Pathogenesis of aortic valve stenosis: bench to bedside approach

Doan Thi Minh Ngo
B.Pharm; B.Health Sci. (Hons)

A Thesis submitted to The University of Adelaide as the requirement for the degree of Doctor of Philosophy

Cardiology Unit, North Western Adelaide Health Service
Department of Medicine
University of Adelaide
TABLE OF CONTENTS

Table of Contents ... ii
Thesis Summary .. x
Declaration .. xvi
Acknowledgements ... xvii
Publications/Presentations xix

1.0 Chapter 1: INTRODUCTION 1

1.1 Anatomy of the aortic valve 2
1.2 Aortic stenosis .. 2
1.3 Features of stenotic aortic valve lesions 3
 1.3.1 Inflammation and lipid deposition 3
 1.3.2 Valvular matrix remodeling and fibrosis 4
 1.3.3 Calcification .. 6
1.4 Epidemiology ... 8
1.5 Clinical factors associated with development of aortic stenosis 9
 1.5.1 “Conventional cardiovascular risk factors” 9
 1.5.2 Other risk factors 9
1.6 Consequences of ASc 11
1.7 Consequences of AS 12
1.8 Factors associated with progression of ASc and AS 14
1.9 Methods of quantitating severity of AS 17
 1.9.1 Catheterization 17
 1.9.2 Echocardiography 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.2.1</td>
<td>Quantitating severity of AS</td>
<td>17</td>
</tr>
<tr>
<td>1.9.2.2</td>
<td>Quantitating severity of ASc</td>
<td>18</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Computed tomography</td>
<td>20</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Magnetic resonance imaging (MRI)</td>
<td>21</td>
</tr>
<tr>
<td>1.10</td>
<td>Treatment</td>
<td>22</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Possible therapy for ASc</td>
<td>22</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Treatment to slow progression of AS</td>
<td>23</td>
</tr>
<tr>
<td>1.10.2.1</td>
<td>Statin therapy</td>
<td>23</td>
</tr>
<tr>
<td>1.10.2.2</td>
<td>Angiotensin-converting enzyme inhibitor (ACEi)</td>
<td>26</td>
</tr>
<tr>
<td>1.10.3</td>
<td>Treatment of end-stage disease</td>
<td>28</td>
</tr>
<tr>
<td>1.10.3.1</td>
<td>Surgical intervention</td>
<td>28</td>
</tr>
<tr>
<td>1.10.3.2</td>
<td>Palliative symptomatic relief</td>
<td>29</td>
</tr>
<tr>
<td>1.11</td>
<td>Pathogenesis of AS: methodological constraints</td>
<td>30</td>
</tr>
<tr>
<td>1.12</td>
<td>Current animal models of AS</td>
<td>31</td>
</tr>
<tr>
<td>1.13</td>
<td>Postulated mechanisms for adverse outcomes of ASc/AS</td>
<td>34</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Underlying atherosclerosis</td>
<td>34</td>
</tr>
<tr>
<td>1.13.2</td>
<td>Presence of renal dysfunction</td>
<td>35</td>
</tr>
<tr>
<td>1.13.3</td>
<td>Platelet aggregability</td>
<td>36</td>
</tr>
<tr>
<td>1.13.4</td>
<td>Endothelial dysfunction</td>
<td>37</td>
</tr>
<tr>
<td>1.14</td>
<td>Endothelial function and dysfunction: vascular and valvular implications</td>
<td>38</td>
</tr>
<tr>
<td>1.14.1</td>
<td>The valve endothelium: normal function</td>
<td>40</td>
</tr>
</tbody>
</table>
1.15 Biochemical mechanisms of “endothelial dysfunction”: ……..
role of reactive oxygen species (ROS)

1.15.1 NAD(P)H oxidase(s)

1.15.2 Endothelial nitric oxide synthase as a source of ROS

1.16 Asymmetric dimethylarginine (ADMA)

1.16.1 Formation of ADMA

1.16.2 Clearance of ADMA

1.16.3 Pathophysiologic importance of ADM

1.17 Scope of the current study

2.0 CHAPTER 2: QUANTITATIVE ASSESSMENT OF AORTIC VALVE SCLEROSIS USING ULTRASONIC BACKSCATTER

2.1 Background

2.2 Methods

2.2.1 Study subjects

2.2.2 Evaluation of ASc

2.2.3 Doppler echocardiography

2.2.4 Ultrasound backscatter data analysis

2.2.5 Reproducibility

2.2.6 Statistics

2.3 Results

2.3.1 Subject/patient characteristics
3.2.6 Valvular function ... 103
3.2.7 Study analysis/statistics ... 104
3.3 Results ... 105
 3.3.1 Effects of vitamin D₂ on aortic valves assessed by 105
 echocardiography.
 3.3.2 Histology and immunohistochemistry 106
 3.3.3 Biochemistry ... 106
 3.3.4 Endothelial function ... 107
 3.3.5 Valvular function .. 108
 3.3.6 Other effects of vitamin D₂ 109
3.4 Discussion ... 109

4.0 CHAPTER 4: EFFECTS OF RAMIPRIL ON DEVELOPMENT OF 138
AORTIC VALVE STENOSIS IN RABBITS

4.1 Background .. 139
4.2 Methods ... 141
 4.2.1 Experimental protocol .. 141
 4.2.2 Preparation of solutions ... 142
 4.2.3 Echocardiographic measurements 143
 4.2.4 Calculation of ultrasound backscatter data analysis.... 143
 4.2.5 Histology and immunohistochemistry 144
 4.2.6 Quantification of staining 145
4.2.7 Endothelial function .. 146
4.2.8 Study analysis/statistics 146

4.3 Results ... 147

4.3.1 Effects of ramipril on aortic valves assessed by 147 echocardiography

4.3.2 Histology and immunohistochemistry 148
4.3.3 Biochemistry ... 149
4.3.4 Vascular endothelial function 150

4.4 Discussion .. 151

4.4.1 Clinical implications and study limitations 158

5.0 CHAPTER 5: Association of aortic stenosis with elevation of plasma concentrations of asymmetric dimethylarginine (ADMA)

5.1 Background .. 183

5.2 Methods ... 183

5.2.1 Study patients .. 184
5.2.2 Doppler echocardiography 185
5.2.3 Ultrasound backscatter analysis 185
5.2.4 Risk factors ... 186
5.2.5 Biochemical measurements 186
5.2.6 Hypotheses and statistical methods 187

5.3 Results ... 188
CHAPTER 6: Relationship between aortic valve sclerosis, endothelial function and platelet responsiveness to nitric oxide

6.1 Background 212

6.2 Methods 216
 6.2.1 Study subjects 217
 6.2.2 Doppler echocardiography 217
 6.2.3 Ultrasound backscatter data analysis . 217
 6.2.4 Risk factors 217
 6.2.5 Biochemical measurements 218
 6.2.6 Platelet aggregation 218
 6.2.7 Measurement of augmentation index (AIx) 219
 6.2.8 Statistical analyses 219

6.3 Results 220
 6.3.1 Subject characteristics 220
 6.3.2 Correlations between univariate parameters: 222
correlates with AVBS scores
 6.3.3 Interactions between univariate parameters 223
6.3.4 Stepwise multiple linear regression analyses 225

6.4 Discussion ... 225

7.0 CHAPTER 7: Implications and future directions 251

8.0 BIBLIOGRAPHY ...257
Experiments described in this thesis address the pathogenesis of aortic valve sclerosis/stenosis using a bench to bedside approach. In particular, the thesis begins with development of a technique using ultrasonic backscatter analyses to quantitate the early stages of aortic stenosis. Subsequent chapters utilized this methodology to quantitate aortic valve structural changes in a model and intervention study of aortic stenosis in rabbits. The last chapters are human studies designed to identify factors associated with presence of aortic sclerosis/stenosis; with particular interest in potential association of endothelial dysfunction/inflammation/platelet aggregation with abnormal aortic valve structure quantitated by ultrasonic backscatter. In Chapter 1 (Introduction) the relevant literature is reviewed.

Development of ultrasonic backscatter to quantitate aortic sclerosis (Chapter 2)

Aortic valve sclerosis (ASc) is detected when there is visual assessment of focal increases in echogenicity of the aortic valve most commonly assessed by echocardiography. However, there is no previously described method to quantitate degree of aortic valve structural abnormality as ASc is not associated with marked hemodynamic obstruction quantifiable by Doppler echocardiography. The current study used ultrasonic backscatter to quantitate aortic valve structural abnormality in patients assessed as having ASc based on valve appearances, compared to young healthy volunteers with normal aortic valves.
The results of the study indicate: 1) that the mean levels of aortic valve backscatter in ASc patients are approximately 60% greater than in young healthy volunteers (ie aortic valve backscatter scores ≥ 16dB are not consistent with normal aortic valve structure), 2) ultrasonic backscatter scores in ASc patients are directly correlated with subjective scoring of sclerosis and with a positive trend with transvalvular pressure gradients in patients with mild-moderate aortic stenosis, and most importantly, 3) ultrasonic backscatter is a reproducible technique, with mean differences between estimates based on repeat echocardiograms of 2.3 ± 1.7 (9.1%). These results indicate that ultrasonic backscatter could be used as a quantitative measure of aortic valve structural abnormality in epidemiology and for examination of interventions.

In vivo studies

Development of an animal model of aortic stenosis with vitamin D$_2$ (Chapter 3)

The aim of the study was to develop an appropriate animal model for AS. The study used vitamin D$_2$ alone at 25,000IU/4 days weekly (vit-D$_2$) for 8 weeks to induce AS in rabbits. Results showed that: 1) rabbits in the vit-D$_2$ group had significantly increased in transvalvular velocity and pressure gradients compared to rabbits in the control group (normal chow + drinking water); this was consistent for aortic valve ultrasonic backscatter scores; 2) aortic valve immunohistochemistry/histology showed marked calcification, neutral lipids, macrophage, and leukocyte infiltrations for rabbits in the vit-D$_2$ group (ie consistent with histology of human AS); 3) significant elevation of asymmetric dimethylarginine (ADMA) concentrations in the vit-D$_2$ group occurred
compared to controls over the 8 weeks treatment period; the change in ADMA concentrations correlated significantly with the change in transvalvular pressure gradients for rabbits in the vit-D2 group; 4) rabbits in the vit-D2 group had significantly impaired endothelium-dependent acetylcholine-induced aortic relaxation, and this effect was completely abolished by the nitric oxide synthase inhibitor (L-NAME); 5) the addition of 0.5% cholesterol-supplemented diet to the vitamin D2 regimen did not accentuate the development of AS. Thus, treatment with vitamin D2 at 25,000IU/4 days weekly for 8 weeks significantly induced AS with similar aortic valve pathology to that of human AS; therefore, the model is suitable for use in examining potential therapeutic interventions in AS.

Effects of ramipril on development of AS in rabbits (Chapter 4)

Using this animal model, this study aimed to examine the effects of the angiotensin-converting enzyme inhibitor (ACEi) ramipril on development of AS. Rabbits (n=28) treated for 8 weeks were divided into 2 groups: (a) vitamin D2 alone (n=10) (normal chow + 25,000IU vitamin D2 in drinking water); (b) vitamin D2/Ramipril (n=12) (normal chow+25,000IU vitamin D2/Ramipril (0.5mg/kg) in drinking water). Six further rabbits constituted a normal reference group (no treatment was given). The results for comparisons between vitamin D2/ramipril vs vitamin D2 alone were as follows: 1) ramipril-treated rabbits had significantly less severe hemodynamic obstructions (p<0.05, for both) as assessed by transvalvular velocity, and aortic valve area; with borderline reduction in aortic valve backscatter (p=0.08); 2) ramipril significantly reduced plasma
ADMA concentrations; 3) there was improvement in acetylcholine-induced aortic relaxation (p=0.056), with significant improvement in sodium nitroprusside-induced relaxation (p<0.05); 4) there was a strong inverse correlation between acetylcholine-induced aortic relaxation and aortic valve backscatter score (0<0.001), thus providing further evidence of the potential role of nitric oxide in retarding the development of AS in this model.

These data provide a strong rationale for the inception of a randomized trial of ACE inhibition as a strategy for limitation of AS progression in humans.

Human studies

Aortic stenosis is associated with elevated plasma levels of asymmetric dimethylarginine (ADMA) concentrations in humans (Chapter 5).

Given the findings that aortic stenosis induced by vitamin D2 in rabbits also caused elevation of plasma ADMA concentrations, a physiological inhibitor of nitric oxide synthase, a mediator and marker of endothelial dysfunction and an indicator of incremental cardiovascular risk. The study sought to determine whether plasma ADMA concentrations are elevated independently of pre-existing coronary risk factors in subjects with at least moderate aortic stenosis (n=42) compared to age-matched patients with normal aortic valves (n=42): as determined both by visual assessment and with aortic valve backscatter scores < 16dB. Results for this study were as follows: 1) plasma ADMA concentrations were not statistically different between the AS and non-AS group
(median 0.59 vs 0.54 µmol/L, p=0.13, Mann-Whitney test) on univariate analysis; 2) backward stepwise multiple linear regression showed the presence of AS was a significant predictor of elevated ADMA concentrations (p=0.04, 95% CI =0.001, 0.072). 3) in addition, elevated plasma ADMA concentrations were also associated with history of atrial fibrillation (p=0.009, 95% CI=0.015, 0.100), and negatively associated with creatinine clearance (p=0.01, 95% CI=-0.002, 0.000), and the use of statin therapy (p=0.01, 95% CI=-0.081, -0.011). Therefore, in conclusion, this study found that AS is independently associated with elevation of ADMA concentrations, beyond that implied by “conventional” risk factors for endothelial dysfunction. The clinical status of AS as an incremental marker of cardiovascular risk may reflect ADMA-mediated endothelial dysfunction.

Assessment of factors associated with ASc in a random ageing population study (Chapter 6).

There have been few clinical studies of factors associated with ASc. Previous population studies have established that ASc is an independent correlate of incremental risk of coronary events. Having established that patients with AS have increased plasma ADMA concentrations (Chapter 5), it was now aimed to determine whether subjects with increased aortic valve backscatter scores (ASc) also have other markers of endothelial dysfunction/NO effects, independent of preexisting coronary risk factors. The study was designed to identify such anomalies, if they existed, on an incremental basis to other
putative correlates of ASc, including coronary risk factors, renal dysfunction and vitamin D levels.

Random selected subjects (n=253) aged between 51 to 77 years were evaluated. All patients underwent transthoracic echocardiography examination; aortic valve ultrasonic backscatter score (AVBS), was used to quantitate echogenicity of the aortic valve. Conventional coronary risk factors were identified on history. Integrity of NO generation/response was assessed via (i) plasma ADMA concentrations; (ii) inhibition of platelet aggregation by the NO donor sodium nitroprusside (SNP); (iii) aortic augmentation index (AIx), a measure of arterial stiffness/wave reflection. All putative correlations with AVBS were examined by univariate and stepwise multiple linear regression analyses.

On the basis of echocardiographic appearances, ASc was present in 63 subjects (25.4%); mean AVBS scores was 14.9±4.6dB (SD) vs 11.2±3.9dB (SD) in the presence vs absence of ASc (p<0.001). Univariate analyses revealed that platelet responsiveness to NO was inversely correlated with AVBS (β=-0.16, p=0.02); but [ADMA] and AIx were not. On multiple linear regression, significant correlates of increased AVBS were: (i) advanced age (β=0.21, p=0.003), (ii) low body mass index (β=-0.23, p=0.001); and (iii) impaired platelet responsiveness to NO (β=-0.16, p=0.02).

In Chapter 7, the implications of the overall findings in this thesis are discussed in relation to future perspective.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

Doan Thi Minh Ngo

(December 2007)
ACKNOWLEDGEMENTS

I am most grateful to my supervisors Dr Jennifer Kennedy and Professor John Horowitz and for their guidance, encouragements, and patience throughout the course of my PhD.

I am indebted to Professor John Horowitz for always believing in me. His enthusiasm, passion, and encouragements have inspired me to achieve more than I could hope for. Thank you for giving me the freedom to express my ideas and for guiding my ideas throughout the 4 years. It has been an absolute pleasure and a fantastic opportunity to work with someone like him at such an early stage of my research career.

I would like to sincerely thank the echocardiography staff: Mr Ronald Wuttke, without whom I could not have achieved so much; thankyou for believing in me, for constantly supporting my demands and putting up with the late hours; Ms Gina Vellisaris and Linda Passfield for their support and friendship.

Thank you to Irene Stafford, Tamila Heresztyn, Geraldine Murphy, and Helen Weedon for teaching me various techniques, and for instilling in me the value of honest research.

To my friends Dr Angus Nightingale, Dr Sharmalar Rajendran, Dr Anke Rosenkranz, Dr Kumaril Mishra, and Dr Alicia Chan for their support and understanding my frustrations.
My sincere thanks to all the staff of The Queen Elizabeth Hospital Cardiology Unit for their cooperation, patience and understanding throughout the years. I am very proud to have started my research career there.

Thank you to Dr Aaron Sverdlov for traveling this journey with me. For the love, inspiration, patience, understanding, and tremendous support I received throughout my PhD, I could not ask for a better partner.

Finally, thank you to my parents: my father whose quest for knowledge never ceases, for instilling in me the passion for learning, and for teaching me invaluable life skills; my mother whose determination, enthusiasm, and optimism have taught and carried me through some of the most difficult stages of my life.

Throughout my PhD, I have been a receipient of postgraduate scholarships from Division of Health Science, University of Adelaide; and The Queen Elizabeth Hospital Research Foundation.
PUBLICATIONS/PRESENTATIONS

Peer reviewed articles relating to this thesis

Accepted presentations at national/international meetings:

ix) Ngo DT, Herestyzn T, Mishra K, Marwick TH, Horowitz JD. Aortic stenosis is associated with elevated plasma levels of asymmetric dimethylarginine (ADMA). Accepted abstract at Scientific Sessions American Heart Meeting 2005. Session number APS.56.1M, presentation number 3227.