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Segmentation of Bone from µCT Imaging 

Introduction 

Micro-CT (µCT) imaging is fast becoming ubiquitous in morphometric investigations of bone. Part 

of the seduction of µCT imaging is the ability to represent the original sample as a computerised 

three-dimensional (3D) model. This may also be one of its disadvantages in that the 3D 

representation may appear to be an authentic representation but it may be inaccurate. If 

morphometric analysis is required then the investigator must have confidence that what is 

designated bone really is bone. 

 

µCT imaging provides a series of two-dimensional (2D) tomographs, which enable accurate 

reconstruction of the specimen as a voxel-based dataset (Figure A.1 [A]). Each tomograph is 

equivalent to a histological section, whereby in 2D the bone matrix can be clearly delineated from 

marrow spaces. Importantly, the series of tomographs enables a 3D representation of the bone to be 

constructed. It is possible from this voxel-based dataset to measure trabecular dimensions using a 

sphere-fitting algorithm (7) and to apply other model-independent algorithms for bone structure, 

such as connectivity density (10), structural model index (8) and degree of anisotropy (10, 18). 

Datasets derived from µCT imaging provide a comprehensive suite of descriptive parameters for 

bone structure in 3D as well as measurement of the amount of bone. 
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A key step in the analysis of µCT datasets is the segmentation of the greyscale tomographs into a 

bone phase and a marrow phase and at present there are a number of available methods (1, 5, 6, 9, 

14, 15) (Figure A.1 [B]). Global thresholding is the most common image segmentation method and 

usually involves the operator visually determining what greyscale range corresponds to bone. The 

greatest disadvantage with this method is that the operator usually sets the threshold value for the 

whole dataset, which may be up to 1000 tomographs, from a single image or only a limited number 

of images. It is however, impractical to manually inspect every tomograph to make allowance for 

grey-level differences within a large volume of bone. Automated global thresholding methods 

implemented in a computer program, such as Otsu’s (12), can determine a greyscale threshold value 

for every image in a volume. 

 

 

 

Figure A.1 Example tomograph from a cube of trabecular bone from the centre of the L3 vertebral body. [A] 

Greyscale tomograph and [B] corresponding segmented binary tomograph. 
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Local image segmentation techniques are more sensitive to variability within a bone specimen in all 

three dimensions. The use of local image segmentation has been limited to investigators with 

specialised computer programming expertise and computer resources greater than that available on 

desktop computers (11, 16). However, as these high-end computer resources become more 

accessible, local image segmentation techniques will become more widely used. 

 

Variability in global image segmentation and its effect on morphometric parameters of bone has 

implications for the biological interpretation of quantitative morphometric analyses. The day to day 

operations of a laboratory may result in multiple handlers of µCT datasets, which necessitates the 

establishment of standardised analytical protocols. In this study, the degree to which quantitative 

morphometric parameters of bone structure are affected by variability in image segmentation will 

be determined. Recommendations will be made to minimise measurement errors in the quantitative 

assessment of trabecular bone from µCT imaging. 
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Materials and Methods 

Thoracolumbar vertebral bodies (T12, L1, L3 and L5) were obtained from a 33 year-old female 

cadaver at autopsy. From each vertebral body, 3 cubes of trabecular bone (10mm x 10mm x 10mm) 

were cut from the centre of the vertebral body using a diamond blade saw under constant water 

irrigation. 

 

µCT imaging was performed on all samples (Chapter 2, Section 2.2.3). To determine a ‘gold 

standard’ for bone volume fraction (BV/TV) all samples were ashed (Chapter 2, Section 2.2.6) after 

micro-CT imaging. True bone volume fraction (BV/TV) was calculated as ash-weight (g/cm3) / 

bone mineral material density (1.15 g/cm3) (4). 

 

Segmentation of the greyscale tomographs to discriminate bone matrix from marrow (Figure A.1) 

on each sample was performed manually by three operators (OP1, OP2 and OP3) using a global 

threshold technique in which a single grey-level threshold value was selected for each sample. 

Operator 1 repeated the analysis 3 months after the initial analysis (OP12). In addition, Otsu’s 

automatic segmentation algorithm was implemented as a custom-written routine in Matlab (The 

MathWorks). Otsu’s algorithm (Otsu) determines a single global grey-level threshold value for each 

sample (12).   

 

CT analyser software (CTAn) provided by the manufacturer of the µCT system (Skyscan) uses the 

marching cubes algorithm to generate a surface rendering of the bone (Figure A.2). Using this 

software, the following three dimensional (3D) model-independent parameters were obtained: bone 

volume per total volume (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), 

trabecular bone pattern factor (TBPf), structural model index (SMI) and degree of anisotropy (DA) 

(Chapter 2, Section 2.2.3). 
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Figure A.2 Three dimensional reconstruction of a cube of vertebral trabecular bone imaged using µCT. 

 

Inter-operator and intra-operator variability for all parameters were calculated as bias and random 

error (13). Bias is the mean of the differences between operators for the 12 samples, expressed as a 

percentage of the mean of one of the operators, for each parameter. Random error is standard 

deviation of the differences between operators for the 12 samples, expressed as a percentage of the 

mean of one of the operators, for each parameter. While the bias and random error may be positive 

or negative, only the magnitudes of the differences in morphometric parameters between operators 

are presented. 
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Results 

Pooled morphometric parameters for the 12 trabecular bone samples, obtained by each operator 

(OP1, OP2 and OP3) using global thresholding and using Otsu’s method for thresholding (Table 

A.1). 

 

Table A.1 Mean ± standard deviation of the morphometric parameters for the 12 trabecular bone samples 

obtained by each operator (OP1, OP2 and OP3) using global thresholding and using Otsu’s method for 

thresholding. 

 

OTSU OP1 OP2 OP3

GREY 
LEVEL 186 ± 4 192 ± 5 186 ± 2 179 ± 2

BV/TV
(%) 19.0 ± 1.9 21.5 ± 2.1 17.3 ± 2.2 19.5 ± 2.3

Tb.Th
(µm) 183 ± 9 196 ± 9 172 ± 12 185 ± 11

Tb.Sp
(µm) 728 ± 26 579 ± 109 767 ± 29 703 ± 48
Tb.N

(mm2/mm3) 1.0 ± 0.1 1.2 ± 0.1 1.0 ± 0.1 1.1 ± 0.1

TBPf
(/mm) 4.6 ± 0.9 7.4 ± 2.7 4.2 ± 1.2 4.9 ± 0.9

SMI
( - ) 1.0 ± 0.2 1.9 ± 0.7 0.9 ± 0.3 1.1 ± 0.2

DA
( - ) 1.9 ± 0.6 1.9 ± 0.2 1.9 ± 0.2 1.9 ± 0.2

 

 

BV/TV calculated from the ash weight of the samples and BV/TV calculated from the µCT 

datasets, which were segmented by Otsu’s method, show excellent concordance (r2 = 0.91, 

p<0.0001) (Figure A.3). Against the ‘gold standard’ ash weight method, BV/TV using Otsu’s 

method shows a bias of 0.2% and a random error of 1.3%. 
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Figure A.3 Scatter plot of BV/TV (Ashing) versus BV/TV (Ostu 3D), which shows excellent concordance 

between both methods (Y = 1.2X - 2.9, r2 = 0.91). Broken line represents line of identity. 

 

For grey-level threshold values, bias ranges from 0.1% to 6.9% (Table A.2) and random error 

ranges from 1.7% to 3.2% (Table A.3). 

 

For BV/TV, bias ranges from 2.3% to 19.6% (Table A.2) and random error ranges from 2.6% to 

9.9% (Table A.3). These errors constitute differences in individual measurements between operators 

in BV/TV of up to 8% (ie. For the sample taken from the right side of L5, BV/TV for OP1=21.4% 

and BV/TV for OP2=13.7%).  

 

For Tb.Th, bias ranges from 1.3% to 12.2% (Table A.2) and random error ranges from 2.9% to 

5.8% (Table A.3). These errors constitute differences between operators in Tb.Th of up to 35µm (ie. 

For the sample taken from the centre of L5, Tb.Th for OP1=192µm and Tb.Th for OP2=157µm).  
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For Tb.Sp, bias ranges from 3.4% to 32.4% (Table A.2) and random error ranges from 2.7% to 

18.6% (Table A.3). These errors constitute differences between operators in Tb.Sp of up to 306µm 

(ie. For the sample taken from the right side of L1, Tb.Sp for OP1=475µm and Tb.Sp for 

OP2=781µm).  

 

For Tb.N, bias ranges from 0.7% to 8.5% (Table A.2) and random error ranges from 2.1% to 5.7% 

(Table A.3). These errors constitute differences between operators in Tb.N of up to 0.13 mm-1 (ie. 

For the sample taken from the right side of L3, Tb.N for OP1=1.23mm-1 and Tb.N for 

OP2=1.10mm-1).  

 

For TBPf, bias ranges from 6.5% to 59.5% (Table A.2) and random error ranges from 10.1% to 

51.1% (Table A.3). These errors constitute differences between operators in TBPf of up to 6.9 mm-1 

(ie. For the sample taken from the right side of L3, TBPf for OP1=10.9mm-1 and TBPf for 

OP2=4.0mm-1).  

 

For SMI, bias ranges from 9.6% to 81.6% (Table A.2) and random error ranges from 8.5% to 67.9% 

(Table A.3). These errors constitute differences between operators in SMI of up to 2.1 (ie. For the 

sample taken from the right side of L3, SMI for OP1=2.95 and SMI for OP2=0.85).  

 

For DA, bias ranges from 0.2% to 1.6% (Table A.2) and random error ranges from 0.8% to 1.8% 

(Table A.3). These errors constitute differences between operators in DA of up to 0.06 (ie. For the 

sample taken from the centre of T12, DA for OP1=2.01 and DA for OP2=2.07).  
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Table A.2 Bias between and within operators (OP1, OP2 and OP3) and Otsu’s method for all parameters. 

 

GREY BV/TV Tb.Th Tb.Sp Tb.N TBPf SMI DA

OP1 Vs OP12 0.8 2.4 1.3 6.5 1.2 11.6 13.5 0.2

OP1 Vs OP2 3.2 10.4 5.5 17.6 4.5 49.8 65.6 0.2

OP1 Vs OP3 3.9 11.2 7.3 9.1 4.3 13.7 18.3 1.4

OP2 Vs OP3 6.9 19.6 12.2 32.4 8.5 42.3 50.7 1.6

OP1 Vs Otsu 0.1 2.3 1.4 3.4 0.7 6.5 9.6 0.2

OP2 Vs Otsu 3.1 12.9 7.1 20.4 5.3 59.5 81.6 0.4

OP3 Vs Otsu 4.0 9.2 6.0 5.3 3.6 8.0 10.5 1.2
 

 

Table A.3 Random error between and within operators (OP1, OP2 and OP3) and Otsu’s method for all 

parameters. 

 

GREY BV/TV Tb.Th Tb.Sp Tb.N TBPf SMI DA

OP1 Vs OP12 2.6 -2.6 4.5 17.6 3.7 32.5 39.2 1.0

OP1 Vs OP2 2.5 8.7 4.3 13.2 4.2 44.6 57.4 1.2

OP1 Vs OP3 1.7 4.9 3.8 5.2 2.1 13.4 14.1 1.0

OP2 Vs OP3 3.2 9.9 5.8 18.6 5.7 32.3 36.9 1.8

OP1 Vs Otsu 1.9 4.8 2.9 5.6 2.1 10.1 14.5 0.8

OP2 Vs Otsu 2.8 8.6 4.4 14.5 3.7 51.1 67.9 1.4

OP3 Vs Otsu 2.4 5.7 4.0 2.7 3.3 11.4 8.5 1.2
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Discussion 

Otsu’s method for delineating bone matrix from marrow space enables visual representations of the 

original bone samples to be reconstructed (Figure 3). There is excellent agreement between BV/TV 

calculated from images binarised by Otsu’s method and BV/TV calculated from the ashed samples 

(Figure 4). Morphometric analysis of the 12 bone samples (Table 1) shows that these samples 

consist of a network of well-connected trabecular plates with some rod-like structures (SMI = 1.0 ± 

0.2) and there is a degree of preferential orientation of the trabeculae (DA = 1.9 ± 0.6). 

 

The variability in the selection of the grey-level threshold value, as measured by bias and random 

error, is less than 7% between and within operators and Otsu’s method (Table 2 and Table 3). These 

low values indicate that all operators and Otsu’s method appear equivalent when delineating 

between bone matrix and marrow in the trabecularbone samples. However, these small differences 

constitute large differences when morphometric parameters are calculated. Specifically, up to 8% in 

BV/TV, 35µm in Tb.Th, 306µm in Tb.Sp and 2.1 in SMI. However, not all parameters show the 

same sensitivity to changes in grey-level values, such as 0.13mm-1 in Tb.N and 0.06 in DA. 
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Increasingly, morphometric analysis of bones is used to determine the efficacy of therapeutic agents 

for the prevention of bone loss (2, 3). There is great interest in determining the mechanism by which 

particular pharmaceutical agents reduce fracture incidence in the absence of measurable changes in 

the amount of bone (17). The data in this study show that changing an operator during 

morphometric analysis can introduce errors, which can have a profound effect on biological 

interpretation. For example, if a pharmaceutical agent was found to increase Tb.Th by 35µm it 

would be assumed that a catabolic process has occurred, which would be proof of the drug’s 

efficacy. Also, variability of 35µm in Tb.Th within either a control group or a treated group may 

prevent a real difference between groups from being identified statistically. 

 

These data serve to highlight to users of µCT imaging that subsequent morphometric analysis is 

highly sensitive to operating parameters. At present, there is no ‘correct’ method for segmenting 

bone from marrow in tomographs even though all commonly used segmentation techniques result in 

visually ‘correct’ 3D representations of the original bone sample. Ideally, an objective segmentation 

method should be used that has been validated against a reference sample. However, while 

objective algorithms do exist there has not been universal adoption of these techniques (14, 16).  

 

Until universally standardised image segmentation techniques have been established it is 

recommended that a single user perform all morphometric analyses for a particular study. It would 

also be of value to investigators to perform a limited intra-operator variability study in order to have 

confidence that a specific user is proficient in the available techniques. All morphometric analyses 

will have errors associated with methodology but knowledge of the sources and magnitude of these 

errors will aid investigators in the determining the biological significance of their results.  
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Parallel-Plate Model 

Introduction 

Trabecular bone has a complex three dimensional spatial structure. Histological structural analysis 

based on tissue sections relies on the parallel-plate model (plate-model) to estimate 3D features. 

Through estimates of BV/TV and BS/TV, the plate-model enables the calculation of the trabecular 

architectural parameters, Tb.Th, Tb.Sp and Tb.N (6, 9, 12-14). These model based architectural 

parameters have been shown  to correlate with model-independent measures of architecture (1, 3, 5, 

7, 9, 11, 15).  

 

Using dual energy X-ray absorptiometry (DXA), it is possible to estimate bone volume fraction in a 

non-invasive manner. The PMIL (Chapter 5) allows for measurement of BS/TV from projection 

based information. Thus, in combination, DXA and PMIL allow for the non-invasive assessment of 

BV/TV and BS/TV. This presents the opportunity to estimate plate-mode parameters of trabecular 

architecture in a non-invasive manner. 

 

The aim of this study was to assess the ability of DXA and PMIL to measure plate-model 

parameters while using µCT model-independent and model-dependent measures as standards. 
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Materials and Methods 

Vertebral bodies from 22 individuals (13 males and 9 females) with an age range 16 – 87 years and 

median age of 66 years were collected at post-mortem examination. In total, 58 vertebral bodies 

consisting of 6 T12, 6 L1, 16 L2, 16 L3, 7 L4 and 7 L5 were collected. A cube of trabecular bone 

was cut from the centrum of each vertebral body (Chapter 2, Section 2.1.1). Cubes were imaged by 

µCT and processed using standard protocols (Chapter 2, Section 2.2.2). Volumetric bone mineral 

density (vBMD) of cubes was measured by DXA (Chapter 2, Section 2.2.3) and the bone volume 

fraction (BV/TVDXA) estimated using the relationship, 

BONE

vBMD
TV
BV

ρ
= , 

where BONEρ  is the density of the bone tissue and lies between 1 – 2 g/cm3 (2, 4, 8, 16). A value of 

1.15 g/cm3 (4) was used in this study. 

 

Standard three-dimensional (3D) model-independent measures of trabecular architecture, BV/TV3D, 

BS/TV3D, Tb.Th3D, Tb.Sp3D and Tb.N3D were measured from the datasets (Chapter 2, Section 

2.2.2). Using BV/TV3D and BS/TV3D, the plate-model equivalents of the architectural parameters 

(Tb.ThµCT, Tb.SpµCT and Tb.NµCT) were calculated (Chapter 2, Section 2.2.2).  DXA based BV/TV 

(BV/TVDXA) and BS/TV as measured by PMIL (Chapter 5) were used to calculate the non-invasive 

plate-model equivalents of architectural parameters (Tb.ThPMIL, Tb.SpPMIL and Tb.NPMIL). 
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Statistical differences between group means were tested using analysis of variance (ANOVA) and 

Student’s t-test. Bonferroni’s post-hoc test was used to identify groups that achieved significance 

from ANOVA, while pairwise analyses were carried out to estimate the bias and random error 

between measures. Bias was defined as the mean of the difference between pair-wise 

measurements. Random error was defined as the standard deviation of the difference between pair-

wise measurements. Regression analyses were used to test relationships between variables. All 

statistical analyses were performed using a combination of standard routines SPSS (SPSS Inc.) and 

Matlab (The Mathworks). 
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Results 

Using the µCT 3D model-independent measures of architecture as the referent, no significant 

differences were observed between males and females for any measured parameter. 

 

BV/TV of L3 trabecular bone cubes was found to be approximately 6% higher than those of L4 

trabecular bone cubes (Table B.1). Both T12 and L1 trabecular bone cubes had Tb.Th3D 

approximately 37µm thinner than those of L2 and L3 trabecular bone cubes (Table B.1). 

 

Table B.1 Mean ± standard deviation of architectural parameters as measured by µCT for the various 

vertebral levels. Significant differences were identified using Bonferroni post-hoc analyses for BV/TVµCT 

between L3 and L4 (&: p = 0.04) and for Tb.Th3D between T12 and L2 (*: p = 0.04), T12 and L3 (#: p = 0.03), 

L1 and L2 (%: p = 0.03) and L1 and L3 (^: p = 0.02).  

 

BV/TVµCT
(%)

BS/TVµCT

(mm2/mm3)
Tb.Th3D

(µm)
Tb.Sp3D

(µm)
Tb.N3D

(µm)

T12 12.55 ± 3.68 2.36 ± 0.54 180 ± 15*, # 966 ± 132 0.70 ± 0.19

L1 12.49 ± 3.22 2.36 ± 0.48 178 ± 81%,^ 970 ± 130 0.70 ± 0.18

L2 14.77 ± 4.36 2.36 ± 0.63 215 ± 27*,% 944 ± 187 0.70 ± 0.22

L3 15.10 ± 5.03& 2.40 ± 0.65 216 ± 25#, ^ 926 ± 182 0.70 ± 0.22

L4 9.53 ± 1.09& 1.91 ± 0.28 184 ± 17 1042 ± 132 0.52 ± 0.08

L5 11.26 ± 0.90 2.14 ± 0.31 194 ± 27 989 ± 129 0.59 ± 0.10
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3D model-independent measures of thickness and separation were significantly (p < 0.001) larger 

than the thickness and separation measured using the µCT parameter based plate-model (Table 

B.2). Trabecular number was significantly (p < 0.001) smaller for model-independent measurement 

than for µCT parameter based plate-model (Table B.2). 

 

Table B.2 Mean ± standard deviation of architectural parameters measured by model independent (µCT 3D) 

and µCT parameter based plate-model (µCT Plate-Model). P value indicates significance of Student’s paired 

t-test. 

 

µCT
3D

µCT
Plate-Model P

Tb.Th
(µm) 202 ± 27 115 ± 15 < 0.001

Tb.Sp
(µm) 961 ± 161 807 ± 218 < 0.001

Tb.N
(mm2/mm3) 0.66 ± 0.19 1.14 ± 0.28 < 0.001

 

 

Pair-wise analyses indicated that Tb.Th and Tb.Sp were 40% and 16% smaller for the plate-model 

than the model-independent measurements, while Tb.N was 62% smaller in model-independent 

measurements (Table B.3). 
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The linear relationship between the architectural parameters as measured by the model-independent 

measurements and µCT parameter based plate-model measurements was computed (Figure B.1). 

Significant and strong relationships (r2 ∈ [0.78, 0.98]) were found between all measures. 

 

Table B.3 Results of pair-wise analyses for architectural parameters measured by model independent (µCT 

3D) and µCT parameter based plate-model (µCT Plate-Model). The % column is the ratio (BIAS/Referent) x 

100, where the Referent is the model-independent measure, and represents the portion of the model-

independent measure that the BIAS accounts for. 

 

BIAS %
RANDOM
ERROR

Tb.Th
(µm) 86 43 16

Tb.Sp
(µm) 154 16 87

Tb.N
(mm2/mm3) 0.48 62 0.09
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Figure B.1 Linear relationships between model-independent measures and µCT parameter based plate-

model measures. [A] Tb.Th3D = 1.62Tb.ThµCT + 14.73 (n = 58, r2 = 0.78 and p < 0.001), [B] Tb.Sp3D = 

0.69Tb.SpµCT + 403.21 (n = 58, r2 = 0.88 and p < 0.001) and [C] Tb.N3D = 0.69Tb.NµCT – 0.12 (n = 58, r2 = 

0.97 and p < 0.001). Dotted lines represent lines of identity. 
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While trabecular thickness was significantly larger in the µCT parameter based plate-model than the 

DXA/PMIL parameter based plate-model, trabecular separation and number were not found to be 

significantly different (Table B.4).  

 

Table B.4 Mean ± standard deviation of architectural parameters measured by µCT parameter based plate-

model (µCT Plate-Model) and DXA/PMIL parameter base plate-model (DXA/PMIL Plate-Model). P value 

indicates significance of Student’s paired t-test. 

 

DXA/PMIL
Plate-Model

µCT
Plate-Model P

Tb.Th
(µm) 55 ± 13 115 ± 15 < 0.001

Tb.Sp
(µm) 839 ± 186 807 ± 218 0.14

Tb.N
(mm2/mm3) 1.16 ± 0.22 1.14 ± 0.28 0.56

 

 

Pair-wise analyses indicated that the offset between µCT parameter based plate-model and the 

DXA/PMIL parameter based plate-model was less that 5% for trabecular separation and number 

measures (Table B.5).  
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The linear relationship between the architectural parameters as measured by the µCT parameter 

based plate-model and the DXA/PMIL parameter based model was computed (Figure B.2). While 

significant relationships were found between all measures, the linear relationship between 

trabecular thickness measures was weak (r2 = 0.09). Much stronger relationships were identified 

between trabecular separation and number (r2 = 0.48). 

 

Table B.5 Results of pair-wise analyses for architectural parameters measured by µCT parameter based 

plate-model (µCT Plate-Model) and DXA/PMIL parameter based plate-model (DXA/PMIL Plate-Model). The 

% column is the ratio (BIAS/Referent) x 100, where the Referent is the µCT parameter based plate-model 

measure, and represents the portion of the µCT parameter based plate-model measure that the BIAS 

accounts for. 

 

BIAS %
RANDOM
ERROR

Tb.Th
(µm) 60 52 23

Tb.Sp
(µm) 32 4 165

Tb.N
(mm2/mm3) 0.02 1 0.21
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Figure B.2 Linear relationships between µCT parameter based plate-model measures and DXA/PMIL 

parameter based plate-model measures. [A] Tb.ThµCT = 0.34Tb.ThPMIL + 134.48 (n = 58, r2 =0.09 and p = 

0.02), [B] Tb.SpµCT = 0.80Tb.SpPMIL + 137.46 (n = 58, r2 = 0.46 and p < 0.001) and [C] Tb.NµCT = 0.83Tb.NPMIL 

+ 0.18 (n = 58, r2 = 0.46 and p < 0.001). Dotted lines represent line of identity. 
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Discussion 

The parallel-plate model is a tool, which allows estimates of trabecular architectural parameters 

through knowledge of bone volume fraction and total bone surface. Although this model makes 

assumptions about the trabecular architecture (Chapter 2), several studies have shown that model 

based parameters correlate well with model-independent measures of trabecular architecture (7, 9-

11). This implies that parallel-plate model estimates are potentially useful clinical tools. If measures 

of bone volume fraction and total bone surface are made in a non-invasive way, then one can 

estimate parallel-plate model parameters non-invasively. The aim of this study was to determine if 

parallel-plate model based measures of trabecular architecture could be estimated using a 

combination of DXA and PMIL.  

 

Comparisons between µCT model-independent and µCT parameter based models revealed that the 

parallel-plate model underestimated estimates of trabecular thickness and separation, while 

overestimating trabecular number. This is likely attributed to deviations of the actual structure from 

that imposed by the parallel-plate model. Nonetheless, significant correlations were found between 

model-independent and model-dependent measures of trabecular architecture.  

 

In order to allow a fair comparison, DXA/PMIL model based estimates were tested against µCT 

parameter based models. In these comparisons, significant relationships were identified between 

estimates of trabecular separation and number but not thickness. This indicates that non-invasive 

methodologies can estimate trabecular separation and number as effectively as µCT parameter 

based models.  The modest nature of these relationships is likely the results of poor BV/TV 

estimation from vBMD measured by DXA (Chapter 7, Section 7.4). Since the relationship between 

PMIL based BS/TV and µCT based BS/TV is strong (Chapter 5, Section 5.1.4), one would expect 

that with better estimates of BV/TV, there would be significant improvements in plate-model 

parameters. This is simply due to the fact that the plate-model estimates of Tb.Th, Tb.Sp and Tb.N 



    

Appendix B – Parallel-Plate Model                                                                                                                      13B 

are derived from BV/TV and BS/TV alone. No such relationships were identified for trabecular 

thickness. 

 

While some differences were observed for BV/TV3D and Tb.Th3D between trabecular bone cubes 

from some vertebral levels, the analyses in this study were pair-wise analyses. As such, the 

differences found between vertebral levels were not a confounding factor in the study. 

 

In summary, this study has demonstrated the possibility of estimating trabecular architectural 

measures from non-invasive modalities. While significant work has to be carried out to take such 

measurements into a clinical setting, this study has demonstrated the possibility and justifies further 

investigation.    
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