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Abstract

Many real-life state feedback control systems are modelled by a
set of single-input, time-invariant linear equations. Often, these lead
to a pair of matrices which are real and symmetric. The pole as-
signment problem requires us to find a state feedback control which
gives the closed loop matrices a prescribed set of poles. Commonly
used controls produce a closed loop matrix which is no longer sym-
metric. This article presents an explicit solution for a new symmetry
preserving partial pole assignment method for the generalised eigen-
value problem and for the standard eigenvalue problem. The methods
are demonstrated on illustrative examples and can produce computa-
tionally accurate solutions for even quite large systems.
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1 Introduction

Consider a system modelled by the single-input time-invariant linear equation

Bẋ(t) = Ax(t) + bu(t) , x(t0) = x0 , (1)

where x(t) ∈ Rn represents the system’s state, x0 ∈ Rn the state vector at
the initial time t = t0 , u(t) is an input control for the system, and b ∈ Rn

and the matrices A,B ∈ Rn×n are constant. When b = 0 Equation (1)
is referred to as the open-loop system. In the classical pole placement or
pole assignment problem we are required to find a state feedback control
u(t) = fTx(t)− gT ẋ(t) such that the closed loop system(

B + bgT
)
ẋ(t) =

(
A + bfT

)
x(t) (2)

has prescribed poles. In the language of linear algebra we are required to
find vectors f , g such that the matrix pencil

(
A + bfT

)
− λ

(
B + bgT

)
has

the prescribed spectrum. An important special case of the pole placement
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problem is that of stabilisation in which all the poles of the closed loop system
are required be in the open left half-plane.

Many real life systems which are modelled by finite elements lead to a pair
of matrices A,B which, in addition to being real, are symmetric. For these
systems the process of applying a control of the type in (2) produces a closed
loop matrix which is no longer symmetric. However, it is sometimes necessary
(the control of vibratory systems by passive elements is an example) for the
closed-loop system to satisfy a reciprocity law: the force at x1 due to a unit
displacement at x2 should equal the force at x2 due to a unit displacement
at x1. For systems such as these the available controls are more restricted
than those for (2) and one such restriction is that they may need to be
symmetric. The symmetric closed loop pencil of the form

Pc(λ) =
(
A + αuuT

)
− λ

(
B + βuuT

)
, (3)

α, β scalars, has been considered before and Ram [7] solved the pole place-
ment problem modelling a continuous version of the problems addressed here.
Datta [1] reviewed some recent developments in computational methods for
several inverse eigenvalue problems for matrix quadratic pencils.

Suppose A,B ∈ Rn×n are both symmetric and at least one of them is
positive definite. Such a pair is said to be symmetric definite. In this article
we consider pole placement problems for systems of two types:

1. the standard symmetric pole placement problem (equivalent to B = I ,
α = ±1 and β = 0 in (3)) for the system A + σvvT , σ = ±1 ; and

2. the generalized symmetric definite pair pole placement problem for the
system A + αuuT − λ

(
B + βuuT

)
, α, β scalars.

It is well known that the eigenvalues and eigenvectors of a real symmetric
matrix A and those of a real symmetric definite pair A,B are real. Fur-
thermore, the eigenvalues of A and those of A + σvvT satisfy the following
interlacing property [3, §8.6.3, e.g.]:
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Let A ∈ Rn×n be symmetric and let the spectrum of the pencil Po(λ) =
A − λI , denoted by σ (Po) = {λj}nj=1 , be such that λ1 ≤ λ2 ≤ · · · ≤
λn . Define, for simplicity, λn+1 = µn+1 = ∞ and let σ = ±1 . Then the
eigenvalues {µj}nj=1 of A + σvvT satisfy

λj ≤ µj ≤ λj+1 , if σ = 1 and
µj ≤ λj ≤ µj+1 , if σ = −1 ,

}
j = 1, 2, . . . , n . (4)

Similarly, the spectrum of the pencil Po(λ) = A− λB [2], denoted by

σ (A,B) = {λj}nj=1 (5)

and assumed here to be ordered λ1 ≤ λ2 ≤ · · · ≤ λn , and the spectrum
{µj}nj=1 of the modified generalized symmetric pair satisfy the interlacing
property:

α/β ≤ µ1 ≤ λ1 if α/β ≤ λ1 ,
λj ≤ µj ≤ λj+1 if λj ≤ α/β ,

λj ≤ µj ≤ α/β ≤ µj+1 ≤ λj+1 if λj ≤ α/β ≤ λj+1 ,
λj ≤ µj+1 ≤ λj+1 if α/β ≤ λj ,
λn ≤ µn ≤ α/β if λn ≤ α/β ,

 j = 1, 2, . . . , n .

(6)
Clearly then, only poles which satisfy the appropriate interlacing property
can be assigned by these kinds of symmetric rank-one updates.

This article presents a new explicit formula for the vector u which as-
signs either the whole spectrum, or part of the spectrum, of the closed loop
generalized symmetric pair system. This is done by computing symmetry
preserving rank-one updates which assign the spectrum of the generalized
eigenvalue system. Where only a part of the spectrum is assigned the eigen-
values not replaced remain unchanged and there is no possibility of spillover,
the phenomenon in which eigenvalues which it is intended to preserve are
disturbed by the assignment and move to the right half of the plane. More
importantly, it is not necessary to know the whole spectrum of the open-
loop system: only those λj which are to be replaced need to be known. The
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fact that the µj need to satisfy (6) will not usually present a difficulty even
though not all λj are known. On the way to the new formula we briefly review
Lowner’s method [6] which solves Problem 1 below and extend its application
to symmetry preserving partial pole assignment for the standard eigenvalue
problem (so far apparently not noted for pole placement and model updat-
ing). More precisely, we extend (to the case when r < n) Lowner’s method
to solve

Problem 1 Given (a) A ∈ Rn×n , symmetric with spectrum λ1 ≤ λ2 ≤
· · · ≤ λn ; (b) a scalar σ = ±1 ; (c) a set of real numbers {µj}rj=1 , r ≤ n

which satisfy (4); find a vector v ∈ Rn which is such that A + vvT has
spectrum σ(A + vvT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn} ,

and we present an explicit solution to

Problem 2 Given (a) matrices A,B ∈ Rn×n , both symmetric and B
positive definite, such that the spectrum of P (λ) = A − λB satisfies λ1 ≤
λ2 ≤ λ3 . . . ≤ λn ; (b) a pair of scalars α ≥ 0, β > 0 such that α/β 6= λj any j;
(c) a set of real scalars {µj}rj=1 , r ≤ n which satisfy (6); find a vector u ∈ Rn

such that the spectrum of the pencil Pc(λ) = A + αuuT − λ(B + βuuT ) is
σ
(
A + αuuT ,B + βuuT

)
= {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn} .

Preliminary numerical experiments in which the methods have been ap-
plied to a range of matrix pairs of dimension up to 1024, even with spectra
to be assigned that are very close to the existing spectra (a numerically chal-
lenging problem), indicate that the method is remarkably accurate. More
detailed numerical testing will be the subject of a later article.

In Section 2 we introduce the method, derive the explicit solution and
illustrate its application on a full pole assignment example and a partial pole
assignment problem. In Section 3 we derive the explicit solution for the
generalized definite symmetric pair problem and illustrate its application to
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full and partial pole assignment for a definite symmetric pair. We conclude
with some remarks on further work.

2 Symmetry preserving pole assignment for

a symmetric matrix

Here we briefly review the secular equation for a symmetric matrix updated
by a rank-one matrix.

Let µ,y be an eigenpair of the closed loop system matrix (A+σvvT )y =
µy , and suppose that we have the eigendecomposition A = QΛQT , Λ =
diag{λ1, λ2, . . . , λn} and Q orthogonal. Thus, (Λ+σQTvvTQ)QTy = µQTy
or, denoting v̂ = QTv and ŷ = QTy , we get (Λ +σv̂v̂T )ŷ = µŷ . Rearrang-
ing gives

σv̂v̂T ŷ = (µI −Λ)ŷ . (7)

Denote by ej the jth column of an identity of appropriate dimension.
Provided that eTj v 6= 0 for any j = 1, 2, . . . , n , then three things follow [3,

§8.6.3,e.g.]: (a) (µI − Λ) is invertible; (b) v̂T ŷ 6= 0 ; (c) The eigenvector ŷ
of the rank-one modified system is a scalar multiple of (µI −Λ)−1v̂ .

Denoting p = v̂T ŷ in (7) we get σ(µI − Λ)−1v̂p = ŷ and multiplying
both sides by v̂T gives the secular equation

σv̂T (µI −Λ)−1v̂ = 1 , (8)

sometimes written as

σ
n∑
k=1

v̂2
k

µ− λk
= 1 . (9)

This equation is usually used to find the eigenvalues of the modified system
from the known eigenvalues {λj} and the rank-one correction vector v̂. Our
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interest here, however, is in the inverse problem and we now show how to
use the secular equation to determine the vector v̂.

We note here, for later use, that if eTj v̂ = 0 for some j, then (λj, ej) is

an eigenpair of the modified system because then
((

Λ + σv̂v̂T
)
− λjI

)
ej =

Λej − λjej = 0 . In such a case we can deflate the problem to one with
dimension n − 1 . Importantly, the secular equation then has n − 1 terms
and n− 1 solutions and so the modification has left the eigenvalue λj of the
original system unchanged.

We now briefly review Lowner’s method [4] and then show how to apply
it in the case of partial pole assignment.

For simplicity let us consider first the full pole placement problem in
which we want to assign all the poles of the closed loop system. Thus we are
given n real numbers {µj}nj=1 which interlace the eigenvalues of A in the sense
of (4) and we want to construct a vector v̂ which achieves this. Substituting
µ = µj , for each j = 1, 2, . . . , n into (9) gives a set of n equations which are
linear in the unknowns v̂2

j . The matrix for this system of equations
1

µ1−λ1

1
µ1−λ2

· · · 1
µ1−λn

1
µ2−λ1

1
µ2−λ2

· · · 1
µ2−λn

...
...

1
µn−λ1

1
µn−λ2

· · · 1
µn−λn



v̂2

1

v̂2
2
...
v̂2
n

 =


1
1
...
1

 , (10)

called a Cauchy matrix, C = [cij] = 1
µi−λj

, has inverse

C−1 = [bij] =

∏n
k=1(λi − µk)

∏n
k=1(µj − λk)

(λi − µj)
∏n

k=1, k 6=i(λi − λk)
∏n

k=1, k 6=j(µj − µk)
.

Thus we can write, for i = 1, 2, . . . , n ,

v̂2
i = −

∏n
k=1(λi − µk)∏n

k=1, k 6=i(λi − λk)

n∑
j=1

∏n
k=1, k 6=i(µj − λk)∏n
k=1, k 6=j(µj − µk)

.
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Using the identity [5, §1.2.3, 33]

n∑
j=1

µrj∏n
k=1, k 6=j(µj − µk)

=

{
0, if 0 ≤ r < n− 1 ,

1, if r = n− 1 ,

we immediately see that

n∑
j=1

∏n
k=1, k 6=i(µj − λk)∏n
k=1, k 6=j(µj − µk)

= 1 , i = 1, 2, . . . , n , (11)

from which it quickly follows that

v̂2
i = −

∏n
k=1(λi − µk)∏n

k=1, k 6=i(λi − λk)
, i = 1, 2, . . . , n . (12)

Thus there are 2n different solutions in view of the two sign choices that can
be made for each component of the solution vector v̂.

If we consider only ×,÷ operations then using (12) costs 2n(n− 1) oper-
ations and so is computationally much more efficient than using (10) which
requires (n3 + 6n2 − n)/3 operations.

Example 3 The matrix

A =


3.4082 −0.0794 −0.4425 −0.2089 −0.9685
−0.0794 2.9171 −0.6922 −0.3937 −0.3219
−0.4425 −0.6922 2.8730 0.8300 −1.1523
−0.2089 −0.3937 0.8300 2.7639 −0.9687
−0.9685 −0.3219 −1.1523 −0.9687 3.0378


has eigenvalues1 {1.0000, 2.0000, 3.0000, 4.0000, 5.0000} . We determine a
vector v such that the matrix A + vvT has eigenvalues

{1.1093, 0.7395, 0.5929, 0.4841, 0.3698}. (13)

1All calculations for this article were performed in Matlab using ieee standard double
precision arithmetic with machine epsilon ≈ 2.22 × 10−16. Results are correctly rounded
to the number of figures shown.
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Using (12) we get (taking all the square roots to be positive),

v̂ = (1.2305, 0.5469, 0.3516, 0.2344, 0.1367)T

from which we get v = Qv̂ to be (−0.3060, 0.8401, 0.9474,−0.3548, 0.8230)T .
The eigenvalues of the matrix A+σvvT are, correctly rounded to the number
of figures shown, the set (13).

Let us now consider partial pole assignment for a single matrix.

Let S = {i1, i2, . . . , ir} be an ordered (ij ≤ ik if j ≤ k) subset of the
integers 1, 2, . . . , n , r ≤ n and let T be the complement of S.

Suppose {µi}i∈S is a set of r scalars which satisfy

λi ≤ µi ≤ λi+1, i ∈ S , if σ = 1 and
µi ≤ λi ≤ µi+1, i ∈ S , if σ = −1 .

(14)

To assign only {µi}i∈S while leaving {λi}i∈T unchanged we simply set to zero
the elements of the vector v̂ which correspond to those poles we want to
leave unchanged, v̂i = 0 if i ∈ T . For each component of v̂ which is zero the
secular equation has one fewer term and the corresponding Cauchy matrix
has one fewer row and column. Thus, (12) is now replaced by

v̂2
i = −

∏
k∈S(λi − µk)∏

k∈S, k 6=i(λi − λk)
, i ∈ S . (15)

In all other respects the process is unchanged.

Example 4 Using the matrix A of Example 3 we construct a vector v such
that the matrix A + vvT has eigenvalues

{1.5000, 2.0000, 3.5000, 4.0000, 5.5000} . (16)
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In other words we assign the first, third and fifth eigenvalues and leave the
second and fourth eigenvalues unchanged.

The indices in formula (15) now run over only the values 1, 3, 5. In
other words, the formula only includes the eigenvalues λj of A which are
to be reassigned and the eigenvalues µj which replace them. The vec-
tor v̂ which we get is (again taking all square roots to be positive) now
v̂ = (0.8385, 0.0000, 0.6847, 0.0000, 0.5728)T from which we recover v = Qv̂
as v = (−0.0621, 0.9936, 0.1184,−0.0089, 0.7034)T . From the choices that
are available for the signs of the square roots of the v̂2

i we see that there are
eight different solution possible here. The eigenvalues of the matrix A+vvT

are, to the number of figures shown, the set (16).

3 Symmetry preserving pole assignment for

a symmetric pair of matrices

In this section we consider the symmetric definite pencil P (λ) = A − λB ,
A,B ∈ Rn×n and show how to assign all or a part of its spectrum by a sym-
metry preserving rank-one update while leaving unchanged those eigenvalues
not replaced. We first briefly review the derivation of a secular equation for
this generalized eigenvalue problem.

The real scalar λ and the associated vector y which satisfy (A−λB)y =
0, yTBy = 1 are called an eigenvalue and normalized eigenvector of P (λ).
Let Y , regular, be the matrix which simultaneously diagonalizes A and B
as

Y TAY = Λ = diag{λ1, λ2, . . . , λn} , Y TBY = I . (17)

For a given vector u ∈ Rn and the two real scalars α and β, we define the
eigenvector x and its corresponding eigenvalue µ as those which satisfy

(A + αuuT )x = µ(B + βuuT )x , xT (B + βuuT )x = 1 . (18)
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Multiplying (18) on the left by Y T gives Y T (A + αuuT )Y Y −1x =
µY T (B + βuuT )Y Y −1x, from which (Λ + αY TuuTY )(Y −1x) = µ(I +
βY TuuTY )(Y −1x) follows. Setting û = Y Tu and Y x̂ = x gives [2]
(Λ + αûûT )x̂ = µ(I + βûûT )x̂ .

Lemma 5 Suppose the λj of (5) are distinct and Y is such that λ1 < λ2 <
· · · < λn . Assume further, that eTj û 6= 0 and λj 6= α/β for all j. Then,

(a) (µI −Λ) is invertible, (b) µ 6= α/β , (c) x̂T û 6= 0 .

Furthermore, the eigenvalues of the pair (A,B), even in the absence of the
distinctness assumption, and those of the modified pair (A + αuuT ,B +
βuuT ) are related by a secular equation that is the counterpart of relation (8)
for this case (α− βµ)ûT (µI −Λ)−1û = 1 sometimes written as

(α− βµ)
n∑
j=1

û2
j

µ− λj
= 1 . (19)

Note, as for the standard eigenvalue problem, that if eTj û = 0 for some j
then (λj, ej) is an eigenpair of the modified system because then (Λ +
αûûT )ej − µ(I + βûûT )ej = Λej − λjej = 0 . Once again, we can de-
flate the problem in this case to one with dimension n − 1 and the secular
equation then has n − 1 terms and n − 1 solutions and so the modification
has left the eigenvalue λj of the original system unchanged.

We apply the same strategy here in the generalized eigenvalue problem
that we used in the standard eigenvalue case for full and partial pole assign-
ment. We use relation (19) to construct a system of linear equations which
can be used to determine the components ûj from which we find the sym-
metric rank-one modification that should be applied to matrices A and B
to assign part or all of their spectrum.

For the full pole assignment problem the matrix system is as in (10)
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except that we now have the right-hand side(
1

α− βµ1

,
1

α− βµ2

, . . . ,
1

α− βµn

)T
.

Using the identity (11) the explicit solution for this case is

û2
i =

n∏
k=1

(λi − µk)
(βµk − α)

n∏
k=1, k 6=i

(βλk − α)

(λi − λk)
, i = 1, 2, . . . , n . (20)

Here again, there are 2n different solutions in view of the two sign choices
that can be made for each component of the solution vector û.

If we consider only ×,÷ operations then using (20) costs 6n(n− 1) oper-
ations and so is computationally much more efficient than solving the matrix
system (10) with the altered right-hand-side since this requires (n3 + 6n2 +
2n)/3 operations.

As before we solve the partial pole placement problem by dealing with
a reduced system of equations which defines the non-zero elements of the
required vector û: we simply set to zero the elements of the vector û which
correspond to those poles we want to leave unchanged. For each compo-
nent of û which is zero the secular equation has one fewer term and the
corresponding Cauchy matrix has one fewer row and column. In the explicit
solution formula for this case the variable k in (20) ranges only over the
indices of the eigenvalues to be changed.

More precisely, let the sets of indices S and T be defined as before and
let α, β, {λj}n1 , and {µj}n1 satisfy the interlacing property (6). We set ûi = 0
for all i ∈ T and compute

û2
i =

∏
k∈S

(λi − µk)
(βµk − α)

n∏
k∈S, k 6=i

(βλk − α)

(λi − λk)
, , i ∈ S . (21)
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The following example illustrates partial pole assignment using this method.
The generalization to full assignment is clear.

Example 6 We consider the matrix pair

A =


0.1752 0.1121 0.1249 0.2070 0.1290
0.1121 0.1322 0.0799 0.1298 0.1219
0.1249 0.0799 0.0998 0.1690 0.1199
0.2070 0.1298 0.1690 0.2922 0.2020
0.1290 0.1219 0.1199 0.2020 0.2021

 ,

and

B =


0.2218 0.2110 0.1076 0.1311 0.1217
0.2110 0.3015 0.1625 0.1413 0.1837
0.1076 0.1625 0.1314 0.1250 0.1256
0.1311 0.1413 0.1250 0.1505 0.1026
0.1217 0.1837 0.1256 0.1026 0.1686

 ,

which has eigenvalues {λj}5j=1

{0.0045, 0.1762, 0.6012, 2.4847, 10.1337} . (22)

We choose α = 0.4939 and β = 0.4175 and so, in order to satisfy the con-
straints in (6), any eigenvalues µj which will replace the existing eigenval-
ues λj must interlace the set comprising the numbers in (22) and the ratio
α/β = 1.1830 . We replace the first, third and fifth eigenvalues shown in (22)
with the numbers

µ1 = 0.0906 , µ3 = 0.8900 , µ5 = 6.2905 . (23)

As before the second and fourth components of û are set to zero and the
three other components are computed by (21) with the S = {1, 3, 5} and
T = {2, 4} . Alternatively, we could compute the non-zero components of û
as the solution of the three by three system derived from the original matrix
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system by deleting the second and fourth rows and columns. In either case
we get (taking all square roots to be positive)

û = (0.7776, 0.0000, 1.5098, 0.0000, 1.9266)T ,

and then recover u = (0.4884, 0.3361, 0.0552, 0.3385, 0.0190)T as the solution
of Y Tu = û . The eigenvalues of the modified pair (A + αuuT ,B + βuuT )
are, correctly rounded to the number of figures shown, the three numbers
in (23) and the second and fourth numbers of (22).

4 Conclusions

We presented a new explicit solution to the symmetry preserving partial
and full pole assignment problem for the symmetric definite matrix pair and
have shown how symmetry preserving partial pole assignment can be done
for the standard eigenvalue problem. Numerical testing of the methods,
to be presented in a separate report, suggests that, even for matrices of
dimension 1024 with the prescribed poles extremely close to the existing
poles, ieee double precision arithmetic can deliver about ten decimals of
relative accuracy.
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