Byard, Roger William; Cains, Glenda; Noblet, Helen; Weber, Maxine

This article is available from the Medical Journal of Australia at:

PERMISSIONS

This document has been archived with permission from the editor of the Medical Journal of Australia, 26 April 2007.

http://hdl.handle.net/2440/41948
CENTRALISING THE BLAME GAME

An abiding feature of our health system is the “blame game” — a political shield for deflecting criticisms and disowning responsibilities in health care. The prominent health commentator John Menadue argues that:

… we must resolve this problem to ensure integrated care and the avoidance of cost and blame shifting. Both federal and state governments have a vested interest in the present system.

And a suggested solution? A single health funder and provider … the Australian Government!

But would this be an improvement? Probably not — especially if its prototype is the United Kingdom’s National Health Service.

Over the past two decades, the NHS has seen wave after wave of destabilising change. British doctors have had to confront an internal market system (in 1991), general practice fund-holding (1992); abolition of regional health authorities and the creation of nine health offices (1996); abolition of fund-holding (1996); a target plan for improving care and cutting waiting times (2000); the introduction of hospital league tables (2001); primary care trusts taking on the planning and commissioning of health care (2002); a hundred-odd health authorities replaced by 28 strategic health bodies (2002); the introduction of foundation trusts (2004); payment by health results (2005); primary care trusts cut from 302 to 152 and strategic health authorities cut from 28 to 10 (2006); and the abolition of hospital league tables (2006).

This period also saw a culling and reconfiguration of hospital services, the introduction of Patient Choice — a program that requires a patient to have a choice of four or more providers when referred by a general practitioner — and muddled meddling with vocational training, through the disastrous Modernising Medical Careers and with the governance of the General Medical Council.

Given this record of continuous and chaotic change engineered by a central Department of Health, the blame game may well be the lesser of two evils.

Martin B Van Der Weyden

MATTERS ARISING

Opioid overdose deaths can occur in patients with naltrexone implants

Gary K Hulse, Robert J Tait

Moira G-B Sim

Colin L Brewer

Robert G Batey

Nikolaj Kunøe, Helge Waal

Eric Khong, Winston Choy

Amy E Gibson, Louisa J Degenhardt, Wayne D Hall

LETTERS

Cost of hepatitis A vaccine: $70. Mounting your own antibody response to hepatitis A before your overseas holiday: priceless

Jake Shortt, Denis Spelman, Erica M Wood

Intradermal rabies vaccine

Anthony Gherardin, Sonny Lau

Spontaneous intracranial hypotension: an easily treated headache

Mohamed Asif Chinnaratha, Ronald A Criddle, Paul J Graziotti

Australian children and adolescents with type 1 diabetes have low vitamin D levels

Ristan M Greer, Meredith A Rogers, Francis G Bowling, Helen M Buntain, Mark Harris, Gary M Leong, Andrew M Cotterill

Revisiting the metabolic syndrome

Tomi-Pekka Tuomainen

Gerard T Chew, Seng Khee Gan, Gerald F Watts

Genotype and adverse drug reactions to warfarin

Keith A Byron, Anthony E Dear

Lack of consistency in safe-sleeping messages to parents

Roger W Byard, Glenda Cains, Helen Noblet, Maxine Weber

Mycobacterium ulcerans infection: an eponymous ulcer

Derek H Meyers

Paul DR Johnson, John A Hayman

Mycobacterium ulcerans infection in Brazil

Vitorino M dos Santos, Flávio L Noronha, Érica C Vicentina, Camila C Lima

SNAPSHOT

A web of dysphagia

Sandeep Chauhan, Atul Sachdev, Sanjay D'Cruz, Ram Singh, Sandeep Singla

DEPARTMENTS

Poem: The time eaters

Richard Bronson

MJA/Wyeth Award 2006

Book Review: The motor neurone disease handbook reviewed by John King

Cost of hepatitis A vaccine: $70. Mounting your own antibody response to hepatitis A before your overseas holiday: priceless

Jake Shortt, Denis Spelman and Erica M Wood

TO THE EDITOR: Human normal immunoglobulin (NIG) has historically been used to provide passive immunity against hepatitis A infection for susceptible travellers to areas where the virus is endemic. The introduction of effective hepatitis A vaccines in recent years (which result in active, long-term immunity to the virus) should have largely replaced the use of NIG for travel prophylaxis. However, the Australian Red Cross Blood Service still receives requests to supply NIG for travellers, even though the intended recipients have no contraindications to vaccination.

Requests for use of NIG for this purpose appear in many cases to be a consequence of the “out-of-pocket” cost to the patient of the hepatitis A vaccine, which is about $70–$100 (depending on the formulation used and the private dispensing fee charged). In contrast, NIG is provided free of charge to the recipient, but the community still incurs substantial costs related to blood collection and fractionation of plasma products. There is also the concern of unnecessary exposure of a healthy traveller to a pooled plasma product, which, despite blood donor screening, dedicated viral inactivation steps, and an excellent safety record in Australia, may theoretically transmit infectious agents. In addition, even if a small amount of NIG is used for this purpose, the plasma source would be better used for production of greater amounts of other scarce plasma-derived products (such as intravenous immunoglobulin).

While NIG can effectively prevent hepatitis A infection from developing in susceptible contacts, immunity is short-lived and likely to be inferior to the results of active vaccination. Accordingly, NIG is only indicated for at-risk people who have a contraindication to vaccination, or in whom there is insufficient time to mount an endogenous antibody response (active immunity develops within 7–10 days of vaccination, and vaccination may also prevent hepatitis A infection even when the vaccine has been administered up to a week after exposure). Use of NIG is also appropriate where at-risk contacts may be unable to mount a protective antibody response because they have a congenital or acquired immune deficiency.

Although the extent of NIG use for travellers appears to be limited, we wish to highlight that, in the absence of contraindications to vaccination, it can no longer be advocated as best practice, and it is certainly not an appropriate cost-saving measure.

Jake Shortt, Haematology Registrar, Transfusion Medical Services
Denis Spelman, Head of Microbiology and Deputy Director
Erica M Wood, Transfusion Medicine Specialist
1 Australian Red Cross Blood Service, Melbourne, VIC.
2 Infectious Diseases Unit, The Alfred Hospital, Melbourne, VIC.
3 National Blood Centre and Department of Haematology, Austin Hospital, Melbourne, VIC.
jshortt@ausdoctors.net

Intradermal rabies vaccine
Anthony Gherardin and Sonny Lau

TO THE EDITOR: Rabies vaccine is recommended for pre-exposure prophylaxis in travellers over 1 year old who intend to travel to predominantly developing countries where canine rabies is endemic. The incidence of dog bites in such countries is relatively high, being more common among travellers than typhoid fever. Post-exposure rabies treatment of pre-immunised travellers is simpler, cheaper and safer than treatment of those who have not been immunised.

Rabies vaccines currently available in Australia are given intramuscularly as three doses of 1.0 mL on Days 0, 7, and 21–28, but are relatively expensive at more than $100 per dose. Some travellers will choose not to be vaccinated because of this cost. For at-risk travellers who might choose to decline vaccination because of the cost, and to facilitate use of pre-exposure vaccination in poorer countries, the World Health Organization approves the intradermal route of vaccination, where 0.1 mL of vaccine is administered, also on Days 0, 7 and 21–28.

However, the intradermal technique is technically more difficult, may result in lower antibody levels that decline more quickly, and may be interfered with by concurrent administration of chloroquine or immunosuppressants. The Australian immunisation handbook therefore recommends that this technique be performed by vaccinators experienced in the technique, and that satisfactory antibody production is confirmed after vaccination. Antibody levels of at least 0.5 IU/mL are considered protective, and the commercial enzyme immunoassay, available under Medicare, has been shown to correlate well with the gold-standard virus neutralisation test.

We have been using the intradermal method for over 10 years for travellers considered at high risk, but who decline vaccine on cost alone; we use imported human diploid cell vaccine of potency of at least 2.5 IU/mL. As several travellers can be vaccinated from the same vial, costs are $30–$40 per dose, and vials can be stored and reused within 7 days under aseptic conditions. However, travellers must be vaccinated 7–8 weeks before departure to enable antibody testing and a booster vaccination if required.

Recent analysis of 1532 non-immunosuppressed travellers (aged between 9 and 77 years, 55% female) who received three intradermal doses of 0.1 mL rabies vaccine on Days 0, 7, and 21–28 in our Melbourne clinic showed that only seven (0.46%) failed to reach the protective antibody level of 0.5 IU/mL on testing 2–4 weeks after the third dose, with readings of 0.4 IU/mL (in four), 0.3 IU/mL (in two) and 0.2 IU/mL (in one). None had undetectable antibody levels. All seven were advised to receive an intramuscular booster dose of 1.0 mL.

These data support the contention that the intradermal method is appropriate for use in travellers who may otherwise decline pre-exposure vaccines vaccination, when the vaccine is administered by vaccinators with relevant experience.

Recipients of intradermal rabies vaccine who have satisfactory antibody levels may be considered fully vaccinated in the post-exposure situation and managed accordingly.

Anthony Gherardin, National Medical Advisor
Sonny Lau, Medical Director, Melbourne Clinic
The Travel Doctor (TMVC), Melbourne, VIC.
tony.gherardin@hfi.com.au
Spontaneous intracranial hypotension: an easily treated headache

Mohamed Asif Chinnaratha, Ronald A Criddle and Paul J Graziotti

TO THE EDITOR: We report a patient with spontaneous intracranial hypotension (SIH), which is now an increasingly recognised syndrome. Orthostatic headache with typical findings on magnetic resonance imaging (MRI) are the keys to diagnosis. When correctly diagnosed, SIH management is easy and highly effective in most cases.

A 38-year-old woman presented to our hospital after having daily headaches for 3 weeks. The acute onset of severe headache occurred initially when she bent down and tried to lift her 16-month-old child. The headache began as a sharp pain over the right side of her occiput and rapidly spread to her frontal area. The headache was particularly bad in the morning and while standing, and was relieved by assuming a recumbent posture. Apart from nausea, she had no other associated symptoms. General and systemic examination findings were normal.

MRI of the brain showed diffuse dural enhancement and smooth thickening of the dura (Box, A) and a total spinal magnetic resonance image showed fluid in the posterior soft tissues at C1/C2 level (Box, B). These findings confirmed the leak of cerebrospinal fluid that accounted for the intracranial hypotension and orthostatic headache. Initial treatment with bed rest, increased fluid intake and non-steroidal anti-inflammatory drugs relieved her symptoms marginally. After a failed lumbar epidural blood patch, 10 mL of autologous blood was injected at the site of the cervical level leak. The patient’s symptoms resolved, and she was asymptomatic and had had no recurrence at follow-up at 4 months.

Also known as Schaltenbrand syndrome, SIH is very rare, with a prevalence of about 1 in 50 000 population, and a female preponderance of 3:1. Patients with connective tissue diseases or Chiari malformation may be more susceptible to SIH. Orthostatic headache is the cardinal feature of this syndrome. Headache is usually holocranial, although it might be localised to the frontal or occipital regions. Patients may have other symptoms such as diplopia and photophobia. MRI with gadolinium is critical in diagnosing this syndrome. The condition of most patients improves with conservative therapy (bed rest, increased fluid intake and caffeine). Epidural autologous blood patch is effective in relieving low intracranial pressure headaches. Surgical repair of the leak is rarely used and should be used only if medical therapy fails.

Australian children and adolescents with type 1 diabetes have low vitamin D levels

Ristan M Greer, Meredith A Rogers, Francis G Bowling, Helen M Buntain, Mark Harris, Gary M Leong and Andrew M Cotterill

TO THE EDITOR: Recent studies provide evidence that having a low serum vitamin D level is a risk factor for autoimmune disease, including type 1 diabetes mellitus (T1DM). Available data come from northern hemisphere countries where sunlight exposure levels and the genetic background of the population are different from those in Australia. We compared vitamin D levels in stored serum from Brisbane children and adolescents with T1DM who attended the Mater Children’s Hospital clinic with local historical control data from a previous study.

Levels of 25-hydroxyvitamin D (25-OH-D, the major circulating form of vitamin D) were lower in those with T1DM than in the control group, with no difference in levels of 1,25-dihydroxyvitamin D (1,25(OH)2D; the biologically active form). Children and adolescents with T1DM were more than three times as likely to have vitamin D deficiency as those in the control group. There was a trend towards seasonal variation in 25-OH-D levels, with mean levels (95% CI) being 53.8 nmol/L (47.0–60.6 nmol/L) in summer, 61.4 nmol/L (54.9–67.9 nmol/L) in autumn, 56.4 nmol/L (51.7–61.0 nmol/L) in winter and 64.7 nmol/L (58.8–70.6 nmol/L) in spring
Comparison of clinical characteristics and vitamin D levels in healthy children and adolescents and those with type 1 diabetes mellitus

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group</th>
<th>Type 1 diabetes mellitus group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of children and adolescents</td>
<td>94</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Age (range)</td>
<td>13.2 years (12.5–13.8 years)</td>
<td>13.6 years (12.6–14.6 years)</td>
<td>0.47*</td>
</tr>
<tr>
<td>No. of males/females</td>
<td>44/50</td>
<td>21/26</td>
<td>0.81†</td>
</tr>
<tr>
<td>Mean duration of diabetes (95% CI)</td>
<td>—</td>
<td>4.7 years (3.9–5.5 years)</td>
<td></td>
</tr>
<tr>
<td>Mean 25-OHD level (95% CI)*§</td>
<td>64.6 nmol/L (61.3–67.9 nmol/L)</td>
<td>54.7 nmol/L (50.3–58.9 nmol/L)</td>
<td>0.0005*</td>
</tr>
<tr>
<td>Mean 1,25-(OH)2D level (95% CI)¶</td>
<td>126.7 pmol/L (115.8–137.6 pmol/L)</td>
<td>127.6 pmol/L (114.8–140.4 pmol/L)</td>
<td>0.92*</td>
</tr>
<tr>
<td>Proportion 25-OHD-deficient (< 50 nmol/L)</td>
<td>18% (17/94)</td>
<td>43% (20/47)</td>
<td>0.002† (OR, 9.3; 95% CI, 1.5–7.3)</td>
</tr>
<tr>
<td>Proportion with 1,25-(OH)2D level below reference range (40–150 pmol/L)</td>
<td>0 (0/84)</td>
<td>4% (2/47)</td>
<td>0.13** (OR, 9.3; 95% CI, 0.4–197.6)</td>
</tr>
</tbody>
</table>

* t test. † p² test. § DiaSorin radioimmunoassay double antibody assay (DiaSorin Inc, Stillwater, Minn, USA), performed by Queensland Health Pathology Services. ¶ 84 controls; insufficient serum for analysis in 10. ** Fisher’s exact test.

Vitamin D levels in our Queensland sample of children and adolescents were lower overall than those found in the subjects of the Swedish study, (mean 25-OHD levels [± SEM] were 96.7 ± 2.7 nmol/L for the control group and 82.5 ± 1.3 nmol/L for those with T1DM); this is unexpected given Brisbane’s latitude (29°S) compared with that of Sweden (about 55–65°N). These differences might be explained by differences in dietary intake, sun avoidance behaviours promoted in Queensland, or differences in the assays used, as the Swedish group used the Nichols chemiluminescence assay (Nichols Institute, San Juan Capistrano, Calif, USA) and we used the DiaSorin radioimmunoassay (DiaSorin Inc, Stillwater, Minn, USA). The observation in the Swedish study that the deficit in 25-OHD level did not resolve over time after diagnosis concurs with our finding of low levels in children and adolescents several years after diagnosis.

While our pilot data cannot support causal inference, and is limited by being retrospective and our lack of information about history of sunlight exposure, dietary vitamin D intake, cultural factors such as sun avoidance or veiling, skin tone, and not having contemporaneous controls, it strongly supports the case for prospective clinical studies of vitamin D in T1DM.

Acknowledgements: We thank Dr Slavica Vuckovic of the Mater Medical Research Institute for helpful discussions on the role of dendritic cells in autoimmune disease.

Mark Harris, Paediatric Endocrinologist²
Gary M Leong, NHMRC Senior Research Officer, Institute for Molecular Bioscience,¹ and Paediatric Endocrinologist²
Andrew M Cotterill, Associate Professor, Paediatrics and Child Health,¹ and Director, Paediatric Endocrinology and Diabetes²
1 University of Queensland, Brisbane, QLD.
2 Mater Children’s Hospital, Brisbane, QLD.
3 Royal Children’s Hospital, Brisbane, QLD.
r.greer@uq.edu.au

To the Editor: I read with interest the excellent review article on the metabolic syndrome by Chew et al in the 16 October 2006 issue of the Journal.1 In their article the authors claim there is a lack of data about the relationship between hyperinsulinaemia and changes in free testosterone levels.

As part of the Kuopio Ischaemic Heart Disease (KIHDS) Risk Factor Study, an ongoing prospective epidemiological study of 2682 middle-aged Finnish men investigating risk factors for chronic disease, our research group has shown an association between the presence of metabolic syndrome at baseline and a change in sex hormone levels at follow-up after 11 years.2 In our study, we who met the World Health Organization criteria for metabolic syndrome both at baseline and at 11-year follow-up were at 2.6-fold increased risk of developing hypogonadism (serum total testosterone concentration <11 nmol/L) during the study period compared with men who did not have metabolic syndrome. There was also a non-significant trend for men with metabolic syndrome to develop hypogonadism as defined by calculated free testosterone levels over 11 years was approximately the same in each quartile, ranging from 20% to 23%. On the basis of these data, it seems that hyperinsulinaemia is associated not only with a fall in serum total testosterone levels but also with a fall in free testosterone levels in a general population.

Tomi-Pekka Tuomainen, Professor of Epidemiology

Gerard T Chew, Seng Khee Gan and Gerald F Watts

In reply: We thank Tuomainen for his interest in our review article, and for sharing with us his data showing an inverse association between fasting serum insulin levels and calculated serum free testosterone levels. We were cautious in our statement about the relationship between hyperinsulinaemia and free testosterone levels, as there are conflicting data in the literature regarding this,1,2 and few studies that directly measure free or bioavailable testosterone. Moreover, there is ongoing controversy about the calculation of free testosterone levels using total testosterone and sex hormone-binding globulin concentrations, with the validity and assumptions of some of these widely used estimation equations being called into question.3,4

We also echo the concerns of Allan et al3 about the potential pitfalls of diagnosing hypogonadism based on testosterone levels only. As the presence of low total (and even calculated free) testosterone in obese men may not necessarily reflect deficient androgen action, the diagnosis of androgen deficiency should only be made in the context of supportive clinical features. Furthermore, in abdominally obese men with the metabolic syndrome, levels of sex hormone-binding globulin and both total and calculated free testosterone can increase following weight loss,5 thereby obviating the inappropriate use of testosterone supplementation in such patients.

Gerard T Chew, Endocrinologist and Postgraduate Research Scholar1,2
Seng Khee Gan, Endocrinologist and Senior Lecturer in Medicine1,2
Gerald F Watts, Consultant Physician and Professor of Medicine1,2

School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland.
tomipekka.tuomainen@uku.fi

Genotype and adverse drug reactions to warfarin

Keith A Byron and Anthony E Dear

TO THE EDITOR: The recent article by Miller and colleagues regarding adverse drug events (ADEs) in general practice highlights the high frequency and considerable morbidity associated with ADEs in the general community.1 The authors identified recognised side effects, drug sensitivity, and allergy as responsible for most ADEs.

The contribution of the patient's genotype to drug response, via altered metabolism or responsiveness to pharmaceuticals, is increasingly recognised as potentially responsible for a significant proportion of ADEs.

The science of determination of the genetic contribution to an individual's response to drug action is referred to as pharmacogenomics,2 and represents a potentially beneficial diagnostic tool to aid in the prevention of ADEs.

Treatment with warfarin, one of the most frequently prescribed drugs in Australia, has been estimated to account for up to 15.1% of all severe ADEs, manifest as minor and major bleeding.3

We have recently determined the presence, frequency and laboratory sequelae of genetic variants (single nucleotide polymorphisms) in two genes responsible for the metabolism (cytochrome P450 2C9 [CYP2C9]) and
potency (vitamin K epoxide reductase complex, subunit 1 [VKORC1]) of warfarin\(^4\) in an Australian population. In our study of 120 patients in an anticoagulation clinic, the frequencies of allelic variants of the CYP2C9 and VKORC1 genes responsible for altered warfarin activity were 31\%\(^5\) and 59\% (unpublished data), respectively, in keeping with previously published studies.\(^6\) Detection of these variants was associated with increased induction international normalised ratio (INR) readings compared with controls, and reduced overall warfarin requirements\(^6\). These findings support previous studies,\(^7\) and suggest that genotype determination may be of benefit in identification of patients with increased sensitivity to empiric induction phase warfarin dosing schedules. This may allow for a reduction of induction doses of warfarin, decreasing the risk of excessive INR and bleeding sequelae, commonly observed with induction of warfarin treatment. Furthermore these benefits may aid in reduced time to stabilisation.

Additional cost–benefit analysis\(^8,9\) will enable determination of the economic viability of genotype determination as an adjunct to management of warfarin dosing.

The high population frequency of genetic variants associated with warfarin response emphasises the significant contribution genetic factors can play in patient reaction to drugs and highlights their involvement as potential causes of ADEs.\(^1\)

Keith A Byron, Chief Scientist\(^1\)

Anthony E Dear, Senior Research Officer\(^2\)

1 Molecular Diagnostics, Gribbles Pathology, Melbourne, VIC.

2 Department of Medicine, Monash University, Melbourne, VIC.

keith.byron@gribbles.com.au

Lack of consistency in safe-sleeping messages to parents

Roger W Byard, Glenda Cains, Helen Noblet and Maxine Weber

TO THE EDITOR: V-shaped pillows (“tri-pillows”) may cause suffocation of an infant left to sleep between the two arms of the pillow when he or she slips into the crevice between the arms, or beneath the pillow. The deaths of two infants who died in this manner were reported in South Australia in 1997, and a third death was the subject of a coronial inquiry.\(^1\)\(^2\) In 1998, the SA State Coroner recommended that “a public warning be issued against the use of tri- or U-shaped pillows by infants under two years of age for sleeping”.\(^2\) This message has also been issued in subsequent safe-sleeping campaigns, with a statement in the SIDS and Kids national “Safe sleeping” brochure\(^3\) that “tri-pillows are too soft and can cover baby’s face”, and a statement on the SA Child and Youth Health website that “... babies should not be left in these pillows while they are sleeping”.\(^3\) Despite these clear messages, deaths continue to occur in SA,\(^3\) and V-shaped pillows are still being sold in the foyer of a local obstetric hospital. Although the pillows are being promoted to assist breastfeeding, infants who have been left to sleep on them will be exposed to the risk of suffocation.

Deaths of infants in shared sleeping situations may also occur due to suffocation from “overlaying”. However, parents are still being advised by health advice telephone enquiry services to sleep in the same bed with their children. This was the unequivocal message given to one of the authors (G.C.) when she recently telephoned for advice following the birth of her first child. No mention was made of the potential danger of suffocation if parents are physically large, intoxicated, sedated, or simply exhausted, or if the infant is placed between the parents under bedcovers.

It appears, despite clear evidence that certain sleeping situations are potentially dangerous for infants, as well as the widespread dissemination of this information in safe-sleeping literature, that certain organisations or individuals continue to give a contrary message. What hope do parents have of understanding these issues and making informed decisions to optimise the safety of their infant’s sleeping environment if they are exposed to such conflicting messages and advice? Perhaps another question to ask is, “What responsibility do organisations and employees bear if an infant dies as a result of parents following such advice or purchasing equipment such as a V-shaped pillow?”

Roger W Byard, George Richard Marks Professor of Pathology\(^1\)

Glenda Cains, Mortuary Team Leader\(^2\)

Helen Noblet, Executive Officer\(^3\)

Maxine Weber, Executive Director\(^4\)

1 Discipline of Pathology, University of Adelaide, Adelaide, SA.

2 Forensic Science SA, Adelaide, SA.

3 Kidsafe SA, Women’s and Children’s Hospital, Adelaide, SA.

4 SIDS and Kids, Adelaide, SA.

roger.byard@adelaide.edu.au

3 SIDS and Kids. Safe sleeping [brochure]. (Brochures available from SIDS and Kids, ph. 1300 308 307.)

Mycobacterium ulcerans infection: an eponymous ulcer
Derek H Meyers

To the editor: Bairnsdale ulcer is known by the eponyms Buruli in Uganda, Kakerifu in Zaire, Kumusi in New Guinea, and was formerly referred to as Sears’ ulcer in Australia. In the original 1948 article describing the causative organism, MacCallum and colleagues acknowledged assistance from Drs Alsop, Clay and Sears, in that (alphabetical) order. In sending material to Melbourne for examination, these doctors of the Bairnsdale Clinic described the ulcers, and also commented on the similarity of their appearance in the first three patients. JR Sears, after whom the ulcer was originally named, was regarded as an excellent general practitioner. He died in 1971.

Derek H Meyers, Retired Physician
Brisbane, QLD
drmeyers@acenet.net.au

Paul D R Johnson and John A Hayman

“What’s in a name? That which we call a rose
By any other name would smell as sweet.”
— William Shakespeare, Romeo and Juliet; II, ii, 1-2; circa 1595

Comment: In 1948, MacCallum and colleagues published an article reporting a new mycobacterial infection in man, and later named the causative organism Mycobacterium ulcerans. In their article, they described six patients, five of whom came from the Bairnsdale district in Gippsland, Victoria. Three Bairnsdale general practitioners, Drs Alsop, Clay and Sears, had initially recognised a novel disease in their region and submitted pathological specimens to Melbourne University for diagnosis.

Subsequently, the same disease was described in many different areas, mostly in Africa (“Buruli ulcer”). Each new outbreak tended to give rise to a new name; of all these, perhaps the most colourful is “Sik belong Sepik”, describing the infection as it occurs along the Sepik River in Papua New Guinea. In Victoria, where most Australian cases of M. ulcerans infection occur, we have continued to use the term “Bairnsdale ulcer” even though the main endemic areas are now the Bellarine and Mornington Peninsulas near Melbourne.

Medical eponyms have a place for diseases that are poorly understood or have unknown causes, but it could be argued that the terms “Bairnsdale ulcer” and “Buruli ulcer” now belong in the annals of medical history.

However, there are other considerations. In 1998, the World Health Organization launched the Global Buruli Ulcer Initiative. This successful advocacy raised the profile of this neglected disease and facilitated major improvements in diagnosis and treatment.

For better or worse, “Buruli ulcer” has become the internationally recognised term for M. ulcerans infection, and we propose that we should now also adopt this name in Australia. While this should come as a relief to the good citizens of Bairnsdale and the Bellarine peninsula, what about those of Buruli in Uganda? Fortunately, their county has been renamed and is now known as the Nakasongola District.

Paul D R Johnson, Deputy Director
John A Hayman, Associate Professor
1 Infectious Diseases Department, Austin Health, Melbourne, VIC.
2 Department of Anatomy and Cell Biology, Monash University, Melbourne, VIC.
PaulJohnson@austin.org.au

Mycobacterium ulcerans infection in Brazil
Vitorino M dos Santos, Flávio L Noronha, Érica C Vicentina and Camila C Lima

To the Editor: Recent articles in the Journal referred to clinical characteristics of lesions caused by Mycobacterium ulcerans in Australia, and to recommendations and challenges in their management.

Brazil may also be an endemic area of this devastating neglected but treatable disease. In developing countries, cases of Bairnsdale or Buruli ulcer (BU) can be misdiagnosed or underreported because neither the general public nor health care workers have sufficient knowledge about the disease, and because affected people usually have little contact with the health care system, or do not seek prompt treatment. Expensive tests like the polymerase chain reaction are not available to confirm all suspicious cases, and smears can give a low diagnostic yield; there are often minimal histopathological changes and absence of bacilli, particularly in patients with long-standing lesions previously treated with effective antimicrobial drugs.

We report the case of a 65-year-old Brazilian woman with a 2-year history of BU in her extremities coexistent with osteomyelitis in the fourth cervical vertebra (Figure 1), and evidence of inadequate nutrition. Although she had received BCG vaccine as an infant, mycobacteria osteomyelitis developed in the site of an arthrodesis performed in 1998 to treat an accidental fracture.4,5

This patient had lived in a poor riverside rural area with a humid, hot climate. As in descriptions of Australian cases, our patient was much older than the age (5–15 years) at which most cases of M. ulcerans infection are reported in tropical and subtropical climates.
regions. Before her disease was characterised through positive cultures for *M. ulcerans* in samples from skin and bone lesions, the main differential diagnosis was ulcers resulting from fungal infection and leishmaniasis, conditions that are frequently seen in the region where she lived. The earlier skin lesions had appeared in May 2004 as papules and nodules, and evolved as painless, chronic, indolent ulcers with undermined edges. Despite treatment in another hospital that included surgery as well as medical therapy with rifamycin, aminoglycoside and quinolone antibiotics, the disease recurred. On admission to our hospital in August 2006, she had an extensive ulcer on her left arm in addition to scars on the right inner thigh (Figure 2).

After nearly 2 months of hospitalisation, the patient was discharged to continue antimicrobial therapy with outpatient follow-up. Despite this, the lesions are healing very slowly.

Vitorino M dos Santos, Preceptor and Professor
Flávio L Noronha, Internal Medicine Physician
Érica C Vicentina, Internal Medicine Physician
Camila C Lima, Internal Medicine Physician
1 Department of Internal Medicine, Armed Forces Hospital, Brasilia, DF, Brazil.
2 Catholic University of Brasilia, Brasilia, DF, Brazil.
vitorinomodesto@gmail.com