cakes are on display, its

total variance, or the maximum variance, for example.

11.2.5.1.2 Example: Expected Duration of Sock Types on the Table

For the Sock-Matching Problem described in Section 2.6, we consider here that there are 

distinct sock types with �i socks of type i. This model is identical to that described in Section

11.2.5.1.1, except that we are measuring the expected length of time a sock type is on the table,

so the results are identical.

11.2.6 For m = 0; � = N

Corollary 11.43 For ` � 1, the `th rising factorial moments of T when m = 0 and � = N are

given by

E` = `!

�
N � � � 1 + `

`

�
. (11.97)

Proof. Applying Theorem 11.36 with m = 0 and � = N has E` satisfying

(�1)��1

`!
E` =

�
N � � � 1 + `

`

�
(C1 � C2) +

�
N � � + `

`

�
(C3 � C4) (11.98)
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where

C1 =

��1X
s=0

(�1)s
�
� � s
0

� sX
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�
� � 1� s+ t

t

��
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0

�
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�
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�
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0
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�
C4 =

�
N + `� 1
� � 1

��
N � � + `
N + `

�
;

from which it is follows immediately that C2, C3 and C4 are zero. We simplify C1 as follows.

C1 =

��1X
s=0

(�1)s
sX
t=0

�
� � 1� s+ t

t

�
as s < �, N � � + ` � `, and s � t

=
��1X
s=0

(�1)s
�

�

� � s

�
as
�
m

n

�
=

�
m

m� n

�
and by Equation 5.7

=
��1X
s=0

(�1)s
�
�

s

�
as
�
m

n

�
=

�
m

m� n

�

=
�X
s=0

(�1)s
�
�

s

�
� (�1)�

= (�1)��1 as
�X
s=0

(�1)s
�
�

s

�
= (1� 1)�

Hence
(�1)��1

`!
E` =

�
N � � � 1 + `

`

�
(�1)��1 ,

from which the result is immediate.

11.2.6.1 Mean and Variance

Corollary 11.44 The mean and variance for m = 0 and � = N (r = 1) are given by

Mean = N � � (11.99)

and V ariance = 0. (11.100)

That is, the random variable degenerates to the constant value N � �.
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Proof. Applying Corollary 11.43 with ` = 1 gives the mean trivially and the variance as

V ariance = 2!

�
N � � � 1 + 2

2

�
� (N � �)� (N � �)2

= (N � � + 1) (N � �)� (N � �) (N � � + 1)

= 0

as required.

11.2.7 For � = 1 (r = 1)

The case � = 1 for r = 1 provides the Hauer-Templeton model described in [43]. The rising

factorial moments for their model are derived here as a special case of the result for � � 1 and

� = 1.

Corollary 11.45 For ` � 1, the rising factorial moments of T when � = 1 are given by

E` =
m (N + `)!

(`+ 1) (m+ 1 + `)N !
: (11.101)

Proof. Substituting � = 1 into the result provided by Corollary 11.38 gives

E` =
(1 + `� 1� `+m�m+m`) (N + `)!

(1 + `) (1 + `� 1) (m+ 1 + `)N !

=
m (N + `)!

(`+ 1) (m+ 1 + `)N !

as required.

11.2.7.1 Mean and Variance for the Hauer-Templeton Model

The mean and variance for the Hauer-Templeton model described in Section 2.2.1 are given by the

following corollary.

Corollary 11.46 The mean and variance for � = 1 (r = 1) are given by

Mean =
N + 1

2
� m

m+ 2
(11.102)

and

V ariance =
N2 � 1
12

� (N �m+ 1) (N + 1)

(m+ 3) (m+ 2)2
. (11.103)
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Proof. Applying Corollary 11.45 with ` = 1 gives the mean, and provides the variance as

V ariance

=
m (N + 2) (N + 1)

3 (m+ 3)
� (N + 1)m

2 (m+ 2)
�
�
(N + 1)m

2 (m+ 2)

�2
=

m (N + 1)

12 (m+ 3) (m+ 2)2

h
4 (N + 2) (m+ 2)2 � 6 (m+ 3) (m+ 2)� 3m (N + 1) (m+ 3)

i
=

m (N + 1)

12 (m+ 3) (m+ 2)2
�
m2N + 7mN + 16N �m2 � 7m� 4

�
=

(N + 1)

12 (m+ 3) (m+ 2)2

h
(N � 1) (m+ 3) (m+ 2)2 � 12N + 12m+ 12

i
=
N2 � 1
12

� (N �m� 1) (N + 1)

(m+ 3) (m+ 2)2

as required.

Remark 11.47 Observe that Expressions 11.102 and 11.103 with m = j�1 are the same as those

produced by Hauer and Templeton [43].

11.2.7.2 Example: A Particular Match for a Single Card in the Standard Linear

Game of SET

In the Standard Game of SET, there are v = 3 cards in a set, so for a card in a particular match

we have m = 2. The mean and variance of the time a card remains unmatched with respect to a

particular set are given by Corollary 11.46 as

Mean =
N + 1

2
� m

m+ 2

=
N + 1

4
(11.104)

and

V ariance =
N2 � 1
12

� (N �m+ 1) (N + 1)

(m+ 3) (m+ 2)2

=
N2 � 1
12

� (N � 1) (N + 1)

80

=
17
�
N2 � 1

�
240

. (11.105)
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11.2.8 For r � 1

By Theorem 6.28, we can �nd the moments of the distribution of T for the general case r � 1 in

terms of the moments for the case r = 1. This result is expressed as Theorem 11.49.

Notation 11.48 For r � 1, put E`;r = E [[T ]`]. When r = 1, write E`;r as E`, which is de�ned

above.

Theorem 11.49 (Fundamental Moments of 	1-processes)

E`;r =
rX
s=1

(�1)s�1
X
i1;:::;is

E
hh
T
�Ss

j=1Aij

�i
`

i
, (11.106)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg � f1; : : : ; rg :

Proof. As Expectation is a linear operator, taking expectations using the probabilities in

Equation 6.64 provides the result.

The moments could be more e¢ ciently calculated by beginning with the decomposition formula

of Theorem 6.43.

Theorem 11.50

E`;r =

N��X
m=0

�(N;�;�) (m)E [T (m)] , (11.107)

where �(N;�;�) (m) is given by Equation 6.86.

Proof. As Expectation is a linear operator, taking expectations using the probabilities in

Equation 6.86 provides the result.

11.2.9 For r = 2, � = 1

The case r = 2, � = 1 is particularly useful in car parking models that allow cars to reverse; this

is applied in Section 13.2.6 on Parking Lot: Comparison of Delays. In that application, the A-sets

intersect only in G, and we derive the moments for this case from the more general case where

they may intersect.

Corollary 11.51 For r = 2 and � = 1, the rising factorial moments of T are given by

E`;r = E [[T (jA1nGj)]`] + E [[T jA2nGj]`]� E [[T (j(A1 [A2) nGj)]`] , (11.108)

where E [[T (m)]`] is given by Corollary 11.45.
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Proof. Putting r = 2 in Equation 11.106 and observing that

T
�Ss

j=1Aij

�
= T

�����Ss
j=1Aij

�
nG
���� (11.109)

provides the result.

Corollary 11.52 For r = 2, � = 1 and A1 \A2 = G, the rising factorial moments of T are given

by

E`;2 =
m1m2 (m1 +m2 + 2`+ 2) (N + `)!

(`+ 1) (`+m1 + 1) (`+m2 + 1) (`+m1 +m2 + 1)N !
. (11.110)

Proof. From Corollary 11.51 with A1 \A2 = G we have

E`;2 = E [[T (m1)]`] + E [[T (m2)]`]� E [[T (m1 +m2)]`] ,

where E [[T (m)]`] is given by Equation 11.101. Thus we have

E`;2 =
m1 (N + `)!

(`+ 1) (m1 + 1 + `)N !
+

m2 (N + `)!

(`+ 1) (m2 + 1 + `)N !
� (m1 +m2) (N + `)!

(`+ 1) (m1 +m2 + 1 + `)N !
, (11.111)

which may be simpli�ed by multiplying throughout by a common denominator and factorising to

give according to this sequence of manipulations

(`+ 1) (`+m1 + 1) (`+m2 + 1) (`+m1 +m2 + 1)N !E [[T ]`] = (N + `)!

= m1 (`+m2 + 1) (`+m1 +m2 + 1) +m2 (`+m1 + 1) (`+m1 +m2 + 1)

� (m1 +m2) (`+m1 + 1) (`+m2 + 1)

= m1 (`+m2 + 1) (`+m1 + 1) +m1 (`+m2 + 1)m2

+m2 (`+m1 + 1) (`+m2 + 1) +m2 (`+m1 + 1)m1

�m1 (`+m1 + 1) (`+m2 + 1)�m2 (`+m1 + 1) (`+m2 + 1)

= m1m2 (m1 +m2 + 2`+ 2) ,

from which the result is immediate.

Remark 11.53 The cases r � 2 are the only ones found that provide a factorisation into linear

terms in the numerator for m1, m2 and `.
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11.2.9.1 Example: The Car Parking Model with Bi-Directional Exits

The mean and variance for the car parking model described in Section 2.2.3 are given by the

following corollary with m1;m2 � 0.

Corollary 11.54 The mean and variance for � = 1 (r = 2) are given by

Mean =
m1m2 (m1 +m2 + 4) (N + 1)

2 (m1 + 2) (m2 + 2) (m1 +m2 + 2)
(11.112)

and

V ariance =
m1m2 (m1 +m2 + 6) (N + 2) (N + 1)

3 (m1 + 3) (m2 + 3) (m1 +m2 + 3)
�Mean� (Mean)2 (11.113)

and also

V ariance =
N2 � 1
12

� (N �m1 � 1) (N + 1)

(m1 + 3) (m1 + 2)
2 � (N �m2 � 1) (N + 1)

(m2 + 3) (m2 + 2)
2

+
(N �m1 �m2 � 1) (N + 1)

(m1 +m2 + 3) (m1 +m2 + 2)
2

�2 m1m2 (N + 1)2

(m1 + 2) (m2 + 2) (m1 +m2 + 2)
2 . (11.114)

Proof. Applying Corollary 11.52 with ` = 1 gives the mean, and the variance is derived by

V ariance = E2;2 � E1;2 � (E1;2)2

=
m1m2 (m1 +m2 + 6) (N + 2) (N + 1)

3 (m1 + 3) (m2 + 3) (m1 +m2 + 3)
�Mean� (Mean)2 , (11.115)

where the mean is given by Equation 11.112. This is the �rst expression for the variance.

To simplify this expression, consider the form of the original variance for r = 1 as given by

Corollary 11.46. In this bi-directional model, one might expect the variance to have positive

contributions from each of the directions as

N2 � 1
12

� (N �m1 � 1) (N + 1)

(m1 + 3) (m1 + 2)
2 (11.116)

and

N2 � 1
12

� (N �m2 � 1) (N + 1)

(m2 + 3) (m2 + 2)
2 (11.117)
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and a negative contribution from both simultaneously occurring as

N2 � 1
12

� (N �m1 �m2 � 1) (N + 1)

(m1 +m2 + 3) (m1 +m2 + 2)
2 . (11.118)

One might then consider the remaining component to be a correction corresponding to the covari-

ance between the waiting times for the two possible directions. One could use a lot of algebra to

subtract these 3 expressions from Equation 11.115 and then factorise the result, but we begin with

the initial form of the variance for E`;2 presented in Equation 11.111, and combine the expressions

in the way described by the above three expressions.

Applying the formula for E`;2 given by Equation 11.111 for each of E2;2, E1;2 and (E1;2)
2 gives

V ar = E2;2 � E1;2 � (E1;2)2

=
m1 (N + 2) (N + 1)

3 (m1 + 3)
+
m2 (N + 2) (N + 1)

3 (m2 + 3)
� (m1 +m2) (N + 2) (N + 1)

3 (m1 +m2 + 3)

�
�
m1 (N + 1)

2 (m1 + 2)
+
m2 (N + 1)

2 (m2 + 2)
� (m1 +m2) (N + 1)

2 (m1 +m2 + 2)

�
�
�
m1 (N + 1)

2 (m1 + 2)
+
m1 (N + 1)

2 (m1 + 2)
� (m1 +m2) (N + 1)

2 (m1 +m2 + 2)

�2
.

Let

' (m) =
m (N + 2) (N + 1)

3 (m+ 3)
� m (N + 1)

2 (m+ 2)
�
�
m (N + 1)

2 (m+ 2)

�2
. (11.119)

Then by Corollary 11.46,

' (m) =
N2 � 1
12

� (N �m� 1) (N + 1)

(m+ 3) (m+ 2)2
. (11.120)

Combining terms as describe above gives

V ar = ' (m1) + ' (m2)� ' (m1 +m2)� 2
�
(m1 +m2) (N + 1)

2 (m1 +m2 + 2)

�2
�2m1 (N + 1)

2 (m1 + 2)

m2 (N + 1)

2 (m2 + 2)
+ 2

m1 (N + 1)

2 (m1 + 2)

(m1 +m2) (N + 1)

2 (m1 +m2 + 2)

+2
m2 (N + 1)

2 (m2 + 2)

(m1 +m2) (N + 1)

2 (m1 +m2 + 2)
. (11.121)
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After placing the non-' terms over a common denominator and factorising, we have

V ar =

�
N2 � 1
12

� (N �m1 � 1) (N + 1)

(m1 + 3) (m1 + 2)
2

�
+

�
N2 � 1
12

� (N �m2 � 1) (N + 1)

(m2 + 3) (m2 + 2)
2

�
�
�
N2 � 1
12

� (N �m1 �m2 � 1) (N + 1)

(m1 +m2 + 3) (m1 +m2 + 2)
2

�
�2 m1m2 (N + 1)2

(m1 +m2 + 2)
2 (m1 + 2) (m2 + 2)

, (11.122)

from which the second form of the variance follows trivially.

11.2.10 Completions for A-Sets of Equal Size and � = 1

The situation in which A-sets intersect only in G and have equal size, is particularly well applied to

the game SET, because any 2 cards match only one other card. Here we provide a neat expression

for E`;r in this case1. Let m = jAinGj.

First we need an unusual and unexpected identity. The second form is provided for convenience

when applying it.

Lemma 11.55 For integer r � 0 and real t =2 f0;�1;�2; : : : ;�rg,

rX
s=0

(�1)s
�
r

s

�
1

t+ s
=

r!

t (t+ r)r
(11.123)

and
rX
s=1

(�1)s�1
�
r

s

�
1

t+ s
=
1� r!

(t+r)r

t
(11.124)

Proof. The proof is by mathematical induction on r � 0. Let

P (r) =
rX
s=0

(�1)s
�
r

s

�
1

t+ s
:

For r = 0,

P (0) =

0X
s=0

(�1)s
�
0

s

�
1

t+ s

=
1

t

=
0!

t (t+ 0)0
1A similarly neat expression has not been found for the more-general case of not necessarily identical numbers of

elements in the A-sets.
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as required. Assume true for r = n: that is, assume

P (n) =
n!

t (t+ n)n
:

Then for r = n+ 1 we have

lhsr+1 =
n+1X
s=0

(�1)s
�
n+ 1

s

�
1

t+ s

=
nX
s=0

(�1)s
��

n

s

�
+

�
n

s� 1

��
1

t+ s
+ (�1)n+1 1

t+ n+ 1

=

nX
s=0

(�1)s
�
n

s

�
1

t+ s
+

nX
s=0

(�1)s
�

n

s� 1

�
1

t+ s
� (�1)n 1

t+ n+ 1
.

By induction, the �rst sum is given by n!
t(t+n)n

. The second sum�s �rst term is zero and can be

removed, and its summation index can be decremented. This gives

lhsr+1 =
n!

t (t+ n)n
�
"
n�1X
s=0

(�1)s
�
n

s

�
1

t+ 1 + s
+ (�1)n 1

t+ 1 + n

#

=
n!

t (t+ n)n
�

nX
s=0

(�1)s
�
n

s

�
1

t+ 1 + s

=
n!

t (t+ n)n
� n!

(t+ 1) (t+ 1 + n)n
by the inductive assumption

=
n! (t+ n+ 1)

t (t+ n+ 1)n+1
� n!

(t+ n+ 1)n+1

=
n!

(t+ n+ 1)n+1

�
(t+ n+ 1)

t
� 1
�

=
(n+ 1)!

t (t+ n+ 1)n+1
= rhsn+1,

so the result follows from the principle of mathematical induction. The second equation follows

trivially from the �rst.

Theorem 11.56 The rising factorial moments in the case � = 1, Ai \ Aj � G and jAinGj = m

for i; j 2 f1; : : : ; rg are given by

E`;r =
(N + `)!mrr!

N !
Qr
i=0 ((`+ 1) + im)

. (11.125)

Proof. The conditions Ai \ Aj � G and jAinGj � m imply
���Ss

j=1AijnG
��� = ms. Hence
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Equation 11.106 may be written as

E`;r =

rX
s=1

(�1)s�1
�
r

s

�
E [(T (ms))`]

=
rX
s=1

(�1)s�1
�
r

s

�
(ms) (N + `)!

(`+ 1) (`+ms+ 1)N !
by Equation 11.101

=
(N + `)!

(`+ 1)N !

rX
s=1

(�1)s�1
�
r

s

��
1� `+ 1

ms+ `+ 1

�
.

Now
rX
s=1

(�1)s�1
�
r

s

�
= 1�

rX
s=0

(�1)s
�
r

s

�
= 1

and

rX
s=1

(�1)s�1
�
r

s

�
`+ 1

ms+ `+ 1
=

`+ 1

m

rX
s=1

(�1)s�1
�
r

s

�
1

s+ (`+1)
m

=
`+ 1

m

1� r!�
(`+1)
m

+r
�
r

(`+1)
m

by Equation 11.124

= 1� r!�
(`+1)
m + r

�
r

= 1� mrr!Qr
i=1 ((`+ 1) + im)

,

so that

E`;r =
(N + `)!

(`+ 1)N !

�
1�

�
1� mrr!Qr

i=1 ((`+ 1) + im)

��
=

(N + `)!mrr!

N !
Qr
i=0 ((`+ 1) + im)

as required.

Corollary 11.57 The �rst two moments in the case of odd N , r = N�1
2 , � = 1, Ai \Aj � G and

jAinGj � 2 are given by

Mean = 1 (11.126)

and V ariance =
2N�
N
r

� � 2. (11.127)
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Proof. Putting m = 2 in Equation 11.125 gives

E`;r =
(N + `)!2rr!

N !
Qr
i=0 ((`+ 1) + 2i)

. (11.128)

First put ` = 1 to give

Mean =
(N + 1)!2rr!

N !
Qr
i=0 (2 + 2i)

=
(N + 1) 2rr!

2r+1 (r + 1)!

=
(N + 1)

2 (r + 1)
,

which provides the result for the mean, since r = N�1
2 . The second rising factorial moment is

given by

E2;r =
(N + 2) (N + 1) 2rr!Qr

i=0 (3 + 2i)
�
Qr
i=0 (2 + 2i)Qr
i=0 (2 + 2i)

=
(N + 2) (N + 1) 2rr!2r+1 (r + 1)!

(2r + 3)!

=
(N + 2) (N + 1) 2rr!2r+1 (r + 1)!

(2r + 3) (2r + 2) (2r + 1)!

=
(N + 2) (N + 1) 22r+1

(2r + 3) (2r + 2)
�
2r+1
r

�
=

2N�
N
r

� since r =
N � 1
2

. (11.129)

The result is obtained, as the variance is given by E2;r � E1;r � E21;r, and it has just been shown

that E1;r = 1.

Remark 11.58 The �rst and second rising factorial moments are such nice-looking formulae and

have such simplicity that it is as though they were just begging to be discovered. These are beautiful

results!

11.2.10.1 Example: Parking at a 6-Lane Intersection

A person parks in the middle of a 6-way intersection of single-lane streets at the beginning of a

movie. Assume there is an equal number of vehicles, m, parked in each lane and a single driver

will arrive for each vehicle. When the movie ends, how long can this person expect to wait till at

least one of the lanes is free, measured from the time of arrival at the car?

This is modelled by putting r = 6, N = 6m + 1 and � = 1. The mean is given by Theorem
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m E1;6 % of N
4 4: 4 17: 0%

5 6: 6 20: 7%

6 9: 0 23: 7%

7 11: 5 26: 2%

10 19: 5 31: 5%

50 137: 1 45: 4%

Table 11.5: Example: Parking at a 6-Lane Intersection

11.56 as

E1;6 =
(6m+ 2)!m66!

(6m+ 1)!
Q6
i=0 (2 + im)

=
360m6Q5

i=1 (2 + im)
. (11.130)

Table 11.5 provides some illustrative values. The third column provides the expectation as a

percentage of the total number.

This could also be applied to an odd-sized 3-D chessboard by placing stones at random in the

cubes, and asking how long it would take for there to be a path directly to a side, measured from

the time the centre is occupied. The stones could be placed only on the direct lines or in any

cube, adjusting N accordingly. In the former case, the same table as for parking in the middle of

a six-way intersection provides the expectations.

Another view occurs by placing a �ying saucer in the middle of a 13 � 13 � 13 cube of �ying

saucers and allowing only direct-line exiting, except that N must be increased to the total number

of cells.

11.2.10.2 Example: The Game SET

The Standard Game of SET, which is described in Section 2.8.3, provides an application in which

it is quite natural to consider the case of odd N , r = N�1
2 , � = 1, Ai \Aj � G and jAij � 2.

For the standard game with a attributes, N = 3a, so by Corollary 11.57 we have

Mean = 1 (11.131)

and

V ariance =
23

a� 3a
3a�1
2

� � 2. (11.132)

Table 11.6 provides the standard deviations for various numbers of attributes and the standard
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No. of Attributes Std. Dev. %age of Cards
2 1:44 16:00

3 2:17 8:02

4 3:06 3:78

5 4:19 1 73

6 5 65 0:77

7 7:53 0:34

8 9 98 0:15

9 13:18 0:07

10 17:39 0:03

Table 11.6: Standard Deviations for Waiting Times in the Game SET

deviation as a percentage of the cards in the game, which is given by

Percentage of Cards =
100

3a

vuut 23a� 3a
3a�1
2

� � 2. (11.133)

Remark 11.59 It is interesting to observe the magnitude of the numbers involved: 23
10 ' 3:31�

1017 775 and
�

310

(310�1)=2
�
' 1:09�1017 773. For the standard game, 234 ' 2:42�1024 and

�
34

(34�1)=2
�
'

2:12� 1023.

Remark 11.60 The expected time a card remains not part of a triad is the same no matter how

many attributes are involved in the game. This is quite a remarkable result. It is also a remarkable

determination.

Remark 11.61 That the percentage of cards decreases (by approximately one half) as the number

of attributes, a, increases, the game will appear to have exponentially less variation in waiting time

relative to the number of cards for a completion. However, it is unlikely that people will play a

game with a complete deck of cards with a = 10 attributes, for then N = 59 049 cards, which is in

addition to the complexity provided by having 10 attributes.

11.2.11 For a Minimum Number of Completions

The distribution of the waiting time for the completion of at least t of the r A-sets, measured

from the completion time of G, is provided in Section 9.2. Here we provide the moments of

Tt (A1; : : : ; Ar) in terms of the moments for the case r = 1.

Notation 11.62 For r � 1; t � 1 put E`;r;t = E [[Tt]`]. When t = 1, write E`;r;t as E`;r, which is

de�ned above.
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Theorem 11.63

E`;r;t =

rX
s=t

(�1)s�t
�
s� 1
t� 1

� X
i1;:::;is

E
hh
T
�Ss

j=1Aij

�i
`

i
, (11.134)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg � f1; : : : ; rg :

Proof. As Expectation is a linear operator, taking expectations using the probabilities in

Equation 9.3 provides the above result.

11.2.12 Batch Arrivals: Expected Waiting Time

Section 9.8 describes the without-replacement batch process. Here we consider r = 1.

Theorem 11.64 It is not always possible to determine the moments for the batch process from

the moments for the non-batch process.

Proof. We exhibit a counter-example to the supposition that it is possible to make this

determination. Suppose N = 4, � = 1, m = 1, B = 2 and n1 = n2 = 2. Let N = fg; a; s1; s2g,

G = fgg and AnG = fag. Consider the two arrival sequences gas1s2 and s1gas2. In the non-batch

process both sequences have k = 1, whereas in the batch process the former has k0 = 0 and the

latter has k0 = 1. Therefore there is not direct mapping between waits in the non-batch process

and waits in the batch process. Hence the result.

Conjecture 11.65 When jAj � 2, the only batch process for which it is possible to determine the

moments for the batch process from the moments for the non-batch process occurs when nb � 1;

that is, when it is a non-batch process.

As the expression for the probability distribution o¤ers no immediate simpli�cation, a computer

program and formulae in Scienti�c WorkPlace that can be passed to its Maple kernel are currently

used to determine the moments directly from the distribution. Examples of these for a particular

match and any match are provided in Sections 9.8.5 and 9.8.7, respectively.

11.3 Total Expected Wait for All Arrivals

11.3.1 Preliminaries

Hauer and Templeton [43] determined the total average wait for all drivers arriving at waiting

cars that are stationed side-by-side in several queues, and used it as a measure of the e¤ect on a
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parking lot design as a whole when di¤erent lane lengths are considered. Their results were for t

lanes with the numbers of cars being ni in lane i, so that the driver for the jth car could leave

only when all drivers for the (j � 1) cars in front of the car have arrived.

Using the current terminology, we may formulate the HT model as the special case r = 1,

�i � �i � 1 and mij = j � 1 for the jth car in lane i.

The results for the general case are speci�ed in the next section. This is for multiple A-sets for

each G-set as described in Section 6.7.

Remark 11.66 The extensions to taboo sets and batch arrivals and other variants is straightfor-

ward and immediate, as the expressions provided here are based on the rising factorial moments,

and these could reference any of those corresponding to the extended models.

11.3.2 Results

Consider the model of the 	1-process described in Section 6.7. and partition N into  disjoint

G-sets as N = _[i=1Gi. Put �i � jGij. Then
P

i=1 �i = N . Label the ri A-sets corresponding to

the ith G-set as Aij , and let mij � jAijnGij.

Notation 11.67 Let E` (i; �) be the `th rising factorial moment for the �th arrival for Gi.

For a given �, E` (i; �) = E`;ri , where E`;ri is provided by Theorem 11.49.

Notation 11.68 Let Wi be the expected total wait for the G-set Gi.

Theorem 11.69 For i 2 f1; : : : ; g,

Wi =

�iX
�=1

E1 (i; �) . (11.135)

Proof. As expectation is linear, even over dependent variables, the result is immediate.

Notation 11.70 Let W be the expected total wait for all states.

Theorem 11.71

W =

X
i=1

Wi. (11.136)

Proof. As expectation is linear, even over dependent variables, the result is immediate.

These theorems are applied to Queueing in Lanes in Section 13.2.
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11.4 Moments for the Number Still Required upon Arrival

The distribution for the number required upon arrival is provided in Section 6.13.

The moments are determined here only when r = 1 and for the cases � = 1 and � = �, because

a simpli�ed formula for the general case has not been found. The means are determined explicitly

in the corollaries that follow the theorems.

Theorem 11.72 For � = 1, the rising factorial moments are given by

E [[Pm (�)]`] =
`!�
�+m
�

� (�1)` X̀
n=0

(�1)n
�
m+ `

n

��
m+ �+ `� n

m

�
. (11.137)

Proof. Using the probability distribution given by Equation 6.125 with � = 1, and applying

the transformation formula of Lemma 6.8, the rising moments when � = 1 are given by

E [[Pm (�)]`] =
mX
�=0

`!

�
�+ `� 1

`

����1+�
�

��
�+m
�

�
=

`!�
�+m
�

� mX
�=0

�
�+ �� 1
�� 1

��
�+ `� 1

`

�
=

`!�
�+m
�

�
 (m; �� 1; `� 1; `)
=

`!�
�+m
�

� (�1)` X̀
n=0

(�1)n
�
m+ (`� 1) + 1

n

��
m+ �� 1 + `� n+ 1
�� 1 + `� n+ 1

�

=
`!�
�+m
�

� (�1)` X̀
n=0

(�1)n
�
m+ `

n

��
m+ �+ `� n
�+ `� n

�
,

from which the result follows by application of
�
a
b

�
=
�
a
a�b
�
.

Corollary 11.73 For � = 1, the mean is given by

E [Pm (�)] =
�m

�+ 1
. (11.138)
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Proof. Substituting ` = 1 into Equation 11.137 gives

E [[Pm (�)]1] =
1!�
�+m
�

� (�1)1 1X
n=0

(�1)n
�
m+ 1

n

��
m+ �+ 1� n
�+ 1� n

�
=

1�
�+m
�

� ���m+ �+ 1

�+ 1

�
+

�
m+ 1

1

��
m+ �

�

��
=

1�
�+m
�

� �(m+ 1)

�
m+ �

�

�
� m+ �+ 1

�+ 1

�
m+ �

�

��
=

(m+ 1) (�+ 1)� (m+ �+ 1)
�+ 1

=
�m

�+ 1

as required.

Theorem 11.74 For � = �, the rising factorial moments are given by

E [[Pm (�)]`] =
`!
�
m+�+`�1

�+`

��
�+m
�

� . (11.139)

Proof. Using the probability distribution given by Equation 6.125 with � = �; the rising

factorial moments when � = � are given by

E [[Pm (�)]`] =
mX
�=1

`!

�
�+ `� 1

`

����1+m��
m��

��
�+m
�

�
=

`!�
�+m
�

� m�1X
�=0

�
�+ `

`

��
(m� 1)� �+ (�� 1)

�� 1

�
=

`!�
�+m
�

��(m� 1) + `+ (�� 1) + 1
`+ (�� 1) + 1

�
by Lemma 8.6

=
`!
�
m+�+`�1

�+`

��
�+m
�

�
as required.

Corollary 11.75 For � = �, the mean is given by

E [Pm (�)] =
m

�+ 1
. (11.140)

Proof. Substituting ` = 1 into Equation 11.139 gives

E [[Pm (�)]1] =

�
m+�
�+1

��
�+m
�

� = m

�+ 1
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as required.

Conjecture 11.76 For 1 < � < �, the expected number still required upon the �th arrival of G

is given by (���+1)m
�+1 . This can be seen by observing that an average distribution of the � g�s will

divide the arrival stream into (�+ 1) regions of equal size, 1
�+1 , and an average number of a�s,

m
�+1 , will be placed in each region. Therefore one might expect the average number of a�s in the

(�� � + 1) regions after the �th arrival of G to be (�� � + 1)� m
�+1 .

11.5 Expected Completions at the kth Arrival (Platoon Size)

11.5.1 Preliminaries

This section provides the expected number of completed G-sets with each having one or more

corresponding A-sets being also completed by the kth arrival.

When the G-sets are mutually exclusive, an arrival may complete only one G-set. When the

G-sets are not mutually exclusive, as is the case in the game SET, this expectation corresponds to

the total number of sets that are completed by the kth card. In this game, sets are removed as they

occur and when more than one set is available for selection, only one set is removed. As it is the

player who chooses the set to remove, it is not possible to determine the expected number of sets

produced by placement of the kth card. If a random set is chosen for removal, it is theoretically

possible to determine the expected number of completed sets at time k, but this requires further

research that is beyond the scope of this thesis.

Compare a Queueing in Lanes model that precludes cars in one lane from blocking cars in

another lane with the Standard Game of SET.

In the former model, even with more than one arrival per car, only one car may be completed

by a single arrival. In this case, this expectation provides the expected platoon departure size at

the kth arrival. Results for this are provided in Section 13.2.7 on Platoon Departure Size.

In the latter model, when a card is placed on the table, it could complete from 0 to 40 triads,

even though only one triad would be removed from the table as being complete. In this case,

this expectation cannot be used to determine the expected number of completed sets that can

be removed when the kth card is placed, because the cards in those sets may have already been

removed as part of another set. It does, however, provide the expected number of triads that would

result if no cards were picked up prior to the placement of the kth card. The cumulative value of

this provides the expected number of matches in K cards chosen at random. Results for this are

provided in Section 13.7.5 on the Number of Triads in K Cards.
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In the problem of Waiting for Utilities to be Connected to Plots of Land, which is described in

Section 2.9.2, the expected number of new plots that are serviceable after a plot has been cleared,

provides a measure of how busy the service department will be when newly accessible plots occur.

11.5.2 Mean

The distribution for the number of completions and associated notation is provided in Section 6.19.

Indicator functions are used to determine the expectations.

De�nition 11.77 For r � 1, let

Yk (G;A) =

8<: 1 if G [As completes at the kth arrival for at least one A-set

0 if otherwise
(11.141)

and for r = 0, let Yk (G) = Yk (G;A) be

Yk (G) =

8<: 1 if G completes at the kth arrival

0 if otherwise
. (11.142)

When r = 1, we may write Yk (G;A) as Yk (G;A), where A = A1.

Theorem 11.78 The expected value of Yk (G;A) is given by

E [Yk (G;A)] = Pk (G;A) , (11.143)

where Pk (G;A) is given by Theorem 6.119.

Proof. The result follows from the de�nition of the indicator function, Yk (G;A).

Corollary 11.79 For r+1 distinct A-sets, A1; : : : ; Ar+1 with Ar+1 = G, A = (A1, : : :, Ar; Ar+1)

and � = jGj,

E [Yk (G;A)] =
�
�
N��
k��
�

N
�
N�1
k�1
� (11.144)

and E [Yk (G;A)] =
�
�
k�1
��1
�

N
�
N�1
��1
� . (11.145)

Proof. Applying Corollary 6.126 to Theorem 11.78 provides the result.
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Corollary 11.80 For r+1 distinct A-sets, A1; : : : ; Ar+1 with Ar+1 = G, A = (A1, : : :, Ar; Ar+1)

and jGj = 1,

E [Yk (G;A)] =
1

N
. (11.146)

Proof. The result follows trivially from Corollary 11.79 by substituting � = 1.

De�nition 11.81 Consider  G-sets G1; : : : ; G, with the ith G-set, Gi, having corresponding

A-sets Ai1, : : :, Airi. Let A
() = (A1; : : : ;A), where Ai = (Ai1; : : : ; Airi). De�ne Yk

�
G,A()

�
to

be the number of completions at time k of sets Gi[Aij for at least one A-set Aij, j 2 f1, : : : , rig.

Theorem 11.82 The expected value of Yk
�
G,A()

�
is given by

E
h
Yk

�
G,A()

�i
=

X
i=1

E [Yk (Gi;Ai)] , (11.147)

where E [Yk (Gi;Ai)] is given by Theorem 11.78.

Proof. Since Yk
�
G,A()

�
= y i¤ Yk (Gi;Ai) = 1 for y G-sets, we have

Yk

�
G,A()

�
=

X
i=1

Yk (Gi;Ai) ,

from which the result is obtained as a consequence of the linearity of expectation.

11.5.3 Variance

Theorem 11.83 The variance of Yk (G;A) is

V ar (Yk (G;A)) = Pk (G;A) (1� Pk (G;A)) , (11.148)

where Pk (G;A) is given by Theorem 6.119.

Proof. The variance is given by

V ar (Yk (G;A)) = E
h
(Yk (G;A))

2
i
� E [Yk (G;A)]2

= E [Yk (G;A)]� E [Yk (G;A)]2 as Yk (G;A) 2 f0; 1g ,

from which the result follows by applying Theorem 11.78 and factorising the result.
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Theorem 11.84 For G-sets G1 and G2 with corresponding A-sets A1 and A2, the covariance of

Yk1 (G1;A1) with Yk2 (G2;A2) is given by

Cov (Yk1 (G1;A1) ; Yk2 (G2;A2)) = Pk1;k2 ((G1;A1) ; (G2;A2))� Pk1 (G1;A1)Pk2 (G2;A2) ,

(11.149)

where Pk1;k2 ((G1;A1) ; (G2;A2)) is given by Theorem 6.136.

Proof. The covariance is given by

Cov (Yk1 (G1;A1) ; Yk2 (G2;A2))

= E [Yk1 (G1;A1)Yk2 (G2;A2)]� E [Yk1 (G1;A1)]E [Yk2 (G2;A2)]

= Pk1;k2 ((G1;A1) ; (G2;A2))� Pk1 (G1;A1)Pk2 (G2;A2) ,

as Yk (G;A) 2 f0; 1g and by applying Theorem 11.78. This is the required result.

Theorem 11.85 The variance of Yk
�
G,A()

�
is

V ar
�
Yk

�
G,A()

��
=

X
i=1

V ar (Yk (Gi;Ai)) + 2
X

1�i<j�
Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj)) , (11.150)

where V ar (Yk (G;A)) is given by Theorem 11.83, and Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj)) is given by

Theorem 11.84.

Proof. The result is a direct application of the well-known formula for the variance of the sum

of random variables, as given, for example, by Feller [29, IX.5, Theorem 2].

Theorem 11.86 The covariance of Yk1
�
G;A()

�
with Yk2

�
G;A()

�
is given by

Cov
�
Yk1

�
G;A()

�
; Yk2

�
G;A()

��
=

X
i=1

Cov (Yk1 (Gi;Ai) ; Yk2 (Gi;Ai))

+ 2
X

1�i<j�
Cov (Yk1 (Gi;Ai) ; Yk2 (Gj ;Aj)) , (11.151)

where Cov (Yk1 (Gi;Ai) ; Yk2 (Gj ;Aj)) is given by Theorem 11.84.

346



Global Properties: Without-Replacement 347

11.5. Expected Completions at the kth Arrival (Platoon Size)

Proof. Let �ki = E [Yk (Gi;Ai)]. As Yk
�
G,A()

�
=
P

i=1 Yk (Gi;Ai), we have

Cov
�
Yk1

�
G;A()

�
; Yk2

�
G;A()

��
= Cov

 
X
i=1

Yk1 (Gi;Ai) ;

X
i=1

Yk2 (Gi;Ai)

!

= E

" 
X
i=1

Yk1 (Gi;Ai)�
X
i=1

�k1i

! 
X
i=1

Yk2 (Gi;Ai)�
X
i=1

�k2i

!#

= E

" 
X
i=1

�
Yk1 (Gi;Ai)� �k1i

�! X
i=1

�
Yk2 (Gi;Ai)� �k2i

�!#

=

X
i=1

E
��
Yk1 (Gi;Ai)� �k1i

� �
Yk2 (Gi;Ai)� �k2i

��
+ 2

X
1�i<j�

E
��
Yk1 (Gi;Ai)� �k1i

� �
Yk2 (Gj ;Aj)� �k2j

��
,

from which the result follows by the de�nition of covariance.

Theorem 11.87 The variance of the cumulative number of completions at the Kth arrival is given

by

V ar

 
KX
k=1

Yk

�
G,A()

�!

=

KX
k=1

V ar
�
Yk

�
G,A()

��
+ 2

X
1�k1<k2�K

Cov
�
Yk1

�
G,A()

�
; Yk2

�
G,A()

��
, (11.152)

where V ar (Yk (G;A)) is given by Theorem 11.85 and Cov
�
Yk
�
G,A()

�
; Yk

�
G,A()

��
is given by

Theorem 11.86.

Proof. The result is a direct application of the well-known formula for the variance of the sum

of random variables, as given, for example, by Feller [29, IX.5, Theorem 2].

11.5.4 Example: Parallel Lanes

11.5.4.1 Preliminaries

The relevant probability distributions for uni- and bi-directional exiting in parallel lanes are pro-

vided in Sections 6.19.3.1 and 6.19.4.1, respectively. These are used here to provide the expec-

tations. Comparisons of these expectations are provided in Section 13.2.7 on Platoon Departure

Sizes.
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To apply the theory, it is convenient to consider a re-labelling of the G-sets to a 2-dimensional

system. Let G(i;j) be the G-set corresponding to car j 2 f1; : : : ; sig of lane i 2 f1; : : : ; tg. These

can be mapped to a linear representation by letting _si =
Pi�1

�=1 si and mapping (i; j) �! _si + j.

Here  =
Pt

i=1 si = N .

Since the G-sets are distinct, the total of the expected number of completions should be N .

This is demonstrated in each case.

11.5.4.2 With Uni-Directional Exiting

Theorem 11.88 The expected platoon departure size at the kth arrival with uni-directional exiting

is given by

E
h
Yk

�
G,A(N)

�i
=

1

N
�
N�1
k�1
� tX
i=1

siX
j=1

j

�
N � j
k � j

�
. (11.153)

Proof. Here, G(i;j) � fjg, r(i;j) � 1 and A(i;j)1nG(i;j) � f1, : : : , j � 1g, so the result follows

by application of Theorem 11.82 and Corollary 6.116.

Corollary 11.89 The total expected number of departures is N . That is,

NX
k=1

E
h
Yk

�
G,A(N)

�i
= N (11.154)

Proof. Summing the expression in Equation 11.153 over k gives

NX
k=1

E
h
Yk

�
G,A(N)

�i
=

tX
i=1

siX
j=1

j

N

NX
k=1

�
N�j
k�j
��

N�1
k�1
�

=
tX
i=1

siX
j=1

1 by Equation 5.8

= N

as required.

Corollary 11.90 The expected number of departures at the last arrival is

E
h
YN

�
G,A(N)

�i
=
1

2
+

1

2N

tX
i=1

s2i , (11.155)

and when si � s this number becomes

E
h
YN

�
G,A(N)

�i
=
s+ 1

2
. (11.156)
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Proof. Putting k = N in Equation 11.153 gives

E
h
YN

�
G,A(N)

�i
=

1

N
�
N�1
N�1

� tX
i=1

siX
j=1

j

�
N � j
N � j

�

=
1

N

tX
i=1

siX
j=1

j

=
1

N

tX
i=1

si (si + 1)

2

=
1

2N

 
tX
i=1

si +
tX
i=1

s2i

!

=
1

2
+

1

2N

tX
i=1

s2i

as required. When si � s this becomes

E
h
YN

�
G,A(N)

�i
=

1

2
+

1

2N

tX
i=1

s2

=
1

2
+
s (st)

2N

=
1

2
+
s

2
,

from which the result is immediate.

11.5.4.3 With Bi-Directional Exiting

Theorem 11.91 The expected platoon departure size at the kth arrival with bi-directional exiting

is given by

E
h
Yk

�
G,A(N)

�i
=

1

N
�
N�1
k�1
� tX
i=1

242 siX
j=1

j

�
N � j
k � j

�
� s2i

�
N � si
k � si

�35 . (11.157)

Proof. Here, G(i;j) � fjg, r(i;j) � 2, A(i;j)1nG(i;j) � f1, : : : , j � 1g and A(i;j)2nG(i;j) �
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fj + 1, : : : , sig, so, by Theorem 11.82 and Corollary 6.120,

E
h
Yk

�
G,A(N)

�i
=

tX
i=1

siX
j=1

j
�
N�j
k�j
�
+ (si � j + 1)

�
N�si+j�1
k�si+j�1

�
� si

�
N�si
k�si

�
N
�
N�1
k�1
�

=
1

N
�
N�1
k�1
� tX
i=1

24 siX
j=1

j

�
N � j
k � j

�
+

siX
�=1

�

�
N � �
k � �

�
� s2i

�
N � si
k � si

�35
=

1

N
�
N�1
k�1
� tX
i=1

242 siX
j=1

j

�
N � j
k � j

�
� s2i

�
N � si
k � si

�35
as required.

Corollary 11.92 The total expected number of departures is N . That is,

NX
k=1

E
h
Yk

�
G,A(N)

�i
= N (11.158)

Proof. Summing the expression in Equation 11.157 over k gives

NX
k=1

E
h
Yk

�
G,A(N)

�i
= 2

tX
i=1

siX
j=1

j

N

NX
k=1

�
N�j
k�j
��

N�1
k�1
� � tX

i=1

si
si
N

NX
k=1

�
N�si
k�si

��
N�1
k�1
�

= 2N �
tX
i=1

si by Theorem 5.8

= N

as required.

Corollary 11.93 The expected number of departures at the last arrival is

E
h
YN

�
G,A(N)

�i
= 1. (11.159)
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Proof. Putting k = N in Equation 11.157 gives

E
h
YN

�
G,A(N)

�i
=

1

N
�
N�1
N�1

� tX
i=1

242 siX
j=1

j

�
N � j
N � j

�
� s2i

�
N � si
N � si

�35
=

1

N

tX
i=1

242 siX
j=1

j � s2i

35
=

1

N

tX
i=1

�
si (si + 1)� s2i

�
=

1

N

tX
i=1

si

= 1

as required.

11.5.5 Example: The Game SET

11.5.5.1 Preliminaries

Consider the standard game as described in Section 2.8.3. The relevant probability distributions

for a card�s and triad�s points of views are provided in Sections 6.19.4.2 and 6.19.3.2, respectively.

These are used here to provide the expectations. These expectations are graphed and interpreted

in Sections 13.7.4 on the Expected Number of Completions at the kth card and 13.7.5 on the Number

of Triads in K Cards, respectively.

11.5.5.2 The Triads�Point of View

From Section 2.8.3,  = N(N�1)
6 triads and h = 3(N�3)

2 triads.

Here Gi is the ith triad, where the  triads may be listed in any order, ri � 1, and for

j 2 f1; : : : ; rig, Aij = Gi.

Theorem 11.94 The expected number of completed triads at the kth card is given by

E1;k =

�
k�1
2

�
N � 2 . (11.160)

Proof. By Theorem 11.82,

E
h
Yk

�
G,A(N)

�i
=

X
i=1

E [Yk (Gi;Ai)] ,
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where

E [Yk (Gi;Ai)] = Pk (G;A) .

From Corollary 6.117, this becomes

E
h
Yk

�
G,A(N)

�i
=

X
i=1

3
�
k�1
2

�
N
�
N�1
2

�
=

N (N � 1)
6

�
3
�
k�1
2

�
N
�
N�1
2

�
=

N � 1
2
�

2
�
k�1
2

�
(N � 1) (N � 2) ,

which, upon cancellation, becomes the required result.

Theorem 11.95 The variance of the number of completed triads at the kth card is given by

Vk =

�
k�1
2

�
(N � 2) +

6
�
k�1
4

�
(N � 2) (N � 4) �

�
k�1
2

�2
(N � 2)2

. (11.161)

Proof. By Theorem 11.85,

V ar
�
Yk

�
G,A()

��
=

X
i=1

V ar (Yk (Gi;Ai)) + 2
X

1�i<j�
Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj)) , (11.162)

where by Theorem 11.83,

V ar (Yk (Gi;Ai)) = Pk (Gi;Ai) (1� Pk (Gi;Ai)) , (11.163)

and by Theorem 11.84,

Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj)) = Pk;k ((Gi;Ai) ; (Gj ;Aj))� Pk (Gi;Ai)Pk (Gj ;Aj) . (11.164)

The sum
P

i=1 V ar (Yk (Gi;Ai)) is determined by substituting the probabilities given by Corol-
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lary 6.117 into Equation 11.163 and summing to give

X
i=1

V ar (Yk (Gi;Ai)) =

X
i=1

Pk (Gi;Ai) (1� Pk (Gi;Ai))

=

X
i=1

3
�
k�1
2

�
N
�
N�1
2

�  1� 3
�
k�1
2

�
N
�
N�1
2

�!

=
3
�
k�1
2

�
N
�
N�1
2

� � 9
�
k�1
2

�2
N2
�
N�1
2

�2 . (11.165)

The sum
P
1�i<j� Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj)) in Equation 11.162 is determined by substi-

tuting the joint probabilities given by Corollary 6.132 with k1 = k2 and the probabilities given by

Corollary 6.117 into Equation 11.164 and summing to give

2
X

1�i<j�
Cov (Yk (Gi;Ai) ; Yk (Gj ;Aj))

= 2
X

1�i<j�
Pk;k ((Gi;Ai) ; (Gj ;Aj))� 2

X
1�i<j�

Pk (Gi;Ai)Pk (Gj ;Aj)

= 2
X

1�i<j�
jGi\Gj j=1

Pk;1;1 ((Gi;Ai) ; (Gj ;Aj)) + 2
X

1�i<j�
Gi\Gj=;

Pk;1;1 ((Gi;Ai) ; (Gj ;Aj))

� 2
�


2

� 
3
�
k�1
2

�
N
�
N�1
2

�!2

= 2
X

1�i<j�
jGi\Gj j=1

�
N�5
k�5
�

N
�
N�1
k�1
� + 0� 2�

2

�
9
�
k�1
2

�2
N2
�
N�1
2

�2
=
h
�
k�1
4

�
N
�
N�1
4

� � 9 ( � 1) �k�12 �2
N2
�
N�1
2

�2 , (11.166)

as the number of G-sets that intersect each of the  G-sets is h, and by observing that

�
N�5
k�5
��

N�1
k�1
� = �

k�1
4

��
N�1
4

� . (11.167)

The latter form of the fraction will be easier to sum later.

By incorporating the observation that

9
�
k�1
2

�2
N2
�
N�1
2

�2 + 9 ( � 1)
�
k�1
2

�2
N2
�
N�1
2

�2 =
92
�
k�1
2

�2
N2
�
N�1
2

�2 , (11.168)

combining Equations 11.165 and 11.166, and then substituting for  = N(N�1)
6 and h = 3(N�3)

2
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gives

Vk =
3
�
k�1
2

�
N
�
N�1
2

� + h
�
k�1
4

�
N
�
N�1
4

� � 92�k�12 �2
N2
�
N�1
2

�2
=

�
k�1
2

�
(N � 2) +

6
�
k�1
4

�
(N � 2) (N � 4) �

�
k�1
2

�2
(N � 2)2

(11.169)

as required.

Theorem 11.96 The covariance for the number of completions of a triad, G, at both the k1th and

k2th arrivals, with k1 < k2, is given by

Covk1k2 (G) = �
9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 . (11.170)

Proof. By Theorem 11.84,

Cov (Yk1 (G;A) ; Yk2 (G;A)) = Pk1;k2 ((G;A) ; (G;A))� Pk1 (G;A)Pk2 (G;A) . (11.171)

For k1 < k2, it is not possible for G, which is equal to A, (which is A, since r = 1 in this

model,) to complete for the �rst time at both k1 and k2. Hence

Cov (Yk1 (G;A) ; Yk2 (G;A)) = �Pk1 (G;A)Pk2 (G;A)

=
3
�
k1�1
2

�
N
�
N�1
2

� 3�k2�12 �
N
�
N�1
2

�
=

9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 (11.172)

as required.

Theorem 11.97 The covariance for the number of completions of a triad, G1, at the k1th arrival

and a triad, G2, at the k2th arrival, with k1 < k2, is given for jG1 \G2j = 1 by

Covk1k2 (G1; G2) =
6
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

� � 9�k1�12 ��k2�12 �
N2
�
N�1
2

�2 , (11.173)

and for G1 \G2 = ; by

Covk1k2 (G1; G2) =
9
�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

� � 9�k1�12 ��k2�12 �
N2
�
N�1
2

�2 . (11.174)
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Proof. By Theorem 11.84,

Cov (Yk1 (G1;A1) ; Yk2 (G2;A2)) = Pk1;k2 ((G1;A1) ; (G2;A2))� Pk1 (G1;A1)Pk2 (G2;A2) .

(11.175)

Substituting the joint probabilities given by Corollary 6.132 with k1 < k2 and the probabilities

given by Corollary 6.117, gives the covariance for jG1 \G2j = 1 as

Cov (Yk1 (G1;A1) ; Yk2 (G2;A2)) =
6
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

� � 3
�
k1�1
2

�
N
�
N�1
2

� 3�k2�12 �
N
�
N�1
2

� (11.176)

and for G1 \G2 = ; as

Cov (Yk1 (G1;A1) ; Yk2 (G2;A2)) =
9
�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

� � 3
�
k1�1
2

�
N
�
N�1
2

� 3�k2�12 �
N
�
N�1
2

� , (11.177)

from which the result follows trivially.

Theorem 11.98 The covariance for the number of all completions, G, at the k1th arrival and the

k2th arrival, with k1 < k2, is given by

Covk1k2 =
3
�
k1�1
2

��
k2�4
1

�
(N � 2) (N � 4) +

(N � 7)
�
k1�1
2

��
k2�4
2

�
(N � 2) (N � 4) (N � 5) �

�
k1�1
2

��
k2�1
2

�
(N � 2)2

. (11.178)

Proof. By Theorem 11.86

Cov
�
Yk1

�
G;A()

�
; Yk2

�
G;A()

��
=

X
i=1

Cov (Yk1 (Gi;Ai) ; Yk2 (Gi;Ai))

+ 2
X

1�i<j�
Cov (Yk1 (Gi;Ai) ; Yk2 (Gj ;Aj)) , (11.179)

where by Theorem 11.96,

X
i=1

Cov (Yk1 (Gi;Ai) ; Yk2 (Gi;Ai)) = �
X
i=1

9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2
= �

9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 (11.180)
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and by Theorem 11.97,

X
1�i<j�

Cov (Yk1 (Gi;Ai) ; Yk2 (Gj ;Aj)) =
X

1�i<j�
jGi\Gj j=1

6
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

�
+

X
1�i<j�
Gi\Gj=;

9
�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

�
�

X
1�i<j�

9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 , (11.181)

as
P

1�i<j�
jGi\Gj j=1

+
P

1�i<j�
Gi\Gj=;

=
P
1�i<j� , giving

X
1�i<j�

Cov (Yk1 (Gi;Ai) ; Yk2 (Gj ;Aj)) =
h

2

6
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

�
+

��


2

�
� h

2

�
9
�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

�
�
�


2

�
9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 . (11.182)

Substituting Equations 11.180 and 11.182 into Equation 11.179 yields

Covk1k2 = �
9
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 +
6h

�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

�
+
9 ( � 1� h)

�
k1�1
2

��
k2�4
2

�
N (N � 1)

�
N�2
2

��
N�4
2

� �
9 ( � 1)

�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2
=

6h
�
k1�1
2

��
k2�4
1

�
N (N � 1)

�
N�2
2

��
N�4
1

� + 9 ( � 1� h) �k1�12 ��k2�42 �
N (N � 1)

�
N�2
2

��
N�4
2

�
�
92
�
k1�1
2

��
k2�1
2

�
N2
�
N�1
2

�2 . (11.183)

After substituting  = N(N�1)
6 and h = 3(N�3)

2 and simplifying the three terms separately, the

required result is obtained.

Theorem 11.99 The expected number of triads in K cards is given by

_E1;K =

�
K
3

�
N � 2 . (11.184)

Proof. Summing E
�
Yk
�
G,A(N)

��
as given by Theorem 11.94 from k = 1 to K and observing
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that
PK

k=1

�
k�1
2

�
=
�
K
3

�
(by applying Result 5.8) provides the result.

Remark 11.100 The expected number of triads in K cards has been determined without knowledge

of the maximum number of sets possible in K cards.

Theorem 11.101 The variance of the number of triads in K cards is given by

_VK =
(K)3 (N �K)3

6 (N � 2)2 (N � 4)2
. (11.185)

Proof. Applying Theorem 11.87, we have

V ar

 
KX
k=1

Yk

�
G,A()

�!

=

KX
k=1

V ar
�
Yk

�
G,A()

��
+ 2

X
1�k1<k2�K

Cov
�
Yk1

�
G,A()

�
; Yk2

�
G,A()

��
. (11.186)

By application of Theorem 11.95, the �rst term of Equation 11.186 may be written as

KX
k=1

V ar
�
Yk

�
G,A()

��

=

KX
k=1

�
k�1
2

�
(N � 2) +

6
�
k�1
4

�
(N � 2) (N � 4) �

�
k�1
2

�2
(N � 2)2

=

�
K
3

�
(N � 2) +

6
�
K
5

�
(N � 2) (N � 4) �

�
3K2 � 6K + 1

� �
K
3

�
10 (N � 2)2

. (11.187)

By application of Theorem 11.98, the second term of Equation 11.186 may be written as

2
X

1�k1<k2�K
Covk1k2

=
X

1�k1<k2�K

6
�
k1�1
2

��
k2�4
1

�
(N � 2) (N � 4) +

2 (N � 7)
�
k1�1
2

��
k2�4
2

�
(N � 2) (N � 4) (N � 5) �

2
�
k1�1
2

��
k2�1
2

�
(N � 2)2

=
24
�
K
5

�
(N � 2) (N � 4) +

20 (N � 7)
�
K
6

�
(N � 2) (N � 4) (N � 5) �

2
�
5K2 � 9K + 1

� �
K
4

�
15 (N � 2)2

. (11.188)
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k E1;k _E1;k Vk StdDev _Vk StdDev

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0: 143 0: 143 0: 122 0: 350 0: 122 0: 350

4 0: 429 0: 571 0: 245 0: 495 0: 245 0: 495

5 0: 857 1: 429 0: 294 0: 542 0: 245 0: 495

6 1: 429 2: 857 0: 245 0: 495 0: 122 0: 350

7 2: 143 5 0: 122 0: 350 0 0

8 3 8 0 0 0 0

9 4 12 0 0 0 0

Table 11.7: Expectations and Standard Deviations for the Cumulative Completions in the Standard
Game of SET with a = 2 Attributes

Substituting Equations 11.187 and 11.188 into 11.186 gives

_VK =

�
K
3

�
(N � 2) +

6
�
K
5

�
(N � 2) (N � 4) �

�
3K2 � 6K + 1

� �
K
3

�
10 (N � 2)2

+
24
�
K
5

�
(N � 2) (N � 4) +

20 (N � 7)
�
K
6

�
(N � 2) (N � 4) (N � 5)

�
2
�
5K2 � 9K + 1

� �
K
4

�
15 (N � 2)2

. (11.189)

It is clear that
�
K
3

�
is a factor in the numerator and (N � 2) is a factor in the denominator of this

expression when written as a single fraction. Since the number of triads formed at the end of the

game is �xed at N , (N �K) is also a factor. The remaining factors can then be found trivially to

produce the result.

11.5.5.2.1 Example: a = 2 Attributes

Table 11.7 provides the means and standard deviations for the cumulative number of comple-

tions upon the kth arrival in the case of a = 2 attributes.

11.5.5.2.2 Example: Mean and Standard Deviation at the 12th Card in The Standard

Game of SET

The mean and standard deviation for the cumulative number of completions upon the kth card

in the case of a = 4 attributes are given by

_E1;12 =

�
12
3

�
81� 2 =

220

79
' 2: 785 (11.190)

and StdDev =

s
(12)3 (81� 12)3

6 (81� 2)2 (81� 4)2
' 1: 376. (11.191)
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11.5.5.3 The Cards�Point of View

Theorem 11.102 The expected number of cards that become part of a completed triad for the �rst

time at k is given by

E2;k =
rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
N�1�2s
k�1�2s

��
N�1
k�1
� . (11.192)

Proof. Here,  = N cards, Gi is the ith card where the  cards may be listed in any order,

the ith card is a member of ri � r triads, and for j 2 f1; : : : ; rig, Aij is the jth triad that ith card

is a member of. By Theorem 11.82,

E
h
Yk

�
G,A(N)

�i
=

X
i=1

E [Yk (Gi;Ai)] ,

where

E [Yk (Gi;Ai)] = Pk (G;A) .

From Corollary 6.121, this becomes

E
h
Yk

�
G,A(N)

�i
=

X
i=1

rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
N�1�2s
k�1�2s

�
N
�
N�1
k�1
�

= N �
rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
N�1�2s
k�1�2s

�
N
�
N�1
k�1
� ,

which, upon cancellation, becomes the required result.

Corollary 11.103 For a � 2 and k � N+5
2 ,

E2;k = 1. (11.193)

Proof. The result is a consequence of applying 6.123.

Remark 11.104 Corollary 11.103 shows that from the time the (r + 3)th card is played, one can

expect on average that every card played will have at least one pair of cards on the table that it can

form a match with.

Corollary 11.105 The expected number of triads formed at the kth arrival is

E3;k =
E2;k
3
. (11.194)

Proof. Each of the 3 cards in a triad could complete the triad and hence contributes to the

expectation in E2;k, and these three contributions are equal. Hence the result.
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Corollary 11.106 The expected number of non-intersecting triads formed during the placement

of the �rst K cards, for K � r + 2, is

_E3;K =
K

3

rX
s=1

(�1)s�1
�
r

s

��N�1�2s
K�1�2s

��
N�1
K�1

� , (11.195)

and for a � 2 and K � r + 3 is
K

3
. (11.196)

Proof. Combining Equations 11.194 and 11.192 in its alternative form gives

_E3;K =
KX
k=1

E2;k
3

=
1

3

KX
k=1

rX
s=1

(�1)s�1
�
r

s

�
(1 + 2s)

�
k�1
2s

��
N�1
2s

�
=

1

3

rX
s=1

(�1)s�1
�
r

s

�
1 + 2s�
N�1
2s

� KX
k=1

�
k � 1
2s

�

=
1

3

rX
s=1

(�1)s�1
�
r

s

�
1 + 2s�
N�1
2s

�� K

2s+ 1

�
by Equation 8.2

=
K

3

rX
s=1

(�1)s�1
�
r

s

��K�1
2s

��
N�1
2s

�
=

K

3

rX
s=1

(�1)s�1
�
r

s

��N�1�2s
K�1�2s

��
N�1
K�1

�
as required.

For a � 2 and K � r + 2, Corollary 11.103 implies that
PN

k=r+3E2;k = N � r � 2, and hencePr+2
k=1E2;k = r + 2. Therefore

_E3;K =
r + 2

3
+
(K � (r + 2))

3
� 1 = K

3

as required.

Scholium 11.107 Corollary 11.106 is extraordinary in that it provides the expected number of

cards involved in triads that arise upon placement of the kth card without knowledge of the distri-

bution and even without knowing the maximum number of sets possible.

Notation 11.108 Let E4;k be the corresponding expectation when matches are removed in any

order, and let _E4;K =
PK

k=1E4;k.
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k E1;k _E1;k E2;k _E2;k E3;k _E3;k E5;k _E5;k=3

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 1
7

1
7

3
7

3
7

1
7

1
7

3
7

1
7

4 3
7

4
7

9
7

12
7

3
7

4
7

9
7

4
7

5 6
7

10
7

15
7

27
7

5
7

9
7

9
7 1

6 10
7

20
7

15
7 6 5

7 2 3
7

8
7

7 15
7 5 1 7 1

3
7
3

6
7

10
7

8 3 8 1 8 1
3

8
3

12
7 2

9 4 12 1 9 1
3 3 3 3

Total 12 9 3 9

Table 11.8: Expectations for the Standard Game of SET with a = 2 Attributes

Corollary 11.109 For k 2 f1; : : : ; Ng,

_E5;k=3 � _E3;k. (11.197)

Proof. Both cumulative expectations calculate essentially the same thing, except that the

process used to calculate _E5;k reduces the cards on the table when matches are found, whereas the

process used to produce _E3;k doesn�t, so that the latter includes triads that in a game would no

longer be possible.

11.5.5.3.1 Example: a = 2 Attributes

Let E5;k and E6;k be the expected number of cards can be removed when the kth card is

placed during a game in which matches are removed in lexicographically �rst order and last order,

respectively. By enumerating all 9! arrival sequences, it has been found that E5;k � E6;k; this

identity has been observed not to hold in the case a = 4. Let _E5;K =
PK

k=1E5;k.

Table 11.8 provides the values for various expectations for each k.

Observe that at �rst E5;k � E2;k and then E5;k > E2;k. This occurs since E5;k is based on

removing non-intersecting triads as they arise, whereas E2;k is not.

Observe that _E5;k=3 � _E3;k. This illustrates the idea that _E3;k provides an upper bound for

the expected number of triads that would be observed as each new card is placed during a game

in which triads are removed as they are observed.
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11.6 Measures of the Dynamic State of Disjoint G-Sets

11.6.1 Introduction

In a 	-process, interest is centred on a single G-set. In some applications, such as the Parking Lot

problem, sock-sorting or the Cake Display Problem, interest is also in measuring global attributes

for all drivers and passengers. During the arrival process, it may also be useful to have a measure of

the occupancy of each G-set. This could provide, for example, a measure of the rate of completions

of G-sets over the arrival period; if completed G-sets have another process to be applied to them,

then the rate and size of completions might be relevant.

In this section, we consider a model that allows for many sock sets or cakes of the same type,

and we determine the mean and variance of several random variables associated with the number

of completed partial G-sets, the number with no arrivals, and the occupancies of partial G-sets

that have at least one arrival but not enough to constitute a complete G-set.

De�nition 11.110 The term with multiplicities refers to a model in which a G-set can have

multiple partial completions (or matches), with speci�ed counts determining the partial completion

sets.

De�nition 11.111 The model that considers an entire G-set to be a match is referred to as

without multiplicities:

In Sock-Matching (described in Section 2.6), the G-sets correspond to sets of matching socks of

the same kind. In the Cake Display Problem (described in Section 2.7 with applications in Sections

13.8 and 13.9), the G-sets correspond to cake types.

Remark 11.112 Although precise values for the mean number of cakes on display is useful for

comparative purposes, there must be a whole number of cakes on display. Therefore, in practical

situations it may be more appropriate to round these numbers up to the nearest whole number.

11.6.2 Preliminaries

Partition the N elements of N into  non-empty, disjoint G-sets as N = _[i=1Gi. Put �i � jGij.

Then
P

i=1 �i = N . The classical question asks what the numbers of completed and partial G-sets

are after k arrivals when �i � 2.

De�nition 11.113 Given a G-set G with � = jGj and d 2 f1; : : : ; �g, a d-tuple of elements of

G is considered a complete match if all elements in the d-tuple have an arrival, a partial match

362



Global Properties: Without-Replacement 363

11.6. Measures of the Dynamic State of Disjoint G-Sets

if d0 2 f1; : : : ; d� 1g elements of this d-tuple have an arrival, and an empty match if no arrivals

have occurred for this d-tuple.

We determine the following properties for the state of G-sets and their elements: the mean and

variance at time k for

1. the number of complete matches, Nc (k) and Vc (k); e.g. cakes eaten;

2. the number of arrivals for partial matches, Nap (k) and Vap (k); e.g. total slices on display;

3. the number of empty matches, Ne (k) and Ve (k); e.g. uncut cakes, which are not displayed;

4. the number of partial matches with at least � arrivals Npa (k; �) and Vpa (k; �); e.g. number

of cakes on display with at least � slices eaten;

5. the number of partial matches with at least � arrivals still required Npr (k; �) and Vpr (k; �);

e.g. number of cakes on display with at least � slices displayed;

6. the number of arrivals required to complete partial matches, Nar (k) and Var (k).

We allow d to depend on the G-set it corresponds to, and use di for the G-set Gi. Assume

dij�i and set ri =
�i
di
; then the total number of matches is given by _r =

P
i=1 ri. Extending this

to an ordered collection of subsets of Gi with sizes di1, : : :, di� i such that
P� i

j=1 dij = jGij is a

straightforward extension to the results presented here. As the explanation is clearer without this

additional generality, this generalisation is omitted here. Also, in sock-matching and cake displays

it makes sense to assume dij � di. We say that j di-tuples are present at time k if at time k the

number of elements of Gi that have arrivals is jdi.

The Static Distribution is provided in Section 6.20, but here we use a direct technique for

determining the moments, namely the use of indicator functions and exploiting the property that

expectation is linear over sums of random variables, even if they are dependent.

11.6.2.1 Example: Bernoulli�s Marriage Problem

Bernoulli�s Marriage Problem has �i � 2 and di � 2.

11.6.2.2 Example: Sock-Matching with Multi-Legged Beings

Knuth [48] provided the expected number of complete sets after k socks have been drawn when the

 sets of socks are from creatures with �i legs and matches consist of di = �i socks, i 2 f1, : : : , g,

as
P

i=1

�
k
�i

�
=
�
N
�i

�
.
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11.6.3 Means and Variances: With Multiplicities

In �nding the expected number of matching pairs after k socks from  pairs of socks had been

drawn out in the sock-matching problem, Bowron [16] used indicator functions in the following

way, and exploited the property that expectation is linear over random variables, even if they are

dependent. Bowron de�ned Yi = 1 if pair i is present, else Yi = 0, but we generalise this here in

two di¤erent ways in the proofs below.

Remark 11.114 In the theorems of this section, there are sums involving j, j1 and j2 that could

have an upper-bound or lower-bound placed on them other than the number of di-tuples of type i

that they correspond to. These bounds correspond to ensuring that the number of arrivals of type

i does not exceed the total number of arrivals at time k, namely k itself. In each case, the bounds

would be determined by considering when the value k�� < 0, which is unnecessary for formulating

an expression for the moments, since in each expression there is a combinatorial term of the form�
a

k��
�
, which is zero when this condition is satis�ed. Furthermore, such a condition on the j-sum

would not necessarily preclude an entire �-sum, so when designing an algorithm to calculate these

moments, one may as well test if the term is zero and skip the rest of the �-sum. The expressions

formed are thereby simpli�ed in their presentation.

Theorem 11.115 For complete matches at time k, the expected number of complete matches is

Nc (k) =

X
i=1

riX
j=1

j

(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

� , (11.198)

and the variance is

Vc (k) =

X
i=1

riX
j=1

j2
(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

ri1X
j1=1

ri2X
j2=1

j1j2

(j1+1)di1�1X
�1=j1di1

(j2+1)di2�1X
�2=j2di2

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
35

�Nc (k)
2 . (11.199)

Proof. De�ne the indicator function Yi as Yi = j if j di-tuples form complete matches. For

Gi, there will be j 2 f0, . . . , rig di-tuples completed in the �rst k draws i¤ there are � arrivals for

Gi, where � 2 fjdi, : : : , (j + 1) di � 1g. The corresponding probability of having � arrivals for
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Gi is given by the hypergeometric distribution as

Pi (k; �) = P (� of the �rst k arrivals are for Gi)

=

�
�i
�

��N��i
k��

��
N
k

� . (11.200)

Summing over the possible values of � gives the probability of having j di-tuples completed as

Pij (k) = P (j di-tuples present in the �rst k arrivals)

=

(j+1)di�1X
�=jdi

Pi (k; �) . (11.201)

Thus, the expected number of di-tuples completed is

E [Yi] =

riX
j=1

jPij (k)

=

ri;X
j=1

j

(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

� . (11.202)

Therefore the expected number of completed cakes is given by

Nc (k) = E

"
X
i=1

Yi

#

=

X
i=1

E [Yi]

=

X
i=1

riX
j=1

j

(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

� (11.203)

as required.

The variance is given by

Vc (k) = E

24 X
i=1

Yi

!235� E " X
i=1

Yi

#!2

=

X
i=1

E
�
Y 2i
�
+ 2

�1X
i1=1

X
i2=i1+1

E [Yi1Yi2 ]�Nc (k)
2 . (11.204)

The �rst sum provides the same expression as for
Pn

i=1E [Yi] except that j is replaced by j
2.
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The summand in the second term is determined in a similar fashion as for E [Yi], but uses the

joint probability distribution for the numbers of arrivals for the two sets Gi1 and Gi2 instead of

just a single G-set. The probability of having �1 arrivals for Gi1 and �2 arrivals for Gi2 is given by

Pi1i2 (k; �1; �2) =

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

� . (11.205)

Summing over the possible values of �1 and �2 gives the probability of having j1 di1-tuples for Gi1

and j2 di2-tuples for Gi2 completed as

Pi1i2j1j2 (k) = P (j� di� -tuples present in the �rst k arrivals for � 2 f1; 2g)

=

(j1+1)di1�1X
�1=j1di1

(j2+1)di2�1X
�2=j2di2

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

� Pi1i2 (k; �1; �2) . (11.206)

Thus

E [Yi1Yi2 ] =

ri1X
j1=1

ri2X
j2=1

j1j2Pi1i2j1j2 (k) , (11.207)

from which the result can be obtained by combining the expressions.

Theorem 11.116 For partial matches at time k, the expected number of arrivals is

Nap (k) = k �
X
i=1

di

riX
j=1

j

(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

� , (11.208)

and the variance is

Vap (k) =

X
i=1

d2i

riX
j=1

j2
(j+1)di�1X
�=jdi

�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

di1di2

ri1X
j1=1

ri2X
j2=1

j1j2

(j1+1)di1�1X
�1=j1di1

(j2+1)di2�1X
�2=j2di2

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
35

�Nap (k)
2 . (11.209)

Proof. De�ne the indicator function Y 0i as Y
0
i = diYi if j 2 f0, : : : , rig di-tuples form complete

matches. Then Y 0i provides the number of arrivals for complete di-tuples. For the expectation, we
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have

E [k � arrivals for complete matches] = k � E [arrivals for complete matches]

= k �
X
i=1

E
�
Y 0i
�
, (11.210)

and for the variance we have

V ar (arrivals for partial matches) = V ar (k � arrivals for complete matches)

= V ar (arrivals for complete matches) . (11.211)

The method of Theorem 11.115 is applicable. For the expectation, the di¤erence here is that

E
�
Y 0i
�
= diE [Yi] , (11.212)

and for the variance, the two di¤erences here are that

E
h�
Y 0i
�2i

= d2iE
�
Y 2i
�

(11.213)

and

E
�
Y 0i1Y

0
i2

�
= di1di2E [Yi1Yi2 ] . (11.214)

The results are obtained by applying these di¤erences to the proof of Theorem 11.115.

Theorem 11.117 For empty matches at time k, the expected number of empty matches is

Ne (k) =

X
i=1

riX
j=1

j

(ri�j)diX
�=(ri�j�1)di+1

�
�i
�

��N��i
k��

��
N
k

� , (11.215)

and the variance is

Ve (k) =

X
i=1

riX
j=1

j2
(ri�j)diX

�=(ri�j�1)di+1

�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

ri1X
j1=1

ri2X
j2=1

j1j2

(ri1�j1)di1X
�1=(ri1�j1�1)di1+1

(ri2�j2)di2X
�2=(ri2�j2�1)di2+1

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
375

�Ne (k)
2 . (11.216)
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Proof. There will be j 2 f1, : : : , rig empty matches at time k for Gi i¤ there are at least

ri � j � 1 complete matches for Gi and either a partial match or another complete match for Gi.

That is, the number of arrivals, �, for Gi satis�es � 2 f(ri � j � 1) di + 1, : : :, (ri � j) dig.

Subject to these di¤erences, the form of the proof of Theorem 11.115 may be used to provide

the results.

Theorem 11.118 For partial matches at time k, the expected number of partial matches with at

least � arrivals is

Npa (k; �) =

X
i=1

ri�1X
j=0

(j+1)di�1X
�=jdi+�

�
�i
�

��N��i
k��

��
N
k

� , (11.217)

and the variance is

Vpa (k; �) =

X
i=1

ri�1X
j=0

(j+1)di�1X
�=jdi+�

�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

ri1�1X
j1=0

ri2�1X
j2=0

(j1+1)di1�1X
�1=j1di1+�

(j2+1)di2�1X
�2=j2di2+�

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
35

�Np (k)
2 . (11.218)

Proof. A partial match will occur for Gi with at least � arrivals if there are j 2 f0, : : :, ri�1g

complete matches with �, : : :, di � 1 additional arrivals for Gi, so that the number of arrivals for

Gi satis�es � 2 fjdi + �; : : : ; (j + 1) di � 1g. One partial match is counted for each pair of values

for j and �, whereas for complete matches, j matches were counted. Given these di¤erences, the

results follow a similar line of reasoning as provided in the proof of Theorem 11.115.

Theorem 11.119 For partial matches at time k, the expected number of partial matches with at

least � arrivals still required is

Npr (k; �) =

X
i=1

ri�1X
j=0

(j+1)di��X
�=jdi+1

�
�i
�

��N��i
k��

��
N
k

� , (11.219)
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and the variance is

Vpr (k; �) =

X
i=1

ri�1X
j=0

(j+1)di��X
�=jdi+1

�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

ri1�1X
j1=0

ri2�1X
j2=0

(j1+1)di1��X
�1=j1di1+1

(j2+1)di2��X
�2=j2di2+1

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
35

�Np (k)
2 . (11.220)

Proof. A partial match will occur for Gi with at least � arrivals still required if there are

j 2 f0, : : :, ri � 1g complete matches with 1, : : :, di � � additional arrivals for Gi, so that the

number of arrivals for Gi satis�es � 2 fjdi + 1, : : :, (j + 1) di � �g. One partial match is counted

for each pair of values for j and �, whereas for complete matches j matches were counted. Given

these di¤erences, the results follow a similar line of reasoning as provided in the proof of Theorem

11.115.

Remark 11.120 Specifying � = 1 in either of the Theorems 11.118 or 11.119 provides the results

for the expected number of partial matches at time k.

Theorem 11.121 For partial matches at time k, the expected number of arrivals required to com-

plete partial matches is

Nar (k) =

X
i=1

ri�1X
j=0

(j+1)di�1X
�=jdi+1

((j + 1) di � �)
�
�i
�

��N��i
k��

��
N
k

� , (11.221)

and the variance is

Var (k) =

X
i=1

ri�1X
j=0

(j+1)di�1X
�=jdi+1

((j + 1) di � �)2
�
�i
�

��N��i
k��

��
N
k

�
+2

24�1X
i1=1

X
i2=i1+1

ri1�1X
j1=0

ri2�1X
j2=0

(j1+1)di1�1X
�1=j1di1+1

(j2+1)di2�1X
�2=j2di2+1

((j1 + 1) di1 � �1) ((j2 + 1) di2 � �2)
�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
35

�Nar (k)
2 . (11.222)
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Proof. A partial match will occur for Gi if there are j 2 f0, : : : , ri � 1g complete matches

with 1, : : :, di � 1 additional arrivals for Gi, so that the number of arrivals for Gi satis�es � 2

fjdi + 1, : : : , (j + 1) di � 1g. The number of required arrivals for each pair of values of j and � is

the di¤erence between the size of match for Gi and the number of arrivals observed for the partial

match, which is di� (� � jdi) = (j + 1) di��. Given these di¤erences, the results follow a similar

line of reasoning as provided in the proof of Theorem 11.115.

Remark 11.122 Theorem 11.116 generalises Bernoulli�s Classical Lot Problem by allowing lots

of di¤erent sizes for each type and allows equi-sized subsets of a lot to be considered a match. In

sock-matching, it allows for partial sets of socks to be considered as a set, which is common for

sport and business socks. In cake display problems, this corresponds to having one or more cakes

of the same type.

Remark 11.123 Theorem 11.118 corresponds to the sock-matching model in which matching socks

are placed on top of each other immediately, rather than continuing to lay them out in a line as

they are drawn from the basket. In cake display problems, this corresponds to the number of cakes

on display when � = 1, and therefore the amount of room required.

11.6.3.1 Example: Expectations for the Cake Display Problem with N = 8,  = 2 and

�i � 4

Table 11.9 provides an example for the expectations provided by the theorems. Since Npr (k; 1) =

Npa (k; 1), only one is provided in the table. The results are for  = 2 types of cake, �i � 4 slices

per cake, and di � 2 cakes of each type; therefore N = 8 and k 2 f1, : : : , 8g.

Remark 11.124 Observe the non-unimodal nature of the maximum expected number of partial

matches on display, and of arrivals for those partial matches. When di � �i, the expected number

of partial matches on display is uni-modal. The peaks indicate the maximum amount of room

required and when they occur.

11.6.4 Means and Variances: Without Multiplicities

These results are derived from the more general case in Section 11.6.3 by setting di � �i, which

implies that ri � 1 and the j-sums have a single term. They are provided here without the

derivations, which are quite straight-forward. The exceptions to this occur when the formulae are

further manipulated to look like previously-known results.
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Cakes
Eaten

Slices Eaten from
Cakes on Display

Cakes
Uncut

Cakes
Displayed

Slices
Displayed

k Nc (k) Nap (k) Ne (k) Npa (k; 1) Nar (k)

1 0: 000 1: 000 3: 000 1: 000 1: 000

2 0: 429 1: 143 2: 429 1:143 1:143

3 1: 000 1: 000 2: 000 1: 000 1: 000

4 1: 543 0: 914 1: 543 0: 914 0: 914

5 2: 000 1: 000 1: 000 1: 000 1: 000

6 2: 429 1: 143 0: 429 1: 143 1: 143

7 3: 000 1: 000 0: 000 1: 000 1: 000

8 4: 000 0: 000 0: 000 0: 000 0: 000

Table 11.9: Example:With-Multiplicity Means: Cake Displays and Sock-Sorting for  = 2; � =
4; d = 2

First we provide a simple result that enables a conversion of the form of the expressions that

occurs as a result of the specialisation to di � �i to a form that is more often used in the literature.

This Lemma is applied wherever directly applicable in the Corollaries of this section.

Lemma 11.125 �
N��
k��
��

N
k

� =

�
k
�

��
N
�

� (11.223)

Proof. Expand the left-hand side to give

�
N��
k��
��

N
k

� =

(N��)!
(k��)!(N�k)!

N !
k!(N�k)!

�
1
�!
1
�!

=

k!
�!(k��)!
N !

�!(N��)!
,

from which the result is obtained.

Corollary 11.126 For complete matches at time k, the expected number of complete matches is2

Nc (k) =

X
i=1

�N��i
k��i

��
N
k

� (11.224a)

and =

X
i=1

�
k
�i

��
N
�i

� , (11.224b)

and the variance is

Vc (k) =

X
i=1

�
k
�i

��
N
�i

� + 2 �1X
i1=1

X
i2=i1+1

�
k

�i1+�i2

�
�

N
�i1+�i2

� �Nc (k)
2 . (11.225)

2The second expression for Nc (k) has the same form as Knuth�s expression in [48].
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Corollary 11.127 For partial matches at time k, the expected number of arrivals is

Nap (k) = k �
X
i=1

�i

�
k
�i

��
N
�i

� , (11.226)

and the variance is

Vap (k) =

X
i=1

�2i

�
k
�i

��
N
�i

� + 2 �1X
i1=1

X
i2=i1+1

�i1�i2

�
k

�i1+�i2

�
�

N
�i1+�i2

� �Nap (k)
2 . (11.227)

Corollary 11.128 For empty matches at time k, the expected number of empty matches is

Ne (k) =

X
i=1

�N��i
k

��
N
k

� , (11.228)

and the variance is

Ve (k) =

X
i=1

�N��i
k

��
N
k

� + 2

�1X
i1=1

X
i2=i1+1

�N��i1��i2
k

��
N
k

� �Ne (k)
2 . (11.229)

Corollary 11.129 For partial matches at time k, the expected number of partial matches with at

least � arrivals is

Npa (k; �) =

X
i=1

�i�1X
�=�

�
�i
�

��N��i
k��

��
N
k

� , (11.230)

and the variance is

Vpa (k; �) =

X
i=1

�i�1X
�=�

�
�i
�

��N��i
k��

��
N
k

�
+2

�1X
i1=1

X
i2=i1+1

+

�i1�1X
�1=�

�i2�1X
�2=�

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
�Np (k)

2 . (11.231)

Corollary 11.130 For partial matches at time k, the expected number of partial matches with at

least � arrivals still required is

Npr (k; �) =

X
i=1

�i��X
�=1

�
�i
�

��N��i
k��

��
N
k

� , (11.232)
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and the variance is

Vpr (k; �) =

X
i=1

�i��X
�=1

�
�i
�

��N��i
k��

��
N
k

�
+2

�1X
i1=1

X
i2=i1+1

�i1��X
�1=1

�i2��X
�2=1

�
�i1
�1

��
�i2
�2

��N��i1��i2
k��1��2

��
N
k

�
�Np (k)

2 . (11.233)

Corollary 11.131 For partial matches at time k, the expected number of arrivals required to

complete partial matches is

Nar (k) =

X
i=1

�i�1X
�=1

(�i � �)
�
�i
�

��N��i
k��

��
N
k

� , (11.234)

and the variance is

Var (k) =

X
i=1

�i�1X
�=1

(�i � �)2
�
�i
�

��N��i
k��

��
N
k

�
+2

�1X
i1=1

X
i2=i1+1

�i1�1X
�1=1

�i2�1X
�2=1

�
�i1 � �1

� �
�i2 � �2

� ��i1�1 ���i2�2 ��N��i1��i2k��1��2

��
N
k

�
�Nar (k)

2 . (11.235)

Corollary 11.132 (Bernoulli�s Lot and Urn Problem) The expectations for �i � 2 and N =

2, which implies � = 1, are

Nc (k) =

�
k
2

�
N � 1 , (11.236)

Nap (k) =
k (N � k)
N � 1 , (11.237)

Ne (k) =

�
N�k
2

�
N � 1 , (11.238)

Npa (k; 1) = Nap (k) , (11.239)

Npr (k; 1) = Nap (k) (11.240)

and

Nar (k) = Nap (k) . (11.241)
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11.6. Measures of the Dynamic State of Disjoint G-Sets

k
Cakes
Eaten

Slices Eaten from
Cakes on Display

Cakes
Uncut

Cakes
Displayed

Slices
Displayed

1 0: 000 1: 000 3: 000 1: 000 1: 000

2 0: 143 1: 714 2: 143 1: 714 1: 714

3 0: 429 2: 143 1: 429 2: 143 2: 143

4 0: 857 2: 286 0: 857 2: 286 2: 286

5 1: 429 2: 143 0: 429 2: 143 2: 143

6 2: 143 1: 714 0: 143 1: 714 1: 714

7 3: 000 1: 000 0: 000 1: 000 1: 000

8 4: 000 0: 000 0: 000 0: 000 0: 000

Table 11.10: Example: Without-MultiplicityMeans: Cake Displays and Sock-Sorting for  = 4; � =
2; d = 2

11.6.5 Example: Treating Identical Cakes as Distinguishable

Table 11.10 provides expected numbers for  = 4 types of cake, �i � 2 slices per cake, and di � 2.

A comparison with previous Table 11.9, which has  = 2, �i � 4 and di � 2, illustrates the e¤ect

of treating two identical cakes as distinguishable. In both cases, cakes have 2 slices. Of signi�cant

note is the di¤erence between the amount of time at least 2 cakes are expected to be displayed,

with the former occurring for 3 slices and latter for zero slices. The faster rate of cakes being

eaten (or equivalently socks being matched and removed from the table) can be seen by comparing

the �rst columns of the tables. In both cases, the expected numbers of slices displayed and cakes

displayed are identical because di � 2. Therefore, just as the latter model has less cakes on display,

it also has less slices open to potential spoilage.

Table 11.11 provides expected numbers for  = 2 types of cake, �i � 4 slices per cake, and

di � 4. A comparison with Table 11.9 illustrates the e¤ect of treating two identical cakes as a

single cake. In particular, cakes will be on display for longer and more slices are open to spoilage

for a longer period of time.

Table 11.11 illustrates a particular di¤erence between cake displays and sock-matching. The

number of socks on display � equivalently the number of slices eaten from displayed cakes � is

the traditional measure used to determine expected maximum space requirements. However, if

matching socks are placed on top of each other, the column for the number of cakes displayed is

relevant. In this example, the traditional sock-matching problem expects the maximum number

of places for socks to be more than four, whereas that value is less than two if matching socks are

kept together.
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11.6. Measures of the Dynamic State of Disjoint G-Sets

k
Cakes
Eaten

Slices Eaten from
Cakes on Display

Cakes
Uncut

Cakes
Displayed

Slices
Displayed

1 0: 000 1: 000 1: 000 1: 000 3: 000

2 0: 000 2: 000 0: 429 1: 571 4: 286

3 0: 000 3:000 0: 143 1: 857 4: 429

4 0: 029 3: 886 0: 029 1: 943 3: 886

5 0: 143 4: 429 0: 000 1: 857 3: 000

6 0: 429 4: 286 0: 000 1: 571 2: 000

7 1: 000 3:000 0: 000 1: 000 1: 000

8 2: 000 0: 000 0: 000 0: 000 0: 000

Table 11.11: Example: Without-MultiplicityMeans: Cake Displays and Sock-Sorting for  = 2; � =
4; d = 4

11.6.6 Example: Expected Numbers of Cakes and Slices on Display

This section uses the Cake Display Problem, which is described in Section 2.7, to illustrate some

di¤erences between considering cakes to be of unique types and considering there to be multiple

cakes of each type. This kind of information can be used in some sort of optimisation problem

in which the values of di are to be determined to minimise a cost function or maximise a value

function based on the expected space requirements at various times, the time taken for cakes to

spoil, the time required to fetch more cakes, and any other relevant variables. The comparison

here enables the determination of the expected times in each period that � � cakes are on display

with � 3 slices each.

Theorem 11.119 with � = 3 provides the expected number of cakes on display with at least 3

slices present. This example compares the e¤ect of considering all slices of one type of cake to be

part of a single cake with the e¤ect of splitting that cake into two smaller cakes of equal size.

A graph is drawn for each case for comparison. For further comparisons, they include the

expected numbers completed and on display.

For N = 80,  = 10 and � = 8, Figure 11.1 displays a graph of the expected number of cakes

on display that have at least 3 slices present for d = 8. The corresponding graph for d = 4 is

provided in Figure 11.2. Tables 11.12 and 11.13 provide the corresponding (rounded) values.

Remark 11.133 The graph in Figure 11.2 illustrates the initially surprising result that the ex-

pected number of displayed cakes having at least � slices displayed is not necessarily uni-modal in

the case of non-unique cake types.
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Figure 11.1: Expected Numbers of Cakes for Unique Types
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Figure 11.2: Expected Numbers of Cakes for Non-Unique Types
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11.6. Measures of the Dynamic State of Disjoint G-Sets

Table 11.12: Expected Numbers of Cakes for Unique Types

k Eaten On Display With � 3 Slices

0 0.00 0.00 0.00

1 0.00 1.00 1.00

2 0.00 1.91 1.91

3 0.00 2.74 2.74

4 0.00 3.50 3.50

5 0.00 4.18 4.18

6 0.00 4.80 4.80

7 0.00 5.36 5.36

8 0.00 5.87 5.87

9 0.00 6.33 6.33

10 0.00 6.74 6.74

11 0.00 7.12 7.12

12 0.00 7.45 7.45

13 0.00 7.75 7.75

14 0.00 8.02 8.02

15 0.00 8.26 8.26

16 0.00 8.47 8.47

17 0.00 8.66 8.66

18 0.00 8.83 8.82

19 0.00 8.98 8.97

20 0.00 9.12 9.09

21 0.00 9.23 9.20

22 0.00 9.34 9.29

23 0.00 9.43 9.37

24 0.00 9.51 9.43

25 0.00 9.58 9.48

26 0.00 9.64 9.51

continued on next page
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continued from previous page

k Eaten On Display With � 3 Slices

27 0.00 9.69 9.54

28 0.00 9.74 9.55

29 0.00 9.78 9.54

30 0.00 9.81 9.53

31 0.00 9.84 9.50

32 0.00 9.87 9.46

33 0.00 9.89 9.40

34 0.01 9.90 9.34

35 0.01 9.92 9.26

36 0.01 9.93 9.17

37 0.01 9.94 9.06

38 0.02 9.94 8.94

39 0.02 9.95 8.81

40 0.03 9.95 8.66

41 0.03 9.95 8.49

42 0.04 9.94 8.32

43 0.05 9.94 8.12

44 0.06 9.93 7.92

45 0.07 9.92 7.70

46 0.09 9.90 7.46

47 0.11 9.89 7.21

48 0.13 9.87 6.95

49 0.16 9.84 6.68

50 0.19 9.81 6.39

51 0.22 9.78 6.10

52 0.26 9.74 5.79

53 0.31 9.69 5.48

54 0.36 9.64 5.16

55 0.42 9.58 4.83

continued on next page
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continued from previous page

k Eaten On Display With � 3 Slices

56 0.49 9.51 4.50

57 0.57 9.43 4.16

58 0.66 9.34 3.83

59 0.76 9.23 3.50

60 0.88 9.12 3.17

61 1.02 8.98 2.85

62 1.17 8.83 2.54

63 1.34 8.66 2.23

64 1.53 8.47 1.94

65 1.74 8.26 1.66

66 1.98 8.02 1.41

67 2.25 7.75 1.16

68 2.55 7.45 0.94

69 2.88 7.12 0.75

70 3.26 6.74 0.57

71 3.67 6.33 0.42

72 4.13 5.87 0.30

73 4.64 5.36 0.19

74 5.20 4.80 0.12

75 5.82 4.18 0.06

76 6.50 3.50 0.03

77 7.26 2.74 0.01

78 8.09 1.91 0.00

79 9.00 1.00 0.00

80 10.00 0.00 0.00

Table 11.13: Expected Numbers of Cakes for Non-Unique Types

k Eaten On Display With � 3 Slices

0 0.00 0.00 0.00

1 0.00 1.00 1.00

continued on next page
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continued from previous page

k Eaten On Display With � 3 Slices

2 0.00 1.91 1.82

3 0.00 2.74 2.49

4 0.00 3.49 3.02

5 0.00 4.18 3.42

6 0.01 4.79 3.72

7 0.01 5.35 3.94

8 0.03 5.85 4.07

9 0.04 6.29 4.13

10 0.07 6.68 4.14

11 0.11 7.02 4.10

12 0.15 7.31 4.03

13 0.21 7.56 3.92

14 0.28 7.77 3.79

15 0.37 7.94 3.65

16 0.47 8.07 3.49

17 0.58 8.17 3.33

18 0.71 8.24 3.17

19 0.86 8.29 3.00

20 1.02 8.30 2.85

21 1.20 8.30 2.70

22 1.40 8.27 2.56

23 1.61 8.22 2.44

24 1.83 8.16 2.33

25 2.07 8.09 2.23

26 2.32 8.01 2.15

27 2.58 7.92 2.09

28 2.86 7.83 2.04

29 3.14 7.73 2.01

30 3.43 7.64 2.00

continued on next page
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continued from previous page

k Eaten On Display With � 3 Slices

31 3.73 7.54 2.00

32 4.03 7.45 2.01

33 4.34 7.37 2.04

34 4.65 7.29 2.08

35 4.96 7.23 2.14

36 5.26 7.17 2.20

37 5.57 7.12 2.27

38 5.87 7.09 2.34

39 6.17 7.07 2.42

40 6.47 7.07 2.50

41 6.75 7.07 2.58

42 7.03 7.09 2.66

43 7.30 7.12 2.73

44 7.57 7.17 2.80

45 7.82 7.23 2.86

46 8.06 7.29 2.92

47 8.29 7.37 2.96

48 8.52 7.45 2.99

49 8.73 7.54 3.00

50 8.93 7.64 3.00

51 9.13 7.73 2.99

52 9.32 7.83 2.96

53 9.50 7.92 2.91

54 9.67 8.01 2.85

55 9.84 8.09 2.77

56 10.01 8.16 2.67

57 10.17 8.22 2.56

58 10.33 8.27 2.44

59 10.50 8.30 2.30

continued on next page
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continued from previous page

k Eaten On Display With � 3 Slices

60 10.67 8.30 2.15

61 10.85 8.29 1.99

62 11.04 8.24 1.82

63 11.24 8.17 1.65

64 11.46 8.07 1.47

65 11.69 7.94 1.30

66 11.95 7.77 1.12

67 12.23 7.56 0.95

68 12.54 7.31 0.79

69 12.88 7.02 0.64

70 13.25 6.68 0.50

71 13.67 6.29 0.38

72 14.13 5.85 0.27

73 14.64 5.35 0.18

74 15.20 4.79 0.11

75 15.82 4.18 0.06

76 16.50 3.49 0.03

77 17.26 2.74 0.01

78 18.09 1.91 0.00

79 19.00 1.00 0.00

80 20.00 0.00 0.00

11.6.7 Maximum Number of Open G-Sets

From the measures for the dynamic state of disjoint G-sets, we may determine the maximum

expected number for each of the measures. For example, one could determine the maximum

expected number of cakes on display or socks on the table.

In simple cases, it may be possible to �nd an explicit formula for the maximum, but in the

general case it is unlikely. In the general case, it is a simple matter to determine the values in a

table and plot them. Figures 11.1 and 11.2 provide examples. From these, the maximum can be

observed.
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11.7. Clustering of Completions of G-sets: r = 1;m = 0

11.6.7.1 Example: The Cake Display Problem

For N = 60,  = 6, �i � 10 and di � �i the expected number of cakes on display is given by

Npa (k; 1), which peaks when k = 30 slices have been ordered, with an expectation of 5: 995 cakes.

The expected number of slices on display is given by Nap (k), which peaks when k = 48 with an

expectation of 42: 795 slices. Since a cake is either on display or it isn�t, and the same for slices,

these two maximum expectations can be sensibly rounded to 6 and 43, respectively.

11.6.8 Duration of the Maximum Expected Number Open

If it is required to know how long one can expect the number of G-sets open to be at its maximum

value, where the ceiling of the expectation is used to represent whole numbers of G-sets, it is a

simple matter to produce the table of expectations or graph them, from which the determination

can easily be made.

11.6.8.1 Example: The Cake Display Problem

Considering Figure 11.2 and Table 11.13, we observe the following in the case of non-unique cake

types. When t = 3, there are two periods in which at least 3 cakes are expected to be on display.

These are extracted from the table as the periods 4-29 and 49-50.

11.7 Clustering of Completions of G-sets: r = 1;m = 0

11.7.1 Introduction

Section 2.13 describes a situation in which ball-point pens seemed to be running out in quick

succession. This section determines the expected number of completions of G-sets in intervals of

arrivals of �xed length. The results are illustrated with examples for cake displays, sock-sorting

and the use of ball-point pens.

11.7.2 Preliminaries

In a 	-process of �rst kind, consider the rate of completions of the disjoint G-sets Gi, where

N = _[i=1Gi. This is applicable, for example, to the Distinct-Cakes Cake Display Problem and

standard sock-matching problems.

Put �i � jGij. Then
P

i=1 �i = N . Here we consider the case r = 1 and m = 0. The measure

used here is the expected number of completions in �xed intervals of length t, where tjN . Let

n = N=t.
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11.7. Clustering of Completions of G-sets: r = 1;m = 0

11.7.3 Formulae

Notation 11.134 Let E (k) be the expected number of completions of G-sets at the kth arrival.

From Equation 11.224b we have for k 2 f1; : : : ; Ng

E (k) =

X
i=1

�
k
�i

��
N
�i

� . (11.242)

For �i � 1, observe that E (k) is linear in k, which implies immediately that the proportion of

completions in each period is proportional to the length of the interval. Now consider �i > 1 for

some i.

Notation 11.135 Let F` be the expected number of completions of G-sets by the end of the `th

interval, and de�ne F0 = 0.

From Equation 11.242, we have, for ` 2 f1; : : : ; ng,

F` = E (`t) . (11.243)

Notation 11.136 Let C` be the expected number of completions during the `th interval.

Then clearly

C` = F` � F`�1. (11.244)

The next theorem demonstrates that the expected number of completions during intervals

increases over time.

Theorem 11.137 For ` 2 f2; : : : ; ng, C` � C`�1 with equality i¤ �i � 1 or `t < �i 8i.

Proof. From Equation 11.242,

E (k)� E (k � 1) =

X
i=1

�
k
�i

�
�
�
k
�i

��
N
�i

�
=

X
i=1

�
k�1
�i�1

��
N
�i

� . (11.245)
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` C` %age
1 0: 000 000 199 74 0: 000%

2 0: 000 184 36 0: 002%

3 0: 003 523 5 0: 035%

4 0: 023 177 0: 023%

5 0: 091 719 0: 917%

6 0: 270 46 2: 705%

7 0: 658 76 6: 588%

8 1: 403 4 14: 034%

9 2: 707 7 27: 077%

10 4: 841 2 48: 412%

Table 11.14: Example of Clustering of Completions: Cake Displays and Sock-Sorting

For ` 2 f2; : : : ; ng, we have F` � F`�1 � F`�1 � F`�2 since

(E (`t)� E ((`� 1) t))� (E ((`� 1) t)� E ((`� 2) t))

=
tX

j=1

[(E (`t� j + 1)� E (`t� j))� (E ((`� 1) t� j + 1)� E ((`� 1) t� j))]

=
tX

j=1

X
i=1

�
`t�j
�i�1

��
N
�i

� � X
i=1

�
(`�1)t�j
�i�1

��
N
�i

� by 11.245

=

X
i=1

1�
N
�i

� tX
j=1

�
`t� j
�i � 1

�
�
�
(`� 1) t� j
�i � 1

�
� 0 as t � 0, with equality i¤ �i � 1 or `t < �i 8i:

Since C` � C`�1 = (F` � F`�1)� (F`�1 � F`�2), the result is obtained.

11.7.4 Example: Cake Displays and Sock-Matching

Table 11.14 provides the expected number of completions for 10 cakes with 6 slices each in intervals

of 6. In this case, �i � 6,  = 10, N = 60, t = 6 and n = 10, giving F` = 10
�
6`
6

�
=
�
60
6

�
and therefore

C` = 10
��
6`
6

�
�
�
6`�6
6

��
=
�
60
6

�
.

Observe that almost 50% of completions occur in the last interval.

11.7.5 Example: Ball-Point Pens

This example is described in Section 2.13. In this case �i � 800,  = 50, N = 40 000, t = 4000

and n = 10. Hence F` = 50
�
4000`
800

�
=
�
40000
800

�
. For ` � 9, the expected number of completions during

the `th interval is extremely small, namely C` < 5:1 � 10�36. To at least 30 signi�cant digits,

C10 = 50. Hence one should expect all of the pens to be emptied of ink in the 10th interval, which
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11.8. Comparison of Expected Future Arrivals

� N = 50� t = N=n C100 %age
800 40 000 400 49: 985 99: 970%

700 35 000 350 49: 959 99: 918%

600 30 000 300 49: 887 99: 774%

500 25 000 250 49: 688 99: 776%

400 20 000 200 49: 138 98: 276%

300 15 000 150 47: 622 95: 244%

200 10 000 100 43: 436 86: 872%

100 5 000 50 31: 883 63: 766%

50 2 500 25 19: 901 39: 802%

10 500 5 4: 822 9: 644%

Table 11.15: Example: Ball-Point Pens Completed on the Last of 100 Days.

is the last 10 days of a 100-day period3.

Table 11.15 provides a comparison of the expected number of completions on the last day

of a 100-day period for  = 50 pens; this means there are n = 100 intervals, and Cn = 50 �

50
�
99�=2
�

�
=
�
50�
�

�
. Even with as few as � = 50 uses per pen, one can expect almost 40% of the pens

to become empty on the last day of a 100-day period.

11.8 Comparison of Expected Future Arrivals

11.8.1 Preliminaries

In the Queueing in Lanes model described in Section 2.2.1, it is relevant to consider that cars may

reverse as well as drive forward. As such, it is interesting to compare the waiting-time distributions

for the single- and bi-directional exit versions of the problem.

In this section, we compare the waiting times in the case of r = 2 A-sets with r = 1 A-set

when the two A-sets intersect only in G. We further restrict this section to the case � = 1, which

corresponds to one driver per vehicle. We couch the solution in terms of the Queueing in Lanes

model and consider the e¤ect on the vehicles in a single lane with s vehicles in it.

As a result, this section enables a direct graphical comparison between modelling vehicles as

bi-directional and as the Hauer-Templeton model.

Assume the notation for T (m) and T (m1;m2) as de�ned in Section 3.4.1 for vehicles in lanes;

here m = j � 1, m1 = j � 1 and m2 = s � j. Throughout this section, P (T (m) = k) is given by

Theorem 6.9 and P (T (m1;m2) = k) is given by Corollary 6.29 of the Fundamental Theorem 6.28.

Notation 11.138 Let Z1 be the number of further arrivals for whom the driver of a randomly

3The author developed this example as a result of having several pens running out day after day within a very
short period during the �nal stages of this thesis after years of not having any run out.

386



Global Properties: Without-Replacement 387

11.8. Comparison of Expected Future Arrivals

selected vehicle in a lane of s vehicles has to wait in the uni-directional model. Denote by Z2 the

corresponding number in the bi-directional model.

De�nition 11.139 For ` � 1, let

F` =
E [(Z2)`]

E [(Z1)`]
. (11.246)

We will use F` to compare the two models.

11.8.2 Rising Factorial Moments for the Numbers of Further Arrivals

Lemma 11.140 For k > 0,

P (Z1 = k) = s�1
sX
j=2

P (T (j � 1) = k) (11.247)

and

P (Z2 = k) = s�1
s�1X
j=2

P (T (j � 1; s� j) = k) . (11.248)

Proof. For Z1, the vehicles at the front of a lane have a zero wait. For Z2, the vehicles at both

ends of a lane have a zero wait. A randomly selected vehicle in a lane of s vehicles has probability

s�1 of being selected. Hence

P (Z1 = k) =

sX
j=1

P (vehicle j is selected)� P (T (j � 1) = k)

= s�1
sX
j=2

P (T (j � 1) = k)

as required, and the result for Z2 follows similarly.

Lemma 11.141 The rising factorial moments of Z1 and Z2 are given respectively by

E [[Z1]`] =
(N + `)!

s (`+ 1)N !

s�1X
j=1

j

`+ j + 1
(11.249)

and

E [[Z2]`] =
(s+ 2`+ 1) (N + `)!

s (`+ 1) (`+ s)N !

s�2X
j=1

j (s� j � 1)
(`+ j + 1) (`+ s� j) . (11.250)
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Proof. From Equations 11.247 and 11.101, we have

E [[Z1]`] = s�1
sX
j=2

(j � 1) (N + `)!

(`+ 1) (j + `)N !
,

which provides the result trivially after beginning the summation index with 1. From Equations

11.248 and 11.110, we have

E [[Z2]`]

= s�1
s�1X
j=2

(j � 1) (s� j) ((j � 1) + (s� j) + 2`+ 2) (N + `)!

(`+ 1) (`+ (j � 1) + 1) (`+ (s� j) + 1) (`+ (j � 1) + (s� j) + 1)N !

=
(s+ 2`+ 1) (N + `)!

s (`+ 1) (`+ s)N !

s�1X
j=2

(j � 1) (s� j)
(`+ j) (`+ s� j + 1) ,

which provides the result after beginning the summation index with 1.

11.8.3 Comparing the Moments

We see from Equations 11.249 and 11.250, that F` is independent ofN , the total number of vehicles.

In particular, for ` = 1, F` becomes the ratio of the two means, E [Z2] =E [Z1], so we have the note-

worthy result that the ratio of the mean wait with bi-directional exits to that with uni-directional

exits depends only on the length of the lane concerned, not on the total number of vehicles in all

lanes. Because F` is the ratio of two rising factorial moments, this result does not carry over to

the ratio of the variance or other central moments (or non-central moments) for the distributions

of Z2 and Z1. For example, F2 =
�
V ar (Z2) + E [Z2] + E [Z2]

2
�
=
�
V ar (Z1) + E [Z1] + E [Z1]

2
�
.

11.8.4 A Numerical Comparison of Means

Let us consider the ratio F1 = E [Z2] =E [Z1] more closely. Figure 11.3 shows the value of this

fraction for small s. We see that bi-directional exits give a noticeable reduction for short lanes

over uni-directional exits, with a diminishing reduction as the lane length s increases. In fact, the

results of Hauer and Templeton in [43] show that for a given number of lanes (of constant length)

the value of the mean wait E [Z1] drops sharply with decrease of lane length s. The relevance of

these results for the practical design of public event parking lots is that long lanes do not provide

as much congestion as was previously thought, and therefore the design can be implemented more

enthusiastically.
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Figure 11.3: The Ratio F1 = E [Z2] =E [Z1] for Small Lane Lengths, s.

11.8.5 A More-General Comparison

We expect intuitively that F1 < 1 always, and we show this analytically after Theorem 11.142

below; in fact, we also show F1 tends to 1 from below as s tends to in�nity. For the theorem, we

require the well-known result (e.g. from Apostol [3, p. 192])

nX
j=1

j�1 � lnn =  +O
�
n�1

�
, (11.251)

where Euler�s constant  = 0:5772 : : : . Theorem 11.142 provides us with a simple asymptotic

expression for F` for large s that gives a measure of the discrepancy between F` and 1.

Theorem 11.142 For s large,

F` = 1� (`+ 1) s�1 ln s+ s�1
24`� (`+ 1)  + (`+ 1) `+1X

j=1

j�1

35+ o �s�1� . (11.252)

389



Global Properties: Without-Replacement 390

11.8. Comparison of Expected Future Arrivals

Proof. From Equations 11.249 and 11.250,

F` =

24(s+ 2`+ 1) (N + `)!

s (`+ 1) (`+ s)N !

s�2X
j=1

j (s� j � 1)
(`+ j + 1) (`+ s� j)

35 =
24 (N + `)!

s (`+ 1)N !

s�1X
j=1

j

`+ j + 1

35

=
s+ 2`+ 1

s+ `

s�2P
j=1

�
1� `+1

`+j+1

��
1� `+1

`+s�j

�
s�1P
j=1

�
1� `+1

`+j+1

�

=
s+ 2`+ 1

s+ `

s� 2� (`+ 1)
s�2P
j=1

�
1

`+j+1 +
1

`+s�j

�
+ (`+ 1)2

s�2P
j=1

�
A

`+j+1 +
B

`+s�j

�
s� 1� (`+ 1)

s�1P
j=1

1
`+j+1

,

where A and B are calculated to be 1
s+2`+1 by partial fraction expansion,

=
s+ 2`+ 1

s+ `

s� 2� 2 (`+ 1)
s�2P
j=1

1
`+j+1 +

2(`+1)2

s+2`+1

s�2P
j=1

1
`+j+1

s� 1� (`+ 1)
s�1P
j=1

1
`+j+1

=
s+ 2`+ 1

s+ `
�
s� 2� 2 (`+ 1)

�
s+`

s+2`+1

� s+`�1P
j=`+2

j�1

s� 1� (`+ 1)
s+P̀
j=`+2

j�1
(11.253)

Equation 11.253 gives a simpli�ed exact expression for F`. In order to look at its asymptotic

behaviour, we use the binomial expansion of the sum of a geometric progression applied several

times to Equation 11.253, while at the same time incorporating terms which tend to zero when

multiplied by s into the single term o
�
s�1
�
. The same technique may be applied but truncating

only terms of o
�
s�2
�
to give a higher order approximation to F`. Thus, from Equation 11.253, we
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have, for s large,

F` =

(s+2`+1)(s�2)
(s+`)(s�1) �

2(`+1)
s�1

s+`�1P
j=`+2

j�1

1� `+1
s�1

s+P̀
j=`+2

j�1

=

241 + 2`�1
s + o

�
s�1
�

1 + `�1
s + o (s�1)

� 2 (`+ 1)

s (1� s�1)

s+`�1X
j=`+2

j�1

35�
241 + `+ 1

s� 1

s+X̀
j=`+2

j�1 + o
�
s�1
�35

=

24�1 + 2`� 1
s

+ o
�
s�1
���

1� `� 1
s

+ o
�
s�1
��

� 2 (`+ 1)
s

�
1 + s�1 + o

�
s�1
�� s+`�1X

j=`+2

j�1

35
�

241 + `+ 1

s

�
1 + s�1 + o

�
s�1
�� s+`�1X

j=`+2

j�1 + o
�
s�1
�35

=

241 + `

s
� 2 (`+ 1)

s

s+`�1X
j=`+2

j�1 + o
�
s�1
�35�

241 + `+ 1

s

s+X̀
j=`+2

j�1 + o
�
s�1
�35

= 1 +
`+ 1

s

s+X̀
j=`+2

j�1 +
`

s
+
` (`+ 1)

s2

s+X̀
j=`+2

j�1 � 2 (`+ 1)
s

s+`�1X
j=`+2

j�1

�2 (`+ 1)
2

s2

s+`�1X
j=`+2

j�1
s+X̀
j=`+2

j�1 + o
�
s�1
�

= 1 +
`

s
+
`+ 1

s

0@s+`�1X
j=`+2

j�1 +
1

s+ `

1A� 2 (`+ 1)
s

s+`�1X
j=`+2

j�1

�2 (`+ 1)
2

s2

0@ sX
j=1

j�1 +
s+`�1X
j=s+1

j�1 �
`+1X
j=1

j�1

1A0@ sX
j=1

j�1 +
s+X̀

j=s+1

j�1 �
`+1X
j=1

j�1

1A
+o
�
s�1
�

= 1 +
`

s
� `+ 1

s

0@ sX
j=1

j�1 +
s+`�1X
j=s+1

j�1 �
`+1X
j=1

j�1

1A
�2 (`+ 1)

2

s2
�
ln s+  +O

�
s�1
��2

+ o
�
s�1
�

= 1� (`+ 1) s�1 ln s+ s�1
24`� (`+ 1)  + (`+ 1) `+1X

j=1

j�1

35+ o �s�1� ,
which is 11.252 as required.
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Since ln s
s ! 0 as s!1, this displays that there is a close resemblance between E [(Z1)`] and

E [(Z2)`] for each ` � 1 and s suitably large. Observe that 8` F` ! 1 as s!1. We demonstrate

that in fact F` ! 1� by showing that 8` sF` < 1.

Theorem 11.143 8s � 2 and 8` � 1,

F` < 1. (11.254)

Proof. We begin with the expression for F` given by 11.253. After some rearranging, this

gives

F` =

(s+ 2`+ 1) (s� 2)� 2 (s+ `) (`+ 1)
s�2P
j=1

1
j+`+1

(s+ `) (s� 1)� (s+ `) (`+ 1)
s�1P
j=1

1
j+`+1

: (11.255)

The numerator must be less than the denominator in 11.255 if F` is to be less than one. A

sequence of simple algebraic manipulations rearranges this condition sequentially as:

(s+ 2`+ 1) (s� 2)� (s+ `) (s� 1)
(s+ `) (`+ 1)

< 2
s�2X
j=1

1

j + `+ 1
�

s�1X
j=1

1

j + `+ 1

`s� 3`� 2
(s+ `) (`+ 1)

<
s�2X
j=1

1

j + `+ 1
� 1

s+ `

`s� 2`� 1
(s+ `) (`+ 1)

<
s�2X
j=1

1

j + `+ 1
. (11.256)

When s = 2, the condition in Equation 11.256 becomes �1 < 0, thereby providing a starting

point for using mathematical induction on s for s � 2. Assume 11.256 holds for an s � 2: Then

RHSs+1 =
s�1X
j=1

1

j + `+ 1

=

s�2X
j=1

1

j + `+ 1
+

1

s+ `

>
`s� 2`� 1
(s+ `) (`+ 1)

+
1

s+ `
by assumption

=
`s� `

(s+ `) (`+ 1)
;
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by increasing the denominator and decreasing the numerator,

>
`s� `� 1

(s+ `+ 1) (`+ 1)

=
` (s+ 1)� 2`� 1
((s+ 1) + `) (`+ 1)

= LHSs+1,

thereby proving the assertion that 8s � 2, 8` � 1 F` < 1:

11.9 Generating Function

Generating functions may be useful for determining global attributes, but we provide them for

interest only, especially as they cannot be used to determine results for the joint distribution. We

consider the simple cases r = 1 and either � = 1 or � � 1 with � = �.

For � = 1,

g (x) =
N�1X
k=0

P (T (m) = k)xk

=
1

m+ 1
+

N�1X
k=1

1

N
xk (11.257)

� 1

N
�
N�1
m

� " 1X
k=m+1

�
k � 1
m

�
xk �

1X
k=N

�
k � 1
m

�
xk

#
. (11.258)

Maple provides

g (x) =
1

m+ 1
+

x� xN
N (1� x) (11.259)

+
1

N
�
N�1
m

� xm+1

(1� x)m+1
(11.260)

�
�
N � 1
m

�
xN hypergeom ([1; N ] ; [N �m] ; x)

!
. (11.261)

For example, for m = 2, we can use Maple to provide

hypergeom ([1; N ] ; [N � 2] ; x) = N2 � 2N2x+N2x2 � 3N + 8Nx� 5Nx2 + 2� 6x+ 6x2

(N � 2) (N � 1) (1� x)3
.

(11.262)
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For � � 1 and � = �,

g (x) =

N�1X
k=0

P (T (m) = k)xk

=
�

m+ �
+

N�1X
k=1

(�1)��1
hP��1

s=0 (�1)
s �N�k

s

��
N�s�1
N�m��

�
�
�

k�1
m+��1

�i
N !

m!�!(N�m��)!
xk,

so that we require
PN�1

k=1

�
N�k
s

�
xk and

PN�1
k=m+�

�
k�1

m+��1
�
xk. The former is given by

N�1X
k=1

�
N � k
s

�
xk =

�
N � 1
s

�
xhypergeom ([1;�N + 1 + s] ; [1�N ] ; x)

�
�
0

s

�
xN hypergeom ([1; s] ; 0; x) , (11.263)

and the latter by

N�1X
k=m+�

�
k � 1

m+ �� 1

�
xk

=
xm+�

(1� x)m+�
�
�

N � 1
m+ �� 1

�
xN hypergeom ([1; N ] ; [1 +N �m� �] ; x) . (11.264)
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12.1 Moments

12.1.1 Introduction

In the with-replacement waiting-time process, it is not clear what is meant by the expected waiting

time for the completion of an A-set measured from the completion of a G-set, because it is possible

that either one or both of these sets do not complete. The maximum waiting time could be in�nite,

with its probability provided by Theorem 7.9.

The results for r � 1 follow from the results in this section and The Fundamental Theorem

of 	2-Processes in a similar way to those for the without-replacement process, so these are not

repeated here.

This chapter focuses on providing an alternative form that is computationally more e¢ cient,

and also focuses on the limiting distribution as n!1.

12.1.2 Preliminaries

Given that it is possible that either the G-set or the A-set need not be completed after n arrivals, it

is meaningless to discuss moments for the waiting times during the process. However, it may make

sense to know what the expected wait is, conditional on those two sets completing. To simplify

the terminology for this expectation and the other moments, we de�ne a phrase to represent the

concept.

De�nition 12.1 In a 	2-process, the rising factorial moments for the waiting-time distribution

given that both the G-set and the A-set (or A-sets) complete are referred to as the conditional rising

factorial moments; extensions to the more-general models are also included in this de�nition.

12.1.3 The Conditional Rising Factorial Moments

12.1.3.1 Preliminary Results

During the determination of the simpli�ed formula, whose numerator is based on the simpli�ed

expression for the distribution, there is the need to �nd sums of the form

�
�� �
N

�c fX
k=e

[k]`

�
N � 1� �
�� �

�k�1
(12.1)
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for c � f > 0 and � 2 f0; : : : ; �g, where � � � and � < N �1. It is therefore necessary to consider

the consequence of calculating the value of this expression when e = 1, � = � and � = �. In this

case

c� k + 1 > c� f + 1 as k � f (12.2)

> 1 as c � f , (12.3)

and the expression becomes

1

N c

fX
k=1

[k]` (0)
c�k+1 (N � 1� �)k�1 = 0. (12.4)

In what follows, this is the only way in which this sum arises, and we are justi�ed in specify-

ing that
Pq

a=0 [a]` x
a�1 = 0 for x = 1: This simpli�es the argument (below) for the determi-

nation of the limiting moments, as we can avoid having to prove every time a result akin to

limn!1 xn
Pq

a=1 [a]`
�
1
x

�a�1
= 0 when x = 0.

Notation 12.2 Let

� (`; q; x) =

8<:
Pq

a=0 [a]` x
a�1 for jxj <1

0 for jxj =1
. (12.5)

Remark 12.3 Observe that � (`; q; x) is essentially a truncation of the generation function for

rising factorials.

The next result provides a simpli�ed formula for �, whose number of terms is independent of

q. Not only does this reduce its calculation time, but is particularly useful when the limit is taken

as q !1.

Lemma 12.4 Suppose jxj <1. For x 6= 1,

� (`; q; x) =
`!

(1� x)`+1
� `!

X̀
i=0

�
`+ q

i

�
x`+q�i

(1� x)`+1�i
, (12.6)

and for x = 1,

� (`; q; 1) = `!

�
`+ q

`+ 1

�
. (12.7)

Proof. First consider x 6= 1, and write the sum in � as an `th derivative to produce the

derivative of the sum of a series, determine the sum of the series, and then write the result in a
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suitable form for applying Leibnitz�Theorem (Jordan [47]).

� (`; q; x) =

qX
a=0

[a]` x
a�1

=
d`

dx`

qX
a=0

xa+`�1

=
d`

dx`

q+`�1X
a=`�1

xa

=
d`

dx`
x`�1 � xq+`
1� x for x 6= 1

=
d`

dx`
(1� x)�1 x`�1 � d`

dx`
(1� x)�1 x`+q.

Applying Leibnitz�Theorem to both terms and simplifying yields

� (`; q; x) =
`�1X
i=0

�
`

i

�
d`�i

dx`�i
(1� x)�1 di

dxi
x`�1 �

X̀
i=0

�
`

i

�
d`�i

dx`�i
(1� x)�1 di

dxi
x`+q

=
`�1X
i=0

`!

i! (`� i)!
(`� i)!

(1� x)`+1�i
(`� 1)!

(`� 1� i)!x
`�1�i

�
X̀
i=0

`!

i! (`� i)!
(`� i)!

(1� x)`+1�i
(`+ q)!

(`+ q � i)!x
`+q�i

=
`!

(1� x)2
`�1X
i=0

�
`� 1
i

��
x

1� x

�`�1�i
1i � `!

X̀
i=0

�
`+ q

i

�
x`+q�i

(1� x)`+1�i

=
`!

(1� x)2

�
x

1� x + 1
�`�1

� `!
X̀
i=0

�
`+ q

i

�
x`+q�i

(1� x)`+1�i

=
`!

(1� x)2

�
1

1� x

�`�1
� `!

X̀
i=0

�
`+ q

i

�
x`+q�i

(1� x)`+1�i
,

from which the �rst result is immediate. For x = 1, we could �nd the sum directly as

� (`; q; 1) =

qX
a=0

[a]` 1
a�1

= `!

qX
a=0

�
a+ `� 1

`

�

= `!

�
a+ `� 1
`+ 1

�����q+1
a=0

= `!

�
q + `

`+ 1

�

as required.
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When � is used below, it occurs in the form
Pq

a=p and not
Pq

a=0. If p > q, we want the sum

to be zero. This is more conveniently expressed by de�ning a new function as follows.

Notation 12.5 Let

�1 (`; p; q; x) =

8<: � (`; q; x)� � (`; p� 1; x) for p � q

0 for p > q
. (12.8)

12.1.3.2 The Transformation Formulae

Many of the expressions in what follows are quite long. Some of these contain nested summations

in which the two outer (or sole) summations have the same form. We employ the following notation

to simplify the writing of those expressions.

Notation 12.6 Let the operator
L
be de�ned on the function f (�; �) as

M
(�;�)

f (�; �) =

m�j+����1X
�=0

(�1)�
�
m� j + �� � � 1

�

� �X
�=0

(�1)�
�
�

�

�
N�1

N � �+ �f (�; �) . (12.9)

Observe that
L
is independent of n and k.

Notation 12.7 Let

'3 (`; j; a; b; �; �; e; f) =

fX
k=max(e;1)

[k]` '2 (k; j; a; b� k; �; �) (12.10)

and

'4 (`; j; a; b; �; �; e; f) =

fX
k=max(e;1)

[k]` '2 (k; j; a� k; b� k; �; �) , (12.11)

where '2 is given by Equation 7.36:

Lemma 12.8 (Transformation Formulae) For b � a, b > f , � � 0, N > � � � and f � e �

0,

'3 (`; j; a; b; �; �; e; f) =
M
(�;�)

Nn

24 ����N �min(a�1;0)
�1
�
`;max (e; 1) ; f; N�1��N

�
�
����
N

�b�1
�1

�
`;max (e; 1) ; f; N�1�����

�
35 (12.12)
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and

'4 (`; j; a; b; �; �; e; f) =
M
(�;�)

Nn

26664
����
N

�a�2
�1

�
`;max (e; 1) ;min (a� 1; f) ; N�1�����

�
�
����
N

�b�1
�1

�
`;max (e; 1) ; f; N�1�����

�
+�1

�
`;max (a; e; 1) ; f; N�1��N

�
37775 , (12.13)

where �1 is given by Equation 12.8.

Proof.

'3 (`; j; a; b; �; �; e; f) =

fX
k=max(e;1)

[k]` '2 (k; j; a; b� k; �; �) by de�nition

=

fX
k=max(e;1)

[k]` v (k � 1; N � 1;m� j + �� � � 1)

�Nn�k'1 (a; b� k; �; �) by Equation 7.36, (12.14)

and

'4 (`; j; a; b; �; �; e; f) =

fX
k=max(e;1)

[k]` '2 (k; j; a� k; b� k; �; �) by de�nition

=

fX
k=max(e;1)

[k]` v (k � 1; N � 1;m� j + �� � � 1)

�Nn�k'1 (a� k; b� k; �; �) by Equation 7.36. (12.15)

It is necessary to justify the use of the general form for v (r; n;N). The parameters must satisfy

the three conditions r � 0, n � N and n � 0. Consider the term v (k � 1; N � 1;m� j + �� � � 1).

As max (e; 1) � 1, we have k � 1 � 0. As m � j + � � � � 1 � m + � � 1 � N � 1, the second

condition is satis�ed. Since the model requires N � 1, the third condition is satis�ed.

In order to apply Lemma 7.17 to each incidence of '1 in '3 and '4, it is necessary to verify

its conditions, which are for '3 that b � k � a, b � k > 0, � � 0 and N > � � �, and for '4

that b � k � a � k, b � k > 0, � � 0 and N > � � �. Only the �rst two conditions, b � k � a

and b� k > 0 do not follow immediately from the conditions of this Lemma. The �rst of these is

satis�ed as k � f and b � f + a. The second is obtained as a consequence of b being equal to n.
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Substituting the expressions for v as given by Lemma 7.6 into '3, '4 and '1 as given by Lemma

7.17, produces

'3 =

fX
k=max(e;1)

[k]`

m�j+����1X
�=0

(�1)�
�
m� j + �� � � 1

�

�
(N � 1� �)k�1Nn�k

�
�X
�=0

(�1)�
�
�

�

�����
N

�max(a�1;0) � ����N �b�k
N � �+ �

=
M
(�;�)

Nn
fX

k=max(e;1)

[k]`

�
N � 1� �

N

�k�1

�
"�

�� �
N

�max(a�1;0)
�
�
�� �
N

�b�k#
(12.16)

and

'4 =

fX
k=max(e;1)

[k]`

m�j+����1X
�=0

(�1)�
�
m� j + �� � � 1

�

�
(N � 1� �)k�1Nn�k

�
�X
�=0

(�1)�
�
�

�

�����
N

�max(a�1�k;0) � ����N �b�k
N � �+ �

=
M
(�;�)

Nn
fX

k=max(e;1)

[k]`

�
N � 1� �

N

�k�1

�
"�

�� �
N

�max(a�1�k;0)
�
�
�� �
N

�b�k#
. (12.17)

For both '3 and '4, splitting the summation over k of a di¤erence as the di¤erence of two

summations over k produces

'3 =
M
(�;�)

Nn

24 ����N �max(a�1;0)Pf
k=max(e;1) [k]`

�
N�1��
N

�k�1
�
����
N

�b�1Pf
k=max(e;1) [k]`

�
N�1��
���

�k�1
35 (12.18)

and

'4 =
M
(�;�)

Nn

24 Pf
k=max(e;1) [k]`

����
N

�max(a�1�k;0) �N�1��
N

�k�1
�
����
N

�b�1Pf
k=max(e;1) [k]`

�
N�1��
���

�k�1
35 , (12.19)

with the understanding that the second term in the di¤erence is zero if � = �, as explained at the

beginning of Section 12.1.3.1.
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We now write summations in these expressions using �1 as given by Equation 12.8. The �rst

of the summations may be written as

fX
k=max(e;1)

[k]`

�
N � 1� �

N

�k�1
= �1

�
`;max (e; 1) ; f;

N � 1� �
N

�
, (12.20)

and the second and fourth as

fX
k=max(e;1)

[k]`

�
N � 1� �
�� �

�k�1
= �1

�
`;max (e; 1) ; f;

N � 1� �
�� �

�
. (12.21)

Due to the index max (a� 1� k; 0) that appears in its second factor, the third summation

needs some manipulation �rst. By splitting the range of the summation indices into two ranges,

one for which k � a� 1 and the other for which k � a, we have

min(a�1;f)X
k=max(e;1)

[k]`

�
�� �
N

�a�1�k �N � 1� �
N

�k�1

+

fX
k=max(a;e;1)

[k]`

�
�� �
N

�0�N � 1� �
N

�k�1
, (12.22)

from which further manipulations yield

�
�� �
N

�a�2 min(a�1;f)X
k=max(e;1)

[k]`

�
N � 1� �
�� �

�k�1
+

fX
k=max(a;e;1)

[k]`

�
N � 1� �

N

�k�1
. (12.23)

Writing the summations in these expressions using �1 produces

min(a�1;f)X
k=max(e;1)

[k]`

�
N � 1� �
�� �

�k�1
= �1

�
`;max (e; 1) ;min (a� 1; f) ; N � 1� �

�� �

�
(12.24)

and
fX

k=max(a;e;1)

[k]`

�
N � 1� �

N

�k�1
= �1

�
`;max (a; e; 1) ; f;

N � 1� �
N

�
. (12.25)

Combining the corresponding expressions produces the required expressions for '3 and '4.

12.1.3.3 The Reduced Expectation Formula

The next result provides the conditional rising factorial moments with summations whose indices

are bounded above by m, so for large n, the summations are independent of n, including the
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implicit summations within '3 and '4, assuming the form for '1 as provided by Lemma 7.17 is

used for '2 and hence indirectly for '3 and '4.

Notation 12.9 Let �j = N �m� �+ � + j � 1.

Theorem 12.10 (Reduced Expectation Theorem) For ` � 1, the conditional rising factorial

moments, E`, satisfy

v (n;N; �+m)E`

= �

�
�� 1
� � 1

�
m

min(m�1;n���m)X
j=0

�
m� 1
j

�
(12.26)

� '3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

+ � (�� 1)
�
�� 2
� � 1

�min(m;n���m)X
j=0

�
m

j

�
� '3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

+ �

�
�� 1
� � 1

�
m

m�1X
j=0

�
m� 1
j

�
� '4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

+ �

�
�� 1
� � 1

�
m

m�1X
j=1

�
m� 1
j

�
� '3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1)

+ � (�� 1)
�
�� 2
� � 1

�m�1X
j=0

�
m

j

�
� '4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

+ � (�� 1)
�
�� 2
� � 1

� mX
j=1

�
m

j

�
� '3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1) , (12.27)

where '3 and '4 are given by Equations 12.12 and 12.13, respectively.

Proof. The conditional rising factorial moments are determined as

E` =

n��X
k=max(���;1)

[k]` P (T = k)

=

n��X
k=max(���;1)

[k]`
#(T = k)

v (n;N; �+m)
, (12.28)
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where the reduced form for #(T = k) is given by Equation 7.37. We may relax the requirement

that k � max (�� �; 1) to k � �� � as [k]` = 0 for k = 0. Now E` satis�es

v (n;N; �+m)E` =

n��X
k=���

[k]`#(T = k) . (12.29)

In the formula for #(T = k), there are summation terms that produce di¤erent indices de-

pending on the value of k. Therefore we split the sum into two parts as

v (n;N; �+m)E` =

n��X
k=���+m

[k]`#(T = k) +

���+m�1X
k=���

[k]`#(T = k) . (12.30)

For k 2 fmax (�� �; 1) ; : : : ; n� �g, #(T = k) was determined to be

#(T = k) = �

�
�� 1
� � 1

�
m

min(m�1;max(�;�+m�k)���1))X
j=0

�
m� 1
j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+�

�
�� 1
� � 1

�
m

min(m�1;n�k��)X
j=max(�;�+m�k)��

�
m� 1
j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

�min(m;max(�;�+m�k)���1))X
j=0

�
m

j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

� min(m;n�k��)X
j=max(�;�+m�k)��

�
m

j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j) . (12.31)

As the combinatorial factors
�
m�1
j

�
and

�
m
j

�
are zero for j > m� 1 and j > m, respectively, we

may rewrite the counts without using the minimum function. The indices can also be manipulated

to make the consequence of summing over the two di¤erent ranges of k more easily recognisable.
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Together these changes yield

#(T = k) = �

�
�� 1
� � 1

�
m

max(0;���+m�k)�1X
j=0

�
m� 1
j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+�

�
�� 1
� � 1

�
m

n���kX
j=max(0;���+m�k)

�
m� 1
j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

�max(0;���+m�k)�1X
j=0

�
m

j

�
�'2 (k; j;max (�; �+m� k) ; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

� n���kX
j=max(0;���+m�k)

�
m

j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j) . (12.32)

For k � �� � +m,

#(T = k) = 0

+�

�
�� 1
� � 1

�
m

n���kX
j=0

�
m� 1
j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+0

+� (�� 1)
�
�� 2
� � 1

� n�k��X
j=0

�
m

j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j) . (12.33)
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For k < �� � +m,

#(T = k) = �

�
�� 1
� � 1

�
m

���+m�1�kX
j=0

�
m� 1
j

�
�'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

+�

�
�� 1
� � 1

�
m

n�k��X
j=���+m�k

�
m� 1
j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

� ���+m�1�kX
j=0

�
m

j

�
�'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

+� (�� 1)
�
�� 2
� � 1

� n���kX
j=���+m�k

�
m

j

�
�'2 (k; j; j + �; n� k; �j ; � � 1 + j) . (12.34)

There are therefore six summations over k to be determined. These have been given convenient

labels to enable tracking them more easily. They are given by

(a)
Pn��

k=���+m [k]`
Pn���k

j=0

�
m�1
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(b)
Pn��

k=���+m [k]`
Pn���k

j=0

�
m
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(c)
P���+m�1

k=��� [k]`
P���+m�1�k

j=0

�
m�1
j

�
'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(d)
P���+m�1

k=��� [k]`
Pn���k

j=���+m�k
�
m�1
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(e)
P���+m�1

k=��� [k]`
P���+m�1�k

j=0

�
m
j

�
'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(f)
P���+m�1

k=��� [k]`
Pn���k

j=���+m�k
�
m
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j) .

(12.35)

The next step is to switch the order of summations in each of these expressions. Expressions

(a), (b), (c) and (e) are of the same form, for which we will apply

bX
k=a

b�kX
j=0

=

b�aX
j=0

b�jX
k=a

(12.36)

to give, for (a) and (b),
n��X

k=���+m

n���kX
j=0

=

n���mX
j=0

n���jX
k=���+m

, (12.37)
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and, for (c) and (d),
���+m�1X
k=���

���+m�k�1X
j=0

=
m�1X
j=0

���+m�1�jX
k=���

. (12.38)

Remark 12.11 Although we could manipulate the indices in the double-sum in (d) and (f) to

write it as
���+m�1X
k=���

n���kX
j=���+m�k

=

���+m�1X
k=���

n��X
j=���+m

, (12.39)

whose summation order may be switched easily, this would produce two terms like

[k]`

�
m

j � k

�
'2 (k; j � k; j � k + �; n� k; �j ; � � 1 + j � k)

= [k]`

�
m

j � k

�
v (k � 1; N � 1;m� j + �� � � 1)Nn�k

� '1 (j � k; j � k + �; n� k; �j ; � � 1 + j � k) (12.40)

= [k]`

�
m

j � k

�m�j+����1X
�=0

(�1)�
�
m� j + �� � � 1

�

�
(N � 1� �)k�1Nn�k

�
��1+j�kX
�=0

(�1)�
�
� � 1 + j � k

�

���j�k��
N

�j�k+��1
�
�
�j�k��

N

�n�k
N � �j�k + �

, (12.41)

which cannot be readily summed over k: Part of the sum over k is of the form

X
k

[k]`

�
m

j � k

�
ak

b�kX
�=0

(�1)�
�
b� k
�

�� c�k��
N

�d�k
e+ k + �

(12.42)

and this is not an encouraging form to try to simplify. As the chosen method produces summations

over k of the form X
k

[k]` a
k, (12.43)

it is an obvious choice.

For expressions (d) and (f) we split the switched double summation into three regions as

���+m�1X
k=���

n���kX
j=���+m�k

=
m�1X
j=1

���+m�1X
k=���+m�j

+

���+m�2X
j=m

���+m�1X
k=���

+

n��X
j=���+m�1

n���jX
k=���

(12.44)

and

���+m�1X
k=���

n���kX
j=���+m�k

=
mX
j=1

���+m�1X
k=���+m�j

+

���+m�2X
j=m+1

���+m�1X
k=���

+

n��X
j=���+m�1

n���jX
k=���

, (12.45)
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respectively. The expressions become

(a)
Pn���m

j=0

Pn���j
k=���+m [k]`

�
m�1
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(b)
Pn���m

j=0

Pn���j
k=���+m [k]`

�
m
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(c)
Pm�1

j=0

P���+m�1�j
k=��� [k]`

�
m�1
j

�
'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(d)

hPm�1
j=1

P���+m�1
k=���+m�j +

P���+m�2
j=m

P���+m�1
k=��� +

Pn��
j=���+m�1

Pn���j
k=���

i
[k]`

�
m�1
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j)

(e)
Pm�1

j=0

P���+m�1�j
k=��� [k]`

�
m
j

�
'2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(f)

hPm
j=1

P���+m�1
k=���+m�j +

P���+m�2
j=m+1

P���+m�1
k=��� +

Pn��
j=���+m�1

Pn���j
k=���

i
[k]`

�
m
j

�
'2 (k; j; j + �; n� k; �j ; � � 1 + j) .

(12.46)

As the combinatorial factors
�
m�1
j

�
and

�
m
j

�
are zero for j > m � 1 and j > m, respectively,

we can eliminate four terms from (d) and (f) and move these combinatorial factors outside of the

summation over k to give

(a)
Pn���m

j=0

�
m�1
j

�Pn���j
k=���+m [k]` '2 (k; j; j + �; n� k; �j ; � � 1 + j)

(b)
Pn���m

j=0

�
m
j

�Pn���j
k=���+m [k]` '2 (k; j; j + �; n� k; �j ; � � 1 + j)

(c)
Pm�1

j=0

�
m�1
j

�P���+m�1�j
k=��� [k]` '2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(d)
Pm�1

j=1

�
m�1
j

�P���+m�1
k=���+m�j [k]` '2 (k; j; j + �; n� k; �j ; � � 1 + j)

(e)
Pm�1

j=0

�
m
j

�P���+m�1�j
k=��� [k]` '2 (k; j; �+m� k; n� k; �j ; � � 1 + j)

(f)
Pm

j=1

�
m
j

�P���+m�1
k=���+m�j [k]` '2 (k; j; j + �; n� k; �j ; � � 1 + j) .

(12.47)
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12.1. Moments

j a e f f � e
(a) 0 : : :m� 1 j + � �� � +m n� � � j n�m� �+ j
(b) 0 : : :m j + � �� � +m n� � � j n�m� �+ j
(c) 0 : : :m� 1 �+m �� � �� � +m� 1� j m� 1� j
(d) 1 : : :m� 1 j + � �� � +m� j �� � +m� 1 j � 1
(e) 0 : : :m� 1 �+m �� � �� � +m� 1� j m� 1� j
(f) 1 : : :m j + � �� � +m� j �� � +m� 1 j � 1

Table 12.1: Parameters for the Conditional Rising Factorial Moments

These may be written using '3 and '4 as

(a)
Pn���m

j=0

�
m�1
j

�
'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

(b)
Pn���m

j=0

�
m
j

�
'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

(c)
Pm�1

j=0

�
m�1
j

�
'4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

(d)
Pm�1

j=1

�
m�1
j

�
'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1)

(e)
Pm�1

j=0

�
m
j

�
'4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

(f)
Pm

j=1

�
m
j

�
'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1) .

(12.48)

In order for the formulae for '3 in Equation 12.12 and '4 in Equation 12.13 to apply, we must

verify the conditions for each of the expressions (a) through (f). These conditions are that b � a,

b > f , � � 0, N > � � � and f � e � 0. In each case b = n, � = �j = N �m� �+ � + j � 1 and

� = �� 1+ j. The values of the other parameters are conveniently displayed in Table 12.1. Table

12.2 displays the relevant boundary values that a, f and � may take on, given the possible values

for j and �.

As we are determining probabilities for a positive waiting time, there must be enough arrivals

to place at least one arrival in each of the cells of A; that is, n � m + �, so that n � maxj (a).

Hence b � a. As n > n� 1 and n � m+ � > m+ �� 2, we have b > f . As minj;� (�) � N �m� �

and N � m+�, � � 0. As N > maxj;� (�) we have N > �. As ��� = N �m�� we have � � �.

As minj;� (e) is 0, 1 or m we have e � 0. As minj (f � e) is 0 or n�m� �, which is � 0, we have

f � e.

This ends the proof.

When deriving the limiting distribution for the conditional rising factorial moments, it will be

useful to know that N�1��
��� 6= 1 for all values of �, � and �, so that the general form of � may be
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12.1. Moments

maxj;� (a) maxj;� (f) minj;� (�) maxj;� (�) minj;� (e) minj (f � e)
(a) m+ �� 1 n� 1 N �m� � N � 2 m n�m� �
(b) m+ � n� 1 N �m� � N � 1 m n�m� �
(c) m+ � m+ �� 2 N �m� � N � 2 0 0

(d) m+ �� 1 m+ �� 2 N �m� �+ 1 N � 2 1 0

(e) m+ � m+ �� 2 N �m� � N � 2 0 0

(f) m+ � m+ �� 2 N �m� �+ 1 N � 1 0 0

Table 12.2: Boundary Values for the Conditional Rising Factorial Moments

m E1 Without E1 With P (Can complete)
1 1: 33 1: 63 0: 411

2 2: 50 2: 52 0: 247

3 3: 00 3: 08 0: 140

4 3: 33 3: 45 0: 074

5 3: 86 3: 70 0: 035

6 3: 75 3: 87 0: 014 4

7 3: 89 3: 97 0: 004 7

8 4: 00 4: 00 0: 000 4

Table 12.3: Example: Comparison of Means between With- and Without-Replacement

assumed.

Lemma 12.12 For all relevant values of �, � and �,

N � 1� �
�� � 6= 1. (12.49)

Proof. As N � 1�� = m� j + �� �, and the largest value of � � � is m� j + �� �� 1, the

inequality holds.

12.1.4 Example: Comparison between With- and Without-Replacement

Here we provide a comparison of expectations for with- and without-replacement for the case � = 1,

N = 9 and n = N . For without-replacement, E1 = N+1
2

m
m+2 , and for with-replacement, E1 is given

by the Theorem 12.10.

The probability of ever completing a page is very low, even for small values of m, because

n = N . Assuming completion, the expectations are quite similar.
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12.2. The Limiting Conditional Moments as n!1

12.2 The Limiting Conditional Moments as n!1

12.2.1 Introduction

One of the questions related to the Bird-Watcher�s Problem, which is described in Section 2.3.6.2.1,

posed: What is the e¤ect of sighting ever more birds on the conditional expectation? This corre-

sponds to �nding limn!1E` for ` = 1.

Notation 12.13 For ` � 1 let

E�` = lim
n!1

E`. (12.50)

In this section, we �nd the limit for general `. For a large number of sightings, it would be

great to be able to use the limits, because these limits have been observed to be at least 8 orders

of magnitude faster to calculate than the reduced expectations provided by Theorem 12.10.

Remark 12.14 An unexpected consequence of there being an upper bound for the conditional

moments, is that after a certain number of arrivals, one can increase the chance of completing

an A-set without signi�cantly a¤ecting the expected waiting time for that completion. This also

applies to the variance.

12.2.2 Preliminary Results

Lemma 12.15 For N � �+m, �+m � 0 and N > 0,

lim
n!1

v (n;N; �+m)

Nn
= 1. (12.51)

Proof. As n > 0 and n will eventually exceed � +m, and N > 0, the general expression in

Equation 7.2 for v is applicable and we have

lim
n!1

v (n;N; �+m)

Nn
= lim

n!1

P�+m
�=0 (�1)

� ��+m
�

�
(N � �)n

Nn

= lim
n!1

�+mX
�=0

(�1)�
�
�+m

�

��
1� �

N

�n
= lim

n!1

"
1 +

�+mX
�=1

(�1)�
�
�+m

�

��
1� �

N

�n#
as �+m � 1

= 1 as N � �+m, so that
�
1� �

N

�n
! 0

as required.

411



Global Properties: With-Replacement 412

12.2. The Limiting Conditional Moments as n!1

Notation 12.16 Let

�1 (`; x) = lim
q!1

� (`; q; x) : (12.52)

Lemma 12.17 For jxj < 1,

�1 (`; x) =
`!

(1� x)`+1
. (12.53)

Proof. Using the expression � provided by Lemma 12.4 and taking the limit gives

�1 (`; x) = lim
q!1

� (`; q; x)

= lim
q!1

"
`!

(1� x)`+1
� `!

X̀
i=0

�
`+ q

i

�
x`+q�i

(1� x)`+1�i

#

=
`!

(1� x)`+1
� `!

X̀
i=0

x`�i

i! (1� x)`+1�i
lim
q!1

(q + `)i x
q

=
`!

(1� x)`+1
� 0 as jxj < 1

=
`!

(1� x)`+1

as required.

Lemma 12.18 For jxj < 1 and jxzj < 1,

lim
n!1

xn� (`; n+ d; z) = 0. (12.54)

Proof. If z 6= 1, then using the expression � given by Lemma 12.4 and taking the limit gives

lim
n!1

xn� (`; n+ d; z)

= lim
n!1

xn
`!

(1� z)`+1
� `!

X̀
i=0

z`�i

i! (1� z)`+1�i
lim
n!1

(n+ d+ `)i x
nzn+d

= 0� `!
X̀
i=0

z`�i+d

i! (1� z)`+1�i
lim
n!1

(n+ d+ `)i (xz)
n as jxj < 1

= 0 as z 6= 1 and jxzj < 1,

and if z = 1, then using the expression for � given by Lemma 12.4 and taking the limit gives

lim
n!1

xn� (`; n+ d; 1) = lim
n!1

xn`!

�
`+ n+ d

`+ 1

�
=

1

`+ 1
lim
n!1

(n+ `+ d)`+1 x
n

= 0 as jxj < 1
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12.2. The Limiting Conditional Moments as n!1

as required.

12.2.3 The Limit of the Conditional Rising Factorial Moments

Notation 12.19 Let

'5 (`; j; a; �; �; e; f) =
M
(�;�)

�
�� �
N

�a�1
�1

�
`;max (e; 1) ; f;

N � 1� �
N

�
, (12.55)

'05 (`; j; a; �; �; e)

=
M
(�;�)

�
�� �
N

�a�1 �
�1

�
`;
N � 1� �

N

�
� �

�
`;max (e; 1)� 1; N � 1� �

N

��
(12.56)

and

'6 (`; j; a; �; �; e; f) =
M
(�;�)

�
�� �
N

�a�2
�1

�
`;max (e; 1) ; f;

N � 1� �
�� �

�
. (12.57)

Theorem 12.20 The limit of the conditional rising factorial moments, E�` , is given by

E�`

= �

�
�� 1
� � 1

�
m

m�1X
j=0

�
m� 1
j

�
'05 (`; j; j + �; �j ; � � 1 + j; �� � +m)

+ � (�� 1)
�
�� 2
� � 1

� mX
j=0

�
m

j

�
'05 (`; j; j + �; �j ; � � 1 + j; �� � +m)

+ �

�
�� 1
� � 1

�
m

m�1X
j=0

�
m� 1
j

�
'6 (`; j; �+m;�j ; � � 1 + j; �� �; �� � +m� 1� j)

+ �

�
�� 1
� � 1

�
m

m�1X
j=1

�
m� 1
j

�
'5 (`; j; j + �; �j ; � � 1 + j; �� � +m� j; �� � +m� 1)

+ � (�� 1)
�
�� 2
� � 1

�m�1X
j=0

�
m

j

�
'6 (`; j; �+m;�j ; � � 1 + j; �� �; �� � +m� 1� j)

+ � (�� 1)
�
�� 2
� � 1

�
�

mX
j=1

�
m

j

�
'5 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1) , (12.58)

where '5, '
0
5 and '6 are given by Equations 12.55, 12.56 and 12.57, respectively.
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12.2. The Limiting Conditional Moments as n!1

Proof. Begin with E` as given by Theorem 12.10. That is, begin with

v (n;N; �+m)E` = �

�
�� 1
� � 1

�
m

min(m�1;n���m)X
j=0

�
m� 1
j

�
�'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

+� (�� 1)
�
�� 2
� � 1

�min(m;n���m)X
j=0

�
m

j

�
�'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m;n� � � j)

+�

�
�� 1
� � 1

�
m

m�1X
j=0

�
m� 1
j

�
�'4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

+�

�
�� 1
� � 1

�
m

m�1X
j=1

�
m� 1
j

�
�'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1)

+� (�� 1)
�
�� 2
� � 1

�m�1X
j=0

�
m

j

�
�'4 (`; j; �+m;n; �j ; � � 1 + j; �� �; �� � +m� 1� j)

+� (�� 1)
�
�� 2
� � 1

� mX
j=1

�
m

j

�
�'3 (`; j; j + �; n; �j ; � � 1 + j; �� � +m� j; �� � +m� 1) ,

where '3 and '4 are given by Equations 12.12 and 12.13, respectively, and �j = N�m��+�+j�1.

There are six limits to determine, one for each of the summations divided by v (n;N; �+m).

Let x = ���
N , y = N�1��

N and z = N�1��
��� . As a result of analysis done on these fractions in

the proof of Theorem 12.10 and the remark following it, we know that jxj < 1, jyj < 1 and z 6= 1.

Observe that xz = y for � 6= �, so that jxzj < 1.

By Lemma 12.8, substituting for x, y and z where appropriate, and replacing b by n we have

'3 (`; j; a; b; �; �; e; f) =
M
(�;�)

Nn

24 xmin(a�1;0)�1 (`;max (e; 1) ; f; y)

�xn�1�1 (`;max (e; 1) ; f; z)

35 (12.59)

and

'4 (`; j; a; b; �; �; e; f) =
M
(�;�)

Nn

26664
xa�2�1 (`;max (e; 1) ;min (a� 1; f) ; z)

�xn�1�1 (`;max (e; 1) ; f; z)

+�1 (`;max (a; e; 1) ; f; y)

37775 , (12.60)

414



Global Properties: With-Replacement 415

12.2. The Limiting Conditional Moments as n!1

Expression ' j a e f

(a) 3 0 : : :m� 1 j + � �� � +m n� � � j
(b) 3 0 : : :m j + � �� � +m n� � � j
(c) 4 0 : : :m� 1 �+m �� � �� � +m� 1� j
(d) 3 1 : : :m� 1 j + � �� � +m� j �� � +m� 1
(e) 4 0 : : :m� 1 �+m �� � �� � +m� 1� j
(f) 3 1 : : :m j + � �� � +m� j �� � +m� 1

Table 12.4: Parameters for the Limit of the Conditional Rising Factorial Moments

Expression ' min (a� 1;0) min (a� 1; f) max (a; e;1) max (a; e;1)> f

(a) 3 a� 1 n/a n/a n/a
(b) 3 a� 1 n/a n/a n/a
(c) 4 n/a f a True
(d) 3 a� 1 n/a n/a n/a
(e) 4 a� 1 f a True
(f) 3 n/a n/a n/a n/a

Table 12.5: Boundary Values for the Limit of the Conditional Rising Factorial Moments

where �1 is given by Equation 12.8. We need to �nd the limit for each use of '3 and '4 in the

distribution. For convenience, the possible values of each of the parameters involved have been

placed in Table 12.4, except for those that are the same for each summation term. These are b = n,

� = N�m��+�+j�1 and � = ��1+j. Table 12.5 contains simpli�ed minimum and maximum

parameters, where they can be simpli�ed, as required when applying the above expressions for '3

and '4 and for large n. Observe for expressions (c) and (e) that max (e; 1) = 1 when � = � and

m = 0.

Observe that the third �1 term in expressions (c) and (d) hasmax (a; e; 1) > f , so are identically

zero, and therefore need not be considered any further. Table 12.6 summarises the state of the

six expressions in terms of � using the information developed so far, where e0 is substituted for

max (e; 1)� 1 for brevity.

Expression �-Term 1 �-Term 2 �-Term 3 �-Term 4

(a) xa�1� (`; f; y) xa�1� (`; e0; y) xn�1� (`; f; z) xn�1� (`; e0; z)

(b) xa�1� (`; f; y) xa�1� (`; e0; y) xn�1� (`; f; z) xn�1� (`; e0; z)

(c) xa�2� (`; f; z) xa�2� (`; e0; z) xn�1� (`; f; z) xn�1� (`; e0; z)

(d) xa�1� (`; f; y) xa�1� (`; e0; y) xn�1� (`; f; z) xn�1� (`; e0; z)

(e) xa�2� (`; f; z) xa�2� (`; e0; z) xn�1� (`; f; z) xn�1� (`; e0; z)

(f) xa�1� (`; f; y) xa�1� (`; e0; y) xn�1� (`; f; z) xn�1� (`; e0; z)

Table 12.6: Expressions involving � for the Limit of the Conditional Rising Factorial Moments
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12.2. The Limiting Conditional Moments as n!1

Expression �-Term 1 �-Term 2

(a) xa�1 �1 (`; y) xa�1� (`; e0; y)

(b) xa�1�1 (`; y) xa�1� (`; e0; y)

(c) xa�2 � (`; f; z) xa�2� (`; e0; z)

(d) xa�1 � (`; f; y) xa�1� (`; e0; y)

(e) xa�2 � (`; f; z) xa�2� (`; e0; z)

(f) xa�1� (`; f; y) xa�1� (`; e0; y)

Table 12.7: Positive Limit Terms for the Conditional Rising Factorial Moments

Based on Table 12.6, there are four di¤erent forms of limits we need to determine. As

limn!1Nn=v (n;N; �+m) = 1 (by Lemma 12.15) they are

(1) � (`; d; y)

(2) � (`; n+ d; y)

(3) xn� (`; d; z)

(4) xn� (`; n+ d; z) .

(12.61)

Case (1) is independent of n, and is therefore a constant. Case (2) produces the result `!
(1�y)`+1 by

Equation 12.53, since jyj < 1. Cases (3) and (4) are trivially zero when z = 1, by the de�nition

of �. Case (3) for jzj < 1 is limn!1 xn� (`; d; z) = � (`; d; z) limn!1 xn = 0, as jxj < 1. Case (4)

is zero for jzj <1 by Lemma 12.18, as jxzj = jyj < 1 and jxj < 1.

The positive limits are summarised in Table 12.7. The result is obtained by employing the

de�nition of '5 to expressions (d) and (f), '
0
5 to expressions (a) and (b), and '6 to expressions (c)

and (e).

12.2.4 Example: Coupon-Collector�s Page Problem: Comparison of Limits

with Precise Values

Section 15.3 provides comparative values for times, and considers other numerical issues. This

section provides examples of the expectations for Coupon-Collector�s Page Problem, and compares

the expectations and their limiting values. Table 12.8 provides these values for N = 100, m = 50,

� = 10, � 2 f1; : : : ; 10g and n 2 f100; 200; 500; 1 000g :

From the table, we can compare the expected waiting times required for the �th arrival. The

di¤erences for increasing � become less linear for increasing values of n.
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12.2. The Limiting Conditional Moments as n!1

�nn 100 200 500 1000 1
1 91: 5 183: 3 388: 5 456: 3 458: 0

2 83: 9 173: 3 377: 5 445: 2 446: 9

3 76: 0 162: 4 365: 1 432: 7 434: 4

4 67: 7 150: 3 350: 9 418: 5 420: 1

5 59: 1 136: 8 334: 4 401: 8 403: 4

6 50: 1 121: 6 314: 6 381: 8 383: 4

7 40: 6 104: 1 290: 0 356: 8 358: 4

8 30: 7 83: 7 257: 6 323: 5 325: 1

9 20: 3 59: 4 210: 3 273: 5 275: 1

10 9: 4 29: 5 126: 0 173: 8 175: 1

Table 12.8: Comparison of Limits with Actual Values

100p (1� p)E�1 n Additional P (Leaving) E1
50: 0 73: 8 118 n/a 0: 130 57 73: 88

25: 0 110: 7 187 69 0: 624 54 110: 96

10: 0 132: 8 259 72 0: 897 94 132: 99

5: 0 140: 2 307 48 0: 960 18 140: 32

1: 0 146: 1 408 101 0: 994 75 146: 15

0: 1 147: 5 541 133 0: 999 64 147: 46

Table 12.9: Example of First n to be within a Percentage of the Maximum

For these values of N , m, � and �, the expected waiting time for n = 1000 arrivals is very

close to the limit.

For a �xed �, the ratio of the expected waiting time to the total number of arrivals decreases

as the number of arrivals increases.

12.2.5 Example: First n for the Conditional Expectation to be within a Given

Percentage of the Limit

This section provides an example for the minimum number of arrivals required to provide a con-

ditional expected waiting time that is within a speci�ed percentage of the maximum, that is, of

the limiting value. This provides a way to make a decision on how many more arrivals one needs

to observe in order to increase the probability of completing the A-set, and how this a¤ects the

conditional expected waiting time.

Consider the model with parameters N = 50, m = 10, � = 10, and � = 5. The limit is

E�1 = 147: 605. Table 12.9 provides the probability of leaving and the conditional expected waiting

time for the minimum value of n that causes that expectation to be within a percentage p of its

limit for various values of p. Figure 12.1 illustrates the e¤ect p has on n.
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12.2. The Limiting Conditional Moments as n!1

0 10 20 30 40 50 60
0

100

200

300

400

500

600n

Percentage from the Limit

Figure 12.1: Minimum n for E1 to be within a Percentage p of E�1

" n Additional P (Leaving) E1
100: 0 79 n/a 0: 006 83 47: 89

50: 0 159 80 0: 429 84 97: 76

10: 0 286 127 0: 939 69 137: 66

5: 0 332 46 0: 975 81 142: 63

1: 0 431 99 0: 996 70 146: 61

0: 5 472 41 0: 998 56 147: 11

0: 1 563 89 0: 999 77 147: 51

Table 12.10: Example of First n to be within a Fixed Distance from the Maximum

12.2.6 Example: First n for the Conditional Expectation to be within a Fixed

Distance from the Limit

This section provides an example for the minimum number of arrivals required to provide a con-

ditional expected waiting time that is within a speci�ed distance from the maximum value. This

provides a way to make a decision on how many more arrivals one needs to observe in order to

increase the probability of completing the A-set, and the how this a¤ects conditional expected

waiting time.

Consider the model with parameters N = 50, m = 10, � = 10 and � = 5. The limit is

E�1 = 147: 61. Table 12.10 provides the probability of leaving and the conditional expected waiting

time for the minimum value of n that causes that expectation to be within " of its limit for various

values of ". Figure 12.2 illustrates the e¤ect " has on n.
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12.2. The Limiting Conditional Moments as n!1
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13.1 Introduction

This chapter provides more-detailed and more-involved without-replacement examples of the con-

cepts, theory, techniques and issues from the point of view of many applications. In most cases,

this involves further theoretical development. Some of the results have been determined earlier as

small illustrative examples; these are organised here within the context of the application.
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13.2. Queueing in Lanes

13.2 Queueing in Lanes

13.2.1 Introduction

Section 2.2.1 describes Queueing in Lanes in general, and Section 11.3 provides the general dis-

cussion and formulae for the total waits for all arrivals.

First we provide the mean and variance as a special case of the general theory. These have

been reproduced here for completeness of the information for this application.

Then we derive the total waits for the uni-directional HT model from the general formulation,

and follow it by the total waits for the bi-directional model. This is followed by providing the

individual and total waiting times for both models when an average inter-arrival time is assumed.

These are used to compare the delays the drivers experience within the two models when applied

to a parking lot design; this includes a calculation of the maximum waits based on the general

theory. Through these comparisons, we will be able to gauge the e¤ectiveness of considering a

model that is closer to reality: cars can actually reverse.

The platoon departure sizes are provided for both models, and are applied to the parking lot

model. Graphs are provided to illustrate the likely e¤ect on arrivals at exits to the parking lot.

The next section discusses the e¤ect of having simultaneous arrival streams to the vehicles.

The �nal section considers the e¤ect on the waiting times of drivers that a parking attendant

might have, if it is the attendant�s job to shift vehicles that prevent drivers from leaving once they

arrive.

13.2.2 Preliminaries

13.2.2.1 Uni-Directional Movement

Section 2.2.1 describes the uni-directional model as there being t lanes with si cars in lane i, i 2 f1,

: : :, tg with N =
Pt

i=1 si, and the driver for the jth car in the ith lane can depart when the drivers

for the cars in the ith lane in positions 1, : : :, j have arrived.

This can be modelled using the notation of Section 11.3 as follows. The number of G-sets is

 = N . Put _si =
Pi�1

�=1 si. Set G _si+j = f _si + jg with � _si+j = 1. Clearly ri � 1 for each G-set,

as there is just one direction for exiting, and the A-set for G _si+j is A _si+j;1 = f _si + 1; : : : ; _si + jg.

Therefore m _si+j;1 = j � 1.
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13.2.2.2 Bi-Directional Movement

Section 2.2.3 describes the bi-directional model as there being t lanes with si cars in lane i,

i 2 f1; : : : ; tg with N =
Pt

i=1 si, and the driver for the jth car in the ith lane can depart when the

drivers for the cars in the ith lane in either positions 1, : : :, j or positions j, : : :, si have arrived.

This can be modelled using the notation of Section 11.3 as follows. The number of G-sets is

 = N . Put _si =
Pi�1

�=1 si. Set G _si+j = f _si + jg with � _si+j = 1. Clearly ri � 2 for each G-set, as

there are two directions for exiting, and the A-sets for G _si+j are A _si+j;1 = f _si + 1; : : : ; _si + jg and

A _si+j;2 = f _si + j + 1; : : : ; _si + sg. Therefore m _si+j;1 = j � 1 and m _si+j;2 = si � j.

13.2.3 Mean and Variance

13.2.3.1 Uni-Directional Movement

The mean and variance for the uni-directional model are provided by Corollary 11.46 as

Mean =
m (N + 1)

2 (m+ 2)
(13.1)

and

V ariance =
N2 � 1
12

� (N �m� 1) (N + 1)

(m+ 3) (m+ 2)2
. (13.2)

13.2.3.2 Bi-Directional Movement

The mean and variance for the bi-directional model are provided by Corollary 11.54 as

Mean =
m1m2 (m1 +m2 + 4) (N + 1)

2 (m1 + 2) (m2 + 2) (m1 +m2 + 2)
(13.3)

and

V ariance =
m1m2 (m1 +m2 + 6) (N + 2) (N + 1)

3 (m1 + 3) (m2 + 3) (m1 +m2 + 3)
�Mean� (Mean)2 (13.4)

and also

V ariance =
N2 � 1
12

� (N �m1 � 1) (N + 1)

(m1 + 3) (m1 + 2)
2 � (N �m2 � 1) (N + 1)

(m2 + 3) (m2 + 2)
2

+
(N �m1 �m2 � 1) (N + 1)

(m1 +m2 + 3) (m1 +m2 + 2)
2

�2 m1m2 (N + 1)2

(m1 + 2) (m2 + 2) (m1 +m2 + 2)
2 . (13.5)
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13.2.4 Expected Total Wait

13.2.4.1 Uni-Directional Movement

By Equation 11.135, and applying Theorem 11.49 on the Fundamental Moments for 	1-Processes

with r = 1, and then with recourse to the special case of the mean for r = 1 and � = � = 1, which

is given by Equation 11.102, the expected total wait for G _si+j is

W _si+j =

� _si+jX
�=1

N + 1

2
� m _si+j;1

m _si+j;1 + 2

=
N + 1

2
� j � 1
j + 1

. (13.6)

The total wait is determined by Equation 11.136 as the sum over all G-sets, which here translates

to a double-sum over i and j, and is

W =

tX
i=1

siX
j=1

W _si+j

=
N + 1

2

tX
i=1

siX
j=1

j � 1
j + 1

. (13.7)

13.2.4.2 Bi-Directional Movement

By Equation 11.135 and applying Theorem 11.49 on the Fundamental Moments for 	1-Processes

with r = 2, and then with recourse to the special case of the mean for r = 2 and � = � = 1 with

A-sets mutually intersecting only in G, which is given by Equation 11.110 with ` = 1, the expected

total wait for G _si+j is

W _si+j =

� _si+jX
�=1

N + 1

2
� m _si+j;1m _si+j;2 (m _si+j;1 +m _si+j;2 + 4)

(m _si+j;1 + 2) (m _si+j;2 + 2) (m _si+j;1 +m _si+j;2 + 2)

=
N + 1

2
� j � 1
j + 1

si � j
si � j + 2

si + 3

si + 1
. (13.8)

The total wait is determined by Equation 11.136 as the sum over all G-sets, which here translates

to a double-sum over i and j, and is

W =

tX
i=1

siX
j=1

W _si+j

=
N + 1

2

tX
i=1

si + 3

si + 1

siX
j=1

j � 1
j + 1

si � j
si � j + 2

. (13.9)
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13.2.5 Parallel Lanes Waiting Times

13.2.5.1 Introduction

Hauer and Templeton [43] quanti�ed the duration of waiting by assuming that inter-arrival times

between all pairs of consecutive arrivals have a mean value H. We will now consider this idea

within the present framework, and will later compare waiting times of the two models in question

with respect to the position of drivers in their lanes. To begin, we relax our initial stipulation that

the process moves from one state to the next at times 1; 2; : : : ; N to allow these moves to take

place at times t1; t2; : : : ; tN , with ti < tj for i < j:

13.2.5.2 Preliminaries

Notation 13.1 Let W (1)
j and W (2)

j be the durations of waiting by the driver of vehicle j in a lane

of s vehicles for the single- and bi-directional models, respectively.

Notation 13.2 Let �W (1)
j and �W

(2)
j be the expected values of W (1)

j and W (2)
j , respectively.

Notation 13.3 Let �W (1) and �W (2) be respectively the expected total waiting times for all drivers

in a lane of s vehicles for the single- and bi-directional models, respectively.

As our main focus here is to compare the HT model with the more-realistic model of allowing

bi-directional exiting, we will assume that � = 1 for the results which follow, but similar results

may be readily obtained for general �:

13.2.5.3 Results

We have the following relationships between average waiting times and the moments of T .

Lemma 13.4 For i = 1 or 2,

E
h
W
(i)
j jT = k

i
= Hk (13.10)

where T = T (j � 1) or T (j � 1; s� j) for i = 1 and 2; respectively.

Proof. With the average inter-arrival time being H, the expected waiting time for k arrivals

is Hk.

Theorem 13.5 The expected total waiting times for driver j in any lane is given by

�W
(1)
j = H

N + 1

2
� j � 1
j + 1

(13.11)

426



Applications: Without-Replacement 427

13.2. Queueing in Lanes

and

�W
(2)
j = H

N + 1

2
� s+ 3

s+ 1
� j � 1
j + 1

� s� j
s� j + 2 . (13.12)

Proof.

�W
(1)
j =

N�1X
k=1

E
h
W
(1)
j jT = k

i
P (T (j � 1) = k)

=

N�1X
k=1

Hk P (T (j � 1) = k) by Equation 13.10

= H E (T (j � 1))

= H
N + 1

2
� j � 1
j + 1

from Equation 11.101.

�W
(2)
j =

N�2X
k=1

E
h
W
(2)
j jT = k

i
P (T (j � 1; s� j) = k)

=

N�2X
k=1

Hk P (T (j � 1; s� j) = k) by Equation 13.10

= H E [T (j � 1; s� j)]

= H
N + 1

2
� s+ 3

s+ 1
� j � 1
j + 1

� s� j
s� j + 2 by Corollary 11.54.

These are the required results.

Theorem 13.6 The expected total waiting times for all drivers are given by

�W (1) = H
N + 1

2

sX
j=1

j � 1
j + 1

(13.13)

and

�W (2) = H
N + 1

2
� s+ 3

s+ 1

sX
j=1

j � 1
j + 1

� s� j
s� j + 2 . (13.14)

Proof. The expected total waiting time for all drivers in a lane for the uni-directional model

is given by

�W (1) =
sX
j=1

�W
(1)
j

= H
N + 1

2

sX
j=1

j � 1
j + 1

by Equation 13.11,
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and the expected total waiting time for all drivers in a lane for the bi-directional model is given

by

�W (2) =
sX
j=1

�W
(2)
j

= H
N + 1

2
� s+ 3

s+ 1

sX
j=1

j � 1
j + 1

� s� j
s� j + 2 by Equation 13.12:

These are the required results.

Although expected waiting times are implicit in the distribution functions, their explicit men-

tioning is warranted for speci�c values of j. We state from Equations 13.11 and 13.12 that

�W
(1)
j =

8><>:
N+1
6 H j = 2

N+1
4 H j = 3

(13.15)

and

�W
(2)
j =

8><>:
N+1
6 �

s+3
s+1 �

s�2
s H j = 2

N+1
4 �

s+3
s+1 �

s�3
s�1H j = 3

: (13.16)

We also mention the expected total waiting time of all people in a lane for speci�c values of s ;

these will be used together with the above in an example later. From Equations 13.13 and 13.14

we have

�W (1) =

8>>>>><>>>>>:

N+1
6 H s = 2

5(N+1)
12 H s = 3

43(N+1)
60 H s = 4

(13.17)

and

�W (2) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0 s = 2

N+1
12 H s = 3

7(N+1)
30 H s = 4

47(N+1)
70 H s = 6

517(N+1)
420 H s = 8

. (13.18)

The overall gains to be made by allowing reversals appear when comparing the values of

Equations 13.17 and 13.18 for s = 2, 3 and 4.
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13.2.6 Parking Lot: Comparison of Delays

13.2.6.1 Introduction

Let us now turn our attention to an application of the theory to a parking lot. Hauer and Templeton

considered 10 000 vehicles to be parked on a large rectangular plot of land. With the conventional

design consisting of many rows of pairs of cars assumed in the model to be parked back-to-back,

enabling each to depart immediately a driver arrives, they calculated, with assumptions on the

space allocation per vehicle and the allocation of vehicles within the car park itself, that this would

require 60:1 acres. If these rows consist of quadruples of vehicles with pairs of vehicles facing

opposite directions, then only 48 acres were calculated to be necessary. Hauer and Templeton

give the expected waiting time in the latter case. Although the conventional design of car parks

consists of pairs of cars, each of which may exit immediately, the HT model takes this to be two

lanes of a single vehicle each and imagines that they are parked back-to-back. However, as there

is no physical reason why vehicles cannot move in both directions, we treat this as a single lane.

Likewise, when each of the two lanes in the HT model have s vehicles each, the present model

treats them as a single lane of 2s vehicles, and as such, we must compare the two models on this

basis.

Now let us consider the speci�c case s = 2, in which Hauer and Templeton assume two cars

are facing forward, two face backward, and depart only using a forward gear. In our model, with

cars that can use both forward and reverse gears, it is irrelevant which direction the parked cars

face.

An investigation into the rate at which the expected waiting times for vehicles in the bi-

directional model converge to the corresponding uni-directional model�s values is provided in Sec-

tion 11.8 on the Comparison of Expected Future Arrivals. This is directly applicable to the parking

lot design, but is not discussed further here.

13.2.6.2 Individual Waiting Time

Suppose this parking lot is for a stadium which has an emptying time of 12 minutes. Then,

according to Equations 13.15 and 13.16, the middle two vehicles, namely the second and third,

in a given lane, will have to wait on the average 2 minutes and 1:4 minutes in the two models

(m; �) = (1; 1) and (m1;m2; �) = (1; 2; 1), respectively. According to Equations 6.32 and 6.65, 1=2

and 7=12 of these vehicles, respectively, will experience no delay. While this is true, some will wait

for a considerable length of time, quanti�ed in the following.

The cumulative distribution function for the uni-directional model is given by Corollary 6.56
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with m = j � 1, and after applying
�
N
j

�
= N

�
N�1
j�1
�
becomes

P (T (j � 1) � K) = 1

j
+
K

N
� 1

N

�
K
j

��
N�1
j�1
� j � 1. (13.19)

For the bi-directional model, by Corollary 6.29 of the Fundamental Theorem of 	1-Processes

6.28 with r = 2, we have for 2 � j � s� 1,

P (T (j � 1; s� j) � K) = P (T (j � 1) � K) + P (T (s� j) � K)� P (T (s� 1) � K) , (13.20)

where P (T (m) � K) is given by Equation 13.19.

Put j = 2, s = 2 and N = 10 000 in Equation 13.19, and use P (T1 > K) = 1� P (T1 � K) to

calculate
P (T1 > 7; 500) = 0:0312,

P (T1 > 5; 000) = 0:1250, (13.21)

and put j = 2, s = 4 and N = 10 000 in Equation 13.20 to calculate

P (T (1; 2) > 7; 500) = 0:0094,

P (T (1; 2) > 5; 000) = 0:0677. (13.22)

That is, for the respective models, roughly 3%, 1% will wait 9 to 12 minutes, respectively, and 9%,

6% will wait 6 to 9 minutes, respectively.

Now that we have taken into account the reality that vehicles may use reverse gear, the delays

are predictably less, as quanti�ed above, than those found using the HT model. The penalty to

be assigned to this method of parking is consequently signi�cantly less than previously thought.

13.2.6.3 Expected Total Waiting Time

Finally, in the overall optimisation of space versus time inconvenience, the total waiting time of all

people arriving at vehicles might be considered a more relevant statistic for a direct comparison of

the two schemes. In this case, we assume that all rows of vehicles consist of the same size s-tuples;

then s divides N , and we have t = N=s lanes of s vehicles.

Notation 13.7 Let _�W (1), _�W (2) be the overall waiting time of all people arriving at their vehicles

for the single- and bi-directional exit models, respectively.
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Then _�W (i) = t �W (i) for i = 1; 2, where �W (i) is given by Theorem 13.6, with particular cases

given by Equations 13.17 and 13.18 In particular

_�W
(1)
=

8>>>>><>>>>>:
:083 HN (N + 1) s = 2

:139 HN (N + 1) s = 3

:179 HN (N + 1) s = 4

(13.23)

and

_�W
(2)
=

8>>>>><>>>>>:
:058 HN (N + 1) s = 4

:112 HN (N + 1) s = 6

:154 HN (N + 1) s = 8

. (13.24)

Comparison of Equation 13.23 with 13.24 shows the percentage reduction gained by allowing

reversals. For example, if the design is based on 6 vehicles per lane (that is, two combined lanes

of 3 vehicles each in the HT model) then the average parker waits a little over 11% of the sum of

the duration of the emptying time of the facility, HN , and a small term, H, when reversals are

allowed, as compared with almost 14% in the HT model.

Tables 13.1 and 13.2 show _�W (i) =H for i 2 f1; 2g for various values of N and t. Table 13.3

compares some of these values in terms of the parking lot design. It also includes, in parentheses,

the maximum possible values, which are calculated below. Note that for large s, the expected and

maximum waiting times are close together, but in the cases N = 10 000 and s = 4, 6 or 8, the

former is less than 50% of the latter.

13.2.6.4 Maximum Waits

Table 13.3 compares some values of _�W (i) =H for i 2 f1; 2g for various dimensions of the parking lot

design. It also includes in parentheses the maximum possible values, which are given by Theorems

11.21 and 11.34.

For example, using Hauer and Templeton�s [43, p253] number of cars, N = 10 000, and, say,

4 cars per stall, then W (1)
max = 3: 75 � 107 and W (2)

max =
N(N�1)(8�2)

2�8 , since the 4 lanes per stall in

the uni-directional model becomes 8 cars per two stalls in the bi-directional model; the result is

W
(2)
max = 3: 749 625 � 107. Although in this case the bi-directional model produces a reduction in

the maximum possible wait of only 0:01%, the gains for individuals are much greater, as quanti�ed

in Sections 13.2.5 on Parallel Lanes Waiting Times and 13.2.6.2 on Individual Waiting Times.
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N HT t i = 1 i = 2

6 2 1 9: 85 4: 70

4 2 5: 83 1: 17

6 3 3: 50 0: 00

12 2 1 49: 66 33: 32

4 2 36: 59 17: 46

6 3 27: 95 9: 10

8 4 21: 67 4: 33

12 6 13: 00 0: 00

24 2 1 229: 60 183: 20

4 2 190: 99 128: 14

6 3 162: 83 92: 32

8 4 140: 71 67: 14

12 6 107: 50 35: 00

16 8 83: 33 16: 67

24 12 50: 00 0: 00

Table 13.1: Example: Expected Total Waiting Times for a Single Lane: N = 6, 12 and 24
_�W (i) =H. The second column contains the number of lanes in the original HT model (i = 1). t is

the number of physical lines of vehicles.

N HT t i = 1 i = 2

100 2 1 4 626: 07 4 302: 15

4 2 4 339: 20 3 826: 44

8 4 3 896: 81 3 132: 09

10 5 3 714: 09 2 859: 14

20 10 3 009: 92 1 888: 03

40 20 2 121: 00 875: 33

50 25 1 809: 58 589: 17

100 50 841: 67 0: 00

Table 13.2: Example: Expected Total Waiting Times for a Single Lane: N = 100
_�W (i) =H. The second column contains the number of lanes in the original HT model (i = 1). t is

the number of physical lines of vehicles.
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N s0 i = 1 (max) i = 2 (max)
24 1 0: 00 0 0: 00 0

2 50: 00 144 35: 00 138

3 83: 33 192 67: 14 184

4 107: 50 216 92: 32 207

6 140: 71 240 128: 14 230

12 190: 99 264 183: 20 253

100 1 0: 00 0 0: 00 0

2 841: 67 2 500 589: 17 2 475

5 2 121: 00 4 000 1 888: 03 3 960

10 3 009: 92 4 500 2 859: 14 4 455

25 3 896: 81 4 800 3 826: 44 4 752

50 4 339: 20 4 900 4 302: 15 4 851

10 000 1 0: 00� 107 0: 00� 107 0: 00� 107 0: 00� 107
2 0: 83� 107 2: 50� 107 0: 58� 107 2: 50� 107
3 1: 39� 107 3: 33� 107 1: 12� 107 3: 33� 107
4 1: 79� 107 3: 75� 107 1: 54� 107 3: 75� 107

Table 13.3: Expected Total Waiting Times in a Parking Lot

E
h
W
(i)
i
= H. Let s0 being the number of vehicles in a single lane in the HT model. Then for

i = 1 we use s = s0 and for i = 2 we use s = 2s0.

13.2.7 Platoon Departure Size

13.2.7.1 Introduction

Knowing the distribution of the departure size of platoons could be an aid to planning. For

example, one may be interested in planning the number of personnel at exits, or the ability of exits

to cope with tra¢ c �ows as these exits are queued with batch arrivals. Maybe something happens

to the stalls when a lane is emptied; for example, they could be cleaned in a parking building.

Here we investigate and compare the platoon sizes in the uni- and bi-directional models when

there are t equi-lengthed lanes of s cars. As discussed in Section 13.2.6, it is necessary to compare

s cars per stall in the uni-directional model with 2s cars per stall in the bi-directional model.

Notation 13.8 Let E(1)k and E(2)k be the expected platoon sizes as a result of the kth arrival for

the uni- and bi-directional models, respectively.

13.2.7.2 Uni-Directional Exiting

The expected platoon size for si cars in lane i is given by Theorem 11.88. Putting si � s and

t=N = s gives

E
(1)
k =

1

s
�
N�1
k�1
� sX
j=1

j

�
N � j
k � j

�
. (13.25)
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Remark 13.9 If we write

1�
N�1
k�1
� sX
j=1

j

�
N � j
k � j

�
=

sX
j=1

j
(k � 1)!
(k � j)!

(N � j)!
(N � 1)!

=
sX
j=1

j

Qj�1
i=1 (k � i)Qj�1
i=1 (N � i)

, (13.26)

then Maple provides an expression that could potentially enable faster calculations. It is, after

some manipulation,

(N � s) (sk � (s+ 1)N � s� 1)
(N � k + 2) (N � k + 1)

� (s+ 1� k) � (1�N)
� (1� k) � (s+ 1�N) +

N (N + 1)

(N � k + 2) (N � k + 1) , (13.27)

where � (x) =
R1
0 e�ttx�1dt. However, as � (�) =1 for v 2 f0;�1;�2; : : :g (Bell [7, Thm 2.11])

and N � 1, this is another example of why automated manipulation of formulae is not always

appropriate.

Calculations could be made faster by expressing both products in Equation 13.26 in terms

of Stirling numbers of the �rst kind (Scheid [73, Ch. 4]) and using the recurrence relationship

S(n+1)i = S(n)i�1 + iS
(n)
i .

The graph in Figure 13.1 provides a comparison of expected platoon sizes for N = 60 and

s 2 f2, : : : , 6g. The expected platoon size at the last arrival is equal to s+1
2 , by Corollary 11.90.
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Figure 13.1: Platoon Size for Uni-Directional Exits: s = 2; : : : ; 6
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13.2.7.3 Bi-Directional Exiting

The expected platoon size for si cars in lane i is given by Theorem 11.91. Putting si � s and

t=N = s gives

E
(2)
k =

1

s
�
N�1
k�1
�
242 sX

j=1

j

�
N � j
k � j

�
� s2

�
N � s
k � s

�35 . (13.28)

The graph in Figure 13.2 provides a comparison of expected platoon sizes for N = 60 and

s 2 f2, : : : , 6g. The expected platoon size at the last arrival is equal to 1 by Corollary 11.93.

The maximum value on the Y -axis has been kept the same as for the uni-directional case to

aid in visual comparisons between the two models.
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Figure 13.2: Platoon Size for Bi-Directional Exits: s = 2; : : : ; 6

13.2.7.4 Parking Lot Design

In the Parking Lot Design of Sections 2.2.1 and 13.2.6, there are N = 10 000 cars in pairs of

abutting stalls. The average rate at which cars leave during each average inter-arrival time for

various numbers of cars per stall in Hauer-Templeton model [43] is graphically displayed in Figure

13.3. For the model in which bi-directional exiting is allowed, Figure 13.4 provides the graphs.

For a direct comparison between the two models, one needs to compare them for equal stall

lengths. This is done in Figure 13.5 for s0 = 4 cars per stall, which becomes s = 8 cars per two

stalls in the bi-directional model.

Remark 13.10 Figure 13.5 illustrates that the platoon size is �rst greater with bi-directional exit-

ing than with uni-directional exiting, until a time when the average size decreases rapidly, whereas

with uni-directional exiting the average platoon size continues to increase until the end of the

process. Hence, arrivals at exits to the car park will be spread over a longer period of time with

435



Applications: Without-Replacement 436

13.2. Queueing in Lanes

bi-directional exiting, and there will be less congestion towards the end. This provides a strong

argument for not placing any kind of barriers between the abutting stalls.
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Figure 13.3: Parking Lot Platoon Size for Uni-Directional Exits: s = 2; : : : ; 6
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Figure 13.4: Parking Lot Platoon Size for Bi-Directional Exits: s = 2; : : : ; 6

13.2.8 Parallel Arrivals

Consider a uni-directional lane of N vehicles with v occupants in each vehicle, and suppose the

occupants of each vehicle have visited a unique venue of v venues. Suppose that one occupant

from each venue arrives at their vehicle at each of N time-points. Section 9.9.5, which uses the

varieties model to investigate this, provides the distribution of waiting times for a vehicle to leave,

measure from the time all v occupants have returned. It also provides a table of comparisons of

expected waiting times that each vehicle, once fully occupied, may have to wait.
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Figure 13.5: Parking Lot Platoon Size Comparison: s0 = 4, s = 2s0

13.2.9 Parking Attendant

A simple description of a car park with an attendant moving cars is provided in Section 2.2.14.

Here we provide a very simpli�ed model from which we determine an approximate value for the

usefulness of a single parking attendant. In the real, dynamic situation, an additional side-e¤ect

is that more spaces will be available for parking when an attendant is used. When the system is

congested, the extra number of parkers could contribute to the cost of the parking attendant and

potentially increase pro�ts.

13.2.9.1 Description

Assume all cars are parked at the same time in the morning, no cars arrive during the departure

period of these cars, and all cars leave on the same day. Suppose there are N cars with s cars

per stall. Assume there is one person per car and these arrive at their cars in a random sequence

with an average inter-arrival time of H minutes. Let R be the time in minutes required to move a

vehicle. Suppose each driver has equal chance of being in the jth position of a stall, where j = 1

corresponds to a car that is not blocked in and j = s corresponds to a car that is blocked in by

s� 1 other cars.

Without an attendant, this can be modelled as a simple Queueing in Lanes model with uni-

directional exiting, as discussed in Section 13.2.4.1. Driver j expects to wait W 0
j =

N+1
2

j�1
j+1H

minutes. Prior to parking, an average driver expects to wait W 0 = 1
s
N+1
2

Ps
j=1

j�1
j+1H minutes.

The total expected waiting time for all parkers is T 0 = NW 0.
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13.2.9.2 Formulae

This is a very rough approximation. Assume the attendant is always busy. The number of cars

that can be moved is total emptying time
time to move one vehicle =

NH
R . The expected number of drivers still required

when the driver for car j in a stall arrives is j�1
2 , by Equation 11.138 with � = 1 and m = j � 1,

so the average over all drivers in the lane is 1s
Ps

j=1
j�1
2 = s�1

4 ; this is the average number to be

moved per request to the parking attendant.

This enables the number of calls handled per day to be calculated as

� =
number movable

number to be moved per call
(13.29)

=
4NH

R (s� 1) calls per day. (13.30)

A handled call can expect to take

W 00 =
(s� 1)
4

R minutes. (13.31)

The expected total time saved is

Total saved = (the amount saved per call)� (the number of calls)

=
�
W 0 �W 00� �. (13.32)

The expected saving per person = total saved
number of drivers =

(W 0�W 00)�
N . The expected waiting time per

person =W 0 � (W 0�W 00)�
N . The total expected waiting time is given by

T 00 = NW 0 �
�
W 0 �W 00� �. (13.33)

The expected waiting time for the jth driver (j > 1) in a lane is

W 00
j =W 0

j �
(W 0 �W 00) �

N
. (13.34)

13.2.9.3 Example

Suppose N = 300, s = 3, H = 12 seconds and R = 36 seconds. Then W 0
1 = 0, W 0

2 ' 10:0,

W 0
3 ' 15:0, W 0 = 25=3 ' 8:3 mins, T 0 = 300� 25

3 = 2500 mins.

The number of calls handled per day is � = 4�300�12
36�2 = 200. The expected saving per person

is (W 0�W 00)�
N = (500�18)200

300 = 421:23 secs ' 7:0 mins. W 00
1 = 0;W 00

2 = 10:0 � (W 0�W 00)�
N ' 3 mins,
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W 0
3 ' 8:0 mins, W 00 = 18 secs, W 0 � (W 0�W 00)�

N = 500 � (500�18)200
300 = 178: 67 secs ' 3:0 mins,

T 00 = 300� 178: 67=60 mins = 893:4 mins.

In this case, using this very rough model, the attendant cuts the expected total waiting time

to 893:4
2500 � 100% ' 35: 7% of the original level.

13.3 Interconnected Parallel Lines

13.3.1 Introduction

Consider t parallel lanes of sn vehicles in lane n 2 f1; : : : ; tg. To highlight the e¤ects being

considered here of the changes to the basic model, the discussion here assumes there is only one

arrival per vehicle, there is a complete arrival stream and there is uni-directional exiting. Thus

the number of arrivals is N =
Pt

n=1 sn, and there is a single A-set associated with each vehicle.

Suppose that each vehicle is in some way connected to zero or more other vehicles in one or

more lanes, including its own, in such a way that it can only depart when each of those vehicles

have their arrival. A vehicle may be in more than one connection-set.

Because it is di¢ cult to see how this model applies to vehicles parked in lanes, it is described

in terms of feet in lines instead of vehicles in lanes, shoes instead of drivers and sometimes shoeing

instead of arriving or arrival. The model itself is referred to as putting all feet forward. This makes

particular sense when t = 2, s1 = s2 = s, and there are s connections consisting of pairs of vehicles

side-by-side, for then one can imagine people standing in a line with each waiting for their feet

and the feet of those in front of them to be shoed before they can walk forward.

The �nal consideration for a connection-set with f feet, is to measure the time until all the

feet in front of at least g of these f feet are shoed from the time the connection-set is completed.

The distribution for the simple case of having one foot in each line and g = f is considered

�rst. This is applied to an example in percolation theory.

Then the distribution for the general case is provided, and is applied to model an aspect of

construction site logistics.

13.3.2 Simple Interconnected Parallel Lines

Let the combined arrivals for the set of the t feet fj1; : : : ; jtg be represented by the connection-set

G = fjn 2 f1; : : : ; sng : n 2 f1; : : : ; tgg. Then let all feet in front of and including those t feet be

represented by A = fi : i 2 f1; : : : ; jng ; n 2 f1; : : : ; tgg.

Let T = T (A) be the random variable for the completion time, possibly zero, from the instant
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the process has shoed all the feet of G to the instant it has �rst shoed all the feet of A:

Theorem 13.11 The distribution of T is given by

P (T = k) = P (T (m) = k) , (13.35)

where P (T (m) = k) is given by Theorem 6.9 with � and m given by t and
Pt

n=1 (jn � 1), respec-

tively.

Proof. Apply Theorem 6.9 with � = jGj = t and m = jAnGj =
Pt

n=1 (jn � 1) :

Remark 13.12 Observe that this multi-line model with single arrivals per vehicle is equivalent to

a single-line model with single arrivals for elements of AnG and � arrivals for G.

Reversals are easily incorporated by putting r = 2, � = t, m1 =
Pt

n=1 (jn � 1) and m2 =Pt
n=1 (sn � jn), which is the total number of shoes for feet behind the collection of t feet f jn; n =

1; : : : ; tg, and applying Corollary 6.29 of the Fundamental Theorem of 	1-Processes 6.28.

Having one or more shoes for each foot can also be very easily incorporated by increasing N;m

and � accordingly.

13.3.2.1 Example: Percolation Theory

A model used in percolation theory is described in Section 2.11.7. Here we consider the network

displayed in Figure 2.4. For a given i 2 f1, : : : , sg, we have � = t and m = (i� 1) t. Therefore

P (T = k) = P (T ((i� 1) t) = k) where P (T (m) = k) is given by Theorem 6.9.

13.3.3 General Interconnected Parallel Lines

Consider the general case of f feet of interest in arbitrary �xed positions in the lines, with hn 2

f0; 1; : : : ; sng in line n such that
Pt

n=1 hn = f . We measure the expected waiting time until at

least g of the f feet are free to move, measured from the time the f feet are shoed. In order to

apply Theorem 9.2, we must supply the G-set and the number of feet in each arbitrary union of s

A-sets corresponding to this G-set.

Let G = fjn` 2 f1; : : : ; sng : ` 2 f1; : : : ; hng , n 2 f1; : : : ; tgg, where jn`1 < jn`2 for `1 < `2.

Then � = jGj = f . As there is exactly one A-set associated with each of the f feet in G, there are

r = f A-sets.
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13.3. Interconnected Parallel Lines

Label the A-sets according to the line they are in. That is, label them as A11; : : : ; A1h1 ,

A21; : : : ; A2h2 ; : : :, At1; : : : ; Atht , where An` = G [ f1; : : : ; jn` � 1g is the union of G with the

collection of feet in front of the `th foot of interest in the nth line.

With this notation we can describe the relationship between the A-sets as follows: An1`1 \

An2`2 = G if n1 6= n2, and if `1 < `2 then An1`1 [An1`2 = An1`2 and An1`1 \An1`2 = An1`1 .

Let Tg = Tg (A11; : : : ; A1h1 ; : : : ; At1; : : : ; Atht) be the random variable for the completion time,

possibly zero, from the instant the process has shoed all the feet of G to the instant it has �rst

shoed all the feet of at least g of the f A-sets:

Adopt the convention that an empty union produces the empty set.

Theorem 13.13 The distribution of Tg is given by

P (Tg = k) =

fX
s=g

(�1)s�g
�
s� 1
g � 1

�X
P

�
T

�Xt

n=1
`n>0

�
jnin`n � `n

��
= k

�
, (13.36)

where the inner summation on the right is over all distinct sets fi11; : : : ; i1`1 ; : : : ; it1; : : : ; it`tg �

f1; : : : ; fg of s states such that `n 2 f0; : : : ; hng with
Pt

n=1 `n = s, and where P (T (m) = k) is

given by Theorem 6.9 with � = f .

Proof. By Theorem 9.3, we may write

P (Tg = k) =

fX
s=g

(�1)s�g
�
s� 1
g � 1

�X
P

0@T
0@ t[
n=1

`n[
q=1

Aninq

1A = k

1A , (13.37)

where the inner summation on the right is over all distinct sets fi11; : : : ; i1`1 ; : : : ; it1; : : : ; it`tg �

f1; : : : ; fg of s states such that `n 2 f0; : : : ; hng with
Pt

n=1 `n = s, and where P (T (m) = k) is

given by Theorem 6.9 with � = f .

The number of elements in the double union is given by������
t[

n=1

`n[
q=1

Aninq

������ = jGj+

������
t[

n=1

`n[
q=1

�
AninqnG

�������
= f +

Xt

n=1
`n>0

�
jnin`n � `n

�
, (13.38)

as
S`n1
q=1An1in1q \

S`n2
q=1An2in2q = G for n1 6= n2,

����� `nSq=1Aninq
����� = 0 for `n = 0, and

����� `nSq=1AninqnG
����� =

jnin`n � `n for `n > 0 as An`1 [ An`2 = An`2 for `1 < `2 and
��Aninq \G�� = q. This provides the

result.
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13.3. Interconnected Parallel Lines

Theorem 13.14 The `th rising factorial moment of Tg is given by

Eg;` =

fX
s=g

(�1)s�g
�
s� 1
g � 1

�X
E

��
T

�Xt

n=1
`n>0

�
jnin`n � `n

���
`

�
, (13.39)

where the inner summation on the right is over all distinct sets fi11; : : : ; i1`1 ; : : : ; it1; : : : ; it`tg �

f1; : : : ; fg of s states such that `n 2 f0; : : : ; hng with
Pt

n=1 `n = s, and where E ([T (m)]`) is given

by Corollary 11.37 with � = f .

Proof. As Expectation is a linear operator, taking expectations using the probabilities in

Equation 13.36 provides the result.

Scholium 13.15 The e¤ect of using Theorem 13.13 instead of the general Theorem 9.3, is that

the numbers of elements in the unions of A-sets have been pre-determined. There would otherwise

be a need to calculate 2f�g+1 such numbers, and when g = 1 there would otherwise be
Pf

s=1 s
�
f
s

�
=

2f�1f A-sets involved in unions of the form
Ss
j=1Aij . The same bene�t also applies to the mo-

ments.

Remark 13.16 Geometrically, we may consider that we have a collection of f cells at the inter-

section of f concurrent lines, each having a direction so that forward and reverse directions are

discernible. Some of these lines may join up with others, corresponding to feet in the same lane.

13.3.3.1 Example: Construction Site Logistics

The problem of placement of building materials at a construction site is described in Section 2.10.

Here the forward direction is upward from the ground.

The variables that are considered are be the placement of the materials of interest and the

following.

Notation 13.17 Let f be the number of materials of interest.

Notation 13.18 Let s be the size of the piles.

Notation 13.19 Let p be the number of materials of interest that are placed in each line.

Notation 13.20 Let g be the number of materials of interest considered necessary in order begin.

If we assume that the f items of interest become required at the same time, then Theorem

13.13 can be applied with N =
Pt

n=1 sn � f + 1 and � = 1. If we assume that the f items of
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13.3. Interconnected Parallel Lines

f p s E1;1 Ef;1
1 1 36 34: 53 34: 53

2 2 36 20: 68 22: 36

3 3 36 13: 38 16: 28

4 4 36 8: 98 12: 63

6 6 36 4: 35 8: 46

Table 13.4: Construction Mean Waits: All in One Pile, Pile Size Fixed

interest become required one item at a time, then the distribution for this waiting time is provided

directly by Theorem 13.13.

The latter case is more complex than the former, and we examine it by providing some numerical

examples of expected waiting times, and comment on them.

For simplicity, and also in order to �nd patterns in the resultant data, piles are assumed to

be of equal size with sn � s, equal numbers of materials of interest are placed in each pile, and

in identical positions within those piles. Also, the `th item of interest in pile n is assumed to be

in position `
j
s
p

k
; although this is not random, this does spread them out almost equally within a

pile. The examples have N = 72.

Table 13.4 illustrates the e¤ect of increasing f when all items of interest are placed in the one

pile when the pile size is �xed. When only one item is required, the mean drops more rapidly than

when all items are required.

Table 13.5 illustrates the e¤ect of increasing the pile size when the number of items of interest

and the number of these items per pile are both �xed and the pile size varies. The mean increases

rapidly at �rst, and then less rapidly as the size of a pile increases. This e¤ect decreases as the

number of required items, g, increases.

Table 13.6 illustrates the e¤ect of increasing the number of items of interest in each pile when

the number of items of interest and the pile size are �xed. The mean decreases rapidly at �rst and

then less rapidly as the number of items of interest in each pile increases. This e¤ect increases as

the number required increases.

In a practical situation, all collections of items of interest would be determined in advance,

and the total mean waits and their corresponding standard deviations could be used to provide an

overall measure of the e¤ect of choosing each of the parameters for placing the materials in various

piles. This, in turn, could then be used as part of an overall cost minimisation strategy.
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13.4. No Path in a Network (Bombing Raid)

f p s E1;1 E2;1 E3;1 E4;1 E5;1 E6;1
6 2 6 0: 39 0: 93 2: 04 3: 15 5: 23 6: 59

6 2 12 1: 74 3: 10 4: 69 5: 92 7: 53 8: 46

6 2 18 3: 00 4: 61 6: 13 7: 19 8: 42 9: 10

6 2 24 3: 99 5: 63 7: 00 7: 90 8: 90 9: 43

Table 13.5: Construction Mean Waits: In 3 Piles, Various Pile Sizes

f p s E1;1 E2;1 E3;1 E4;1 E5;1 E6;1
12 2 12 0: 10 0: 27 0: 50 0: 79 1: 14 1: 53

12 3 12 0: 07 0: 19 0: 34 0: 58 0: 87 1: 18

12 4 12 0: 06 0: 16 0: 29 0: 45 0: 72 1: 04

12 6 12 0: 05 0: 14 0: 25 0: 37 0: 49 0: 62

Table 13.6: Construction Mean Waits: Various Numbers in a Pile, Pile Sizes Fixed

13.4 No Path in a Network (Bombing Raid)

13.4.1 Introduction

Section 2.11.5 describes the No Path in a Network problem. A situation in which this might occur

is described in the Bombing Raid problem in Section 2.11.6. The theory of blocking is described

in Section 9.4. The with-replacement model of this application is discussed in Section 14.3, and it

also compares the results.

13.4.2 Example Network

The network provided in Figure 13.6 has the possible paths from O to D represented as a tree in

Figure 13.7. Set G = f1g. The contents of the A-sets without G are provided next to the leaf-tips

of the tree.
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Figure 13.6: Example: The Network for No Path in a Network
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13.4. No Path in a Network (Bombing Raid)
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Figure 13.7: Example: The Path Tree for No Path in a Network
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13.4. No Path in a Network (Bombing Raid)

k P (T = k)

0 0: 707 14

1 0: 142 86

2 0: 095 24

3 0: 047 62

4 0: 007 14

Table 13.7: Example: Blocking Probabilities for No Path in a Network

13.4.3 Minimal Blockage Covering

The blockage sets clearly include f2g and f7g, and these will cover any blockage sets containing

either 2 or 7. Other blockage sets are found by considering the non-empty subsets of f3; 4; 5; 6g.

It is clear that the singleton subsets do not block all the paths, and of the doubletons, the only

blockage set is f5; 6g. The remaining subsets are f3; 4; 5; 6g, f3; 4; 5g, f3; 4; 6g, f3; 5; 6g andf4; 5; 6g.

Of these, f3; 4; 6g is not a blockage set, and the �rst set and the last two sets are covered by the

doubleton blockage set f5; 6g. The blockage covering now requires only the blockage sets f2g, f7g,

f5; 6g and f3; 4; 5g. As none of these four sets are subsets of any of the other sets, these constitute

the minimal blockage covering.

Let B1 = f2g, B2 = f7g, B3 = f5; 6g and B4 = f3; 4; 5g, and let B0u = Bu[G for u 2 f1; 2; 3; 4g.

13.4.4 Blocking Probabilities

By the Minimal Blockage Covering Theorem 9.31 and the Fundamental Theorem 6.28 for 	1-

processes, the waiting time distribution for a blockage to occur, measured from the time G is

completed, is given by

P
�
T
�
B01; : : : ; B

0
t

�
= k

�
=

4X
s=1

(�1)s�1
X
i1;:::;is

	1

�
7;
���Ss

j=1B
0
ijnG

��� ; 1; 1; k� . (13.40)

Table 13.7 provides the numerical values.

Suppose this network represents a �ooding of intersections at random during a storm or the

bombing of intersections during a bombing raid. Then in approximately 71% of all such storms

(bombing raids), there will be no path available from O to D at the instant that intersection 1 is

�ooded (bombed).
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13.5. 2-D Gap Problem

13.5 2-D Gap Problem

13.5.1 Introduction

The 2-D Gap Problem is described in Section 2.2.12. Assume there are n � 2 lanes. The without-

replacement process described in Chapter 6 applies and we put N = n (�+ �0 + 1), � = 1, r = nL,

and specify the A-sets as follows: A1 corresponds to the vehicles in the path (1; 1; : : : ; 1), A2

to (1; 1; : : : ; 1; 2), : : :, An to (1; 1; : : : ; 1; n), An+1 to (1; 1; : : : ; 1; 2; 1), An+2 to (1; 1; : : : ; 2; 2), : : :,

and AnL to (n; n; n; : : : ; n). The G-set G contains the single element corresponding to g. Let

N = f1; : : : ; Ng be the sample space corresponding to the vehicular cells.

Notation 13.21 Let Ai (`) be the `th element of the path corresponding to Ai.

Although the A-sets have been speci�ed in a straightforward manner, it takes some e¤ort to

produce the decomposition formula for it. For n = 2, the decomposition formula is produced from

the formulation based on the Fundamental Theorem of 	1-Processes. The decomposition formula

for the general case, n � 2, is produced directly, not only because of the di¢ culty in deriving

it from the Fundamental Formula, but also to provide an alternative method of determining the

distribution in the form of the decomposition formula when it is understood how to do so.

Writing Equation 6.64 of the Fundamental Theorem 6.28 in terms of 	1-probabilities, gives

P (T (m) = k) =

rX
s=1

(�1)s�1
X
i1;:::;is

	1

�
N;
���Ss

j=1Aij

��� ; k� , (13.41)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg : In

this case, Ai and Aj do not necessarily have only G in common.

Equation 13.41 involves summing r = nL terms, with the sth term containing a sum of (rs)

terms itself, many of which are identical; that is, there are 2n
L � 1 terms. As discussed in Section

6.8, it is preferable to convert this formula to a linear combination of 	-probabilities, which we now

proceed to do. In this application, these numbers take the form 	1

�
N;m+

PL
i=1 �imi; k

�
. We

determine the coe¢ cients, �i, as by doing so, the number of calculations involved will be reduced,

and it will provide the �rst step in producing the decomposition form of the distribution.

Theorems 13.40 and 13.41 below provide computationally advantageous expressions for the

probability P (T (m) = k) for n = 2 and n � 2, respectively. The two di¤erent approaches used

to derive the results illustrate two di¤erent techniques; the former uses an indirect approach and

the latter a direct approach that was suggested by the form of the simpli�ed expression for n = 2.
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13.5. 2-D Gap Problem

13.5.2 Preliminaries

De�nition 13.22 An alternative at gap ` is said to occur for a collection of paths fAi1 ; : : : ; Aisg if

jfAi1 (`) ; : : : ; Ais (`)gj � 2. When jfAi1 (`) ; : : : ; Ais (`)gj = � � 2, there is said to be � alternatives

at gap `. When jfAi1 (`) ; : : : ; Ais (`)gj = 1, there is said to be no alternative at gap `.

De�nition 13.23 There are said to be ` gaps with alternatives if ` of the L gaps have at least 2

alternatives and the remaining L� ` gaps have no alternatives.

Example 13.24 For L = 3 and n = 2, the possible paths are (1; 1; 1), (1; 1; 2), (1; 2; 1), (1; 2; 2),

(2; 1; 1), (2; 1; 2), (2; 2; 1) and (2; 2; 2). For the collection of paths f(1; 1; 1), (1; 1; 2), (2; 1; 2)g, there

are alternatives at gaps 1 and 3, but not at gap 2. In this case, a driver could choose from lanes 1

or 2 at both of the �rst and third gaps, but must drive down lane 1 at the second gap. The number

of vehicles involved in these paths is m+ 2m1 +m2 + 2m3. Here, �1 = 2, �2 = 1 and �3 = 2:

Our initial aim is to �nd an explicit formula for the coe¢ cient of the 	-probabilities, which in

this case are of the form 	1

�
N;m+

PL
`=1 �`m`; k

�
, where �` 2 f1; : : : ; ng. In order to do so, let

us turn our attention to calculating the number of collections of paths which have alternatives at

the same gaps. Later we will write these as coe¢ cients of 	1, or 	01, for k � 1.

Example 13.25 For L = 3 and n = 2, the following collections of paths give rise to alternatives

at gaps 1 and 3 only: f(1; j; 1) ; (1; j; 2) ; (2; j; 1)g, f(1; j; 1) ; (1; j; 2) ; (2; j; 2)g, f(1; j; 1) ; (2; j; 1) ;

(2; j; 2)g and f(1; j; 2) ; (2; j; 1) ; (2; j; 2)g for j = 1 or 2. Observe that for ` = 2 speci�c gaps with

alternatives, there are nL�` = 2 collections of s A-sets that di¤er only in which lane is speci�ed

for lanes without alternatives. In this example, these are represented by choosing j 2 f1; 2g.

De�nition 13.26 Consider ` speci�c gaps 1; : : : ; ` that have corresponding particular alterna-

tives with counts �1; : : : ; �`, with each �� � 2, � 2 f1; : : : ; `g. Let � (n; `;�; s) be the number of

collections of s A-sets fAi1 ; : : : ; Aisg such that Aj1 () = Aj2 () 8j1; j2 2 fi1; : : : ; isg, j2 6= j1,

8 2 f1; : : : ; Lg n f1; : : : ; `g. De�ne � (n; 0;�; s) = 1.

De�nition 13.27 Consider ` speci�c gaps 1; : : : ; ` that have corresponding particular alterna-

tives with counts �1; : : : ; �`, with each �� � 2, � 2 f1; : : : ; `g. For j 2 f0; : : : ; �1 + : : :+ �` � `g,

let �j (n; `;�; s) be the number of collections of s A-sets fAi1 ; : : : ; Aisg such that Aj1 () = Aj2 ()

8j1; j2 2 fi1; : : : ; isg, j2 6= j1, 8 2 f1; : : : ; Lg nf1; : : : ; `g, and the s A-sets have j fewer alter-

natives than from the total, �1 + : : :+ �`.
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13.5. 2-D Gap Problem

j r1 r2 Sample Reductions �j �j

0 0 0 f1; 2g ; f1; 2; 3g
�
2
2�0
��

3
3�0
��
(2�0)�(3�0)

2

�
15

1 0 1 f1; 2g ; f1; 2g
�
2
2

��
3
3�1
��
(2�0)�(3�1)

2

�
18

1 0 f1g ; f1; 2; 3g
�
2
2�1
��
3
3

��
(2�1)�(3�0)

2

�
6

2 0 2 f1; 2g ; f1g
�
2
2�0
��

3
3�2
��
(2�0)�(3�2)

2

�
3

1 1 f1g ; f1; 2g
�
2
2�1
��

3
3�1
��
(2�1)�(3�1)

2

�
6

3 1 2 f1g ; f1g
�
2
2�1
��

3
3�2
��
(2�1)�(3�2)

2

�
0

Table 13.8: Example: Reduction Counts for the 2-D Gap Problem: �j (3; 2; (2; 3) ; 2)

j r1 r2 �j �j

0 0 0
�
2
2�0
��

3
3�0
��
(2�0)�(3�0)

3

�
20

1 0 1
�
2
2

��
3
3�1
��
(2�0)�(3�1)

3

�
12

1 0
�
2
2�1
��
3
3

��
(2�1)�(3�0)

3

�
2

2 0 2
�
2
2�0
��

3
3�2
��
(2�0)�(3�2)

3

�
0

1 1
�
2
2�1
��

3
3�1
��
(2�1)�(3�1)

3

�
0

3 1 2
�
2
2�1
��

3
3�2
��
(2�1)�(3�2)

3

�
0

Table 13.9: Example: Reduction Counts for the 2-D Gap Problem: �j (3; 2; (2; 3) ; 3)

De�nition 13.28 Consider ` speci�c gaps 1; : : : ; ` that have corresponding particular alterna-

tives with counts �1; : : : ; �`, with each �� � 2, � 2 f1; : : : ; `g. For j 2 f0; : : : ; �1 + : : :+ �` � `g

and � 2 f1; : : : ; `g, let r� 2 f0; : : : ; �� � 1g satisfy
P`

�=1 r� = j. When j corresponds to the index

in �j (n; `;�; s), the r��s are called reduction numbers:

Example 13.29 L = 4, n = 3, ` = 2, 1 = 1, 2 = 2, �1 = 2, �2 = 3, j 2 f0; 1; 2; 3g.

The collection of all A-sets has nL = 81 elements, and they are f(1; 1; 1; 1), (1; 1; 1; 2), (1; 1; 1; 3),

(1; 1; 2; 1), (1; 1; 2; 2), (1; 1; 2; 3), : : :, (3; 3; 3; 1), (3; 3; 3; 2), (3; 3; 3; 3)g.

Of these A-sets, those that satisfy ` = 2 gaps with alternatives, with those gaps being 1 = 1,

(1; 1) (1; 2) (2; 3)

(1; 1) (1; 3) (2; 2)

(1; 1) (2; 2) (2; 3)

(1; 2) (1; 3) (2; 1)

(1; 2) (2; 1) (2; 3)

(1; 3) (2; 1) (2; 2)

Table 13.10: Example: Reduction Counts for the 2-D Gap Problem: Possible Collections of 3-tuples
for �1 = 2 and �2 = 3
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13.5. 2-D Gap Problem

2 = 2 form one of the collections

A (h1; h2) = f(j1; j2; h1; h2) : j1; j2 2 f1; 2; 3gg (13.42)

for h1; h2 2 f1; 2; 3g. There are clearly n` = 32 paths in each of these collections.

To illustrate the calculation of �j, we may choose any values for the pair h1; h2, and then ignore

their values, as �j is determined after conditioning on them being �xed. Also, we need to consider

�1 and �2 particular alternatives and select f1; 2g for the �rst gap and f1; 2; 3g for the second gap,

with there being no choice for the latter. Therefore, we set A0 = f(1; 1), (1; 2), (1; 3), (2; 1), (2; 2),

(2; 3)g and use A0 as a basis for determining �j. Observe that �1 + : : : + �` � ` = 3: The values

of �j for s = 2 and s = 3 are provided in Tables 13.8 and 13.9, respectively. The calculations are

displayed for each possible pair of values of the reduction numbers for each value of j. The former

table also provides sample reductions.

For s = 2, there are no collections of 2-tuples of elements of A0 such that �1 = 2 and �2 = 3;

that is, � (n; `;�; 2) = 0. For s = 3, there are � (n; `;�; 3) = 6 possible collections of 3-tuples of

elements of A0 such that �1 = 2 and �2 = 3, and they are displayed in Table 13.10.

Observe that for s = 2,

�1+�2�`X
j=0

(�1)j
X

r1+r2=j
0�r1<2
0�r2<3

�j (n; `;�; s) = 15� (18 + 6) + (3 + 6 + 0) (13.43)

= 0

= � (n; `;�; s) ,

and for s = 3,

�1+�2�`X
j=0

(�1)j
X

r1+r2=j
0�r1<2
0�r2<3

�j (n; `;�; s) = 20� (12 + 2) + (0 + 0 + 0) (13.44)

= 6

= � (n; `;�; s) .

Scholium 13.30 The process for calculating �j (n; `;�; s) involves a static random allocation

problem. There are ` distinct boxes with �� � n distinct sub-boxes in box �, and at each of s

turns one ball is placed in one of the sub-boxes of each box. We are interested in the number of
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ways in which s `-tuples may be chosen from the `-tuples formed by choosing one occupied sub-box

from each of the ` boxes, when the balls are placed so that j of the sub-boxes remain unoccupied

with at least one sub-box in each box being occupied.

Remark 13.31 Suppose 8� r� cells of sub-box � remain unoccupied, where
P

� r� = j and

0 � r� < ��. There are
Q`
�=1

�
��

���r�
�
ways to choose the sub-boxes which are occupied, andQ`

�=1 (�� � r�) ways to form the desired `-tuples from those occupied sub-boxes from which s are

to be selected. This gives rise to the formula for �j (n; `;�; s) as given by Lemma 13.32.

Lemma 13.32 For n � 2, the number of ways ` � 1 speci�c gaps have corresponding particular

alternatives with counts �1; : : : ; �` with �� � 2, � 2 f1; : : : ; `g and j 2 f0; : : : ; �1 + : : :+ �` � `g

is given by

�j (n; `;�; s) =
X

r1;:::;r`P`
�=1 r�=j
0�r�<��

"Ỳ
�=1

�
��

�� � r�

�#�Q`
�=1 (�� � r�)

s

�
. (13.45)

Proof. Observe that to have j fewer alternatives than available from the total, �1+ : : :+�`�`,

we need to reduce the number of possibilities for each �� , � 2 f1; : : : ; `g by an amount r� such thatP`
�=1 r� = j and r� < ��; the latter condition is a strict inequality, for otherwise there would be

no alternative path at the �th gap. For the �th gap, there are (�� � r�) alternatives remaining,

and
�

��
���r�

�
ways to select which of the �� alternatives to keep available for selection. Hence the

number of ways of selecting all of the reductions is
Q`
�=1

�
��

���r�
�
, and the total number of possible

paths to choose the s paths from is
Q`
�=1 (�� � r�). The result follows by the multiplication

principle and summing over all possibilities.

An explicit formula is calculated for � (L; n; `; s) for n = 2, because this approach for deter-

mining the coe¢ cients of the 	-probabilities (or 	-numbers) demonstrates a valuable technique,

and in fact provides a formula that suggests a direct approach that bypasses the need to know

� (L; n; `; s) for any s.

Corollary 13.33 For n = 2;

�j (n; `;�; s) =

�
`

j

�
2j
�
2
`�j

s

�
. (13.46)
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Proof. For n = 2, �� = 2 and r� 2 f0; 1g 8�, so r� = 1 for j of the ��s, and the other ` � j

��s have r� = 0. There are
�
`
j

�
ways of choosing those r��s that are 1. Therefore we have

�j (n; `;�; s) =

�
`

j

� X
r1=1;:::;rj=1
rj+1=0;:::;r`=0

264 Ỳ
�=1
r�=1

�
2

2� r�

�375
264 Ỳ
�=1
r�=0

�
2

2� r�

�375
�
�hQ`

�=1;r�=1
(2� r�)

i hQ`
�=1;r�=0

(2� r�)
i

s

�
=

�
`

j

��
2

2� 1

�j� 2

2� 0

�`�j�(2� 1)j (2� 0)`�j
s

�
,

from which the result follows.

Lemma 13.34 For ` = 0, � (n; `;�; s) = 1, and for ` > 0,

� (n; `;�; s) =

�1+:::+�`�`X
j=0

(�1)j �j (n; `;�; s) . (13.47)

Proof. It is by de�nition that � (n; 0;�; s) = 1. For ` > 0, the result follows by applying the

principle of inclusion and exclusion over the possible number of reductions of the total number of

alternatives.

De�nition 13.35 For positive integers L, n and non-negative integers `, �, d with ` � L and

b` � � � n`, an (L; `; �; n; d; b)-partition is a collection of L numbers of which L � ` of them are

set to d, and the other ` of them are bounded below by b, are bounded above by n, and sum to �:

This type of partition is referred to generally as a bounded partition.

Theorem 13.36 The number of (L; `; �; n; d; b)-partitions is the coe¢ cient of x��b` in the expan-

sion of �
L

`

��
1� xn�b+1
1� x

�`
. (13.48)

Proof. The number of ways of choosing L�` of the L numbers to set to d is
�
L
`

�
. Multiply this

by the (independent) number of ways of choosing ` numbers that are bounded below by b, bounded

above by n and summing to �. Whitworth [86, Proposition XXVIII] provides the number of ways

in which n indi¤erent things can be distributed into r di¤erent parcels, no parcel to contain less

than q things, nor more than q + z � 1 things, as the coe¢ cient of xn�qr in the expansion of

�
1� xz
1� x

�r
. (13.49)
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Assigning in sequence q  b, r  `, z  n � b + 1 (so that q + z � 1 = n), r  ` and n  �

provides the result.

13.5.3 The Distribution in Terms of 	1-Probabilities

The next result provides the probability distribution in terms of coe¢ cients of 	-probabilities,

rather than in terms of unions of A-sets. For each 	-probability, this alternating sum still in-

volves summing nL terms. In the theorems that follow, these terms will be collected together and

represented as a single quantity that is independent of s.

Theorem 13.37 For n � 2,

P (T (m) = k)

=
nLX
s=1

(�1)s�1
LX
`=0

nX̀
�=2`

X
�1;:::;�L

"
LY
i=1

�
n

�i

�#
� (n; `;�; s)	1

�
N;m+

PL
i=1 �imi; k

�
, (13.50)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

Proof. Begin with Equation 13.41, and write the inner sum as a sum over the complete col-

lection of bounded (L; `; �; n; 1; 2)-partitions. It is clear that this collection provides for every pos-

sible union of A-sets. These partitions can be separated into those which have ` 2 f0; 1; 2; : : : ; Lg

gaps with alternatives and � 2 f2`; : : : ; n`g total alternatives within those ` gaps. For a spe-

ci�c (L; `; �; n; 1; 2)-partition �1; : : : ; �L, there are
QL
i=1

�
n
�i

�
ways of selecting the alternatives, and

there are � (n; `;�; s) collections of paths. Thus, the coe¢ cient of the 	1-probability

	1

�
N;m+

PL
i=1 �imi; k

�
(13.51)

is "
LY
i=1

�
n

�i

�#
� (n; `;�; s) . (13.52)

By writing the sum as a sum over the possible number of gaps having alternatives and all bounded

(L; `; �; n; 1; 2)-partitions provides the result.

13.5.4 Intermediary Results for the Decomposition Formula for n = 2

In order to reduce Equation 13.50 for n = 2 to its decomposition form, we use the following two

intermediary results.
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Lemma 13.38 For integers � � 1, ` � 0 and � � 1,

�`X
s=0

(�1)s
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
= 0. (13.53)

Proof. Changing the order of summations and simplifying produces

�`X
s=0

(�1)s
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
=

X̀
j=0

(�1)j
�
`

j

�
�j

�`X
s=0

(�1)s
�
�`�j

s

�

=
X̀
j=0

(�1)j
�
`

j

�
�j

�`�jX
s=0

(�1)s
�
�`�j

s

�

=
X̀
j=0

(�1)j
�
`

j

�
�j (1� 1)�

`�j
as �`�j � 1

= 0 as � � 1

as required.

Lemma 13.39 For integers � � 1, ` � 0, � � 2 and  � �`,

X
s=1

(�1)s�1
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
= (1� �)` . (13.54)

Proof. Since
�
�`�j

s

�
= 0 for s > �` for all j 2 f0; : : : ; `g, replace  by �` and apply Lemma

13.38 to give

X
s=1

(�1)s�1
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�
=

�`X
s=0

(�1)s�1
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�

+
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

0

�

=
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

0

�

�
�`X
s=0

(�1)s
X̀
j=0

(�1)j
�
`

j

�
�j
�
�`�j

s

�

=
X̀
j=0

(��)j
�
`

j

�
= (1� �)` as (`; �) 6= (0; 1)
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as required.

13.5.5 Decomposition Formula for n = 2

This theorem provides the probability distribution for n = 2 as a linear combination of 	-

probabilities.

Theorem 13.40 For n = 2,

P (T (m) = k) =
LX
`=0

(�1)` 2L�`
X

�1;:::;�L

	1

�
N;m+

PL
i=1 �imi; k

�
, (13.55)

where the �i�s form a bounded (L; `; 2`; 2; 1; 2)-partition.

Proof. For n = 2, Equation 13.50 has � = 2`, and can be written as

2LX
s=1

(�1)s�1
LX
`=0

X
�1;:::;�L

"
LY
i=1

�
2

�i

�#
� (2; `;�; s)	1

�
N;m+

PL
i=1 �imi; k

�
, (13.56)

where the �i�s form a bounded (L; `; 2`; 2; 1; 2)-partition. Such a bounded partition has L � `

of the �i�s set to 1 and the other ` set to 2. Hence
QL
i=1

�
2
�i

�
= 2L�` and � (2; `;�; s) =P`

j=0 (�1)
j �j (2; `;�; s) : Together with moving the outermost summation and substituting the

formula for �j from Equation 13.46, the expression becomes

LX
`=0

2L�`
X

�1;:::;�L

	1

�
N;m+

PL
i=1 �imi; k

� 2LX
s=1

(�1)s�1
X̀
j=0

(�1)j
�
`

j

�
2j
�
2
`�j

s

�
. (13.57)

Now Lemma 13.39 can be applied with � = 2, � = 2 and  = 2L to give

LX
`=0

2L�`
X

�1;:::;�L

	1

�
N;m+

PL
i=1 �imi; k

�
(1� 2)` ,

from which the result follows.

13.5.6 Decomposition Formula for n � 2

For the general case, n � 2, an approach based directly on determining the coe¢ cients of 	-

probabilities is used, rather than starting from Equation 13.41 and determining the number of

elements in s A-sets. This illustrates an alternative approach for working with similar problems;

one may be more tractable than the other in di¤erent circumstances.
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Theorem 13.41 (Decomposition Theorem for the 2-D Gap Problem) For n � 2,

P (T (m) = k) =

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

"
LY
i=1

�
n

�i

�#
	1

�
N;m+

PL
i=1 �imi; k

�
, (13.58)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

Proof. Our aim is to �nd P (T (m) = k) as a linear combination of 	1-probabilities, namely

	1

�
N;m+

PL
i=1 �imi; k

�
. Consider summing the probabilities of waiting k for two of the nL

paths separately, say A1, A2. For these two paths to be included in the sum, there must have been

alternatives available to the driver of the special vehicle g at the time of arrival. This means that

we have summed P (A1 is available) + P (A2 is available). This includes the probability that both

are available twice.

Any collection of paths can have ` gaps with alternatives. Within these alternatives, one can

sum the probabilities for collections of paths with 2` total alternatives, but then we would have

included those with a total of 2` + 1 too often. This argument continues until all n` alternatives

have been considered. Therefore, by utilising the principle of inclusion and exclusion on both

the number of gaps with alternatives and the total number alternatives available to these gaps,

provides the result for a particular way of choosing the alternatives at each gap, namely

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

	1

�
N;m+

PL
i=1 �imi; k

�
,

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition. Incorporating the number of ways of

selecting the available alternatives at each gap,
QL
i=1

�
n
�i

�
, provides the result.

13.5.7 A Further Simpli�cation for k > 0

The number of calculations can be reduced further for k > 0, and thereby increase both speed and

accuracy, by writing the probabilities in terms of 	0-probabilities of �rst kind.

Lemma 13.42 For n � 2,

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

LY
i=1

�
n

�i

�
= 1 (13.59)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.
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Proof. In the proof of Theorem 13.41, the sum was devised using the principle of inclusion

and exclusion to include each 	1-term precisely once. Hence the result.

Corollary 13.43 For n � 2 and k > 0,

P (T (m) = k) =
1

N
�

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

"
LY
i=1

�
n

�i

�#
	01

�
N;m+

PL
i=1 �imi; k

�
,

(13.60)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

Proof. Applying Equation 6.82 to Equation 13.58 and applying Lemma 13.42 provides the

result.

Remark 13.44 These results are remarkable in that not only has the distribution for a complex

problem been reduced to formula whose sums are independent of r, but also has been written as a

linear function of the fundamental building blocks of 	1-processes.

Remark 13.45 The example in Section 13.5.10 below shows that the number of orders of magni-

tude of improvement can easily be 200 or more.

13.5.8 Multiple Directions

The reduced formulae have exploited the unique structure of the model and relationship between

the A-sets. When considering multiple directions, each direction will exhibit the same structure.

However, when considering the combined directions there is no similar relationship between an

A-set of one direction and an A-set of another direction. For example, when considering a forward

direction and a reverse direction we have

P (T (m1;m2) = k) = P (T (m1) = k) + P (T (m2) = k)� P
 

2\
d=1

[T (md) = k]

!
, (13.61)

in which the third term can not be simpli�ed using the reduction techniques described in this

section.

The results for multiple directions is directly applicable, however, if the original formulation of

this problem involving A-sets is used.

457



Applications: Without-Replacement 458

13.5. 2-D Gap Problem

13.5.9 Mean

Theorem 13.46 For n � 2, the mean of T (m) is given by

Mean =
N + 1

2

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

"
LY
i=1

�
n

�i

�#
m+

PL
i=1 �imi

m+
PL

i=1 �imi + 2
, (13.62)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

Proof. Applying the linear expectation operator to the distribution of T (m) as given by

Equation 13.58, and observing that the mean of 	1 for � = 1 is provided by Corollary 11.46 as

Mean =
N + 1

2
� m

m+ 2

provides the result.

13.5.10 Examples and Illustrations with Numerical Comparisons

This example provides a table of expected waiting times for 21 models of a car park with N = 1000

cars, and with L; n and mi as displayed in Table 13.11. The case L = 0 corresponds to having

no gaps, and m is set to 720=n. For L > 0; we have m = 0 and the mi are all equal with

mi � N 0= (nL), where N 0 = 720.

Notation 13.47 For L � 0 gaps and n � 2 lanes, let PL (n) be the expected waiting time as a

percentage of the total population. N , m and m1; : : : ;mL are assumed constants.

The case L = 0 corresponds to having no gaps, and the mean is therefore given by Equation

11.102 of Corollary 11.46 with m therein replaced by N 0=n as

Mean =
N + 1

2
�

N 0

n
N 0
n + 2

(13.63)

=
N 0 (N + 1)

2 (N 0 + 2n)
, (13.64)

so that

P0 (n) = 50
N 0

N 0 + 2n

N + 1

N
. (13.65)

As N 0 < N and n � 1, it is clear that the �rst value of P0 (n) is just under 50%, and P0 (n)

decreases to zero as n!1.
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For L � 1 (and n � 2), the mean is given by Theorem 13.46 with m = 0 as

Mean =
N + 1

2

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

"
LY
i=1

�
n

�i

�# PL
i=1 �imiPL

i=1 �imi + 2
, (13.66)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition, and the mi�s are provided in Table 13.11

for each (L; n)-pair. Substituting the values of mi, observing that L � ` of the �i�s are 1, and

observing that
PL

i=1 �i = (L� `)+�, gives the expected waiting time as a percentage of the total

population as

PL (n)

=
50N 0 (N + 1)

N

LX
`=0

(�1)`
�
L

`

�
nL�`

nX̀
�=2`

(�1)� L� `+ �
N 0 (L� `+ �) + 2nL

X
�1;:::;�`

Ỳ
i=1

�
n

�i

�
, (13.67)

where for ` � 1, the �i satisfy �i � 2, �i � n and
P`

i=1 �i = �, and for ` = 0, the sumP
�1;:::;�`

Q`
i=1

�
n
�i

�
= 1.

For L = 4 and n = 5, Equation 13.41 involves a total of 2n
L � 1 ' 1:4 � 10188 terms for

each value of k 2 f0; : : : ; N � 1g, giving approximately 1:4� 10192 terms. This makes calculating

the probabilities and moments directly from Equation 13.41 practically impossible. However, the

number of summation terms in Equation 13.67 can be determined by dividing the result given by

Theorem 13.36 by
�
L
`

�
, with b = 2, as

the coe¢ cient of x��2` in the expansion of
�
1� xn�1
1� x

�`
=

�
1� x4
1� x

�`�����
[x��2`]

. (13.68)

The coe¢ cients are provided in Table 13.14. Summing these values gives the total number of

terms as 341, which is not only exponentially insigni�cant compared with 1:4 � 10192, but also

permits the calculation of the means and expectations in much less than a second. This is an

improvement by about 189 orders of magnitude.

The values of PL (n) for the corresponding values of L and n in Table 13.11 are provided in

Table 13.12. The dominant factor is N+1
2 . It appears that increasing the number of lanes by one

has a greater e¤ect in decreasing the expected wait than increasing the number of gaps.

Results for larger values of L and n are provided in Table 13.13. The values in Table 13.12 were

determined by a program written in Delphi, with some values checked using Scienti�c WorkPlace�s

interface to Maple. For the values of (L; n) in Table 13.13, other than (4; 10) and (10; 4), a MuPad

version of the program is required, because the number of digits of accuracy required for them
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Lnn 1 2 3 4 5

0 720 360 240 180 144

1 n/a 360 240 180 144

2 n/a 180 120 90 72

3 n/a 120 80 60 48

4 n/a 90 60 45 36

Table 13.11: Example: 2-D Gap Problem: mi

Lnn 1 2 3 4 5

0 49: 911 49: 773 49: 636 49: 500 49: 364

1 n/a 49: 636 49: 293 48: 909 48: 494

2 n/a 49: 544 49: 049 48: 470 47: 834

3 n/a 49: 471 48: 844 48: 096 47: 264

4 n/a 49: 408 48: 663 47: 761 46: 749

Table 13.12: Example: 2-D Gap Problem: PL (n)

exceeds 18; in one case the number of digits exceeded 200, so the number of digits was set to 500.

13.5.11 Speeding up the Calculations

Equation 13.67 has the summation
P

�1;:::;�`

Q`
i=1

�
n
�i

�
, where for ` � 1 the �i satisfy �i � 2, �i � n

and
P`

i=1 �i = �. This summation has a duplicate value for permutations of (�1; : : : ; �`). Assume

the condition
P`

i=1 �i = � is tested after the values for �i have been assigned. Then, as �i � 2,

there are (n� 1)` values for (�1; : : : ; �`).

Suppose only those values of (�1; : : : ; �`) are included that are unique with respect to per-

mutations. This is an example of the occupancy problem in which ` indistinguishable balls are

distributed into n� 1 cells, as �i � 2. There are
�(n�1)+`�1

`

�
=
�
n+`�2

`

�
ways to do this, by Feller

[29, Ch II (5.2)].

For example, for ` = 8 and n = 8, (n� 1)` = 5764 801 and
�(n�1)+`�1

`

�
= 3003, which provides

a ratio of reduction of the number of terms to be calculated as ' 1 920 : 1.

However, it is still necessary to determine the number of permutations that give rise to each

N L n mi Number of Terms Relative Time PL (n)

1 000 2 360 1 129 241 41:8 mins 0: 001

1 000 360 2 1 361 7: 0 secs 45: 518

1 000 4 10 18 7 381 2:4 mins 40: 907

1 000 10 4 18 88 573 28:6 mins 46: 141

1 000 9 16 5 41 189 313 616 3:6 years unknown
1 000 16 9 5 321 685 687 669 321 28 000 years unknown

Table 13.13: Example: 2-D Gap Problem: Results for larger values of L and n
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`n� 0 1 2 3 4 5 6 7 8 9 10

0 1 - - - - - - - - - -
1 - - 1 1 1 1 - - - - -
2 - - - - 1 2 3 4 3 2 1

3 - - - - - - 1 3 6 10 12

4 - - - - - - - - 1 4 10

�n` 11 12 13 14 15 16 17 18 19 20

0 - - - - - - - - - -
1 - - - - - - - - - -
2 - - - - - - - - - -
3 12 10 6 3 1 - - - - -
4 20 31 40 44 40 31 20 10 4 1

Table 13.14: Example: 2-D Gap Problem: Numbers of Terms: L = 4; n = 5

term, which takes time. In the implementation used, the observed times for calculating P8 (8) were

6 mins 51: 376 secs and 0: 381 secs, which gives a ratio of ' 1 080 : 1, which is just over half of the

theoretical value for the largest value of ` involved in the sum.

13.5.12 Combinatorial Identities

The following results occur as interesting consequences of investigating the 2-D Gap Problem.

Conjecture 13.48 For n � 2 and ` � 0,

nLX
s=1

(�1)s�1 � (n; `;�; s) = (�1)(
P`
�=1 ��)�` , (13.69)

where � (n; `;�; s) is given via Equations 13.47 and 13.45 as

� (n; `;�; s) =

�1+:::+�`�`X
j=0

(�1)j
X

r1;:::;r`P`
�=1 r�=j
0�r�<��

"Ỳ
�=1

�
��

�� � r�

�#�Q`
�=1 (�� � r�)

s

�
. (13.70)

This is suggested by comparing Theorems 13.37 and 13.41, which, for n � 2; have, respectively,

P (T (m) = k) =

LX
`=0

nX̀
�=2`

X
�1;:::;�L

"
LY
i=1

�
n

�i

�#
	1

�
N;m+

PL
i=1 �imi; k

� nLX
s=1

(�1)s�1 � (n; `;�; s)
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and

P (T (m) = k) =

LX
`=0

nX̀
�=2`

X
�1;:::;�L

"
LY
i=1

�
n

�i

�#
	1

�
N;m+

PL
i=1 �imi; k

�
(�1)` (�1)� , (13.71)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition, which implies
P`

�=1 �� = �:

The identity is also suggested because the result is known to be true for n = 2 by intermediary

results in the proof of Theorem 13.40.

Result 13.49 For n � 2,

LX
`=0

(�1)`
nX̀
�=2`

(�1)�
X

�1;:::;�L

LY
i=1

�
n

�i

�
= 1, (13.72)

where the �i�s form a bounded (L; `; �; n; 1; 2)-partition.

Proof. This is Lemma 13.42.

13.6 Zig-Zagging Problems

13.6.1 Introduction

The 2-D Zig-Zag Problem is discussed in general terms and the distributions of waiting times

are provided. This is applied to the problem of Waiting for Utilities to be Connected to Plots

of Land by determining the means and variances for each possible starting position, and these

are compared with alternative models for exit-paths. Then the 3-D Zig-Zag Problem is discussed

with an emphasis on the issues and problems involved in determining the paths and determining

accurate values for the probability distribution of waiting times.

13.6.2 2-D Zig-Zag Problem

13.6.2.1 Introduction

The 2-D Zig-Zag Problem is described in Section 2.9.1, which also includes a diagram of the 5� 5

case with an example of a zig-zag path. The Waiting for Utilities Problem of Section 2.9.2 is a

practical example of this model.

We consider the 5�5 model, and compare the �rst two moments with models for bi-directional

and 4-way exiting; the latter model allows exiting via either horizontal or vertical directions.
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As it is not trivial to determine the minimal covering, and because the algorithm for doing so

had to be adjusted for the 3-D Zig-Zagging Problem, due to the large number of paths in the full

covering, the path generation algorithm is discussed in Section 13.6.2.2.

The numbers of paths and execution times are discussed in Section 13.6.2.3. The probability

distributions are discussed in Section 13.6.2.6.

13.6.2.2 Path Generation Algorithm

A recursive algorithm is used to determine all paths from the starting cell to a boundary. First,

the general logic is discussed; it is applicable to the 3-D model too. This is followed by a discussion

of the algorithm, including some implementation details. Finally, the method of reduction to a

minimal covering is discussed. Minimal coverings have been analysed in Section 6.10.

13.6.2.2.1 General Algorithm for the Full Covering

The algorithm begins with an empty path and a starting cell. A recursive procedure is called

to generate all paths, starting from the starting cell. If the procedure is called with a terminal

cell at any time during the recursion, that is, one on the boundary in this case, then the path is

stored for manipulations after all paths have been determined, and the procedure exits one level of

recursion. If the new cell being added to a partially-determined path is already in the path, then

it is not added, and the procedure exits one level of recursion.

If not terminal and not already in the path, then the new cell is added to the path. Finally,

all possible paths formable by adding one of the neighbours of the cell that was just added, are

investigated for producing valid paths.

This is the algorithm.

Algorithm 13.50 This is the general algorithm for the full covering.

Path := {};

GeneratePaths(StartCell, Path);

procedure GeneratePaths(CurrentCell, CurrentPath);

begin

if Terminal(CurrentCell) then // end of a path

begin

Path := Path + CurrentCell;

StoreThePath(Path);

Exit;
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end;

if CurrentCell in CurrentPath then

begin

Exit;

end;

CurrentPath := CurrentPath + CurrentCell;

for each Neighbour of CurrentCell do

begin

GeneratePaths(Neighbour, CurrentPath);

end;

end;

13.6.2.2.2 2-D Zig-Zag Algorithm for the Full Covering

The following is the Delphi code used to determine the full covering for the 2-D model. Before

calling the recursive procedure, x and y are set to StartX and StartY, respectively, nAllPaths is

set to zero, and the initial path record is initially empty, with the length of its path being initially

L = 0.

Algorithm 13.51 Generating the full covering for the 2-D Zig-Zag Problem.

const

nRows = 5;

nCols = 5;

nCells = nRows * nCols;

MaxPaths = 100000;

MaxPathLength = 50;

StartX = 3;

StartY = 3;

type

PathRecordType =

record

Cells : set of 0..nCells - 1;

L : Integer; // Length of the path

Path : array[1..MaxPathLength] of 0..nCells - 1;

end;

PathRecordsType = array[1..MaxPaths] of PathRecordType;
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var

Grid : array[1..nRows, 1..nCols] of 0..nCells - 1;

AllPathRecords : PathRecordsType;

procedure GeneratePaths(x, y : Integer; PathRecordIn : PathRecordType);

var

PathRecord : PathRecordType;

begin

PathRecord := PathRecordIn;

if (x in [1, nRows])

or (y in [1, nCols]) then // end of a path

begin

Inc(nAllPaths);

with PathRecord do

begin

Inc(L);

Cells := Cells + [Grid[x,y]];

Path[L] := Grid[x,y];

end;

AllPathRecords[nAllPaths] := PathRecord;

Exit;

end;

with PathRecord do

begin

if Grid[x,y] in Cells then

begin

Exit;

end;

Inc(L);

Cells := Cells + [Grid[x,y]];

Path[L] := Grid[x,y];

end;

GeneratePaths(x - 1, y, PathRecord);

GeneratePaths(x, y + 1, PathRecord);

GeneratePaths(x + 1, y, PathRecord);

GeneratePaths(x, y - 1, PathRecord);
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Starting Position Full Covering Minimal Covering Calculation Time
(3; 3) 92 20 1.8 secs
(2; 3) 98 30 35 mins 8 secs
(2; 2) 106 36 2 days 9 hrs 12 mins

Table 13.15: 2-D Zig-Zag Execution Times for Di¤erent Starting Positions

end;

13.6.2.2.3 Producing the Minimal Covering

After generating the full covering, paths that include all of the cells in another path are removed

from the list. This is trivial to do, takes very little processing time (for small models), and its

algorithm is unimportant.

13.6.2.3 Numbers of Paths and Calculation Times

Table 13.15 provides the numbers of paths in the full coverings and minimal coverings for each

starting position, and the execution times required on Celeron to determine the probability distri-

butions.

13.6.2.4 The Coverings

The labelling used to indicate cells in paths is the linear sequence displayed in Figure 2.3. The

starting position is labelled as g in the section headings, as the starting position corresponds to

the single element in the G-set.

13.6.2.4.1 g at [3,3]

13.6.2.4.1.1 Full Covering

1: 12 7 2

2: 12 7 8 3

3: 12 7 8 9

4: 12 7 8 13 14

5: 12 7 8 13 18 19

6: 12 7 8 13 18 23

7: 12 7 8 13 18 17 22

8: 12 7 8 13 18 17 16 11 6 1

9: 12 7 8 13 18 17 16 11 6 5

10: 12 7 8 13 18 17 16 11 10

11: 12 7 8 13 18 17 16 21

12: 12 7 8 13 18 17 16 15
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13: 12 7 6 1

14: 12 7 6 11 16 17 18 13 8 3

15: 12 7 6 11 16 17 18 13 8 9

16: 12 7 6 11 16 17 18 13 14

17: 12 7 6 11 16 17 18 19

18: 12 7 6 11 16 17 18 23

19: 12 7 6 11 16 17 22

20: 12 7 6 11 16 21

21: 12 7 6 11 16 15

22: 12 7 6 11 10

23: 12 7 6 5

24: 12 13 8 3

25: 12 13 8 9

26: 12 13 8 7 2

27: 12 13 8 7 6 1

28: 12 13 8 7 6 11 16 17 18 19

29: 12 13 8 7 6 11 16 17 18 23

30: 12 13 8 7 6 11 16 17 22

31: 12 13 8 7 6 11 16 21

32: 12 13 8 7 6 11 16 15

33: 12 13 8 7 6 11 10

34: 12 13 8 7 6 5

35: 12 13 14

36: 12 13 18 19

37: 12 13 18 23

38: 12 13 18 17 22

39: 12 13 18 17 16 11 6 1

40: 12 13 18 17 16 11 6 7 2

41: 12 13 18 17 16 11 6 7 8 3

42: 12 13 18 17 16 11 6 7 8 9

43: 12 13 18 17 16 11 6 5

44: 12 13 18 17 16 11 10

45: 12 13 18 17 16 21

46: 12 13 18 17 16 15

47: 12 17 18 13 8 3

48: 12 17 18 13 8 9

49: 12 17 18 13 8 7 2

50: 12 17 18 13 8 7 6 1

51: 12 17 18 13 8 7 6 11 16 21

52: 12 17 18 13 8 7 6 11 16 15

53: 12 17 18 13 8 7 6 11 10

54: 12 17 18 13 8 7 6 5

55: 12 17 18 13 14

56: 12 17 18 19

57: 12 17 18 23
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58: 12 17 22

59: 12 17 16 11 6 1

60: 12 17 16 11 6 7 2

61: 12 17 16 11 6 7 8 3

62: 12 17 16 11 6 7 8 9

63: 12 17 16 11 6 7 8 13 14

64: 12 17 16 11 6 7 8 13 18 19

65: 12 17 16 11 6 7 8 13 18 23

66: 12 17 16 11 6 5

67: 12 17 16 11 10

68: 12 17 16 21

69: 12 17 16 15

70: 12 11 6 1

71: 12 11 6 7 2

72: 12 11 6 7 8 3

73: 12 11 6 7 8 9

74: 12 11 6 7 8 13 14

75: 12 11 6 7 8 13 18 19

76: 12 11 6 7 8 13 18 23

77: 12 11 6 7 8 13 18 17 22

78: 12 11 6 7 8 13 18 17 16 21

79: 12 11 6 7 8 13 18 17 16 15

80: 12 11 6 5

81: 12 11 16 17 18 13 8 3

82: 12 11 16 17 18 13 8 9

83: 12 11 16 17 18 13 8 7 2

84: 12 11 16 17 18 13 8 7 6 1

85: 12 11 16 17 18 13 8 7 6 5

86: 12 11 16 17 18 13 14

87: 12 11 16 17 18 19

88: 12 11 16 17 18 23

89: 12 11 16 17 22

90: 12 11 16 21

91: 12 11 16 15

92: 12 11 10

13.6.2.4.1.2 Minimal Covering

1: 12 7 2

2: 12 7 8 3

3: 12 7 8 9

4: 12 7 6 1

5: 12 7 6 5

6: 12 13 8 3

7: 12 13 8 9

8: 12 13 14
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9: 12 13 18 19

10: 12 13 18 23

11: 12 17 18 19

12: 12 17 18 23

13: 12 17 22

14 : 12 17 16 21

15: 12 17 16 15

16: 12 11 6 1

17: 12 11 6 5

18: 12 11 16 21

19: 12 11 16 15

20: 12 11 10

13.6.2.4.2 g at [2,3]

13.6.2.4.2.1 Full Covering

1: 7 2

2: 7 8 3

3: 7 8 9

4: 7 8 13 14

5: 7 8 13 18 19

6: 7 8 13 18 23

7: 7 8 13 18 17 12 11 6 1

8: 7 8 13 18 17 12 11 6 5

9: 7 8 13 18 17 12 11 16 21

10: 7 8 13 18 17 12 11 16 15

11: 7 8 13 18 17 12 11 10

12: 7 8 13 18 17 22

13: 7 8 13 18 17 16 11 6 1

14: 7 8 13 18 17 16 11 6 5

15: 7 8 13 18 17 16 11 10

16: 7 8 13 18 17 16 21

17: 7 8 13 18 17 16 15

18: 7 8 13 12 17 18 19

19: 7 8 13 12 17 18 23

20: 7 8 13 12 17 22

21: 7 8 13 12 17 16 11 6 1

22: 7 8 13 12 17 16 11 6 5

23: 7 8 13 12 17 16 11 10

24: 7 8 13 12 17 16 21

25: 7 8 13 12 17 16 15

26: 7 8 13 12 11 6 1

27: 7 8 13 12 11 6 5

28: 7 8 13 12 11 16 17 18 19

29: 7 8 13 12 11 16 17 18 23
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30: 7 8 13 12 11 16 17 22

31: 7 8 13 12 11 16 21

32: 7 8 13 12 11 16 15

33: 7 8 13 12 11 10

34: 7 12 13 8 3

35: 7 12 13 8 9

36: 7 12 13 14

37: 7 12 13 18 19

38: 7 12 13 18 23

39: 7 12 13 18 17 22

40: 7 12 13 18 17 16 11 6 1

41: 7 12 13 18 17 16 11 6 5

42: 7 12 13 18 17 16 11 10

43: 7 12 13 18 17 16 21

44: 7 12 13 18 17 16 15

45: 7 12 17 18 13 8 3

46: 7 12 17 18 13 8 9

47: 7 12 17 18 13 14

48: 7 12 17 18 19

49: 7 12 17 18 23

50: 7 12 17 22

51: 7 12 17 16 11 6 1

52: 7 12 17 16 11 6 5

53: 7 12 17 16 11 10

54: 7 12 17 16 21

55: 7 12 17 16 15

56: 7 12 11 6 1

57: 7 12 11 6 5

58: 7 12 11 16 17 18 13 8 3

59: 7 12 11 16 17 18 13 8 9

60: 7 12 11 16 17 18 13 14

61: 7 12 11 16 17 18 19

62: 7 12 11 16 17 18 23

63: 7 12 11 16 17 22

64: 7 12 11 16 21

65: 7 12 11 16 15

66: 7 12 11 10

67: 7 6 1

68: 7 6 11 12 13 8 3

69: 7 6 11 12 13 8 9

70: 7 6 11 12 13 14

71: 7 6 11 12 13 18 19

72: 7 6 11 12 13 18 23

73: 7 6 11 12 13 18 17 22

74: 7 6 11 12 13 18 17 16 21
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75: 7 6 11 12 13 18 17 16 15

76: 7 6 11 12 17 18 13 8 3

77: 7 6 11 12 17 18 13 8 9

78: 7 6 11 12 17 18 13 14

79: 7 6 11 12 17 18 19

80: 7 6 11 12 17 18 23

81: 7 6 11 12 17 22

82: 7 6 11 12 17 16 21

83: 7 6 11 12 17 16 15

84: 7 6 11 16 17 12 13 8 3

85: 7 6 11 16 17 12 13 8 9

86: 7 6 11 16 17 12 13 14

87: 7 6 11 16 17 12 13 18 19

88: 7 6 11 16 17 12 13 18 23

89: 7 6 11 16 17 18 13 8 3

90: 7 6 11 16 17 18 13 8 9

91: 7 6 11 16 17 18 13 14

92: 7 6 11 16 17 18 19

93: 7 6 11 16 17 18 23

94: 7 6 11 16 17 22

95: 7 6 11 16 21

96: 7 6 11 16 15

97: 7 6 11 10

98: 7 6 5

13.6.2.4.2.2 Minimal Covering

1: 7 2

2: 7 8 3

3: 7 8 9

4: 7 8 13 14

5: 7 8 13 18 19

6: 7 8 13 18 23

7: 7 8 13 18 17 22

8: 7 8 13 18 17 16 11 10

9: 7 8 13 18 17 16 21

10: 7 8 13 18 17 16 15

11: 7 12 13 14

12: 7 12 13 18 19

13: 7 12 13 18 23

14: 7 12 17 18 19

15: 7 12 17 18 23

16: 7 12 17 22

17: 7 12 17 16 21

18: 7 12 17 16 15

19: 7 12 11 16 21
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20: 7 12 11 16 15

21: 7 12 11 10

22: 7 6 1

23: 7 6 11 16 17 18 13 14

24: 7 6 11 16 17 18 19

25: 7 6 11 16 17 18 23

26: 7 6 11 16 17 22

27: 7 6 11 16 21

28: 7 6 11 16 15

29: 7 6 11 10

30: 7 6 5

13.6.2.4.3 g at [2,2]

13.6.2.4.3.1 Full Covering

1: 6 1

2: 6 7 2

3: 6 7 8 3

4: 6 7 8 9

5: 6 7 8 13 14

6: 6 7 8 13 18 19

7: 6 7 8 13 18 23

8: 6 7 8 13 18 17 12 11 16 21

9: 6 7 8 13 18 17 12 11 16 15

10: 6 7 8 13 18 17 12 11 10

11: 6 7 8 13 18 17 22

12: 6 7 8 13 18 17 16 11 10

13: 6 7 8 13 18 17 16 21

14: 6 7 8 13 18 17 16 15

15: 6 7 8 13 12 17 18 19

16: 6 7 8 13 12 17 18 23

17: 6 7 8 13 12 17 22

18: 6 7 8 13 12 17 16 11 10

19: 6 7 8 13 12 17 16 21

20: 6 7 8 13 12 17 16 15

21: 6 7 8 13 12 11 16 17 18 19

22: 6 7 8 13 12 11 16 17 18 23

23: 6 7 8 13 12 11 16 17 22

24: 6 7 8 13 12 11 16 21

25: 6 7 8 13 12 11 16 15

26: 6 7 8 13 12 11 10

27: 6 7 12 13 8 3

28: 6 7 12 13 8 9

29: 6 7 12 13 14

30: 6 7 12 13 18 19
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31: 6 7 12 13 18 23

32: 6 7 12 13 18 17 22

33: 6 7 12 13 18 17 16 11 10

34: 6 7 12 13 18 17 16 21

35: 6 7 12 13 18 17 16 15

36: 6 7 12 17 18 13 8 3

37: 6 7 12 17 18 13 8 9

38: 6 7 12 17 18 13 14

39: 6 7 12 17 18 19

40: 6 7 12 17 18 23

41: 6 7 12 17 22

42: 6 7 12 17 16 11 10

43: 6 7 12 17 16 21

44: 6 7 12 17 16 15

45: 6 7 12 11 16 17 18 13 8 3

46: 6 7 12 11 16 17 18 13 8 9

47: 6 7 12 11 16 17 18 13 14

48: 6 7 12 11 16 17 18 19

49: 6 7 12 11 16 17 18 23

50: 6 7 12 11 16 17 22

51: 6 7 12 11 16 21

52: 6 7 12 11 16 15

53: 6 7 12 11 10

54: 6 11 12 7 2

55: 6 11 12 7 8 3

56: 6 11 12 7 8 9

57: 6 11 12 7 8 13 14

58: 6 11 12 7 8 13 18 19

59: 6 11 12 7 8 13 18 23

60: 6 11 12 7 8 13 18 17 22

61: 6 11 12 7 8 13 18 17 16 21

62: 6 11 12 7 8 13 18 17 16 15

63: 6 11 12 13 8 3

64: 6 11 12 13 8 9

65: 6 11 12 13 8 7 2

66: 6 11 12 13 14

67: 6 11 12 13 18 19

68: 6 11 12 13 18 23

69: 6 11 12 13 18 17 22

70: 6 11 12 13 18 17 16 21

71: 6 11 12 13 18 17 16 15

72: 6 11 12 17 18 13 8 3

73: 6 11 12 17 18 13 8 9

74: 6 11 12 17 18 13 8 7 2

75: 6 11 12 17 18 13 14
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76: 6 11 12 17 18 19

77: 6 11 12 17 18 23

78: 6 11 12 17 22

79: 6 11 12 17 16 21

80: 6 11 12 17 16 15

81: 6 11 16 17 12 7 2

82: 6 11 16 17 12 7 8 3

83: 6 11 16 17 12 7 8 9

84: 6 11 16 17 12 7 8 13 14

85: 6 11 16 17 12 7 8 13 18 19

86: 6 11 16 17 12 7 8 13 18 23

87: 6 11 16 17 12 13 8 3

88: 6 11 16 17 12 13 8 9

89: 6 11 16 17 12 13 8 7 2

90: 6 11 16 17 12 13 14

91: 6 11 16 17 12 13 18 19

92: 6 11 16 17 12 13 18 23

93: 6 11 16 17 18 13 8 3

94: 6 11 16 17 18 13 8 9

95: 6 11 16 17 18 13 8 7 2

96: 6 11 16 17 18 13 14

97: 6 11 16 17 18 13 12 7 2

98: 6 11 16 17 18 13 12 7 8 3

99: 6 11 16 17 18 13 12 7 8 9

100: 6 11 16 17 18 19

101: 6 11 16 17 18 23

102: 6 11 16 17 22

103: 6 11 16 21

104: 6 11 16 15

105: 6 11 10

106: 6 5

13.6.2.4.3.2 Minimal Covering

1: 6 1

2: 6 7 2

3: 6 7 8 3

4: 6 7 8 9

5: 6 7 8 13 14

6: 6 7 8 13 18 19

7: 6 7 8 13 18 23

8: 6 7 8 13 18 17 22

9: 6 7 8 13 18 17 16 21

10: 6 7 8 13 18 17 16 15

11: 6 7 12 13 14

12: 6 7 12 13 18 19
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13: 6 7 12 13 18 23

14: 6 7 12 17 18 19

15: 6 7 12 17 18 23

16: 6 7 12 17 22

17: 6 7 12 17 16 21

18: 6 7 12 17 16 15

19: 6 11 12 13 8 3

20: 6 11 12 13 8 9

21: 6 11 12 13 14

22: 6 11 12 13 18 19

23: 6 11 12 13 18 23

24: 6 11 12 17 18 19

25: 6 11 12 17 18 23

26: 6 11 12 17 22

27: 6 11 16 17 18 13 8 3

28: 6 11 16 17 18 13 8 9

29: 6 11 16 17 18 13 14

30: 6 11 16 17 18 19

31: 6 11 16 17 18 23

32: 6 11 16 17 22

33: 6 11 16 21

34: 6 11 16 15

35: 6 11 10

36: 6 5

13.6.2.5 The Decomposition Coe¢ cients

Table 6.2 provides the decomposition coe¢ cients for the cell (3; 3). These are reproduced here in

Table 13.16 along with the decomposition coe¢ cients for cells (2; 3) and (2; 2).

13.6.2.6 Probability Distributions

The Fundamental Theorem of 	1-Processes is applicable with N = 25, � = 1 (and hence � = 1),

and r and the r A-sets are determined by the respective minimal coverings for each of the three

starting positions, which determines the respective G-sets.

To determine N�, observe that for each of the three starting positions, arrivals for all cells,

except the 4 cells immediately adjacent to g in either a horizontal or vertical direction, could arrive

without there being a path from g to a boundary cell. Then, if an arrival occurs for any of those 4

adjacent cells, there would be at least one path to a boundary cell. As each path includes at least

one of these 4 cells, A� = f7; 11; 13; 17g, and therefore N� = N���m� = N�1� (jA�j � 1) = 21.

Table 13.17 contains the probabilities. Observe the high probability of not having to wait.
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m �
(3;3)
m �

(2;3)
m �

(2;2)
m

1 0 1 2

2 4 4 1

3 16 �1 0

4 �38 �1 �7
5 �36 �43 6

6 60 35 �61
7 208 128 191

8 �305 �104 �121
9 �292 �234 �100
10 746 �144 �552
11 �140 1 963 2 644

12 �620 �3 830 �4 683
13 364 3 896 4 749

14 376 �2 385 �3 028
15 �584 867 1 206

16 299 �150 �266
17 �48 �8 15

18 �16 8 6

19 8 �1 �1
20 �1 0 0

Table 13.16: Decomposition Coe¢ cients for the 2-D Zig-Zag Problem

k g at (3;3) g at (2;3) g at (2;2)
0 0: 673 591 46 0: 714 443 80 0: 745 032 13

1 0: 040 000 00 0: 040 000 00 0: 040 000 00

2 0: 040 000 00 0: 038 333 33 0: 036 666 67

3 0: 039 420 29 0: 036 086 96 0: 033 188 41

4 0: 037 944 66 0: 033 280 63 0: 029 565 22

5 0: 035 399 96 0: 029 937 89 0: 025 823 45

6 0: 031 789 95 0: 026 126 48 0: 022 010 16

7 0: 027 311 36 0: 021 988 47 0: 018 205 59

8 0: 022 328 09 0: 017 745 07 0: 014 531 70

9 0: 017 296 02 0: 013 667 21 0: 011 141 27

10 0: 012 656 67 0: 010 015 42 0: 008 181 70

11 0: 008 736 81 0: 006 975 61 0: 005 751 62

12 0: 005 691 53 0: 004 621 96 0: 003 875 61

13 0: 003 507 05 0: 002 920 53 0: 002 508 36

14 0: 002 051 42 0: 001 764 64 0: 001 560 86

15 0: 001 142 90 0: 001 020 31 0: 000 931 55

16 0: 000 606 47 0: 000 562 11 0: 000 528 92

17 0: 000 304 13 0: 000 291 30 0: 000 281 13

18 0: 000 141 00 0: 000 138 34 0: 000 136 03

19 0: 000 057 65 0: 000 057 36 0: 000 057 06

20 0: 000 018 82 0: 000 018 82 0: 000 018 82

21 0: 000 003 77 0: 000 003 76 0: 000 003 76

Table 13.17: Probabilities for the 2-D Zig-Zag Problem
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13.6.3 Waiting for Utilities to be Connected to Plots of Land

13.6.3.1 Introduction

This problem is described in Section 2.9.2. Here we consider a plot with the same cell layout as in

the 2-D Zig-Zag Problem of Section 13.6.2, and compare the expected waiting times and expected

platoon sizes at the kth arrival for three models of permissible connection-paths between a plot and

the boundary. These are the zig-zag model, the rook model, which allows only direct-line access

to a boundary, and the bi-directional model, which allows connection-paths like the car-parking

models that allow exiting by driving forward or by reversing. Without loss of generality, assume

that the access direction in the bi-directional model is parallel to the line of cells containing cells

0 and 4.

13.6.3.2 The Paths

The number of possible exit-paths in the minimal covering for all models depends on the starting

position. In the zig-zag model, the numbers have been provided in Table 13.15 for positions (3; 3),

(2; 3) and (2; 2) as 20, 30 and 36, respectively, and the numbers for the other 6 non-boundary plots

can be found trivially by rotational symmetry of the cell structure. In the rook and bi-directional

models, all non-boundary plots have 4 and 2 possible exit-paths, respectively.

To determine the expected platoon sizes, it is necessary to consider each plot, including the 16

plots on the boundaries, which means  = 25. Label the  G-sets as Gi � fi� 1g.

In each of the three models, the 16 boundary plots have an expected waiting time of zero, and

the contribution to the expected platoon size has been shown by Corollary 11.79 to be independent

of alternative paths to the trivial path. It is therefore not required to enumerate alternative paths

for boundary plots.

Minimal coverings for the zig-zag model are provided in Section 13.6.2.4 for positions (3; 3),

(2; 3) and (2; 2).

Minimal coverings for the rook model are as follows. For the plot (3; 3), let A1 = f12; 2; 7g,

A2 = f12; 10; 11g, A3 = f12; 13; 14g, and A4 = f12; 17; 22g. For the plot (2; 3), let A1 = f7; 2g,

A2 = f7; 5; 6g, A3 = f7; 8; 9g, and A4 = f7; 12; 17; 22g. For the plot (2; 2), let A1 = f6; 1g,

A2 = f6; 5g, A3 = f6; 7; 8; 9g, and A4 = f6; 11; 16; 21g.

Minimal coverings for the bi-directional model need only be provided for positions (2; 2) and

(3; 2), as expectations for the other non-boundary positions can be determined by translational

and re�ective symmetries. For plot (2; 2), let A1 = f6; 5g and A2 = f6; 7; 8; 9g. For plot (2; 3), let

A1 = f7; 5; 6g and A2 = f7; 8; 9g.
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Expected waiting times and contributions to the expected platoon sizes for plots other than

those explicitly mentioned, can be found trivially by symmetry, so their minimal coverings are not

required.

13.6.3.3 Formulae for the Expectations

For plots on the boundaries, the expected waiting times are zero.

For the zig-zag model, the expected waiting times are calculated from the distributions provided

in Table 13.17. Label these expectations Z(3;3), Z(2;3) and Z(2;2).

For the rook model, Theorem 11.49 with ` = 1 and r = 4 gives the expectations as

E1;4 =
4X
s=1

(�1)s�1
X
i1;:::;is

E
hh
T
�Ss

j=1Aij

�i
1

i
, (13.73)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg � f1; : : : ; 4g,

and where E
h
T
�Ss

j=1Aij

�i
is given by Corollary 11.46 with ` = 1 as m(N+1)

2(m+2) = 13m
m+2 with

m =
���Ss

j=1AijnG
���. As the Ai�s mutually intersect trivially in G, ���Ss

j=1AijnG
��� = Ps

j=1

��AijnG��.
Label these expectations R(3;3), R(2;3) and R(2;2). These expectations can be written as linear

combinations of E (m)
def
= 13m

m+2 as follows.

R(3;3) = 4E (2)� 6E (4) + 4E (6)� E (8) . (13.74a)

R(2;3) = [E (1) + 2E (2) + E (3)]� [2E (3) + 2E (4) + 2E (5)]

+ [E (5) + 2E (6) + E (7)]� E (8)

= E (1) + 2E (2)� E (3)� 2E (4)

�E (5) + 2E (6) + E (7)� E (8) . (13.74b)

R(2;2) = [2E (1) + 2E (3)]� [E (2) + 4E (4) + E (6)]

+ [2E (5) + 2E (7)]� E (8)

= 2E (1)� E (2) + 2E (3)� 4E (4)

+2E (5)� E (6) + 2E (7)� E (8) . (13.74c)

For the bi-directional model, Corollary 11.52 with ` = 1 gives the expectations as

E1;2 =
m1m2 (m1 +m2 + 4) (N + 1)

2 (m1 + 2) (m2 + 2) (m1 +m2 + 2)
. (13.75)

For the plot (2; 2), let m1 = 1 and m2 = 3. For the plot (2; 3), m1 = m2 = 2. Label these
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expectations B(2;2) and B(2;3).

13.6.3.4 Formulae for the Platoon Sizes

The theory on expected platoon sizes is provided in Section 11.5.

By Theorem 11.82, the contribution to the expected platoon size at the kth arrival is the sum

of the expected platoon sizes at the kth arrival for each G-set separately, and with  = N is given

by

E
h
Yk

�
G,A()

�i
=

NX
i=1

Pk (Gi;Ai) , (13.76)

where Pk (G;A) is given by Theorem 6.119 as

Pk (G;A) =

rX
s=1

(�1)s�1
X
i1;:::;is

Pk

�
G;
Ss
j=1Aij

�
, (13.77)

where the inner summation on the right is over all distinct subsets fi1; : : : ; isg of f1; : : : ; rg, and

Pk (G;A) is given by Theorem 6.115 with � = 1 as

Pk (G;A) =
(m+ 1)

�
N�1�m
k�1�m

�
N
�
N�1
k�1
� , (13.78)

where m = jAnGj. Let

P (m; k) =
(m+ 1)

�
24�m
k�1�m

�
25
�
24
k�1
� . (13.79)

Notation 13.52 Label the expectations for the zig-zag, rook and bi-directional models as Zp (k),

Rp (k) and Bp (k), respectively.

For boundary plots, a much-simpli�ed expression that applies to all three models is given by

Corollary 11.80 as

E [Yk (G;G)] =
1

N
. (13.80)

Observe that the form of the expression in Equation 13.77 has the same form as in Equation

6.64, which is the Fundamental Formula of 	1-Processes. Therefore decomposition coe¢ cients

can be applied to the calculation of platoon size distributions and expectations.

For the zig-zag model, the decomposition coe¢ cients are provided in Table 13.16. Summing

over all plots allows us to write

Zp (k) =
16

25
+

20X
m=1

�
�(3;3)m + 4�(2;3)m + 4�(2;2)m

�
P (m; k) (13.81)
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c Zc Rc Bc
(2; 2) 1: 214 1: 744 3: 467

(2; 3) 1: 412 2: 125 4: 333

(3; 3) 1: 685 2: 600 4: 333

Table 13.18: Waiting for Utilities: Expected Waiting Times

For the rook model, the contribution to the expected platoon sizes for each plot has the same

form as in Equation 13.73 with E (m) replaced by P (m; k). For plots (3; 3), (2; 3) and (2; 2),

let these contributions be C33 (k), C23 (k) and C22 (k), respectively. Then the sum over all plots

produces the expected platoon sizes at the kth arrival as

Rp (k) =
16

25
+ C33 (k) + 4C23 (k) + 4C22 (k) . (13.82)

For the bi-directional model, the expected platoon sizes are given explicitly by Theorem 11.91,

so with t = 5 lines and with si � 5 plots per line we can write

Bp (k) =
1

N
�
N�1
k�1
� tX
i=1

242 siX
j=1

j

�
N � j
k � j

�
� s2i

�
N � si
k � si

�35
=

1

25
�
24
k�1
� 5X
i=1

242 5X
j=1

j

�
25� j
k � j

�
� 25

�
20

k � 5

�35
=

1

5
�
24
k�1
�
242 5X

j=1

j

�
25� j
k � j

�
� 25

�
20

k � 5

�35 . (13.83)

13.6.3.5 Results

Table 13.18 exhibits the expected waiting times for each of the three exit-path models. The data

suggests that an increase in the number of paths causes a reduction in the expected waiting times.

Table 13.19 exhibits the expected platoon sizes at the kth arrival for each of the three models.

A comparison of the expected platoon sizes for three models is better obtained from the graphs,

which are exhibited in Figures 13.8, 13.9 and 13.10.

13.6.4 3-D Zig-Zag Problem - Parked Flying Saucers

13.6.4.1 Introduction

The 3-D Zig-Zag Problem is described in Section 2.9.3. We consider the 5�5�5model. Because the

required calculation times are prohibitive in this case, we investigate the main problems involved

in determining the expected waiting times.
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k Zp (k) Rp (k) Bp (k)
1 0: 640 0: 640 0: 400
2 0: 680 0: 680 0: 433
3 0: 730 0: 723 0: 471
4 0: 792 0: 771 0: 514
5 0: 865 0: 821 0: 562
6 0: 946 0: 875 0: 617
7 1: 029 0: 930 0: 677
8 1: 105 0: 985 0: 742
9 1: 163 1: 037 0: 812
10 1: 194 1: 085 0: 887
11 1: 198 1: 126 0: 965
12 1: 180 1: 158 1: 043
13 1: 148 1: 180 1: 121
14 1: 113 1: 189 1: 197
15 1: 081 1: 186 1: 267
16 1: 055 1: 173 1: 331
17 1: 035 1: 149 1: 384
18 1: 022 1: 119 1: 424
19 1: 013 1: 085 1: 446
20 1: 006 1: 053 1: 449
21 1: 003 1: 026 1: 426
22 1: 001 1: 008 1: 375
23 1: 000 1: 000 1: 290
24 1: 000 1: 000 1: 167
25 1: 000 1: 000 1: 000

Table 13.19: Waiting for Utilities: Expected Platoon Size at the k�th Arrival

2 4 6 8 10 12 14 16 18 20 22 24

0.5

1.0

1.5

k

Zp

Figure 13.8: Expected Platoon Size: Zig-Zag model
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2 4 6 8 10 12 14 16 18 20 22 24

0.5

1.0

1.5

k

Rp

Figure 13.9: Expected Platoon Size: Rook model

2 4 6 8 10 12 14 16 18 20 22 24
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k
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Figure 13.10: Expected Platoon Size: Bi-Directional model
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13.6. Zig-Zagging Problems

The modi�cation of the algorithm used to determine the minimal covering for the 2-D Zig-Zag

Problem is provided in Section 13.6.4.2. Minimal coverings are discussed in Section 6.10.

The numbers of paths for the full and partial coverings are provided in Section 13.6.4.3.

13.6.4.2 Path Generation Algorithm for Minimal Paths

The algorithm for generating paths in the 2-D Zig-Zag Problem was modi�ed to determine all

paths for the 3-D Zig-Zag Problem, but was terminated before completion after 24 hours. The

following adaptations were made in order to speed up the process:

1. Paths are stored in an array indexed by their exit cell;

2. A new path is not added if it would not be part of a minimal covering;

3. A new path replaces an existing path if the former would cause the latter to not appear in

a minimal covering;

4. A branch of the tree of paths is not followed if the new cell being considered has two of its

neighbouring cells already in the path.

The function WouldHave2Neighbours checks to see if the path that is currently being deter-

mined has two neighbours already in the path that are vertically, horizontally or laterally adjacent

to the potential new cell being considered as an addition to the path. This works because if the

cell has two neighbours already in the path, then there would be a shorter path to the cell, and the

new potential paths as a result of adding this cell to the current path would not be in the minimal

covering.

Algorithm 13.53 Generating paths for the 3-D Zig-Zag Problem

function WouldHave2Neighbours(x,y,z, PathRecord) : Boolean;

var

i : Integer;

n : Integer;

begin

n := 0;

for i := 1 to nNeighbours[x,y,z] do

begin

if Neighbours[x,y,z][i] in PathRecord.Cells then

begin

Inc(n);
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Starting Position Full Covering Minimal Covering
(3; 3; 3) 65 369 598 3 030

(2; 3; 3) 74 754 562 8 546

(2; 2; 3) 83 809 904 12 106

(2; 2; 2) 99 632 226 14 568

Table 13.20: 3-D Zig-Zag Number of Paths in Coverings

if n = 2 then

begin

Result := True;

Exit;

end;

end;

end;

Result := False;

end;

For the general GeneratePaths algorithm described for the 2-D Zig-Zag Problem in Section

13.6.2.2.1 to produce only those paths in the minimal covering the loop

for each Neighbour of CurrentCell do

begin

GeneratePaths(Neighbour, CurrentPath);

end;

is replaced with

for each Neighbour of CurrentCell do

begin

if not WouldHave2Neighbours(Neighbour, PathRecord) then

begin

GeneratePaths(Neighbour, CurrentPath);

end;

end;

where a Neighbour is of the form (x; y; z).

13.6.4.3 Numbers of Paths

Table 13.20 provides the numbers of paths in the full and minimal coverings for each non-boundary

candidate cell. It would take approximately 19 gigabytes of storage to list in readable form all of

the paths in the full covering from the 4 representative cells.
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Length (3;3;3) (2;3;3) (2;2;3) (2;2;2)

2 0 1 2 3

3 6 8 8 6

4 48 33 20 15

5 144 72 54 36

6 96 188 136 114

7 144 200 350 300

8 192 436 476 792

9 288 576 996 852

10 384 1 256 1 320 1 764

11 432 1 232 2 168 1 860

12 384 2 034 2 336 3 516

13 576 1 056 2 244 1 980

14 192 1 024 1 032 2 226

15 144 112 772 744

16 0 48 168 336

17 0 0 24 24

Table 13.21: 3-D Zig-Zag Path Length Counts

13.6.4.4 Minimal Coverings

There are too many paths to list, even for the centre cell. The counts of paths of each possible

length for each candidate cell are provided in Table 13.21.

When determining approximations for the probability distribution for cell (3; 3; 3), a random

collection of 35 paths from the minimal covering is compared with choosing the 35 longest and the

35 shortest. The coverings used are provided in the next section.

13.6.4.5 The 35 Shortest, Longest and Random Paths Used

After sorting the paths into increasing order by path length, the paths were sorted within each

group of equal-length paths into increasing lexicographical order based on the order of the cells

to be visited. To sort the paths into decreasing order by path length, the paths are sorted as for

minimum path lengths, followed by reversing the order.

13.6.4.5.1 The Shortest Paths Used

The numbers to the left indicate both the number of the path in the lexicographically sequenced

list of paths within increasing lengths and also the order in which the paths are incrementally added

when investigating convergence.

1: 62 37 12

2: 62 57 52

3: 62 61 60

485



Applications: Without-Replacement 486

13.6. Zig-Zagging Problems

4: 62 63 64

5: 62 67 72

6: 62 87 112

7: 62 37 32 7

8: 62 37 32 27

9: 62 37 36 11

10: 62 37 36 35

11: 62 37 38 13

12: 62 37 38 39

13: 62 37 42 17

14: 62 37 42 47

15: 62 57 32 7

16: 62 57 32 27

17: 62 57 56 51

18: 62 57 56 55

19: 62 57 58 53

20: 62 57 58 59

21: 62 57 82 77

22: 62 57 82 107

23: 62 61 36 11

24: 62 61 36 35

25: 62 61 56 51

26: 62 61 56 55

27: 62 61 66 65

28: 62 61 66 71

29: 62 61 86 85

30: 62 61 86 111

31: 62 63 38 13

32: 62 63 38 39

33: 62 63 58 53

34: 62 63 58 59

35: 62 63 68 69

13.6.4.5.2 The Longest Paths Used

The numbers to the left indicate both the number of the path in the lexicographically sequenced

list of paths within increasing lengths and also the order in which the paths are incrementally added

when investigating convergence, with highest numbers added �rst.

3030: 62 87 92 93 68 43 42 41 36 31 32 33 58 83 108

3029: 62 87 92 93 68 43 42 41 36 31 32 33 58 83 84

3028: 62 87 92 93 68 43 42 41 36 31 32 33 58 83 78

3027: 62 87 92 91 66 41 42 43 38 33 32 31 56 81 106

3026: 62 87 92 91 66 41 42 43 38 33 32 31 56 81 80

3025: 62 87 92 91 66 41 42 43 38 33 32 31 56 81 76
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3024: 62 87 88 93 68 43 38 33 32 31 36 41 66 91 116

3023: 62 87 88 93 68 43 38 33 32 31 36 41 66 91 96

3022: 62 87 88 93 68 43 38 33 32 31 36 41 66 91 90

3021: 62 87 88 83 58 33 38 43 42 41 36 31 56 81 106

3020: 62 87 88 83 58 33 38 43 42 41 36 31 56 81 80

3019: 62 87 88 83 58 33 38 43 42 41 36 31 56 81 76

3018: 62 87 86 91 66 41 36 31 32 33 38 43 68 93 118

3017: 62 87 86 91 66 41 36 31 32 33 38 43 68 93 98

3016: 62 87 86 91 66 41 36 31 32 33 38 43 68 93 94

3015: 62 87 86 81 56 31 36 41 42 43 38 33 58 83 108

3014: 62 87 86 81 56 31 36 41 42 43 38 33 58 83 84

3013: 62 87 86 81 56 31 36 41 42 43 38 33 58 83 78

3012: 62 87 82 83 58 33 32 31 36 41 42 43 68 93 118

3011: 62 87 82 83 58 33 32 31 36 41 42 43 68 93 98

3010: 62 87 82 83 58 33 32 31 36 41 42 43 68 93 94

3009: 62 87 82 81 56 31 32 33 38 43 42 41 66 91 116

3008: 62 87 82 81 56 31 32 33 38 43 42 41 66 91 96

3007: 62 87 82 81 56 31 32 33 38 43 42 41 66 91 90

3006: 62 67 92 93 88 83 82 81 56 31 32 33 38 43 48

3005: 62 67 92 93 88 83 82 81 56 31 32 33 38 43 44

3004: 62 67 92 93 88 83 82 81 56 31 32 33 38 43 18

3003: 62 67 92 91 86 81 82 83 58 33 32 31 36 41 46

3002: 62 67 92 91 86 81 82 83 58 33 32 31 36 41 40

3001: 62 67 92 91 86 81 82 83 58 33 32 31 36 41 16

3000: 62 67 68 93 88 83 58 33 32 31 56 81 86 91 116

2999: 62 67 68 93 88 83 58 33 32 31 56 81 86 91 96

2998: 62 67 68 93 88 83 58 33 32 31 56 81 86 91 90

2997: 62 67 68 43 38 33 58 83 82 81 56 31 36 41 46

2996: 62 67 68 43 38 33 58 83 82 81 56 31 36 41 40

13.6.4.5.3 The Randomly-Selected Paths Used

The numbers in parentheses indicate the number of the path in the lexicographically sequenced

list of paths within increasing lengths. The numbers to the left indicate the order in which the

paths are incrementally added when investigating convergence.

1(2557): 62 67 68 43 38 33 58 83 82 81 56 31 6

2(2454): 62 63 58 83 82 81 86 91 66 41 42 43 48

3(1270): 62 87 86 91 66 41 42 43 68 73

4(2778): 62 61 66 41 42 43 68 93 88 83 58 33 32 27

5(2177): 62 37 38 33 58 83 88 93 92 91 86 81 80

6(1890): 62 61 56 81 82 83 58 33 38 43 68 73

7(1788): 62 37 42 41 66 91 92 93 88 83 58 59

8(1531): 62 63 38 43 42 41 66 91 86 81 76

9(2517): 62 67 42 43 38 33 32 31 56 81 82 83 108
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10( 740): 62 61 56 31 32 33 38 43 44

11(1744): 62 37 32 33 58 83 82 81 86 91 66 71

12(2912): 62 57 32 31 36 41 42 43 68 93 92 91 86 81 80

13(1018): 62 57 58 33 38 43 42 41 66 71

14( 512): 62 61 56 31 32 33 38 39

15(1973): 62 63 68 93 92 91 86 81 56 31 36 11

16( 4): 62 63 64

17(2690): 62 87 92 93 68 43 42 41 36 31 32 33 28

18(1432): 62 57 82 81 86 91 66 41 42 43 18

19( 353): 62 61 56 81 82 83 84

20(1415): 62 57 58 33 38 43 42 41 66 91 96

21( 260): 62 63 88 83 82 107

22( 322): 62 57 32 33 38 43 18

23( 377): 62 63 58 83 82 81 80

24(1288): 62 87 92 91 66 41 36 31 32 27

25(2995): 62 67 68 43 38 33 58 83 82 81 56 31 36 41 16

26(1067): 62 61 56 31 32 33 58 83 82 77

27(2370): 62 61 66 41 42 43 68 93 88 83 82 81 106

28( 632): 62 37 32 31 56 81 82 83 84

29(2855): 62 87 82 81 56 31 32 33 38 43 42 41 66 65

30(1695): 62 87 86 91 66 41 42 43 38 33 34

31(2963): 62 63 38 43 42 41 36 31 56 81 86 91 92 93 98

32(2624): 62 87 86 81 56 31 32 33 38 43 42 41 40

33( 865): 62 67 92 93 88 83 58 33 8

34(2283): 62 57 58 83 88 93 92 91 66 41 36 31 30

35(2864): 62 87 86 81 56 31 32 33 38 43 42 41 66 71

13.6.4.6 Approximate Probability Distributions

In Section 6.12.3 on Using Incremental Addition of Paths, the example suggested that including

shortest paths �rst would produce a better approximation sooner than the two alternatives, namely

longest paths �rst or a random selection. In this case, taking values from Tables 13.22 and 13.23,

the results suggest that P (T = 0) � 0:308 (from the last value in the increasing sequence when

using the minimal path lengths �rst) and P (T = 100) � 0:00082. Given the virtual impossibility

of calculating a precise result, using this method gives an approximation that is currently the best

available.

When including the paths of maximum length �rst, the probabilities change little in comparison

to the other two selection methods. This occurs because there are 144 paths with the largest value

of m, namely m = 14.
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Number of
Paths

Random
Selection

Minimum
Path Length

Maximum
Path Length

1 0: 022 73 0: 111 1 0: 019 6

2 0: 028 85 0: 163 4 0: 021 0

5 0: 044 83 0: 252 0 0: 025 5

10 0: 056 40 0: 272 8 0: 031 2

15 0: 067 50 0: 279 8 0: 031 9

20 0: 141 96 0: 286 3 0: 032 3

25 0: 148 69 0: 294 2 0: 035 9

30 0: 148 88 0: 301 4 0: 038 5a

35 0: 149 86 0: 308 3b 0: 045 1

Table 13.22: 3-D Zig-Zag Convergence for: P (T = 0)

aProcessing time on Celeron: ' 90 minutes.
bProcessing time on Celeron: 44 hrs 7 mins 28 secs.

Number of
Paths

Random
Selection

Minimum
Path Length

Maximum
Path Length

1 0: 007 999 96 0: 006 756 0: 008 000 00

2 0: 007 999 95 0: 005 678 0: 008 000 00

5 0: 007 998 24 0: 002 926 0: 007 999 99

10 0: 007 994 73 0: 002 115 0: 007 999 97

15 0: 007 983 79 0: 001 826 0: 007 999 96

20 0: 006 392 82 0: 001 554 0: 007 999 95

25 0: 006 319 41 0: 001 255 0: 007 999 95

30 0: 006 319 04 0: 001 033 0: 007 999 94

35 0: 006 317 04 0: 000 814 0: 007 999 92

Table 13.23: 3-D Zig-Zag Convergence for P (T = 100)
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13.6.4.7 Estimated Time Requirements

To calculate each probability for 40 paths and 45 paths on Celeron would take approximately 58:8

days and 5:2 years, respectively.

The estimated time, using the same computer, to calculate all of the 119 probabilities using

3 030 paths is

119� 23030�35 � 44 hrs 7 mins 28 secs
24� 365:25 years ' 2: 3� 10901 years. (13.84)

Using a super-computer with 65 536 processors, with each processor running at 1 000 000 000 times

the speed of the processor used, would still take

2: 3� 10901
65 536� 109 ' 3: 5� 10

887 years. (13.85)

13.7 The Game SET

13.7.1 Preliminaries

In this section, we consider both the linear and batch variations of the Standard Game of SET ;

these are described in Section 2.8.3.

The dynamic process of removing an n-match is initially complicated by removal of possible

future sets, but becomes even more complicated by allowing the player to make a choice of which

match to remove when there is more than one match. Therefore, to determine the distribution

of the state of the system is extremely di¢ cult with random selection of the set to remove and

impossible with an ad-hoc user-selection process. However, some interesting results can be easily

determined by applying the Fundamental Theorem of 	1-Processes of Section 6.7.4 and the the-

orems associated with Expected Completions at the kth Arrival as provided in Section 11.5. The

results of applying the latter theorems to the game SET appear in Section 11.5.5.

Remark 13.54 As each card is a member of 40 triads, there are 240 � 1 ' 1: 1 � 1012 unions re-

quired for the non-batch probabilities of the waiting times for any match for a particular card. There

are 81! ' 5: 8 � 10120 possible arrival sequences for the 81 cards, and the number of distinguish-

able sequences when considering a match for a particular card is
� 81
1;h2i40

�
= 81

Q40
i=1

�
80�2(i�1)

2

�
'

5: 3� 10108. Given the magnitude of these numbers, it is somewhat spectacular that results of the

kind provided here can be calculated for this game.
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13.7. The Game SET

13.7.2 Waiting Time for a Particular Match for a Speci�c Card

13.7.2.1 The Standard Linear Game

From Section 11.2.7.2 with N = 81 we have

Mean =
N + 1

4

= 20: 5 (13.86)

and

StdDev =

r
17 (N2 � 1)

240

=
1394

3

' 21: 556. (13.87)

13.7.2.2 The Standard Batch Game

The batch game is examined in Section 9.8.5, from which we have

Mean ' 6: 60 (13.88)

and StdDev ' 6: 91. (13.89)

Comparing the mean of the linear game with this mean, observe that the former is 25: 3% of

the total number of turns and the latter is 27: 5% of the number of turns.

13.7.3 Waiting Time for Any Match for a Speci�c Card

13.7.3.1 The Standard Linear Game

From Section 11.2.10.2 with a = 4, we have

Mean = 1 (13.90)

and StdDev ' 3: 06. (13.91)

Remark 13.55 This means that, on average, a card will be matched with the very next card. This

is a measure of the fast nature of the game.
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13.7. The Game SET

13.7.3.2 The Standard Batch Game

From Section 9.8.7 we have

Mean ' 0: 154 (13.92)

and StdDev ' 0: 591. (13.93)

13.7.4 Number of Triads at the kth Card

Consider the Standard Linear Game. From Theorem 11.94 with N = 81, we have the expected

number of triads at the kth card is, for k 2 f1; : : : ; 81g,

E1;k =

�
k�1
2

�
79

; (13.94)

and, from Theorem 11.95, the corresponding variance is given by

Vk =

�
k�1
2

�
79

+
6
�
k�1
4

�
79� 77 �

�
k�1
2

�2
792

. (13.95)

A graph of the expected number of triads formed by the kth card is displayed in Figure 13.11.

It shows the gradual increase in the expected number of triads formed until the maximum value

of r = N�1
2 is obtained for the last card.
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20
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40

k

E

Figure 13.11: Expected Number of Triads Formed by the k�th Card
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13.7. The Game SET

K _E1;K ' _E1;K _VK ' _VK k _E1;K ' _E1;K _VK ' _VK

1 0 0: 000 0 0: 000 11 165
79 2: 089 175 950

118 579 1: 484

2 0 0: 000 0 0: 000 12 220
79 2: 785 1571 820

830 053 1: 894

3 1
79 0: 013 78

6241 0: 012 13 286
79 3: 620 1954 524

830 053 2: 355

4 4
79 0: 051 300

6241 0: 048 14 364
79 4: 608 339 690

118 579 2: 865

5 10
79 0: 127 55 500

480 557 0: 115 15 455
79 5: 759 405 600

118 579 3: 421

6 20
79 0: 253 2025 750

9130 583 0: 222 16 560
79 7: 089 5241 600

1304 369 4: 018

7 35
79 0: 443 486 180

1304 369 0: 373 17 680
79 8: 608 6071 040

1304 369 4: 654

8 56
79 0: 709 746 352

1304 369 0: 572 18 816
79 10: 329 6943 752

1304 369 5: 323

9 84
79 1: 063 1073 520

1304 369 0: 823 19 969
79 12: 265 2893 230

480 557 6: 021

10 120
79 1: 519 1469 700

1304 369 1: 127 20 1 140
79 14: 430 3239 100

480 557 6: 740

Table 13.24: Expected Number of Triads in K Cards

13.7.5 Number of Triads in K Cards

From Theorem 11.99, we have the expected number of triads in K cards is, for K 2 f1; : : : ; 81g,

_E1;K =

�
K
3

�
79
, (13.96)

and, from Theorem 11.101, the corresponding variance being given by

_VK =
6
�
K
3

��
81�K
3

�
36 522 332

. (13.97)

The �rst 20 values are provided in Table 13.24. Graphs of _E1;K and _VK for all values of K are

provided in Figures 13.12 and 13.13, respectively.

In the standard batch game, the �rst batch, which consists of 12 cards, is expected to have

' 2:78 triads with a standard deviation of ' 1: 376 triads.

A simple, but rough, approximation by a normal distribution with mean � = 220
79 and variance

�2 = 1571 820
830 053 would have proportion p of the observations in the interval � � z(1�p)=2�; where

P (Z � z�) provides the percentiles of the Standard Normal Distribution. Table 13.25, wherein

p is represented as a percentage, displays con�dence intervals for the number of sets in 12 cards.

Observe the very low chance, namely less than 0:1%, of at least 8 triads appearing in 12 cards.
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13.7. The Game SET
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Figure 13.12: The Game SET: Expected Number of Sets in K Cards
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Figure 13.13: The Game SET: Variance of the Number of Sets in K Cards

p Interval
90:0% [0: 521; 5: 048]

95:0% [0: 088; 5: 482]

99:0% [0: 000; 6: 329]

99:9% [0: 000; 7: 313]

Table 13.25: Approximate Con�dence Intervals for the Number of Triads in 12 Cards
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13.8. Cake Display Problem: Distinct Cakes

13.8 Cake Display Problem: Distinct Cakes

13.8.1 Introduction

The Cake Display Problem is discussed in Section 2.7. Some examples of expected numbers of

cakes and slices on display and other attributes have already been provided in Sections 11.6.5 and

11.6.6, with the latter providing comparative graphs. Here we consider examples of distinct cakes

with more cakes and a larger number of slices per cake, and measure several properties of them in

hours and minutes.

13.8.2 Expected Display Time

The Expected Duration of Cakes on Display is discussed in Section 11.2.5.1.1. With all cakes

having the same number of slices, the mean and variance for the length of time an individual cake

is on display are repeated here as

Mean =
(�� 1) (N + 1)

�+ 1
(13.98)

and

V ariance =
2 (�� 1) (N � �) (N + 1)

(�+ 1)2 (�+ 2)
. (13.99)

For � = 6 slices per cake for 10 cakes, we have N = 60. If the average time between orders for

single slices is 5 minutes, then, in a 5-hour period, the expected duration that a cake is on display

is

E =
5

7
� 61� 5 minutes

' 3 hours 38 minutes, (13.100)

with a standard deviation of 9:2 slices translating to

StdDev ' 46 minutes. (13.101)

For � = 6 slices per cake for 100 cakes, we have N = 600. If the average time between orders

for single slices is 1 minute, then, in a 10-hour period, the expected duration that a cake is on
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13.8. Cake Display Problem: Distinct Cakes

display is

E =
5

7
� 601� 1 minutes

' 7 hours 9 minutes, (13.102)

with a standard deviation of

StdDev ' 1 hour 35 minutes. (13.103)

If a cake would spoil after, say, one standard deviation past the expected display period, then

one could investigate the e¤ect of decreasing the number of slices per cake and increasing the

number of cakes, keeping the total number of slices for each kind of cake constant. To examine

this alternative, it is necessary to apply the formulae for with multiplicities, which is done in Section

13.9.2.

13.8.3 Tail Probabilities

Using Chebyshev�s inequality [29, IX.6] on the distribution of T , we have

P (jT � �j � n�) � 1

(n�)2
V ar (T ) , (13.104)

where � = E [T ] and Var(T ) are provided in Section 11.2.5.1.1. That is,

P (jT � �j � n�) � 2 (�� 1) (N � �) (N + 1)

n2�2 (�+ 1)2 (�+ 2)
. (13.105)

Applying this to N = 60 and � = 6, we have a measure of the tail probabilities for deviation

from the mean as

P (jT � �j � 6n) � 915

392n2
. (13.106)

Table 13.26 displays values for these. As � ' 43:6 (from Section 13.8.2), values of n � 8 are

irrelevant. The third row in the table shows the deviations in minutes, assuming one slice is

ordered every 5 minutes.

For example, the probability that the waiting time for a cake to be eaten, once displayed,

exceeds the number of orders totalling 3 more cakes worth of slices, is about 25:9%: For n = 4, we

have � + 6n ' 67:6 > N , so all of the probability pertains to the values of T � � � 6n ' 19:6.

That is, P (T � 19:6) � 0: 146, which means that the chance of a cake being displayed for at most

20 orders, which is equivalent to 2 hours, is less than 14:6%.
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13.8. Cake Display Problem: Distinct Cakes

n 2 3 4 5 6 7

Time (mins) 60 90 120 150 180 210

P (jT � �j � 6n) 0: 584 0: 259 0: 146 0: 093 0: 065 0: 048

Table 13.26: Chebyshev�s Tail Probabilities for Distinct Cakes

k Npa (k;1) dNpa (k;1)e Nap (k)

1 1: 00 1 2: 00

2 1: 88 2 3: 65

3 2: 65 3 4: 96

4 3: 29 4 5: 97

5 3: 82 4 6: 69

6 4: 24 5 7: 15

7 4: 53 5 7: 36

8 4: 71 5 7: 35

9 4: 76 5 7: 15

10 4: 71 5 6: 76

11 4: 53 5 6: 23

12 4: 24 5 5: 56

13 3: 82 4 4: 78

14 3: 29 4 3: 91

15 2: 65 3 2: 98

16 1: 88 2 2: 00

17 1: 00 1 1: 00

18 0: 00 0 0: 00

Table 13.27: A Cake Display Process (without multiplicities):  = 6; � = 3

13.8.4 Expected Number of Cakes and Slices on Display

Consider  = 6 and � = 3. Table 13.27 displays the expected number of cakes and slices on display

for each time unit, with the third column containing the amount of space required for the expected

number of cakes on display.

The symmetry observable in column two suggests there is a symmetry that may be exploitable.

However, for the number of slices on display, this symmetry does not exist. On average, one would

not expect to need 6 places for cakes, and for only 7 slices (for k = 6 to k = 12) would the

maximum expected number of cakes occur, which is 5 in this case. To compare this with the case

of treating these 6 distinct cakes as 3 pairs of indistinct cakes with 3 slices each, see Section 13.9.4

on Expected Number of Cakes and Slices on Display for Cakes with Multiplicities.

Consider  = 3 and � = 6, with expectations and display requirements displayed in Table

13.28. On average, all of the cakes would be displayed for 13 of the 18 orders. To compare this

with splitting each cake into two indistinct cakes with 3 slices each, see Section 13.9.4 on Expected

Number of Cakes and Slices on Display for Cakes with Multiplicities.
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13.8. Cake Display Problem: Distinct Cakes

k Npa (k;1) dNpa (k;1)e Nap (k)

1 1: 00 1 5: 00

2 1: 88 2 8: 24

3 2: 65 3 10: 15

4 3: 29 3 11: 09

5 3: 82 3 11: 34

6 4: 24 3 11: 10

7 4: 53 3 10: 55

8 4: 71 3 9: 80

9 4: 76 3 8: 92

10 4: 71 3 7: 97

11 4: 53 3 6: 99

12 4: 24 3 6: 00

13 3: 82 3 5: 00

14 3: 29 3 4: 00

15 2: 65 3 3: 00

16 1: 88 2 2: 00

17 1: 00 1 1: 00

18 0: 00 0 0: 00

Table 13.28: A Cake Display Process (without multiplicities):  = 3; � = 6

13.8.5 Expected Duration for having � � Cakes with � � Slices on Display

Section 11.6.6 provides an example for the expected numbers of cakes and slices on display, and

the periods in which � � cakes are on display with � � slices each. It includes comparative graphs

of the process over time.

Here we provide three tables for comparisons of periods for various values of , �, � and � ; we

provide both intra-table and inter-table comparisons. Values for expectations are rounded up to

the nearest integer before comparing them with � . When � = 1, a cake will be included if it is on

display. The tables include the highest value for � that has a non-empty period.

Table 13.29 shows the periods expanding uniformly in both directions as � decreases. It is an

example in which not all cakes are expected to be displayed. Also, no more than 67% (for � = 4)

of the cakes are expected to be displayed for 61% (= (14� 4 + 1) =18� 100) of the time. Contrast

this with Table 13.30, which shows all the cakes are expected to be on display for 38% of the time,

and 80% of the cakes are expected to be on display for 65% of the time. The corresponding �gures

from Table 13.31 has 97% of cakes expected to be displayed for 14% of the time, and 80% of cakes

expected to be on display for 54% of the time.

Table 13.30 shows that the expected numbers of cakes on display with � � slices displayed,

does not expand uniformly in both directions as � decreases.

Table 13.31 illustrates the property that the periods in which a speci�ed number of cakes are
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 � � � Period
6 3 1 5 6� 12

1 4 4� 14
1 3 3� 15
1 2 2� 16

Table 13.29: Demonstration of Uniform Expansion of Periods as � Decreases

 � � � Period
10 6 1 10 19� 41

1 9 14� 46
1 8 11� 49
2 10 31� 41
2 9 25� 46
2 8 22� 49
3 9 37� 45
3 8 32� 49
3 7 29� 51
4 7 40� 51
4 6 36� 53
4 5 33� 55
5 5 48� 53
5 4 42� 56
5 3 37� 57

Table 13.30: Periods for Expected Number of Cakes on Display with � � Slices
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13.9. Cake Display Problem: Cakes with Multiplicities

 � � � Period
100 6 1 97 258� 342

1 80 137� 463
2 92 341� 378
3 82 392� 428
4 66 440� 472
5 41 488� 512
4 41 326� 549
3 41 225� 551
2 41 134� 551
1 41 49� 551

Table 13.31: Periods for Cakes with Many Slices on Display

on display, need not vary much for large values of the number of slices on display. It also illustrates

that the periods are non-decreasing at both boundaries for �xed � and decreasing �.

13.8.6 Clustering of Completions

The clustering of completions is discussed in Section 11.7, with an application to cake displays

provided in Section 11.7.4.

13.9 Cake Display Problem: Cakes with Multiplicities

13.9.1 Introduction

Section 13.8 provides a general preliminary discussion. The di¤erence here is that we consider

examples of non-distinct cakes with more cakes and a larger number of slices per cake, and measure

several properties of them in hours and minutes. We compare these results with the distinct cake

examples of Section 13.8.

13.9.2 Expected Display Time

The Expected Duration of Cakes on Display is discussed in Section 11.2.5.1.1. With all cakes

having the same number of slices, the mean and variance for the length of time an individual cake

is on display is repeated here as

Mean =
(�� 1) (N + 1)

�+ 1
(13.107)

and

V ariance =
2 (�� 1) (N � �) (N + 1)

(�+ 1)2 (�+ 2)
. (13.108)
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For 6 slices per cake type for 10 cake types and d = 3 slices per cake, we have N = 60 and

must use � = d in the formulae. If the average time between orders for single slices is 5 minutes,

then, in a 5-hour period, the expected duration that a cake is on display is

E =
2

4
� 61� 5 minutes

' 2 hours 33 minutes, (13.109)

with a standard deviation of 13:2 slices translating to

StdDev ' 1 hour 6 minutes. (13.110)

Contrast this with assuming indistinct slices form a single cake in Section 13.8.2, whose values

are E = 3 hours 38 minutes and StdDev ' 46 minutes. The mean has not halved and the standard

deviation has increased by about 43%.

For 6 slices per cake type for 100 cake types and d = 3 slices per cake, we have N = 600 and

must use � = d in the formulae. If the average time between orders for single slices is 1 minute,

then, in a 10-hour period, the expected duration that a cake is on display is

E =
2

4
� 601� 1 minutes

' 5 hours 1 minute, (13.111)

with a standard deviation of

StdDev ' 2 hours 14 minutes. (13.112)

Contrast this with assuming indistinct slices form a single cake in Section 13.8.2, whose values

are E = 7 hours 9 minutes and StdDev ' 1 hour 35 minutes. The mean has been reduced to only

70% of its previous value, and the standard deviation has increased by about 41%.

When considering the e¤ect of splitting cakes into smaller cakes, these e¤ects need to be taken

into consideration. For example, for splitting a cake into 2 equi-sized smaller cakes, the mean time

on display reduces by the ratio

�+ 1

�� 1 �
�=2� 1
�=2 + 1

=
(�+ 1) (�� 2)
(�+ 2) (�� 1) . (13.113)

This indicates that for larger initial values of �, the reduction is not as great as for smaller values.

Also, the standard deviation increases, so there might even be a greater chance of longer times on
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n 5 6 7 8 9 10

P (jT � �j � 3n) 0: 773 0: 536 0: 394 0: 302 0: 238 0: 193

Time (mins) 45 60 75 90 105 120

Table 13.32: Chebyshev�s Tail Probabilities for Multiple Cakes

display by splitting cakes.

13.9.3 Tail Probabilities

The use of Chebyshev�s inequality is discussed in Section 13.8.3. Applying Equation 13.105 to the

model with 6 slices per cake type for 10 cake types and d = 3 slices per cake, gives a measure of

the tail probabilities for deviation from the mean as

P (jT � �j � 3n) � 1159
60n2

. (13.114)

Table 13.32 displays values for these. As � ' 30:5 (from Section 13.9.2), values of n � 11

are irrelevant. The third row in the table shows the deviations in minutes, assuming one slice is

ordered every 5 minutes.

For example, the probability that waiting time for a cake to be eaten once displayed exceeds

the number of orders totalling 6 more cakes worth of slices, is about 53:7%; this is about the

same as for the same number of slices when distinct cakes are considered. For n = 10, we have

�+ 3n ' 60:5 > N , so all of the probability pertains to the values of T � �� 3n ' 0:5, which in

this case is not very useful.

13.9.4 Expected Number of Cakes and Slices on Display

Consider  = 3, � = 6 and d = 3. Table 13.33 displays the expected number of cakes and slices on

display for each time unit, with the third column containing the amount of space required for the

expected number of cakes on display.

The symmetry of the expected number of cakes on display is again observable. However, for

the number of slices on display, this symmetry does not exist. Observe that there are two peak

periods for both the expected numbers of cakes and slices displayed. Observe also that the �rst

peak for slices is higher than the second peak. On average, although one would expect to need

places for 3 kinds of cake for 44% of the time, the maximum expected number of slices on display

is 3:59, which is less than half of the possible number of slices displayable with 3 cakes.
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13.10. Cake Display Problem: Comparison of Distinct Cakes with Cakes with

Multiplicities

k Npa (k;1) dNpa (k;1)e Nap (k)

1 1: 00 1 2: 00

2 1: 71 2 3: 12

3 2: 12 3 3: 57

4 2: 28 3 3: 59

5 2: 26 3 3: 36

6 2: 14 3 3: 08

7 1: 99 2 2: 82

8 1: 88 2 2: 71

9 1: 83 2 2: 75

10 1: 88 2 2: 92

11 1: 99 2 3: 15

12 2: 14 3 3: 35

13 2: 26 3 3: 42

14 2: 28 3 3: 25

15 2: 12 3 2: 78

16 1: 71 2 2: 00

17 1: 00 1 1: 00

18 0: 00 0 0: 00

Table 13.33: A Cake Display Process (with multiplicities):  = 6; � = 3

To compare this with the case of treating these 3 pairs of indistinct cakes as either 6 distinct

cakes or as 3 distinct cakes with 6 slices each, see Section 13.8.4.

13.10 Cake Display Problem: Comparison of Distinct Cakes with

Cakes with Multiplicities

Section 11.6.6 has the example Expected Numbers of Cakes and Slices on Display for the Measures

of the Dynamic State of Disjoint G-Sets. See that section for the details of the calculations and

comparison between the two types of processes, namely distinct cakes versus cakes with multiplic-

ities. The graphs are reproduced here for e¤ect, in Figures 13.14 and 13.15.

13.11 Ball-Point Pens and the Rush of Completions

The clustering of completions is discussed in Section 11.7, with an application to ball-point pens

provided in Section 11.7.5.
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13.11. Ball-Point Pens and the Rush of Completions
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Figure 13.14: Expected Numbers of Cakes for Unique Types
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14.1 Introduction

This chapter provides more-detailed and more-involved with-replacement examples of the concepts,

theory, techniques and issues from the point of view of applications. Some of the results have been

determined earlier as small illustrative examples; these are organised here within the context of

the application.
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14.2. The Bird-Watcher�s Problem

n P(Leaving) E1 Time (secs)
1000 9: 779� 10�5 576: 532 332

2000 5: 423� 10�2 1 234: 013 1 302

3000 3: 601� 10�1 1 840: 134 3 144

4000 6: 913� 10�1 2 304: 005 5 282

5000 8: 738� 10�1 2 607: 075 9 542

6000 9: 517� 10�1 2 781: 313 12 465

7000 9: 820� 10�1 2 872: 142 16 066

8000 9: 933� 10�1 2 916: 195 21 135

9000 9: 975� 10�1 2 963: 473 34 082

10000 9: 991� 10�1 2 945: 458 38 640

Limit 1 2 952: 105 < 3

Table 14.1: Bird-Watcher�s Problem: Probabilities, Expectations and Calculation Times

14.2 The Bird-Watcher�s Problem

The Bird-Watcher�s Problem is described in Section 2.3.6.2.1, and the Coupon-Collector�s Page

Problem is described in Section 2.3.6.

An example of the Coupon-Collector�s Page Problem is provided in Section 7.5.4. The example

is equivalent to considering N = 100 distinct birds to sight, and � = 10 distinct pictures per page,

and determining the waiting-time distribution for a single page to be completed, measured from

the time the page is �rst begun.

For the Bird-Watcher�s Expectation, Table 14.1 provides a comparison of calculation times for

variations of the problem speci�ed by (1 000; n; 10; 10; 5), where the number of sightings, n; is varied

from 1 000 to 10 000 in steps of 1 000 using 50 digits of accuracy. These times are based on the

reduced expectation formula given by Theorem 12.10. Observe that the limit of E�1 = 2952: 105

(in the last row of the table) took under 3 seconds to calculate. The nature of the convergence of

the expectations to the limit is illustrated by Figure 14.1.

The graph of time versus n is provided by Figure 14.2. Observe that the times increase in

jumps rather than linearly. This occurs because the number of bytes required to be used increases

in a non-linear fashion.

Calculations were performed on Athlon using MuPAD Light 2.5.

14.3 No Path in a Network (Bombing Raid)

14.3.1 Introduction

The model and example being discussed here are the with-replacement versions of the model and

example discussed in Section 13.4. The minimal blockage covering is the same in both cases.
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14.3. No Path in a Network (Bombing Raid)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000

1500
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Figure 14.1: Bird-Watcher�s Problem: Expectations versus n
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Figure 14.2: Bird-Watcher�s Problem: Times versus n
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14.3. No Path in a Network (Bombing Raid)

s m � Sign
Ss
j=1Bij

1 1 2 + f2g ; f7g
1 2 1 + f5; 6g
1 3 1 + f3; 4; 5g
2 2 1 � f2; 7g
2 3 2 � f2; 5; 6g ; f5; 6; 7g
2 4 3 � f2; 3; 4; 5g ; f3; 4; 5; 7g ; f3; 4; 5; 6g
3 4 1 + f2; 5; 6; 7g
3 5 3 + f2; 3; 4; 5; 7g ; f2; 3; 4; 5; 6g ; f3; 4; 5; 6; 7g
4 6 1 � f2; 3; 4; 5; 6; 7g

Table 14.2: Contributions to the Decomposition Coe¢ cients for No Path in a Network

m �

1 2

2 0

3 �1
4 �2
5 3

6 �1

Table 14.3: The Decomposition Coe¢ cients for No Path in a Network

14.3.2 Decomposition Coe¢ cients

By the Minimal Blockage Covering Theorem 9.31 and the Fundamental Theorem 7.9 for 	2-

processes, the waiting-time distribution for a blockage to occur, measured from the time G is

completed, is given by

P
�
T
�
B01; : : : ; B

0
t

�
= k

�
=

4X
s=1

(�1)s�1
X
i1;:::;is

	2

�
7; n;

���Ss
j=1B

0
ijnG

��� ; 1; 1; k� . (14.1)

For brevity, let 	(n;m; k) be represented by 	2 (7; n;m; 1; 1; k). Table 14.2 shows the non-zero

contributions made to the coe¢ cients of 	(n;m; k) for each value of s and each possible value of

m; the last column shows which unions of B-sets contribute to the coe¢ cients. The Decomposition

Coe¢ cients, which are described in Section 7.9, have been calculated from Table 14.2 and are

displayed in Table 14.3.
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14.3. No Path in a Network (Bombing Raid)

k P1 (T = k) PN2 (T = k) P2N2 (T = k) P5N2 (T = k) P10N2 (T = k)

�1 n/a 0: 339 92 0: 115 54 0: 004 54 0: 000 02

0 0: 707 14 0: 367 95 0: 591 60 0: 702 60 0: 707 12

1 0: 142 86 0: 100 24 0: 101 02 0: 101 02 0: 101 02

2 0: 095 24 0: 073 57 0: 074 63 0: 074 64 0: 074 64

3 0: 047 62 0: 048 86 0: 050 31 0: 050 31 0: 050 31

4 0: 007 14 0: 028 04 0: 030 01 0: 030 01 0: 030 01

5 n/a 0: 014 13 0: 016 80 0: 016 81 0: 016 81

6 n/a 0: 005 52 0: 009 12 0: 009 16 0: 009 16

7 n/a n/a 0: 004 94 0: 004 95 0: 004 95

8 n/a n/a 0: 002 67 0: 002 68 0: 002 68

9 n/a n/a 0: 001 44 0: 001 46 0: 001 46

10 n/a n/a 0: 000 78 0: 000 80 0: 000 80

1 n/a 0: 021 78 0: 000 40 0: 000 00 0: 000 00

Table 14.4: Example: Blocking Probabilities for No Path in a Network

14.3.3 Blocking Probabilities

The blocking probabilities are determined by the supplying the decomposition coe¢ cients, which

appear in the Table 14.3, to the decomposition formula to give

P
�
T
�
B01; : : : ; B

0
t

�
= k

�
=

6X
m=1

� (m)	 (n;m; k)

= 2	 (n; 1; k)�	(n; 3; k)� 2	 (n; 4; k) + 3	 (n; 5; k)�	(n; 6; k) . (14.2)

Table 14.4 provides the numerical values in the third column and subsequent columns for various

numbers of arrivals, n; these are n = N , 2N , 5N and 10N . The corresponding values for the 	1-

process have been copied from Table 13.7, and are displayed in the second column for comparison.

In the table, P1 is for the 	1-process and Pn2 is for the 	2-process with n arrivals.

Suppose this network represents the bombing of intersections during a bombing raid. Then

the with-replacement model requires more than 10 times the number of bombs compared with

the without-replacement model to achieve the e¤ect of preventing a path from O to D being

available at the instant that intersection 1 is bombed; the table provides the probabilities as

P1 (T = 0) = 0: 707 14 and P 10N2 (T = 0) = 0: 707 12.

In the case n = N , there is a 34% chance that intersection 1 is not bombed, which could easily

have been calculated as
�
6
7

�7 ' 0: 339 92, since � = � = 1.

The probability of not being able to block at least one path is less than 2:2% for n = N , and

this diminishes rapidly for increasing n.
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15.1. Introduction

15.15 Comparison of Times (in seconds) for the Reduced Conditional Expectation
using 50 Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

15.1 Introduction

Chapter 4 on Computational Aspects provides a discussion with examples of the need for consid-

ering the number of calculations in Section 4.5, the size of the numbers involved in Section 4.6,

the number of digits of accuracy in Section 4.7, and the execution time in Section 4.8. There are

also a few examples illustrating the need for concern in other parts of the text, and in particular

in Section 13.6 on Zig-Zagging Problems.

A discussion of converting formulae to alternative forms appears in Section 4.9. In support of

justi�cation for these conversions and their bene�ts, this chapter provides some numerical values

for the numbers of calculations required, the size of the numbers involved, the number of digits of

accuracy required, and execution times for the main formulae involved.

For 	1-processes, we count theoretically the numbers of addition- and multiplication-like oper-

ations for the numerators of the original distribution and of one alternative formula, and compare

them. Algorithms are provided from which the counts are made. Then, execution times for one set

of parameters are compared for both formulae. This is followed by examining the improvements

by application of the Decomposition Formula as applied to zig-zagging problems and the 2D Gap

Problem. Finally, the improvements due to application of the Minimal Covering Theorem are

discussed.

The two versions of the moments, as provided in Section 11.2 on Moments for the 	1-Process,

are of o
�
N2
�
for the original formulation and o (N) for the reduced formula, so the gain to be

made is clear. Also, because these formulae are based on the two formulae being compared in

detail, we do not see the need to provide tables of values for these.

For 	2-processes, we compare the reduced distribution formula with the original distribution

formula. The �rst comparison uses counts of each of the basic arithmetical operations involved

in calculating The Bird-Watcher�s Expectation. The operations counted are +, �, �, �, and xy.

The counts for the reduced conditional expectation are also supplied. The counts for the limiting

distribution are provided to illustrate the reason for the enormous reduction in calculation time

that would occur for large values of n. These counts were determined by a computer program in

which the counts are determined using common subroutines for the calculation of combinatorial

coe¢ cients.
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15.2. Comparisons for the 	1-Process

We then investigate the number of necessary digits of accuracy. Following this, execution times

using the original distribution formula and the reduced expectation formula are compared. Finally,

we investigate the e¤ect on execution times when the number of digits of accuracy is increased for

various values of N and n.

15.2 Comparisons for the 	1-Process

15.2.1 Introduction

The distribution for 	1-processes for � = � and r = 1, as given by Theorem 6.5 and Corollary 6.7,

were transformed to the alternative formula given by Theorem 6.9. It was claimed that the latter

formula has a signi�cantly reduced number of calculations required. In this Section, this claim is

investigated by comparing counts of operations required to produce their numerators. The time

taken for a computer program to calculate each of the formulae is provided as practical evidence.

To illustrate the improvements by application of the Decomposition Formula, we have cho-

sen the 2D Gap Problem. Following this, improvements by application of the Minimal Covering

Theorem are discussed; this includes a reference to the Zig-Zag problems.

15.2.2 Count of Operations

We begin with a comparison between the number of (N;m; �)-sequences for which T (m) = k

(for k > 0) as given by Theorem 6.5 and the equivalent number provided in Theorem 6.9. For

comparison purposes, we will assume that N is large compared with m and �, as would be the

case in the car parking model. Also, assume that k � m+ �, so that the maximum comparison is

not required in Equation 15.1, and so that the second term in 15.2 is non-zero. For convenience,

we reproduce Equation 6.2 and the numerator of Equation 6.31 below as

f1 (N;m; �; k) =
N�kX

`=max(�;m+��k)

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�
(15.1)

and

f2 (N;m; �; k) = (�1)��1
 
��1X
s=0

(�1)s
�
N � k
s

��
N � s� 1

m+ �� s� 1

�
�
�

k � 1
m+ �� 1

�!
(15.2)

for 1 � k � N � �.

Remark 15.1 Note that f2 (:) is not the original formula, in that the relationship
�
m
n

�
=
�
m

m�n
�
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15.2. Comparisons for the 	1-Process

has been applied to the second combinatorial term. This changes the number of terms in both the

numerator and denominator to m+ �� s� 1, thereby removing the dependency of the number of

terms on the (large) number N ; f1 (:) is already in this form.

Remark 15.2 In the following, one may determine the counts of operations accurately to within

a small constant of the ones shown here. This discrepancy could arise as the result of assuming

di¤erent capabilities of the CPU being used and the method of coding. We are interested here in

asymptotic behaviour and order-of-magnitude comparisons, so the constant terms are of negligible

signi�cance.

Notation 15.3 For non-negative integers m and n with m � n, let the number of additions and/or

subtractions and multiplications and/or divisions in the calculation of
�
m
n

�
be given by C+ (m;n)

and C� (m;n), respectively. As tests of equality or inequality take about the same time as additions,

counts for these are included with the additions, as are assignments. These two counts are clearly

algorithm-dependent.

We now provide a simple algorithm for the calculation of
�
m
n

�
, and determine the counts for this

algorithm. It is not optimal for all CPUs, but the di¤erence will not e¤ect the order of magnitude

of the counts for large values of n.

Algorithm 15.4 The calculation of
�
m
n

�
for n � 0 that will be used to determine C+ (m;n) and

C� (m;n). It is based on writing
�
m
n

�
=
Qn
i=1

m�i+1
i .

Product := 1; // 1 assignment

i := 1; // 1 assignment

while i <= n do // n+1 tests

begin

Product *= (m-i+1)/i; // 2n additions, n divisions, n multiplications

i += 1; // n additions

end;

Lemma 15.5 The counts C+ (m;n) and C� (m;n) are given by

C+ (m;n) = 4n+ 3 (15.3)

and C� (m;n) = 2n. (15.4)

Proof. Using Algorithm 15.4 gives

C+ (m;n) = 1 + 1 + (n+ 1) + 2n+ n = 4n+ 3
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and

C� (m;n) = n+ n = 2n

as required.

We now apply Lemma 15.5 to count the numbers of addition-like and multiplication-like oper-

ations for the sum
Pb

i=a

�
i+x
y

��
i+w
z

�
.

Notation 15.6 For non-negative integers a; b; x; y; z and w, with b � a, y � 0, z � 0, a+ x � y

and a+w � z, let the number of additions and/or subtractions and multiplications and/or divisions

in the calculation of
Pb

i=a

�
i+x
y

��
i+w
z

�
be given by S+1 (a; b; x; y; w; z) and S

�
1 (a; b; x; y; w; z), respec-

tively. As tests of equality or inequality take about the same time as additions, counts for these are

included with the additions, as are assignments. These two counts are clearly algorithm-dependent.

Let S+2 (b; x; w; z) and S
�
2 (b; x; w; z) be the corresponding counts for the sum

Pb
i=0 (�1)

i �x
i

��
w�i
z�i
�
.

Let S+3 (d) and S
�
3 (d) be the corresponding counts for multiplying a constant by (�1)

d.

As the algorithm uses standard alphanumeric characters for identi�ers, we de�ne replacements

for the names of the functions for numbers of operations.

Notation 15.7 Let CP(m,n) and CT(m,n) be the functions that return the counts for C+ (m;n)

and C� (m;n), respectively, and let C(m,n) be the function that returns the value of
�
m
n

�
. Fur-

thermore, assume that the functions are in-line functions, so that there is no overhead involved in

calling them.

Algorithm 15.8 The calculation of the sum
Pb

i=a

�
i+x
y

��
i+w
z

�
for y; z � 0, that will be used to

determine S+1 and S
�
1 .

Sum := 0; // 1 assignment

i := a; // 1 assignment

while i <= b do // b-a+2 tests

begin

Sum += C(i+x,y) * C(i+w,z); // CP(i+x,y)+CP(i+w,z)+1 additions

// CT(i+x,y)+CT(i+w,z)+1 multiplications

i += 1; // (b-a+1) additions

end;

Lemma 15.9 The counts S+1 (a; b; x; y; w; z) and S
�
1 (a; b; x; y; w; z) are given by

S+1 (a; b; x; y; w; z) = (b� a+ 1) (4y + 4z + 9) + 3 (15.5)

and S�1 (a; b; x; y; w; z) = (b� a+ 1) (2y + 2z + 1) . (15.6)
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Proof. Using Algorithm 15.8 gives

S+1 (a; b; x; y; w; z; d)

= 1 + 1 + (b� a+ 2) +
 

bX
i=a

�
C+ (i+ x; y) + C+ (i+ w; z)

�
+ (b� a+ 1)

!

+ (b� a+ 1)

= 3 (b� a+ 1) + 3 +
bX
i=a

[(4y + 3) + (4z + 3)] by Lemma 15.5

= 3 (b� a+ 1) + 3 + (b� a+ 1) (4y + 4z + 6) ,

from which the result is easily obtained, and

S�1 (a; b; x; y; w; z) =
bX
i=a

�
C� (i+ x; y) + C� (i+ w; z)

�
+ (b� a+ 1)

= (b� a+ 1) +
bX
i=a

[(2y) + (2z)] by Lemma 15.5

= (b� a+ 1) (2y + 2z + 1)

as required.

Algorithm 15.10 The calculation of the sum
Pb

i=0 (�1)
i �x

i

��
w�i
z�i
�
for x � b; w � z � b, that will

be used to determine S+2 and S
�
2 .

Sum := 0; // 1 assignment

i := a; // 1 assignment

Sign := 1 // 1 assignment

while i <= b do // b-a+2 tests

begin

// Sum is incremented or decremented (b-a+1) times,

// giving rise to:

// CP(x,i)+CP(w-i,z-i)+1 additions

// CT(x,i)+CT(w-i,z-i)+1 multiplications

// Similarly, the Sign changes (b-a+1) times in the loop

if Sign = +1 then // (b-a+1) assignments

begin

Sum += C(x,i) * C(w-i,z-i);
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15.2. Comparisons for the 	1-Process

Sign := -1;

end

else // Sign = -1

begin

Sum -= C(x,i) * C(w-i,z-i);

Sign := +1;

end;

i += 1; //(b-a+1) additions

end;

Lemma 15.11 The counts S+2 (b; x; w; z) and S
�
2 (b; x; w; z) are given by

S+2 (b; x; w; z) = (b+ 1) (4z + 11) + 4 (15.7)

and S�2 (b; x; w; z) = (b+ 1) (2z + 1) . (15.8)

Proof. Using Algorithm 15.10 gives

S+2 (a; b; x; w; z; d)

= 3 + (b� a+ 2) +
 

bX
i=a

�
C+ (x; i) + C+ (w � i; z � i)

�
+ (b� a+ 1)

!
+ 3 (b� a+ 1)

= 5 (b� a+ 1) + 4 +
bX
i=a

[(4i+ 3) + (4 (z � i) + 3)] by Lemma 15.5

= 5 (b� a+ 1) + 4 + (b� a+ 1) (4z + 6) ,

from which the result is easily obtained, and

S�2 (a; b; x; w; z; d) =
bX
i=a

�
C� (x; i) + C� (w � i; z � i)

�
+ (b� a+ 1)

= (b� a+ 1) +
bX
i=a

[(2i) + (2 (z � i))] by Lemma 15.5

= (b� a+ 1) (2z + 1)

as required.

Algorithm 15.12 The calculation of (�1)d c, where c is a constant.

const

Signs : array[Boolean] of Integer = (-1,1);
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Sign := Signs(Even(d)); // 1 assignment, 1 addition

// and the equivalent of 2 additions

// The assignment to Result occurs once

if Sign = +1 then // 1 test

begin

Result := c;

end

else // Sign = -1

begin

Result := -c;

end;

Lemma 15.13 The counts for calculating S+3 (d) and S
�
3 (d), as determined by Algorithm 15.12,

are given by

S+3 (d) = 6 (15.9)

and S�3 (d) = 0. (15.10)

Proof. The results follow immediately from the algorithm.

We now apply Lemma 15.5 to Equations 15.1 and 15.2 to give the corresponding counts as

C+1 (m;n), C
�
1 (m;n) and C

+
2 (m;n), C

�
2 (m;n) in the following Theorem.

Theorem 15.14

C+1 (N;m; �; k) = (N � k � �+ 1) (4 (m+ �) + 1) + 9, (15.11)

C�1 (N;m; �; k) = (N � k � �+ 1) (2 (m+ �)� 1) , (15.12)

C+2 (N;m; �; k) = (�+ 1) (4 (m+ �) + 7) + 11, (15.13)

and C�2 (N;m; �; k) = 2 (�+ 1) (m+ �)� �� 2. (15.14)
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Proof. The number of additions and subtractions in Equation 15.1 is given by

C+1 (N;m; �; k)

= the number of additions and subtractions in f1 (N;m; �; k)

= the number in
N�kX
`=�

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�

= S+1 (�;N � k; k � �� 1;m� 1;�1; �� 1) + 6 6 extra subtractions

= [(N � k � �+ 1) (4 (m� 1) + 4 (�� 1) + 9) + 3] + 6 by Lemma 15.9,

from which the result is easily obtained.

The number of multiplications and divisions in Equation 15.1 is given by

C�1 (N;m; �; k) = the number of multiplications and divisions in f1 (N;m; �; k)

= the number in
N�kX
`=�

�
`+ k � �� 1

m� 1

��
`� 1
�� 1

�
= S�1 (�;N � k; k � �� 1;m� 1;�1; �� 1)

= (N � k � �+ 1) (2 (m� 1) + 2 (�� 1) + 1) by Lemma 15.9,

from which the result is easily obtained.

The number of additions and subtractions in Equation 15.2 is given by

C+2 (N;m; �; k)

= the number of additions and subtractions in f2 (N;m; �; k)

= the number in (�1)��1
 
��1X
s=0

(�1)s
�
N � k
s

��
N � s� 1

m+ �� s� 1

�
�
�

k � 1
m+ �� 1

�!

= S+3 (�� 1) + S
+
2 (�� 1; N � k;N � 1;m+ �� 1) + 1 + C+ (k � 1;m+ �� 1) + 8

= 6 + [� (4 (m+ �� 1) + 11) + 4] + 1

+ [4 (m+ �� 1) + 3] + 8 by Lemmas 15.11 and 15.5,

from which the result is easily obtained.
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Calculation Count
C+1 (10 000; 2; 2; 5 000) 84 992
C+2 (10 000; 2; 2; 5 000) 80

Table 15.1: Comparison of Counts: C+1 vs C
+
2 for (N;m; �; k) = (10000; 2; 2; 5000)

The number of multiplications and divisions in Equation 15.2 is given by

C�2 (N;m; �; k)

= the number of multiplications and divisions in f2 (N;m; �; k)

= the number in (�1)��1
 
��1X
s=0

�
(�1)s

�
N � k
s

��
N � s� 1

m+ �� s� 1

��
�
�

k � 1
m+ �� 1

�!

= S�3 (�� 1) + S
�
2 (�� 1; N � k;N � 1;m+ �� 1) + C� (k � 1;m+ �� 1)

= 0 + � (2 (m+ �� 1) + 1) + 2 (m+ �� 1)

= 2 (m+ �) (�+ 1)� �� 2,

from which the result is easily obtained.

Theorem 15.14 shows clearly that the latter formula is far more e¢ cient for large values of

N when the other values are �xed. In fact, the expressions in the latter case are independent of

both N and k. For example, adding a further 50 000 cars makes no di¤erence to the number of

operations required. Table 15.1 provides an example. Note that there are 3 orders of magnitude

di¤erence between the two calculation methods in this example.

A comparison of the number of multiplications and divisions provides a similar result.

In the general case of calculating f1 (:) and f2 (:) for all values of k, the example above provides

an average comparison. In fact, as k approaches N , the di¤erence will lessen, but as k approaches

0, the ratio of the two counts will increase by one order of magnitude for each order of magnitude

increase in N , for �xed m and �.

The numerical gains in determining the transformed and alternative formulae are therefore

justi�ed, without considering the improved accuracy due to the vast reduction in the number of

operations involved. Recall that the latter formula also enabled the moments to be determined as

an expression without the sum over k involved, which reduces the number of calculations required

to determine the moments by a further order of magnitude.

Scholium 15.15 These reductions will apply to all applications that are based on the 	1-probabil-

ities, regardless of whether or not the Decomposition Formula or the Minimal Covering Theorem

have been applied.
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Calculation Time (seconds)P9996
k=1 f1 (10 000; 2; 2; k) 1 696P9996
k=1 f2 (10 000; 2; 2; k) 1

Table 15.2: Comparison of Execution Times: f1 vs f2 for (N;m; �) = (10000; 2; 2)

15.2.3 Execution Times

When calculating formulae like those developed here, users of them would like to know whether

it would be worth while coding one algorithm or another. Therefore, in addition to the counts

presented in the previous Section, a timing comparison is made for some combinations of values

for f1 (:) and f2 (:). Table 15.2 presents a single comparison. The result is persuasive.

Although the times were produced on a 50 MHz 80486DX-based computer with a mathematical

co-processor, the comparisons are still valid, and have been kept because of the nicety of the 1-

second time for f2. The Borland C++ compiler was used.

15.2.4 Improvements by Application of the Decomposition Formula

15.2.4.1 Introduction

The purpose of Decomposition Formula provided in Section 6.9.2 is to eliminate duplicate calcu-

lations of 	-probabilities.

15.2.4.2 Improvements for the 2-D Zig-Zag Problem

Table 6.2 provides an example of the decomposition coe¢ cients for the 2-D Zig-Zag Problem. It

was shown in Section 6.9.4 that a 21-fold reduction in the number of calculations is obtained, which

is clearly an order of magnitude improvement.

15.2.4.3 Improvements for the 2-D Gap Problem

We can expect even better improvements by applying the Decomposition Theorem to the 2-D Gap

Problem. This is provided in context in Section 13.5.10, and is followed by a discussion on how to

further speed up the calculations in Section 13.5.11.

Section 13.5.10 includes tables of numerical results for comparison. The following paragraph

has been copied here to emphasise the level of gains made by use of the Decomposition Theorem.

The coe¢ cients are provided in Table 13.14. Summing these values gives the total

number of terms as 341, which is not only exponentially insigni�cant compared with

the original number of terms, namely 1:4 � 10192, but also permits the calculation of
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the means and expectations in much less than a second. This is an improvement by

about 189 orders of magnitude.

Both theoretical and observed reductions in execution times for at least one case produced a

further reduction by 3 orders of magnitude.

15.2.5 Improvements by Application of the Minimal Covering Theorem

Section 6.10.3 on Gains Made by Application of the Minimal Covering Theorem shows that the

number of calculations required for the Fundamental Formulae is exponential with a factor of at

least 2. Hence it is exponentially worthwhile searching for and removing redundant A-sets prior

to performing any calculations.

The Zig-Zag Problems, which appear in Section 13.6, provide clear examples of the e¤ect on

calculation times by application of this theorem.

15.3 Comparisons for the 	2-Process

15.3.1 Introduction

Here we provide numerical examples of how much of an improvement the reduced distribution

formula, as given by Theorem 7.20, is, over the original distribution formula given by Theorem

7.9. To do so, we count each of the basic arithmetical operations, namely +, �, �, � and xy

involved in calculating The Bird-Watcher�s Expectation. The counts for the reduced conditional

expectation are also supplied. The counts for the limiting distribution are provided to illustrate

the enormous reduction in calculation time that would arise for large values of n.

These counts were determined by replacing the code that was used to determine the expecta-

tions, with counters for each type of operation. Some calculations are not included; for example,

assignments of values to variables and determining the maximum or minimum:

To produce The Bird-Watcher�s Expectation, it is necessary to use more digits of accuracy than

the standard compilers provide. This is investigated below.

Then we compare execution times for calculating The Bird-Watcher�s Expectation using the

original distribution formula and the reduced expectation formula. This was discussed in Section

4.8.

Finally, we investigate the e¤ect on execution times when the number of digits of accuracy is

increased for various values of N and n. This provides some useful information about how the

tool, MuPad Light, behaves.
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Formula + � � = xy Total
Original 558 1 048 820 550 237 3 213

Reduced 40 107 57 55 22 281

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.3: Operation Counts (in 1,000�s) for 	2 (50; 50; 10; 10; 5))

Formula + � � = xy Total
Original 2 800 5 281 4 179 2 823 1 206 16 288

Reduced 90 237 129 123 49 628

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.4: Operation Counts (in 1,000�s) for 	2 (50; 92; 10; 10; 5))

15.3.2 Count of Operations

The four counts described above are provided in several tables and several remarks are made about

them.

Remark 15.16 For 	2 (50; n; 10; 10; 5), Table 15.3 shows that for n = 50, the numbers of all types

of operations are less for the reduced distribution formula than for the reduced expectation based on

that reduced distribution formula; the comparison is 281 < 622. It turns out that for n = 91, this

is still true, but for values of n > 91, the latter calculation has a lesser total number of operations,

as illustrated in Table 15.4; the comparison is 628 < 622. Of course, the counts in the latter case

remain constant.

Remark 15.17 Comparing Tables 15.3 and 15.5, observe that increasing the value of n from 50 to

500 has a profound e¤ect on the �rst two formulae being considered. The total count of operations

for the reduced formula rises by a factor of about 14; 4 003 357280 957 ' 14: 249. For the original formula,

the factor is about 207 (from 665 644 390
3 212 890 ).

Comparing Tables 15.5 and 15.6 observe that increasing the value of n from 500 to 5; 000

produces corresponding factors of 10 (from 41 227 357
4 003 357 ) and 106 (from

70 662 334 390
665 644 390 ): This clearly

illustrates the linear and quadratic relationships, respectively.

Remark 15.18 Tables 15.5 and 15.7 illustrate that the counts are una¤ected by changes in N .

Remark 15.19 Tables 15.7 and 15.8 illustrate the e¤ect of doubling m.
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Formula + � � = xy Total
Original 113 629 214 952 171 381 116 330 49 352 665 644

Reduced 576 1 507 824 783 313 4 003

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.5: Operation Counts (in 1,000�s) for 	2 (50; 500; 10; 10; 5))

Formula + � � = xy Total
Original 12 047 719 22 802 445 18 204 569 12 367 081 5 240 520 70 662 334

Reduced 5 936 15 506 8 497 8 069 3 220 41 227

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.6: Operation Counts (in 1,000�s) for 	2 (50; 5000; 10; 10; 5))

Formula + � � = xy Total
Original 113 629 214 952 171 381 116 330 49 352 665 644

Reduced 576 1 507 824 783 313 4 003

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.7: Operation Counts (in 1,000�s) for 	2 (1000; 500; 10; 10; 5))

Formula + � � = xy Total
Original 306 944 810 047 704 391 554 952 139 205 2 515 539

Reduced 1 591 5 176 3 279 3 209 894 14 149

Expected 464 967 591 335 329 2 686

Limit 75 318 185 166 23 768

Table 15.8: Operation Counts (in 1,000�s) for 	2 (1000; 500; 20; 10; 5))

Formula + � � = xy Total
Original 155 668 407 352 353 887 277 745 70 675 1 265 326

Reduced 762 2 328 1 610 1 471 405 6 578

Expected 230 469 282 155 163 1 300

Limit 38 148 82 72 11 351

Table 15.9: Operation Counts (in 1,000�s) for 	2 (1000; 500; 10; 20; 5))
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Formula + � � = xy Total
Original 48 345 319 91 504 660 73 058 944 49 634 026 21 030 985 283 573 934

Reduced 11 891 31 061 17 022 16 164 6 450 82 587

Expected 111 225 134 73 79 622

Limit 19 70 38 33 5 165

Table 15.10: Operation Counts (in 1,000�s) for 	2 (1000; 10000; 10; 10; 5))

Digits E

10 25: 118

15 25: 118

19 25: 118

20 26: 889

5 000 26: 889

Table 15.11: Accuracy for Digits: N = 100

Remark 15.20 Tables 15.7 and 15.9 illustrate the e¤ect of doubling �.

Remark 15.21 Table 15.10 provides counts for The Bird-Watcher�s Problem for n = 10 000.

The total number of operations for the original distribution formula is 2:84� 1011, for the reduced

formula is 8:26�107, for the reduced expectation formula is 6:22�105, and for the limit is 1:65�105.

Remark 15.22 Aside from the mathematical value of producing the reduced expectation formula,

the practical value is that the total number of operations required to calculate The Bird-Watcher�s

Expectation is reduced by the factor 4:57� 105, which is more than 5 orders of magnitude.

15.3.3 Digits of Accuracy

15.3.3.1 Introduction

See Section 4.7 for a general discussion of Digits of Accuracy. Here, we provide tables with the

value of The Bird-Watcher�s Expectation for various numbers of digits of accuracy; MuPAD Light

2.0 was used to determine these results.

15.3.3.2 Example: The Bird-Watcher�s Problem

For (N;n;m; �; �) = (100; 50; 10; 10; 5), we can see from Table 15.11 that at least 20 digits of

accuracy were required.

For (N;n;m; �; �) = (1 000; 50; 10; 10; 5), we can see from Table 15.11 that at least 39 digits of

accuracy were required. In this case observe that there are negative values for E.
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Digits E

24 �3:052� 1012
38 �5:584� 102
39 25:531

50 25:531

1000 25:531

Table 15.12: Accuracy for Digits: N = 1000

15.3.4 Execution Times

In this section we estimate the amount of time it would take to calculate The Bird-Watcher�s

Expectation if the original distribution formula, Equation 7.13 of Theorem 7.9, were used. This

�gure is compared with the observed time to calculate the same expectation based on the reduced

expectation formula provided by Theorem 12.10. The comparisons are made by running the

programs on Athlon with enough RAM to ensure operations occur in memory.

Remark 15.23 Although a 100-mega-�op processor can process 108 �oating-point operations per

second, this is when the internal format for the numbers is used. If the internal format were to

accommodate numbers of the magnitude and accuracy required for The Bird-Watcher�s Problem,

the time to perform the necessary 2: 84�1011 operations would be 2: 84�103 seconds (~ 47 minutes),

using the original formula, and 10�4 seconds using the reduced expectation formula. Since the latter

has certainly been observed for small enough values of N and n for which there is no �oating-point

over�ow, and because the time to calculate the reduced expectation is independent of N and n, the

time of 10�4 seconds appears to be obtainable: However, this is not obtained.

Instead, it takes 38 904 seconds using an interpreted language1 that is 130 times slower than

compiled code. Dividing by the interpreted-language factor reduces the time to 299 seconds, which

is still a factor of 3�106 slower than required to do the calculations. Some of this can be attributed

to not counting the operations associated with conditional testing, assignments to variables and

determinations of maxima and minima: Some of this can be attributed to the use of functions and

procedures in a modular fashion and calling them many times with all of the required parameters

being passed each time.

However, the major contributors to the additional time required are due to not being able to use

the (optimised) hardware routines for �oating-point arithmetic, and the need to manipulate large

numbers of digits for both the mantissas and the exponents:

Tables 15.14 and 15.15 provide a comparison of times for calculating the conditional expectation

using the reduced expectation formula for various values of N and n; the former has MuPAD�s
1The time of 38 904 seconds was determined using MuPad 2.0. With MuPad 2.5 the value was 38 464 seconds.
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DIGITS parameter set to 20 and the latter to 50.

Note that as the number of operations in the formula is independent of both N and n, one

might theoretically expect all the entries in both tables to be equal. The di¤erences are due solely

to the need to manipulate multi-digit representations of �oating-point numbers.

Consider the calculation of the conditional expected waiting time for the with-replacement

model having parameters N = 50, n = 2000, m = 10, � = 10 and � = 5: Using a program compiled

with Delphi in which calculations were performed using 20-digit accuracy, the calculation took 2

hours, 12 minutes, 15:28 seconds for the original formula, and took less than 1 milli-second for the

reduced expectation formula. Assuming the latter took 1 milli-second, this indicates the ratio is

at least 7 935 280 : 1. The equivalent ratio when the reduced distribution formula Equation 7.37

of Theorem 7.20 is used, is 650 : 1.

The Bird-Watcher�s Expectation has N = 1000 and n = 10 000. The time to calculate The

Bird-Watcher�s Expectation using MuPad Light 2.0 with 50-digit accuracy and the reduced expec-

tation formula was 38 904 seconds (' 10: 8 hours).

Therefore, assuming the ratio applies to MuPAD Light 2.0, the original formula can be ex-

pected to take longer than 7 935 280 � 38 904 seconds, which is approximately 9 783 years. This

is optimistic, because it takes longer as the accuracy increases and also as the number of required

digits to store values increases; this is discussed in Section 15.3.5.

This provides an excellent justi�cation for providing the reduced formulae for the conditional

rising factorial moments, even though the reduced formula is so complicated.

15.3.5 Timings versus the Number of Digits of Accuracy

In this section, we examine the e¤ect that changes in the number of digits of accuracy have when

calculating values for the reduced expectation formula given by Theorem 12.10 with ` = 1. In

Section 15.3.3.2, it was shown that 39 digits are required for (1 000; 50; 10; 10; 5), but here we are

concerned only with the execution times and not with the accuracy of the results.

Table 15.13 provides the times taken to calculate The Bird-Watcher�s Expectation for the case

(N;n;m; �; �) = (100; n; 10; 10; 5) with n = 100 and 200; these were determined using MuPAD

Light 2.0 on Celeron. Observe the 100-fold increase in execution time when DIGITS is increased

from 1 000 to 10 000. Observe that for a large number of digits of accuracy, the number of digits

of accuracy is much more important than the size or quantity of the numbers involved.

Several things were discovered when using MuPAD Light 2.5 on Athlon to calculate The Bird-

watcher�s Expectation for (N;n; 10; 10; 5) for various values of N and n; Tables 15.14 and 15.15
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Digits n = 100 n = 200

10 21 33

100 24 36

1 000 196 213

10 000 16 577 16 972

Table 15.13: Timings versus Digits of Accuracy for (100; n; 10; 10; 5)

Nnn 100 500 1000 5000 10000

50 4:7 22:9 70:7 1 748:2 6 995:7

100 5:5 35:2 118:8 3 108:8 12 885:2

200 6:5 51:3 182:2 4 866:5 19 887:4

500 7:4 69:9 249:3 6 838:8 28 351:3

1000 8:5 89:8 330:3 9 153:8 38 463:8

Table 15.14: Comparison of Times (in seconds) for the Reduced Conditional Expectation using 20
Digits

provide the times in seconds using 20 and 50 digits of accuracy, respectively.

Mathematically, we expect the times to be independent of both N and n. However, due to

the need to use software to emulate arithmetical operations with a large number of digits, there

appears to be an exponential increase in the time required as n increases. The value of N is not

as signi�cant as the value of n in causing a change to the execution time.

For (1 000; 1 000; 10; 10; 5), increasing the number of digits of accuracy from 50 to 1 000 increases

the time to 389:2 seconds, which is still only a minor increase of just 17:8%.

That the execution times increase only marginally between 20 and 50 digits and even between

50 and 1 000 digits is somewhat unexpected. The increase between 1 000 and 10 000, as illustrated

in Table 15.13, is much more dramatic. This table also illustrates that the di¤erence between 10

digits and 100 digits is marginal.

Nnn 100 500 1000 5000 10000

50 4:9 23:1 70:9 1 748:4 6 995:9

100 5:7 35:4 119:3 3 109:9 12 885:5

200 6:7 51:3 182:4 4 866:8 19 887:7

500 7:6 70:2 249:6 6 839:6 28 351:4

1000 8:7 90:7 330:5 9 154:6 38 464:2

Table 15.15: Comparison of Times (in seconds) for the Reduced Conditional Expectation using 50
Digits
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16.1. Introduction

16.1 Introduction

The testing of the randomness of data, as it pertains to the distributions provided in this thesis,

is described in Section 2.12. In this chapter, we provide a few simple tests that are based on some

of these distributions, and illustrate them with examples. This is by no means exhaustive, as any

of these distributions may be used to create a test.

The �rst group of related tests are based on the 	1 distribution. The �rst of these is a permu-

tation test that uses the without-replacement waiting-time distribution to produce a probability

measure for each permutation of possible arrival sequences. The second is a chi-square test based

on the expected waiting times.

The second group of related tests are referred to as the Cake Display Tests. These are based

on the measures of the dynamic state of disjoint G-sets that are described in Section 11.6. These

are chi-square tests based on the expected numbers of closed, open and empty G-sets after each

arrival.

The third group, consisting of just one test, the Bird-Watcher�s Test, is based on the 	2 distri-

bution. It can be used to test the statistical hypothesis that a sample of independent observations

is taken from a continuous distribution, in the same way that the empty cell test is used; the empty

cell test is described by Kolchin et al [50].

16.2 Tests Based on the 	1-Distribution

16.2.1 Introduction

The order of arrivals in a 	1 process may be viewed as a permutation on N items. Structures like

G-sets with � > 1, batches, or varieties, change the way these permutations are used and counted,

but do not change their underlying nature. Hence they are suitable for testing the randomness of

a random number generator. Here we use only a simple form of the process. There are no batches

or varieties, and there are no taboo sets. It has r = 1 and � = � = 1. It is straightforward to

extend the test to these more-general models.

16.2.2 Example Data

Suppose a random number generator is used to randomise the order of N items. Within the context

of queueing in lanes, these N items correspond to vehicles parked in a lane with � = 1 arrivals per

vehicle, and a permutation corresponds to the arrival sequence of drivers.
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Vehicle Sequence (j) 1 2 3 4 5 6 7 8 9 10

Arrival Sequence 2 3 1 5 4 8 10 9 6 7

Observed Wait (oj) 0 2 1 0 1 0 0 4 2 3

Expected Wait (ej) 0 11
6

11
4

33
10

11
3

55
14

33
8

77
18

22
5

9
2

Table 16.1: Example: Arrival Sequence for a 	1-Process

An example for N = 10 is provided in Table 16.1. The �rst arrival is for vehicle 2, the second

arrival is for vehicle 3, etc. The arrival for vehicle 10, for example, waits until the arrivals for

vehicles 9, 6 and 7 have occurred; hence the observed wait for vehicle 10 is 3.

16.2.3 	1 Permutation Test

Silvey [78, 9.4] describes permutation tests in their general form. Under the null hypothesis, each

of the N ! distinguishable permutations are equally-likely. In this case, an extreme total wait at

either end of the spectrum would intuitively suggest a generated sequence is not random.

The maximum total wait is given by Equation 11.31 with s = N as

W (1)
max =

N2 (s� 1)
2s

=
N (N � 1)

2

= 45. (16.1)

Hence, out of all possible 10! arrival sequences, the total wait for any one of these sequences is in

f0; : : : ; 45g.

By enumerating the 10! sequences and counting the numbers of sequences for each of the

possible total waits, the cumulative distribution function for the total wait has been found, and

appears in Table 16.2; in the table, w is the wait and cp is the cumulative probability represented

as a percentage. The distribution function is displayed in Figure 16.1.

In the example presented in Table 16.1, the total wait is 13. From Table 16.2, only 3:1% of the

population of arrival sequences exhibits such a low wait or less. Assuming a 2-tailed alternative

hypothesis, this suggests there is insu¢ cient evidence to reject the null hypothesis at the 6% level.

Had the total wait been 12, the null hypothesis would have been rejected at the 4:4% level.
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w cp w cp w cp w cp w cp
0 0:0 10 1:1 20 15:3 30 54:8 40 92:8

1 0:0 11 1:6 21 18:2 31 59:6 41 94:9

2 0:0 12 2:2 22 21:4 32 64:0 42 96:4

3 0:0 13 3:1 23 24:9 33 68:6 43 97:8

4 0:0 14 4:0 24 28:6 34 72:4 44 98:9

5 0:1 15 5:3 25 32:6 35 76:4 45 100:0

6 0:2 16 6:7 26 36:6 36 80:6

7 0:3 17 8:5 27 40:9 37 84:5

8 0:5 18 10:5 28 45:5 38 87:7

9 0:7 19 12:8 29 50:3 39 90:6

Table 16.2: Cumulative Distribution Function for the Permutation Test Based on the 	1-Process
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Figure 16.1: Distribution Function for the Permutation Test Based on the 	1-Process
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16.3. Cake Display Tests

16.2.4 	1 Chi-Square Test

Silvey [78, 7.4] describes the general �2 test as a test based solely on restricted estimates that is

a replacement for the likelihood-ratio test. Silvey [78, 7.4.2] goes on to derive the commonly-seen

expression for the test statistic when �: : : the family of possible distributions on the sample space

is multinomial, : : :�as

�2 =
X (observed - expected)2

expected
. (16.2)

In this case, the expected waiting times are given by Equation 11.102 with m = j � 1 as

ej =
11
2
j�1
j+1 . The observed waits, oj , and the expected waits, ej , are displayed in Table 16.1. As

the arrival for the �rst vehicle always waits zero, we need only consider j 2 f2; : : : ; 10g. Hence

�28 =

10X
i=2

(oi � ei)2

ei
' 16: 249. (16.3)

The tabulated values for probabilities 0:05 and 0:25 are �28;:05 = 15:51 and �
2
8;:025 = 17:53. This

suggests rejecting at the 5% level, the hypothesis that the sequence was generated randomly, but

not at the 2:5% level.

16.3 Cake Display Tests

16.3.1 Introduction

From Section 11.6 on Measuring of the Dynamic State of Disjoint G-Sets, it is possible to deter-

mine the expected number of G-sets closed, open and empty after each arrival. We can use this

information to create a test for the randomness of a permutation on N symbols by partitioning the

original sequence into  disjoint groups of size �i, i 2 f1; : : : ; g, with
P

i=1 �i = N , and basing

a �2 test on one of these three measures (or one of the others mentioned in Section 11.6) as if

the observed sequence corresponds to an arrival for one of the  G-sets. We must also select the

multiplicities, dij�i, for each group. This is su¢ cient to describe the tests.

16.3.2 Example Data

Suppose a random number generator is used to randomly sequence N = 10 items, and it resulted

in the observed sequence displayed in Table 16.3.

Using the language of the Cake Display Problem, choose  = 5 distinguishable cake types, with

�i � 2 slices per cake, and di � 1 cake of each type. Since di � 1, the model is considered to be

without multiplicities, and therefore the results of Section 11.6.4 are applicable.
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16.3. Cake Display Tests

Original Sequence 1 2 3 4 5 6 7 8 9 10

Observed Sequence 2 1 3 5 10 9 8 7 4 6

Observed Closed 0 1 1 1 1 2 2 3 4 5

Observed Open 1 0 1 2 3 2 3 2 1 0

Observed Empty 4 4 3 2 1 1 0 0 0 0

Expected Closed 0 0: _1 0: _3 0: _6 1: _1 1: _6 2: _3 3: _1 4 5

Expected Open 1 1: _7 2: _3 2: _6 2: _7 2: _6 2: _3 1: _7 1 0

Expected Empty 4 3: _1 2: _3 1: _6 1: _1 0: _6 0: _3 0: _1 0 0

Table 16.3: Example: Cake Display Test with  = 5

The observed and expected numbers of cakes closed, open and empty are provided in Table

16.3, where the expected number open is given by Equation 11.230 with � = 1 as

Npa (k; �) =

X
i=1

�i�1X
�=�

�
�i
�

��N��i
k��

��
N
k

�
=

5X
i=1

1X
�=1

�
2
�

��
10�2
k��

��
10
k

�
=

10
�
8

k�1
��

10
k

� , (16.4)

the expected number closed is given by Equation 11.224a as

Nc (k) =

X
i=1

�N��i
k��i

��
N
k

�
=

5
�
8

k�2
��

10
k

� ; (16.5)

and the expected number empty is given by Equation 11.228 as

Ne (k) =

X
i=1

�N��i
k

��
N
k

�
=

5
�
8
k

��
10
k

� . (16.6)

The latter expectation could be calculated by subtracting the sum of the other two expectations

from the number of cakes.

As the observed and expected values are always equal for j = 1, N � 1 and N , the �2 statistic

is based on the other N � 3 values.
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16.3. Cake Display Tests

Original Sequence 1 2 3 4 5 6 7 8 9 10

Observed Sequence 2 1 3 5 10 9 8 7 4 6

Observed Open 1 1 1 1 2 2 2 2 1 0

Expected Open 1 1: _5 1:8_3 1:95 1:98 1:95 1:8_3 1: _5 1 0

Table 16.4: Example: Cake Display Test with  = 2

16.3.3 Displayed-Cake Test

The Displayed-Cake Test is based on the number of cakes started but not complete. Using the

numbers of G-sets open from Table 16.3 gives

�26 =

8X
i=2

(oi � ei)2

ei
' 3:12, (16.7)

which is < 12:59 = �26;0:05. In this case, the Cake Display Test indicates there is insu¢ cient

evidence to suggest the sequence is not random.

If the observed sequence were (10; 9; 8; 7; 6; 5; 4; 3; 2; 1), one would expect the null hypothe-

sis of randomness to be rejected. In this case, the sequence of numbers of displayed cakes is

(1; 0; 1; 0; 1; 0; 1; 0; 1; 0), which means �26 ' 11:6. Although this value is much larger than before,

the tabulated �26 value is not exceeded. This is most likely due to the magnitude of N . For N = 20

the reverse sequence produces �216 ' 54:0 > 34:27 = �216;0:005, and therefore randomness is rejected

quite signi�cantly.

Investigating the e¤ects of choosing di¤erent con�gurations for mapping the cakes to permuta-

tions is outside the scope of this thesis. One would intuitively think that increasing the number of

partitions of the original sequence into larger groups, might provide a greater ability to distinguish

between di¤erent patterns. This is illustrated by the following example.

For  = 2, �i � 5 and di � 1, the same observed sequence produces the observed and expected

values displayed in Table 16.4, where the expected number open is now given by

Npa (k; �) =

X
i=1

�i�1X
�=�

�
�i
�

��N��i
k��

��
N
k

�
=

2X
i=1

4X
�=1

�
5
�

��
10�5
k��

��
10
k

�
= 2

4X
�=1

�
5
�

��
5

k��
��

10
k

� . (16.8)

In this case, �26 ' 1:2, which is less than the value for the original case of  = 5, �i � 2 and di � 1.
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16.3. Cake Display Tests

16.3.4 Unsliced-Cake Test

The Unsliced-Cake Test is an empty cell test based on the number of cakes not yet started. This

test has been so-named because a cake may be deemed to be unsliced until the �rst order for a

slice of it occurs. Using the numbers of empty G-sets from Table 16.3 gives

�26 =
8X
i=2

(oi � ei)2

ei
' 1:13, (16.9)

which is < 12:59 = �26;0:05. In this case, the Unsliced-Cake Test indicates there is insu¢ cient

evidence to suggest the sequence is not random.

If the observed sequence were (10; 9; 8; 7; 6; 5; 4; 3; 2; 1), one would expect the null hypothe-

sis of randomness to be rejected. In this case, the sequence of numbers of unsliced cakes is

(4; 4; 3; 3; 2; 2; 1; 1; 0; 0), which means �26 ' 13:3. This value does indeed indicate that the sequence

is not random, whereas there was deemed to be insu¢ cient data to do so when using the Displayed-

Cake Test. This suggests that these two tests are sensitive to di¤erent kinds of non-randomness.

16.3.5 Eaten-Cake Test

The Eaten-Cake Test is based on the number of cakes that have been completely eaten. Using the

numbers of closed G-sets from Table 16.3 gives

�26 =
8X
i=2

(oi � ei)2

ei
' 8: 74 (16.10)

which is < 12:59 = �26;0:05. In this case, the Eaten-Cake Test indicates there is insu¢ cient evidence

to suggest the sequence is not random.

Observe that the major contribution to �26 is from the �rst term, whose value is
�
1� 0: _1

�2
=0: _1

' 7:1. This is because the �rst and second slices eaten were from the same cake, and this would be

considered unusual. This indicates that the Eaten-Cake Test is more sensitive to this occurrence

than either Displayed-Cake Test or the Unsliced-Cake Test.

If the observed sequence were (10; 9; 8; 7; 6; 5; 4; 3; 2; 1), one would expect the null hypoth-

esis of randomness to be rejected. In this case, the sequence of numbers of eaten cakes is

(0; 1; 0; 1; 0; 1; 0; 1; 0; 1), which means �26 ' 12:75. This value does indeed indicate that the se-

quence is not random, but by a lesser margin than by the Unsliced-Cake Test, whereas there was

deemed to be insu¢ cient data to do so when using the Displayed-Cake Test. This suggests that

these tests are sensitive to di¤erent kinds of non-randomness.
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16.4. Tests Based on the 	2-Distribution

16.4 Tests Based on the 	2-Distribution

16.4.1 Introduction

The order of arrivals in a 	2 process may be viewed as n independent observations chosen from N

possibilities with equal probability. Structures like G-sets with � > 1, batches, or varieties, change

the way these permutations are used and counted, but do not change their underlying nature.

Hence they are suitable for testing the randomness of independent observations. Here we use only

a simple form of the process. There are no batches or varieties, and there are no taboo sets. It

has r = 1, � = 1 < �, and m > 0. It is straightforward to extend the test to these more-general

models.

16.4.2 Bird-Watcher�s Test

The Bird-Watcher�s Test can be used to test the randomness of n independent observations chosen

from N possibilities with equal probability.

The test involves choosing a G-set, an A-set and a value for �, and comparing the waiting time

for the completion of A, measured from the �th distinct arrival for G, with the tail probabilities

provided by the distribution.

16.4.3 Example: The Decimal Digits of �

We test the hypothesis that the �rst 1 000 digits of � are random. Partition these digits of � into

n = 500 pairs.

Consider the 100 possible pairs of digits N = f00; 01; : : : ; 99g. Choose G = f00; 01; : : : ; 09g

and AnG = f90; 91; : : : ; 99g. Then N = 100, � = 10 and m = 10. Choose � = 1.

The probability that A will be completed with n = 500 has been determined by applying

Theorem 7.11 to be
v (n;N; �+m)

Nn
' 0: 876, (16.11)

so there is a high probability that this event will occur.

The �rst occurrence of an element of G appears as the 33rd pair of digits. The sets G and A

are completed at the 188th and 251st pairs of digits, respectively. Therefore the waiting time is

218.

The probability that a wait of k 2 f9; : : : ; 499g occurs is given by the reduced formula of
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16.4. Tests Based on the 	2-Distribution

Theorem 7.20. Performing the computations using MuPad gives

P (waiting time 2 f9; : : : ; 218g) ' 0: 112 (16.12)

and P (waiting time 2 f218; : : : ; 499g) ' 0: 767. (16.13)

As these two values are greater than 0:05, it is not necessary to consider the cases k = 0, k = �1

and k =1.

There is no evidence to suggest that the �rst 1 000 digits of � are not random.
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17.1. Introduction

17.1 Introduction

In essence, this thesis furthers the knowledge of random allocations by investigating new processes,

generalising known processes, providing techniques for analysing them, and providing a formal

structure for analysing particular occupancy urn models in which we have a sequence of urns and

throw balls into them at random, and either look at the �nal con�guration, or throw the balls in

one by one and consider the sequence of con�gurations, or a new occupancy urn model in which

we have a sequence of urns and throw balls into them one by one at random until the appearance

of a speci�ed con�guration occurs after or at the same time as an initial speci�ed con�guration

occurs. Emphasis has been placed on the new occupancy urn models, which have been named

	-processes.

We have seen how the original question posed and solved by Hauer and Templeton can be

transformed into more-general problems. These not only solve the original problem in a more

elegant manner, but also provide generalisations to their model of queueing in lanes as special

cases of the general theory. This enables the modelling of car movement from the lanes to be more

realistic. The results are applicable to a wider collection of problems.

This thesis provides a theoretical framework within which problems involving many aspects of

	-processes and related random allocation processes may be investigated. How well this framework

can be enlarged and adapted to other aspects of random processes and, in particular, to random

allocations theory, is something yet to be seen. However, a number of problems, including those

associated with actual processes in the real world, have been investigated and results determined.

This chapter provides a summary of the major accomplishments, suggestions for future inves-

tigations, and a �nal statement on the perceived value of this work.

17.2 Accomplishments

Here is a list of the major accomplishments.

1. Collected related information together in one text, with a bibliography that includes many

related references that have not previously been listed together, and in a few cases were

unknown to authors who published previously-known results as their own.

2. Provided a foundation of counting techniques for a large collection of processes. This in-

cludes providing uniform notation and de�nitions for without- and with-repetition arrivals

for waiting-time, static and dynamic models.

539



Conclusion 540

17.2. Accomplishments

3. Provided a solid framework for others to step into. This includes notation, de�nitions and

theorems, and a theoretical foundation. Applications are numerous, some of which required

further development of theory, and there are numerous examples, graphs, explanations, dia-

grams and tables to illustrate the concepts, ideas, techniques and results. Some of the results

are quite surprising, and suggest one consider asking similar questions in other contexts.

4. Developed and provided techniques that have value in themselves. The �rst of these occurs

in providing initial distributions, albeit producing ine¢ cient formulae, and then converting

these to more-e¢ cient forms that can also be used to provide much simpler and more e¢ cient

forms of the moments than if they were formed from the initial distribution. The bene�ts

of being able to �nd alternative interpretations and simpler derivations of formulae has been

successfully gained and utilised in this work. The second is the use of summation-by-parts

to produce these alternative forms. A third is to start with a generalised model and produce

known results as special cases. A fourth is the two-step reduction process from the initial

distribution to simpli�ed formulae for the without-replacement rising factorial moments and

with-replacement conditional rising factorial moments. Others are included in the following.

5. Discovered some unfavourable properties of Boole�s and Bonferroni�s inequalities, which the

author believes should be made known wherever they appear, and used to determine the

value of every application of them.

6. Replaced the ad-hoc method of Hauer and Templeton�s waiting-time model with a systematic

and easily-generalisable approach, and placed theirs within the general framework of random

allocation theory. The original concept of direction and vehicles being in front of a vehicle has

been removed as a property of the process. It has been replaced with the abstract concept

that one or more sets of elements need to be completed, measured from the completion of

a special set. This has been generalised in many, varied and complex ways, including to

with-replacement processes.

7. Replaced the ad-hoc method of determining some properties of the game SET and Sock-

Matching by a systematic and more-general approach, and determined several new properties

of both of these.

8. Formulated and analysed several generalisations of the Hauer-Templeton model, and placed

them within the context of the theory of random allocations.

9. Formulated and analysed with-replacement versions of without-replacement models.
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17.2. Accomplishments

10. Placed the work on 	-processes within the context of random processes.

11. Generalised the sock-sorting process in a natural and useful way, and applied it to a queueing

model of cakes on display.

12. The use of indicator functions to determine moments was generalised to apply to the more-

general form of sock-sorting that allows for multiple matches for the same kind of sock, and

also to more-complex models.

13. Derived several combinatorial and other identities. One of these is and old result that is now

proved by a very simple combinatorial argument.

14. Discovered the set-theoretic principle of inclusion and exclusion for the mini-max. This is a

discovery that enables the easy extension of waiting for the completion of a single A-set to

that of multiple A-sets, and makes it easy to determine distributions for other extensions to

the basic model.

15. Produced the Decomposition Formula and used it e¤ectively in applications. This provides

a structural view of the distributions, and also reduces calculation times.

16. Produced the Minimal Covering Theorem, and used it e¤ectively in applications. This re-

duces calculation times exponentially.

17. Considered several generalisations of the basic model, which have distributions that still

include the 	-probabilities (or 	-numbers) in their formulae; these are the incomplete ar-

rival stream, the incomplete G-set requirement, the incomplete A-set requirement, and the

inclusion of blockage sets.

18. Described the technique of �nding di¤erences by parts, and applied it to converting distri-

bution formulae to forms that are more e¢ cient, and used the resulting formulae to derive

very e¢ cient formulae for moments of those distributions.

19. Provided Markov Chains that can be used in simulations at the micro-view, and which may

be used to determine the macro-view probabilities.

20. Provided estimations of parameters given some knowledge of the waiting time.

21. Determined the platoon-size distribution, and showed that it has its own Minimal Covering

Theorem.
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17.3. Future Directions

22. Determined the maximum possible total wait in the uni-directional and bi-directional parking

lot models by inspired by ideas in optimisation theory and by incorporating some permutation

theory.

23. Provided asymptotic formulae for some with-replacement processes.

24. Investigated the dynamic state of disjoint G-sets, and compared the results for the simple

sock-matching problem with the more-complex Cake Display Problem.

25. Investigated distributions for models involving incomplete arrival streams, taboo sets, block-

ing, partial arrivals to A-sets, partial completion of the G-set, batch arrivals both without

and with varieties (both simultaneous and randomised), waiting for a minimum number of

completions of A-sets, and the clustering of completions.

26. Produced new applications for the original theory. Applications for the more-general theory

have been discovered or created; these include The Zig-Zag Problem and The Cake Display

Problem.

27. Analysed computational techniques that are useful or not useful in this case.

28. Analysed formulae from a computational viewpoint.

29. Wrote about 13 500 lines of code in Delphi and about 2 500 lines of code in MuPad to provide

numerical results for some of the more-complex applications, examples and timing-tests.

30. Solved some very di¢ cult and complex theoretical and practical problems.

17.3 Future Directions

17.3.1 Direct Determination of the Decomposition Formulae for the Zig-Zag

and Other Problems

The determination of the minimal coverings for the Zig-Zag Problems is very time-consuming, as

illustrated in Table 13.15. These are determined in order to calculate the decomposition coe¢ cients,

like those in Table 13.16. This calculation is also time-consuming, with 23 030 � 1 calculations

required for the centre cell in the 5 � 5 � 5 3-D Zig-Zag Problem, and 214 568 � 1 calculations for

cell (2; 2; 2); this is from Table 13.20.

There might be a way to determine the (maximum of) 125 decomposition coe¢ cients, not

by �rst determining the minimal coverings, but directly from the formulation of the problem.
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17.3. Future Directions

Hopefully this could be achieved by understanding the way these coe¢ cients are produced from

the coverings. If this could be done, then large versions of these models would be solvable.

The approach used in Section 13.5 on the 2-D Gap Problem might be useful.

17.3.2 Combined Model for all Variants of the Processes

It is clear how to proceed to determine the general 	-numbers and 	-probabilities for the case of a

partial A-set and a partial G-set being su¢ cient, an incomplete arrival stream (for 	1-processes),

batch arrivals, varieties, measuring from the �th arrival of G, and including taboo states. This

is so general and incorporates so many concepts and variables, that the formulae would be quite

complex and unwieldy. Information could not easily be gathered from such a general model without

limiting the variation of many of the variables. Should anyone need such a model, the ideas and

techniques have been provided.

17.3.3 With-Replacement Sampling for the Static and Dynamic Models

With-replacement sampling has been investigated only for the new waiting-time model. Investigat-

ing the static and dynamic models when the sampling mode is with-replacement would be useful,

as these have not been observed in the literature.

17.3.4 With-Replacement Generalisations, Extensions and Variations

There are several variations, generalisations and extensions of the basic without-replacement process

that have not been investigated for the with-replacement process. These could prove fruitful.

17.3.5 Balancing Overall Waiting Time in a Car Parking Lot

In the large parking lot example, occupants of the vehicles will have to queue at its exits while

tra¢ c enters the public road. One problem is to determine an optimal balance between having

a number of occupants waiting in lanes and waiting at the exits. Another problem may be to

determine the optimal number of exits for each lane length.

17.3.6 Optimising Arrival Times in order to Minimise Waiting Times

Open questions exist for further development opportunities. There is an organisation in Adelaide

that used multiple lanes with restricted access. The employees �nished work at roughly the same

time. However, in such a situation there may be a game-theoretic question of �nding the best time

to leave based on a distribution of leaving times of the other employees, such that the expected
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17.3. Future Directions

total time measured from the o¢ cial knock-o¤ time till the time one can exit is minimised; it

becomes a game when each of the employees tries to out-guess the others.

17.3.7 Dynamic Distributions

A dynamic distribution has been determined only for the without-replacement process, and is the

joint distribution of the number of G-sets that are open, closed and completed when the G-sets

are disjoint.

An extension to non-disjoint G-sets would be useful, in particular for application to the game

SET ; both for the single-card game and the batch game.

17.3.8 Replacing Completed Sets or Introducing New Sets

Allow G-sets to be replaced when they are completed and at least one of their corresponding A-sets

is completed, and let the process continue with the state of the other G-sets left unchanged. Now

what are the distributions for waits, for example? This is referred to as a dynamic system.

The Cake Display Model provides a useful context for this idea. If cakes are not being baked

during the process, then this would be a dynamic system with a �nite number of replacements,

and otherwise would be with an in�nite number of replacements.

Renewal theory might be applicable in the in�nite case.

17.3.8.1 Cake Display Problem with Immediate Replacements

Consider the Non-Unique-Cake Display Problem with the modi�cation that cakes may be added

to the total available according to a speci�ed model; for example, one new cake of each type is

baked every hour. Many of the questions that have been answered by this thesis could also be

asked about this new process. In particular, how long would a slice be on display? Many new

types of questions associated with traditional queueing systems may also be asked. For example,

how much storage will be required for cakes not on display? Assuming that an order for a cake

type that is not available is lost, how many sales will be lost?

Can the models be adapted to answer these new questions without recourse to calculus?

17.3.8.2 Learning Model

In the learning model, the dynamic introduction of new sets is equivalent to adding a new set of

knowledge items with a core set of knowledge and one or more sets of knowledge items that would

be su¢ cient for completion of that knowledge set. Some of the non-core knowledge items may
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have been learnt earlier. In the steady state, what is the time to completely learn new knowledge

measured from the time that knowledge is desired?

17.3.8.3 Hash Tables

In the case of hash tables, items may be removed as well as added, so it will take longer to complete

a set and some may never complete.

17.3.9 Balanced Allocations

Azar, Broder, Karlin and Upfal [5] consider balanced allocations in which several boxes are chosen at

random and a ball is placed into the one that has lower occupancy. They consider the consequences

in such applications as dynamic resource allocation, hashing and on-line load balancing. Given the

bene�ts demonstrated by this scheme, it might prove useful to extend the 	-model to this balanced

allocation model in order to determine various local properties of resources in those applications.

17.3.10 Renewal Theory

One could consider answering similar questions to those asked in renewal theory. One might also

wish to consider �rst passage time problems, recurrent states and returns.

17.3.11 Continuous Analogue

In the application involving ball-point pens, the incremental use could be of arbitrary size, and

there could be a distribution on the amount of usage. These variations could be applied to any of

the discrete models herein.

How well would a continuous model approximate the discrete models presented here? How

well would the discrete models approximate the continuous models? In which case would results

be more easily obtained?

17.3.12 Measures of the Dynamic State of Disjoint G-Sets

Determining the moments for measures of the dynamic state of disjoint G-sets for the with-

replacement case would be useful.

17.3.13 Batch Arrivals for 	2-Process

In the coupon-collector�s problem, Polya [69] provided formulae for the expected numbers of packets

required to complete a set of coupons when a �xed number of coupons is independently placed
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in each packet purchased. It would be interesting to know the precise e¤ect of batch size on

coupon-collector problems associated with the 	2-process, and in particular, The Bird-Watcher�s

Expectation and Probability. The distribution formulae can be produced for the 	2-process in a

similar fashion to the method employed herein for the 	1-process.

17.3.14 Extending Batch Arrivals: Cake Display Problem with Batch Orders

There could be a group order; for example, for a family. This could be modelled by randomised va-

rieties. It would be necessary to consider the possible cutting patterns, and to specify a probability

distribution for them.

17.3.15 Batch Arrivals with Limited Patterns

The section on without-replacement batch arrivals could be adapted to consider a sum over all

possible patterns. People going from a wedding to a reception: vehicles arrive at random with a

number of people, with a total equal to the number who attended the reception.

17.3.16 Batch Arrivals with a Probability Distribution on Size

The size of arrivals to vehicles parked in lanes would most likely be �xed, but would more likely

be random in the bombing raid model, for example.

17.3.17 The Use of Sums of Random Variables to Determine Moments

In Section 2.3.1 on Coupon Collecting, a comparison was made between determining the expected

waiting time until a complete set is observed for the �rst time directly from the distribution versus

writing the random variable as a sum of simpler random variables for which the means are known.

The latter technique is discussed in Feller [29, IX]. Is the latter technique applicable to any of the

	-processes? If so, what new identities result from it?

17.3.18 Recurrence Relationships

Recurrence relationships can provide rapid ways of calculating probabilities and expectations,

especially when many calculations are required using various values for the parameters involved.

They can also enable the determination of the generating function.

Result 17.1 A recurrence relationship for the 	-probabilities of �rst kind with � = 1, namely

	1 (N;m; k) =
1

N

�
1�

�
k � 1
m

�
=

�
N � 1
m

��
, (17.1)
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is given by

N (N + 1)	1 (N + 1;m+ 1; k + 1) = N � k + kN	1 (N;m; k) : (17.2)

This clearly provides an ability to determine 	1 iteratively, but how useful is it? Are there other

recurrence relationships possible for this case and the more general case � >= 1 and � � �?

17.3.19 Joint Distributions

It could be useful to have the joint distribution of the waiting time for  G-sets. This would enable

a better estimate of parameters when the knowledge of the actual waiting time for more than one

G-set is available.

Maybe the techniques associated with weakly independent events would provide good approx-

imations.

17.3.20 Clustering of Completions

The rate of completions for the case r � 1 and mi � 0 would be useful, for example, in determining

the number of arrival platoons arriving at an exit within each time interval.

Applying the theory of random-sized batch patterns could be useful, as one is, perhaps, more

likely to use clusters of units from a single implement in the case of ball-point pens.

17.3.21 Globally Independent Increments

Steinsaltz [79],[80] replaced the discrete time coordinate system by a continuous randomised time,

and converted results for the new process back to the original process through convergence the-

orems. Processes with independent increments are discussed in Feller [29],[30]. Perhaps these

techniques can be applied to 	-processes to determine asymptotic results in a similar way. It

would be interesting to see how those techniques could be modi�ed to analyse the non-unimodal

cake display problem.

17.3.22 Approximations

17.3.22.1 The Zig-Zag Problem

In the 2-D Zig-Zag Problem, it was observed that the probabilities appear to converge to their �nal

values as more paths are sequentially added. However, in the 3-D Zig-Zag Problem, choosing the

initial paths di¤erently causes the appearance of di¤erent convergent values, at least in the initial

stage. The results must end up being the same, but there are too many paths to consider directly.
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What form of approximation will be useful, and what bounds exist on it, is an open question.

Perhaps the recurrence relationships mentioned in Section 17.3.18 could be applied.

How many paths should one include to achieve a speci�ed degree of accuracy?

Are there some selections of paths that should be preferred over others in order to improve

both the speed and accuracy of this apparent convergence? How does convergence depend on the

relative size or the degree of intersection of the A-sets?

17.3.22.2 The Bird-Watcher�s Problem

In the with-replacement waiting-time model, given the degree of accuracy attained by considering

limN!1 P (T = k), for k 2 f�1;1g and n = �N , as an approximation for the true values, it

would be interesting to investigate the accuracy that would be attained for the conditional rising

factorial moments by using the same limiting process.

17.3.22.3 Pearson�s Method of Moments

Investigations into the use of Pearson�s Curves [67] and Pearson�s Moments [66] might �nd quite

accurate approximating distributions that could be applied to all of the intractable problems

provided in this thesis.

17.4 Finale

The major bene�ts of this new theoretical framework and the techniques it provides are yet to

be realised, just as Daniel Bernoulli�s seminal research in the mid-eighteenth century, which has

become known as the Classical Lot Problem, continues to be of interest and remains in use today.

This thesis may well have been titled

Foundations of Random Allocation Theory with Applications and Numerics.
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