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Order Estimation and Discrimination Between
Stationary and Time-Varying (TVAR)

Autoregressive Models
Yuri I. Abramovich, Senior Member, IEEE, Nicholas K. Spencer, and Michael D. E. Turley

Abstract—For a set of independent observations of the same
-variate correlated Gaussian process, we derive a method of

estimating the order of an autoregressive (AR) model of this
process, regardless of its stationary or time-varying nature. We
also derive a test to discriminate between stationary AR models
of order AR( ), and time-varying autoregressive models of
order TVAR( ). We demonstrate that within this technique
the number of independent identically distributed data samples
required for order estimation and discrimination just exceeds
the maximum possible order max, which in many cases is
significantly fewer than the dimension of the problem .

Index Terms—Adaptive processing, autoregressive (AR), nonsta-
tionary interference, time-varying.

I. INTRODUCTION

METHODS for order estimation and parameter estimation
of a stationary autoregressive (AR) model of order

, given a set of independent identically distributed
(i.i.d.) -variate Gaussian samples, are well established
[1]–[3]. These methods usually require a complete identifica-
tion of the model, which can be achieved only approximately in
the maximum-likelihood (ML) sense [2]. Indeed, the globally
optimal ML solution of the Toeplitz covariance matrix estima-
tion problem is still unknown [4]. Meanwhile, in some cases the
strict stationarity of the observed training data is questionable,
and so the general problem is to select between a stationary and
a time-varying model. For time-varying autoregressive (TVAR)
models of order , order-estimation methods have
not been reported yet.

Since a stationary model can be considered as a spe-
cial case of the more general model, we expect that
such order-estimation techniques would also be applicable to sta-
tionary models. In fact, a similar “embedding” was introduced by
Wax and Kailath [5], where the problem of estimating the number
of independent sources impinging upon an antenna array was
substituted by the more general problem of testing the equality
of noise-subspace eigenvalues. Instead of the complicated joint
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detection-estimation problem, therefore, this approach allowed
two relatively simple separate routines to be applied: detection
via the Wax–Kailath information-theoretic criteria (ITC) tech-
nique [5], and estimation (via MUSIC, for example).

A similar approach can be applied for identifying a stationary
model provided that there exists a simple and accurate

procedure for selecting the order of a model. More-
over, when we wish to discriminate between a stationary and a
time-varying model, this approach can be used to first estimate
the order of a general model, and then to test the
suitability of the more restrictive stationary model. In
essence, we wish to find a process that discriminates between

and models, and if both acceptably match
the input data, one that selects the model if .
To meet this requirement, therefore, our proposal is to first esti-
mate the minimum possible order of the model, and
then to decide whether or not a stationary model of the
same order has an acceptable degradation in terms of the LF. For
any given sample volume and data dimension , it is clear
that some level of nonstationarity exists that cannot be reliably
discriminated against the model. For any proposed tech-
nique, this “fidelity” needs to be investigated. The purpose of
this study is to develop techniques for model order
estimation and then to test whether the selected ML
model can be substituted by a stationary (suboptimal in the ML
sense) model of the same order.

This paper is organized as follows. Section II describes
our technique for model order estimation, which
relies upon certain properties of the ML covariance
matrix estimate that we have previously established in [6].
In Section III, we propose the subsequent test for deciding
whether the ML model can be acceptably replaced
by a certain sub-ML stationary model of the same
order. In addition, a technique for generating an model
(that is ML-suboptimal) is described. Section IV details results
of Monte Carlo simulations that support these new techniques
and demonstrate their high sensitivity. Our summary and con-
clusions are presented in Section V, while probability density
function (p.d.f.) derivations appear in the Appendices.

II. ORDER ESTIMATION OF A TVAR MODEL

In [6], we demonstrated that the necessary and sufficient con-
dition for a vector to be an -variate sample
of the process

for (1)
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(2)

is that its positive definite (p.d.) Hermitian covariance matrix

(3)

satisfies the “band-inverse” property

for (4)

i.e., the elements of its inverse are zero outside the -wide
diagonal band. Since the p.d. Toeplitz covariance matrix of the
stationary model has this same band-inverse property,
some test to check the validity of this property may be introduced
as a unified test for order estimation, irrespective of the sta-
tionary or time-varying nature of the model.

In this regard, let us consider a set of i.i.d. -variate
training data

for (5)

that are samples of a complex Gaussian random process whose
p.d.f. is , where is an -variate p.d. Hermitian
matrix. The sample covariance matrix

(6)

is rank deficient for , and the matrix is described by
the anti-Wishart complex distribution
[7]. Yet, for , all -variate central block
matrices of are p.d. [8], i.e.,

...
. . .

...

for (7)

In [6], we demonstrated that this condition is necessary and suffi-
cient for the existence of an accurate nondegenerate ML estimate
of a covariance matrix that is calculated directly from
the blocks using the Dym–Gohberg formula [9]–[12]

(8)

where is a lower-triangular matrix whose elements are
defined as

for
otherwise

(9)

where

...
...

. . .
... ...

(10)

are the time-varying AR coefficients, with
, and is the -variate unit vector.

This ML covariance matrix is uniquely specified
by the remarkable properties

for

for (11)

For a stationary model, the inverse of its ML-optimal
Toeplitz covariance matrix estimate is also a band matrix, like

, and of the same bandwidth, but its elements cannot
be directly and simply obtained from ; only numerical solu-
tions are currently available for ML Toeplitz covariance matrix
estimation, and so suboptimal solutions are usually suggested
[4], [13], [14].

For the ML estimate , the Gaussian LF

(12)

evaluates to

(13)

where

(14)

In fact, (11) follows directly from the ML equation
subject to the

constraint for . According to the
properties (11), for , we get

(15)

and by (8)

(16)

Let be the maximum admissible order of a
model that is identifiable for the sample volume , then

. From the “nested” property of the model-order testing
problem, and directly from (13), it is evident that

for

(17)
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and so our hypothesis test for the order can be based
on the likelihood ratio (LR)

(18)

where, according to (10) and (14)

(19)

with . Since

for (20)

the LR is specified by

(21)

Note that the dimension of the matrix is

for
for

(22)

Let us introduce the notation

for
for

(23)

Instead of , we can deal with .
In what follows, we therefore investigate the properties of

(24)

Theorem 1: Let be the true order of AR or TVAR input
data, then for all , the p.d.f. of does not depend
on scenario, and can be expressed as the p.d.f. of a product of

independent random numbers

(25)

with

(26)

This p.d.f. is completely specified by the parameters
and

(27)

where is Meijer’s -function [15], and

(28)

The th moment of is

(29)

See the Appendix I for the proof.
For , it is computationally preferable to deal with

another monotonic transformation of the LR [see (18) and (24)]

(30)

The importance of Theorem 1’s analytical expression (27),
or statistical equivalent (25), is that it enables us to precalcu-
late (for any given and , and for each hypothesis on

) the threshold value that corresponds to any given
probability of order overestimation (“false alarm”). Our current
approach is to declare the minimal that exceeds the threshold
to be the generalized likelihood-ratio test (GLRT) estimate for
the AR/TVAR model order.

In effect, this LR test determines whether or not the band-
width of the inverse covariance matrix (which is the same for
the and models) is equal to .

Another approach is to use ITC

(31)

where the penalty term is chosen from [16]

Akaike information criterion
minimum description length
maximum a posteriori probability

(32)

where is the (unknown) number of real-valued parameters
that define the model

(33)

III. DISCRIMINATING BETWEEN STATIONARY AND

TIME-VARYING MODELS

Since a stationary model is a special case of the more
general model, the ML estimate
is a sufficient statistic for the -variate stationary covariance
matrix . Thus, the ML estimate is the one that
yields a maximum in the LR [17]

(34)

Authorized licensed use limited to: Adelaide University. Downloaded on October 23, 2008 at 02:24 from IEEE Xplore.  Restrictions apply.



2864 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

where

for (35)

This maximized LR originates from the hypothesis test

against

(36)

which is nondegenerate for . Since with probability
one the sample covariance matrix estimate

is never strictly Toeplitz, i.e., , for any Toeplitz
matrix in (34) we have

(37)

Since , the LR quantifies the degrada-
tion due to the stationarity restriction on the admissible covari-
ance matrix set in comparison to the ML estimate

.
We wish to specify what degradations are acceptable for

a truly stationary model, given a certain probability of “false
alarm” when a truly stationary model is wrongly identified as
nonstationary. Hence, for any given we have to find the
threshold such that

(38)

where is the ML estimate of the stationary covariance ma-
trix and is the true covariance matrix, whereas the actual
discrimination is performed by the thresholding

(39)

Obviously it is difficult to specify the p.d.f. , since
the analytic solution for is currently unknown; however, the
following straightforward observation plays a crucial role:

(40)

where is the true order of the stationary AR input data, since
the set for includes the true covariance ma-
trix . Of course, is unknown in practical applications,
but we will shortly see that the p.d.f. does not de-
pend on the scenario , similarly to some other LRs that
have this remarkable property [18], [19]. This means that we can
precalculate, for any and , the scenario-free threshold

such that

(41)

and use instead of in (39). Property (40) ensures
that the actual false-alarm probability for the optimized ML es-
timate in (38) is somewhat smaller than in (41), pro-
vided that “is better than” the true covariance matrix in terms
of LR.

Theorem 2: Let be the true order of some stationary AR
input data whose Toeplitz covariance matrix is , then for all

, the p.d.f. of does not depend on scenario, and
can be expressed as the p.d.f. of a product of independent
random numbers and

(42)

where

(43)

(44)

This p.d.f. is completely specified by the parameters , and
. The th moment of is

(45)

See Appendix II for the proof.
By applying an inverse Mellin transform to this moment func-

tion, we can express the p.d.f. in a serial form, similarly to [20].
Rather than the LR in (37), it is more appropriate com-

putationally to deal with its th root

(46)

Even when is close to its ultimate maximum of unity,
is an extremely small quantity, due to the power .

Let us consider the numerator of in (37) more care-
fully. Similarly to (18), we can evaluate the determinant as a
product (see Appendix II)

(47)

where and are the diagonal elements of the tri-
angular decomposition of the Toeplitz matrix and the ML
TVAR matrix , respectively. For [see (10)]

(48)

where comprises the first rows and columns of .
For , we have , and in fact for a truly
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stationary process we expect all the to be close to unity. Thus,
we may introduce a test that is solely based on

(49)

Again, we have

for (50)

and for truly stationary input data with true covariance
matrix , the p.d.f. for does not depend on scenario,
but is fully specified by , and .

Theorem 3: Let be the true order of some stationary AR
input data whose Toeplitz covariance matrix is , then for all

, the p.d.f. of does not depend on scenario,
and can be expressed as the p.d.f. of a product of
independent random numbers

(51)

where

(52)

This p.d.f. is completely specified by the parameters , and
. The th moment of is

(53)

with

(54)

See Appendices I and II for the proof.
Similarly to [20], this p.d.f. can be expressed in a serial form

by applying an inverse Mellin transform.
Again, it is computationally preferable to deal with the
th root of the LR (49), whose p.d.f. for does not depend

on

(55)

Finally, we need to specify a method for stationary
model identification. Whereas it is possible to numerically op-
timize the LR or over the set of admissible
Toeplitz matrices, we choose to employ a more practical ap-
proach. We selected one routine that finds the approximate ML
estimate of given the sufficient statistic . The effi-
ciency of this technique in terms of proximity to the true ML
solution will then be analyzed by Monte Carlo simulations by
direct comparison (40) and also by noting the actual false-alarm
rates for the thresholds calculated by the scenario-free p.d.f.’s

or . If the observed false-alarm rate does not
exceed the threshold probability, then our technique gives co-
variance matrix estimates that are statistically “as good as” the
true covariance matrix (in the likelihood metric).

This estimation technique was introduced in [21] and
[22]. The first step is to find the standard persymmetric

-variate covariance matrix ML estimate [23]

(56)

where represents conjugation and is the exchange matrix

(57)

Then, we take the -variate vector

(58)

and find the roots of the associated polynomial
to form the new polynomial

(59)

where

(60)

and are the roots of the polynomial located inside the
unit circle , taking multiplicity into account. The new

-variate vector has no zeroes
inside the unit circle, and so can be presented as

(61)

where is the -variate p.d. Toeplitz covariance ma-
trix, given by and the Gohberg–Semencul formula [24], [2].

IV. SIMULATION RESULTS

We consider the case where the TVAR model arises due to
Doppler frequency modulation (FM) over the coherent inte-
gration time (CIT) of some stationary “carrier.” This
model is supported by the ionospheric phase-path variation
phenomenology [25]. Specifically, as a stationary “carrier,”
we consider the AR(2) model that has already been used as a
simple high-frequency (HF) over-the-horizon radar (OTHR)
sea-clutter model in [26], [27]

for (62)

(63)

We simulate FM over the CIT by the diagonal matrix

for (64)
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Fig. 1. Exact TVAR(2) time-frequency function for the sea-clutter model (62)
for k = 40.

Fig. 2. Sample p.d.f. for LR (m) (30) for various m and k.

where is the index of the periodic FM, and is its (relative)
frequency. If , then

(65)

For , and , Fig. 1 illustrates the exact
TVAR(2) time-frequency function of this process [6]

for (66)

We shall simulate for the sample volume and maximum
order .

First, we analyze the sample p.d.f.’s of (30) for
, and . In

fact, rather than using

(67)

we avoided significant computational errors by calculating it as

(68)

Fig. 2 presents sample p.d.f.’s calculated over 10 Monte Carlo
trials. Only one set of curves is shown because the p.d.f.’s for
different are indistinguishable, as expected.

Rather than calculating the rather cumbersome Meijer
-function, we conducted 10 Monte Carlo trials to obtain

for using Theorem 1. These
theoretical representation results (see Fig. 3) agree remarkably
with the direct Monte Carlo simulation results for
(see Fig. 2). The advantage of dealing with (30),
instead of (24) and especially (18), is made
more obvious by these results; otherwise, we would be dealing
with tiny numbers of the order of 0.9 or even 0.9 .
Nevertheless, in order to prove the accuracy of our deriva-
tions, Table I lists mean values of calculated by the

Fig. 3. Theoretical model for LR (m) (30) with corresponding “false-alarm”
thresholds.

theoretical formula (29) compared with simulation results for
. For , theoretical and experimental mean

values coincide with the accuracy expected for 10 trials.
Apart from validating Theorem 1, Fig. 3 provides the re-

quired threshold values for our order-estimation routine: for
each hypothesis regarding the order of the model

, we found the thresholds for a probability
of order overestimation equal to 10 10 and 10 . Our
method is to estimate the AR order by comparing the obtained

with the desired threshold and select the smallest
that exceeds the threshold. Table II (left) compares results

obtained for our test scenario for this GLRT approach with
the ITC methods (31), for 10 Monte Carlo trials. We also
considered the Hannan–Quinn information criteria (HQIC)
[28] with its penalty function . Here, all
four ITC criteria have ideal order-estimation performance, as
does the GLRT approach for probabilities of 10 and 10 .
For a probability of 10 , however, the thresholds were ex-
ceeded in 99.2% of trials; in the other eight trials, the thresholds
were not exceeded for all three admissible hypotheses. If we
allow to be admissible, with every trial resulting in

, then the eight trials may be treated as being
for order overestimation.

We next consider a more challenging scenario that highlights
differences in performance between the GLRT (threshold) and
ITC methods. A stationary AR(4) model has been created from a
mixture of a single source in white noise in a five-sensor uniform
linear antenna array. The five-variate Toeplitz covariance matrix
is

(69)

where , and

(70)

with ( dB) and . The AR(4) parameters
are

for (71)

By augmenting these AR parameters by zeroes and
applying the Gohberg–Semencul formula [2], [24], we are able
to reconstruct the -variate Toeplitz matrix whose nine main
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TABLE I
COMPARISON OF THEORETIC AND SAMPLE MEANS FOR LR (m) (30)

TABLE II
ORDER ESTIMATION RESULTS FOR THE SEA-CLUTTER MODEL (62) FOR 1000 TRIALS WITH m = 2 (LEFT), AND THE

SINGLE-SOURCE MODEL (69) FOR 10 000 TRIALS WITHm = 4 (CENTER) ANDm = 3 (RIGHT)

diagonal bands are specified by the elements of and the band
inverse

for (72)

By the Dym-Gohberg decomposition (8),
, where is a lower-triangular ma-

trix, we simulated the AR(4) input data as

for (73)

This example illustrates the greatest distinction between the AR
order and signal-subspace dimension for the
same covariance matrix .

Table II (center) displays the results of Monte Carlo simula-
tions over 10 trials. Here, the ITC techniques have different
performance, unlike for the previous scenario where each of
them unmistakably estimated the true order. While the Akaike
criterion has a tendency to overestimate, here it has perfect per-
formance. On the contrary, the MDL criterion here underesti-
mates badly, while MAP always incorrectly identifies the order
as . Interestingly, in no trial was the AR model estimate
unity as might be expected for an model generated by
a single (rank one) source in noise. In no trial has the GLRT
method underestimated the AR(4) order. The GLRT results for
the number of trials that did not exceed that theoretical threshold
show that these thresholds are accurate and do not depend on
scenario. As in the previous scenario, if we decide is
admissible, then all those trials would be treated as order-over-
estimation cases.

We can see that the GLRT method is significantly better than
the traditional ITC approach in this case. We also similarly pro-
cessed the case (see right-hand side of Table II). For
a severe sample support shortage , we see that the
performance of the ITCs do not correspond to their asymptotic
properties . We could consider different scenarios
with, say, , for , where a smaller proba-
bility of overestimation should lead to a larger (scenario-depen-

dent) probability of order underestimation. However, the sce-
nario-independent probability of overestimation or no estima-
tion remains a distinct advantage of our method.

The demonstrated efficiency (and its relative computational
simplicity) of the GLRT method means that it may be consid-
ered for purely stationary scenarios as an alternative algorithm
for other well-known techniques [2], [28].

By the property of the covariance matrix in (65), the order
estimation results are identical to the previous results for any
in this specific TVAR model. Thus, the AR model order estima-
tion problem has a simple and reasonably accurate solution that
includes both stationary and time-varying models, and does not
require model identification. The number of i.i.d. training sam-
ples that just exceeds the maximum tested order is sufficient,
regardless of the problem dimension .

Now, we turn our attention to simulation results on discrimi-
nating between stationary and time-varying
autoregressive models.

First, Fig. 4(a) shows the results of 40 000 Monte Carlo trials
when the truly stationary AR(2) data (46) was used to calculate
the sample LR p.d.f.’s [see (62)] (“lower bound”) and

[see (56)–(61)]. Fig. 4(b) has the corresponding results
for and (55). We also show the threshold
values for that are calculated from
the lower bound distribution. We see that our technique for sta-
tionary model identification (56)–(61) generates solu-
tions that are statistically indistinguishable from the true covari-
ance matrix in terms of LR. In this case, 54% of trials gave

. Of course, similarly to [29], [30], we could
have used the results of the routine (56)–(61) to initialize a fur-
ther direct numerical LR optimization so as to obtain

in every trial. In practical applications, where is
unknown, we can assess the “quality” of any estimate by com-
paring its LR with the lower-bound p.d.f. Statistically though,
the lower bound and the LR p.d.f.’s are indistinguishable, and
the thresholds for the lower bound are even slightly
smaller than for the estimate . Note that other existing tech-
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Fig. 4. Monte Carlo results for (a) � (T ) (46) and (b) � (T̂ ) (55) for both the true covariance matrix T (“lower bound”) and the estimate T̂ (61) (“LR”).

Fig. 5. Theoretical model (42) for (a) �(T ) (37) and (b) � (T ) (46) compared with the Monte Carlo results from Fig. 4(a).

niques could be tested in the same way, and could well demon-
strate similar proximity to the ML-optimal solution.

In order to prove the validity of Theorem 2, we generated
the lower-bound p.d.f.’s for the LRs (37) and
(46) using the scenario-free representation (42). Fig. 5 shows

the results for one million Monte Carlo trials. Fig. 5(b) also
repeats the sample p.d.f. from Fig. 4(a). While there are now
10 trials instead of 4 10 trials, the theoretical and observed
p.d.f.’s coincide. Moreover, the threshold values in Fig. 5(b)
that are calculated using the scenario-free representation (42)
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Fig. 6. Theoretical model (51) for (a) � (T ) (49) and (b) � (T ) (55) compared with the Monte Carlo results from Fig. 4(b).

Fig. 7. Sample probabilities of correctly identifying AR versus TVAR for the
LR tests � (T̂ ) (46) and � (T̂ ) (55).

are virtually the same as in Fig. 4(a). This proves our assertion
that scenario-independent thresholds can be precalculated for
any given , i.e., when a truly stationary process is wrongly
identified as a time-varying one.

Fig. 6 in the same format demonstrates the accurate corre-
spondence between the theoretical scenario-free representation
of the LR [the th root of (51)] and the direct

calculations of (55) in Fig. 4(b).
In Fig. 7, the more accurate million-trial theoretical thresh-

olds have been used to analyze probabilities of correct discrimi-
nation, and are illustrated for the tests and as
a function of the FM nonstationarity parameter . We see that
the “ML” test (46) has extremely high sensitivity. For
example, even at , the probability of correct TVAR
identification is as high as 87% for the minimal nonstationarity

.
Fig. 9 shows a sample time-frequency function for ,

which is visually almost indistinguishable from the introduced

Fig. 8. Sample TVAR(2) time-frequency function for k = 0.

Fig. 9. Sample TVAR(2) time-frequency function for k = 4.

stationary case as shown in Fig. 8. Our simplified LR
test or demonstrates a certain loss in sen-
sitivity with respect to the test (46). Indeed, this test
only responds to a degradation in clutter mitigation efficiency
due to the “stationary” filter compared with the
TVAR-based filter, whereas the ML test (46) also accounts for
more subtle differences in the covariance matrix estimate. Yet,
even the simplified test shows reliable discrimination for the
small FM parameter .

These discrimination simulations have been performed for
the correct model order , which is consistent
with the extremely high probability of correct order estimation
for this “sea-clutter” scenario (see left-side of Table II). Still, in

Authorized licensed use limited to: Adelaide University. Downloaded on October 23, 2008 at 02:24 from IEEE Xplore.  Restrictions apply.



2870 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

order to ensure sufficient robustness with respect to order over-
estimation, we performed the same simulations for the misspec-
ified order . The results (not shown here) are negligibly
degraded in terms of the probability of correct discrimination.

V. CONCLUSION

We have proposed GLRT-based tests for order estimation
and discrimination between stationary and time-varying autore-
gressive models. These tests stem from the ML es-
timation technique developed in [6], that itself was based on
Dym–Gohberg band matrix extensions [9].

In our two-stage approach, we first estimate the order of the
AR model, regardless of its stationary or time-varying nature,
by testing the bandwidth of the inverse covariance matrix. This
test requires the i.i.d. sample volume to exceed the maximum
possible order . In most practical cases, both these quan-
tities are significantly smaller than the data dimension . For
OTHR applications, for example, the coherent integration time
typically encompasses 256 or 512 repetition periods, with only
a few available training ranges containing homogeneous clutter.
Our test has an important invariance property: for any tested
order that is not less than the true order, the LR p.d.f. is sce-
nario-independent, since it is only a function of and

. This means that we can precalculate the threshold for
each hypothesis involving the order , given any desired proba-
bility of order overestimation. Our order estimate is the min-
imal order that exceeds this threshold. Since this threshold is
precalculated, our technique is no more demanding than the tra-
ditional ITC methods. Whereas the ITC methods can be applied
to the introduced LR, they all have inferior performance com-
pared with GLRT thresholding.

Having obtained , the second stage of our approach is to
test the appropriateness of the ML stationary model.
We used the test developed in [6] that exploits the analytic ML
estimate of the time-varying covariance matrix as a sufficient
statistic for any hypothesis test involving the structure of the true
covariance matrix. In particular, we test here the hypothesis that
a certain Toeplitz matrix with a banded inverse is the mean of
the ML covariance matrix estimate. This Toeplitz
matrix must be the ML estimate, but since the analytic deriva-
tion of it is unknown, we used one technique (among many other
possibilities) that is expected to give solutions that are reason-
ably close to the ML estimate.

Fortunately, we found that the LR p.d.f. of this introduced test
for the true covariance matrix does not depend on this matrix
(is “scenario-free”). This invariance, together with the observa-
tion that the maximized LR must exceed the LR for the true co-
variance matrix , has been used in two ways. First, during
each Monte Carlo trial with its known stationary covariance ma-
trix, we compared the LR of the estimate with

. This assesses the quality of our suboptimal estimation
in terms of proximity to the ML optimal solution. We found that
all trials generated an LR that was statistically indistinguishable
from , hence, we treat our estimation routine as
being statistically equivalent to the (unknown) ML optimal es-
timation.

Second, and most importantly, this invariance property again
lets us precalculate thresholds for any desired probability of

misidentifying a stationary model as a time-varying one. The
scenario-free p.d.f. for is again fully specified by

, and (provided ). Note that the minimum
sample volume required to discriminate between and

is only , unlike the traditional hypothesis
testing for a covariance matrix [17] that needs samples.
We also proposed a slightly simplified test that has the same
invariance properties as the ML one, but with somewhat inferior
performance.

All scenario-free LR p.d.f.’s for order estimation and
versus tests have been derived. Analytic expressions
have been given for them and their moments, and the inverse
Mellin transform in one instance led to an explicit expression
for the p.d.f. in terms of Meijer’s -function. For the two other
p.d.f.’s, we described how they can be expressed in terms of a
convergent series, similarly to [20]. We then presented them as
products of independent random variables with standard ( ,
and ) distributions. Thus, we were able to calculate the p.d.f.’s
(and their threshold values) using scenario-free Monte Carlo
simulations.

Two different AR models have been simulated and tested. The
first originates from a simple HF OTHR sea-clutter model that
uses a stationary AR(2) process. We added a periodic FM that
emulates ionospheric phase-path variations during the coherent
integration time to obtain a TVAR(2) process. For this model,
we demonstrated that both the existing ITC method and the new
GLRT thresholding method give reliable order estimation, re-
gardless of the model stationarity. The new test that discrimi-
nates between stationary and time-varying AR models demon-
strated remarkable sensitivity, and makes it possible to detect a
quite insignificant FM. We also checked the robustness of our
discrimination test with respect to AR order overestimation.

Our second AR model was a more challenging scenario: it
originates from a single plane-wave source (tone) mixed in
noise, with an -sensor uniform linear antenna array.
While the GLRT approach again gave high order-estimation
accuracy, the ITC methods demonstrated scenario-dependent
performance. More specifically, MAP and MDL grossly under-
estimated the AR order , while AIC (which is known
for its overestimation properties) in this case gave correct
estimates; for , only MAP failed.

To summarize, both analytic and simulation results have
demonstrated that the problem of or order
estimation, and stationary versus time-varying model dis-
crimination under limited training sample support now has an
adequate and efficient solution.

APPENDIX I
PROOF OF THEOREM 1

Let us simplify the notation in (24)

(74)

We first investigate the sequence

(75)

Authorized licensed use limited to: Adelaide University. Downloaded on October 23, 2008 at 02:24 from IEEE Xplore.  Restrictions apply.



ABRAMOVICH et al.: ORDER ESTIMATION AND DISCRIMINATION BETWEEN STATIONARY AND TVAR MODELS 2871

where

(76)

To prove that is a sequence
of independent variables provided that , consider the
normalized variables

(77)

It is clear that the statistical independence of leads to the
statistical independence of .

First, we investigate the properties of the matrix , where

(78)

which is the Dym–Gohberg factorization of the true
or covariance matrix of the input

data, with

for
otherwise

(79)

[see (9) and [2], [9]]. Therefore, is an upper triangular
matrix with bandwidth , and means that

(80)

if . Indeed

(81)

where is the -variate column vector with a single unit
element in the th position. Note that the th column of the

-variate matrix , specified by , has only
non-zero elements, and so

(82)

where is specified in (10) and is the
-variate lower-triangular matrix in the Dym–Gohberg factor-

ization of the matrix

(83)

Thus, non-zero elements of the -variate vector
are exactly the same as the non-zero

elements of the vector , and

(84)

From the latter, we conclude that

(85)

hence, for any , the diagonal elements of the original
-variate prewhitened sample matrix are

identical to those of the matrix , which is the prewhitened
Dym–Gohberg matrix , and most impor-
tantly, equal to the upper-left corner of the (small)

-variate matrix , i.e.,

(86)

where

(87)

The latter means that are the diagonal el-
ements of an -variate matrix with the complex anti-Wishart
distribution for , hence, are mu-
tually independent, and have a chi-squared p.d.f. [31]

(88)

Naturally, the same p.d.f. follows from (84) and (85), but
the mutual independence of the can be proven only for

models.
Now, let us consider the th member of the sequence (77)

for

(89)

where

(90)

From (84) and (85), we have

(91)

and so by (85)

(92)

then according to [32, Th. 3.3.9, iii], depends only
on , and does not depend on nor . Since the

are independent, we conclude that the
are also mutually independent.

Since is just a deterministically normalized sequence ,
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we conclude that for a (and ) model for
any , the sequence in (75) is a sequence with
independent random variables.

Similarly, we can establish that the sequence
is also independent, as well as the and for

. The only dependent entries in (74) are and with
the same index . Therefore, we have to specify the p.d.f. of
the ratio

for (93)

Here, is a -variate Hermitian matrix, and is
the -variate Hermitian matrix that can be partitioned as

(94)

Note that instead of , we can analyze which for
is described by the complex Wishart distributions

(95)

When has the -wide band inverse [6],
i.e.,

for (96)

Moreover, according to the Dym–Gohberg formula [9]

(97)

where the -variate lower triangular matrix, is a
-wide band matrix

for and (98)

Thus, the last elements in the -variate vector
are equal to zero, and more importantly, for

any , this vector can be presented as

(99)

Naturally, property (99) holds both for stationary and
time-varying models.

Now, let us introduce an -variate unitary matrix
in a partitioned form

(100)

Here, is a -variate unitary matrix that is specified
by the condition

(101)

At the same time

(102)

since due to (99)

(103)

with respect to (100)–(102), we get

(104)

since , where

(105)

and

(106)

[Note that (104) and (105) also follow from (85).] Since [33]

(107)

we get

(108)
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where is as shown in (109) and (110) at the bottom of the
page. According to [32, Th. 3.3.9, ii], and

are always independent. Moreover, since , then
by the theorem, we have

(111)

which means that for the matrix , the vector

and matrices and are all mutually independent. Let
us, therefore, find

(112)

where

(113)

with and being mutually independent. By another uni-
tary -variate transform

(114)

we now convert into

(115)

which means that despite being a random vector, its indepen-
dence from and makes independent of its statistics.
According to (111), , and

(116)

according to (ii).
The p.d.f. for the Hermitian form is described by the well-

known F-distribution [34], [35]

(117)

where is the -function,
and the direct transformation leads to the also
well-known -distribution [31], [34]

(118)

(in [31] notations, and ). Now,
according to (74)

(119)

Since are independent, we get

(120)

For -distribution (118), we get

(121)

The p.d.f. for can now be specified using
the inverse Mellin transform [15]

(122)

with the particular integration path specified in [15]. Note that

for (123)

for

(124)

Therefore, the integral in (121) can be calculated as [15]

(125)

(109)

(110)
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According to [15, (9.31.5*)], this integral could be also pre-
sented as

(126)

Finally we get the following expression for

(127)

where

(128)

Using [15, 7.811(2) and 9.303], we can demonstrate that
.

APPENDIX II
PROOF OF THEOREM 2

According to (34)

(129)

where

(130)

Since is an -variate Toeplitz Hermitian matrix with a
-wide band inverse, and using property (11) of the

ML estimate, we have for with

(131)

where

(132)

Despite being a degenerate matrix, all its -variate
central block matrices are nondegenerate with probability
one, since . In particular, the trace of is

with each being mutually independent,
and having a chi-squared p.d.f. (88) [31]

(133)

Now, similarly to (19)

(134)

where

...
... (135)

is a Toeplitz matrix of dimension . For simplicity,
let us introduce the notation

(136)

For introduced in (10), we then have
, hence

(137)

where

for (138)

and is specified in (132). Since (again see [32, Th. 3.3.9])

(139)

where

(140)

[see (85)], we may apply the same argument as in Appendix I
to declare that is a sequence of mutually
independent random numbers.

Similarly to (107), we may present as

(141)

where, according to [32, Th. 3.3.9]

(142)

(143)
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(146)

(147)

with and being mutually independent.
Therefore

(144)

and

(145)

where (146) and (147) hold, shown at the top of the page. The
p.d.f. for could be found similarly to [20] in a form of an
infinite series by applying an inverse Mellin transform to the
moment function , where is
given by (121) and

(148)

Since and are independent, we get

(149)

Finally

(150)

or

(151)

A comparison of (151) with the derivations in [20] suggests that,
with minor modifications, we can apply the same transforma-
tions to the inverse Mellin transform of (151) to get a serial rep-
resentation for the p.d.f. of , similar to the expression
introduced in [36] for

(152)

with .

These derivations suggest that computationally it is more con-
venient to deal with

(153)

REFERENCES

[1] E. Hannan, Multiple Time Series. New York: Wiley, 1970.
[2] B. Porat, Digital Processing of Random Signals, 5th ed. Englewood

Cliffs, NJ: Prentice-Hall, 1994.
[3] A. McQuarrie and C. Tsai, Regression and Time Series Model Selec-

tion. Singapore: World Scientific, 1998.
[4] E. Polak, “Algorithms for maximum likelihood constrained covariance

estimation,” presented at the CSSIP Short Courses Program, Adelaide,
Australia, 2001.

[5] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust. Speech Signal Process., vol. 33, no. 2,
pp. 387–392, Apr. 1985.

[6] Y. Abramovich, N. Spencer, and M. Turley, “Time-varying autore-
gressive (TVAR) models for multiple radar observations,” IEEE Trans.
Signal Process., vol. 55, no. 4, Apr. 2007, to be published.

[7] R. Janik and M. Nowak, “Wishart and anti-Wishart random matrices,”
J. Phys. A: Math. Gen., vol. 36, pp. 3629–3637, 2003.

[8] T. Anderson, An Introduction to Multivariate Statistical Analysis.
New York: Wiley, 1958.

[9] H. Dym and I. Gohberg, “Extensions of band matrices with band in-
verses,” Linear Algebra Appl., vol. 36, pp. 1–24, 1981.

[10] R. Grone, C. Johnson, E. M. de Sá, and H. Wolkowicz, “Positive defi-
nite completions of partial Hermitian matrices,” Linear Algebra Appl.,
vol. 58, pp. 109–124, 1984.

[11] H. Dym and I. Gohberg, “A new class of contractive interpolants
and maximum entropy principles,” in Topics in Operator Theory
and Interpolation. Cambridge, MA: Birkhäuser Verlag, 1988, pp.
117–150.

[12] H. Woerdeman, “Matrix and operator extensions,” Ph.D. dissertation,
Vrije Universiteit, Amsterdam, The Netherlands, 1989.

[13] P. Forster and G. Vezzosi, “Optimal toeplitzification with a given rank
constraint,” in Proc. ICASSP, 1989, pp. 2783–2786.

[14] K. Grigoriadis, A. Frazho, and R. Skelton, “Application of alternating
convex projection methods for computation of positive definite Toeplitz
matrices,” IEEE Trans. Signal Process., vol. 42, no. 7, pp. 1873–1975,
Jul. 1994.

[15] I. Gradshteyn and I. Ryzhik, Tables of Integrals, Series, and Products,
6th ed. New York: Academic, 2000.
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