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Time-Varying Autoregressive (TVAR) Models for
Multiple Radar Observations

Yuri I. Abramovich, Senior Member, IEEE, Nicholas K. Spencer, and Michael D. E. Turley

Abstract—We consider the adaptive radar problem where the
properties of the (nonstationary) clutter signals can be estimated
using multiple observations of radar returns from a number
of sufficiently homogeneous range/azimuth resolution cells. We
derive a method for approximating an arbitrary Hermitian co-
variance matrix by a time-varying autoregressive model of order

, TVAR( ), that is based on the Dym–Gohberg band-matrix
extension technique which gives the uniqueTVAR( )model for
any nondegenerate covariance matrix. We demonstrate that the
Dym–Gohberg transformation of the sample covariance matrix
gives the maximum-likelihood (ML) estimate of the TVAR( )
covariance matrix. We introduce an example of TVAR( )
clutter modeling for high-frequency over-the-horizon radar that
demonstrates its practical importance.

Index Terms—Adaptive processing, autoregressive models, non-
stationary clutter, nonstationary interference, radar observations,
time-varying.

I. INTRODUCTION

ANTENNA-ARRAYED radars with coherent repetitive
waveforms, such as pulse trains or continuous-wave

linear frequency modulation (FM) [1], generate a well-known
“data cube” of radar returns (time sequences) from a number
of range and azimuth resolution cells [2]. Even in conven-
tional (single antenna beam) search radars, radar returns from
adjacent range cells give multiple clutter observations (radar
signal backscattered by terrain or sea surface) that are typically
treated as independent observations of the same clutter process.
Traditionally, clutter returns have been modeled as observations
of a stationary process, then, after Burg’s famous work [3],
maximum-entropy spectral estimation methods (MEMs) were
developed for clutter modeling and adaptive estimation [4], [5].
While the ergodicity of a stationary model theoretically allows
spectral estimation with a conventional single observation (one
range data train collected over the coherent integration time
[CIT]), for a long time researchers have been using adjacent
range cells for identifying the stationary AR clutter model [5].
According to Haykin et al. [5], because of the discontinuity
in time between the pertinent data segments, “the segments
cannot be simply combined to produce one long data record to
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be used as input for the usual MEM algorithm,” which made
spatial averaging that “involves using data segments from
adjacent resolution cells” [5] an important means to overcome
the discontinuity problem. Note that the combined spatial and
temporal averaging suggested in [5] requires both stationarity
(in time) and homogeneity (in space) for the clutter returns.
Modern radar applications cannot guarantee both these as-
sumptions. For example, it is well known that for airborne radar
STAP, different terrain segments give quite different clutter
returns, and the homogeneity assumptions can only be applied
for a few neighboring range cells [6].

In this paper, we consider applications to high-frequency
(HF) over-the-horizon (OTH) radar (sky-wave) systems [1],
where backscattered surface-clutter signals are ionospherically
propagated. Due to a number of different physical phenomena
(e.g., traveling ionospheric disturbances), the two-way propa-
gation path varies during the CIT. Such phase-path variations
are the same for neighboring terrain/sea range resolution cells,
but cause a significant Doppler frequency modulation over the
CIT. Hence the homogeneity assumption can still be applied
for clutter model identification over a reasonably small number
of adjacent resolution cells, but the stationarity assumption is
definitely invalid.

From a statistical viewpoint, this observation model com-
prises independent identically distributed (i.i.d.) -variate
“training” vectors that we assume have a
complex circular Gaussian distribution , where

is a positive-definite (p.d.) Hermitian covariance matrix. (As
usual, we use boldface lowercase symbols for vectors, and up-
percase symbols for matrices.) Note that this observation model
is typical for adaptive antenna applications, where is the
“snapshot” of data collected simultaneously across sensors
at time . It is important to emphasize that within this multiple
i.i.d. observation model, the ML estimate of the true covari-
ance matrix (which exists for ) does not require any
underlying model of . The general (unstructured) ML covari-
ance matrix estimate [7] is simply

(1)

which is a consistent estimate with complex Wishart distribu-
tion . The efficiency of this ML estimate in
adaptive antenna or adaptive detection algorithms has been com-
prehensively investigated [8]–[10]. Unfortunately, the number
of “sufficiently homogeneous” adjacent range cells that can be
used for such spatial averaging does not exceed the dimension
of the problem in many radar applications. For example, OTH
radars often have CITs of or 256 repetition periods,
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with only 40–60 available range cells (say), and the number of
resolution cells sufficiently homogeneous in range and azimuth
can be even smaller. Under these circumstances, one approach
is to adopt a parametric model for the nonstationary process,
with a relatively small number of free parameters. Indeed, for
fewer parameters than in an arbitrary Hermitian covariance ma-
trix (which has real-valued degrees of freedom), we expect
the required sample size for accurate adaptive model identi-
fication to be less than for general ML estimation (1).

When dealing with a nonstationary -variate random process
that is specified by a (non-Toeplitz) Hermitian covariance ma-
trix, it seems logical to consider the time-varying AR process of
order , , to be our parametric model. Since the sta-
tionary model has been proven in [11] to be an appro-
priate description of stationary clutter, ionospheric phase-path
variations and the associated FM will generalize the
model into a one. In any case, the number of free
parameters that describe an -variate covariance matrix
of a process is significantly smaller than in the gen-
eral case, and, therefore, even for a non- process,

approximations should be considered for adaptive
signal detection (once the losses associated with such an ap-
proximation have been analyzed).

Therefore, from a practical viewpoint, there are two major is-
sues that need to be clarified. The first is not a statistical one;
given some Hermitian covariance matrix , we wish to find
its approximation and associated losses. In radar ap-
plications, we are typically interested in the signal-to-noise ratio
(SNR) degradation (deterministic loss factor and/or stochastic
loss factor ) due to adopting some approximate covariance ma-
trix, such as instead of the true covariance matrix in
the optimum filter, which gives us the deterministic loss factor

(2)

where is the -variate (“steering”) vector of expected signal,
and the optimum (Wiener) filter that extracts this signal from
the interference described by is

(3)

The output SNR for an arbitrary filter is

(4)

and for the model-based filter we ob-
tain the deterministic loss factor (2). Here the suitability of any
model, such as , depends not only on , but also on the
signal vector .

The second issue that needs to be clarified is a statistical one.
It deals with (ML) covariance matrix estimation within the set
of matrices, given the i.i.d. training
samples

(5)

If such an estimate is available, then its quality in the adap-
tive filter (antenna) context is measured by the statistical prop-
erties of the random SNR loss factor with respect to the clair-
voyant optimum filter (3) [8]

(6)

When the true covariance matrix is indeed a ma-
trix, i.e.

(7)

then the loss factor accounts for only the losses associated with
the finite sample support , since for any consistent estimate

(8)

and so

(9)

Whereas the ML covariance matrix estimate is traditionally used
as a substitute for the unknown exact covariance matrix for both
adaptive filters [8] and adaptive detectors [9], [10], it is a fact that
(from their performance viewpoint) ML estimates have not been
theoretically justified, especially for small i.i.d. sample support

.
In adaptive antenna applications, it is typical to deal with

“small-rank” covariance matrices, where can be written in
the form

(10)
where is the Kronecker symbol. Since the early 1980s, it has
been known that “diagonal loading” of the sample matrix

(11)

gives a significant improvement in the “convergence rate,”
which is the -dependent SNR loss factor (6). Moreover, in
[12] it was proven that the probability density function (pdf)
for (for ) does not depend on the loading factor

for small-rank scenarios (10). In 1996, the optimal diagonal
loading was suggested by Ledoit according to [13] to be a
“shrinkage estimator” for covariance matrices, which is equiv-
alent to finding the optimal linear shrinkage of eigenvalues. Of
course, AR models for radar clutter [5], [11] are not necessarily
small-rank (10), but a significant reduction in the number of
free parameters describing the covariance matrix is
just another way of “shrinking toward structure” that stabilizes
an unstructured covariance matrix estimate (1) [13]. Therefore,
whereas the suitability of the ML criterion for covariance
matrix estimation in adaptive radar processing is an important
separate problem, in this paper we will consider ML estimation
within the restricted class of nonstationary models.
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It is important to emphasize the essential difference between
our problem with its multiple i.i.d. observations and most pub-
lished studies on nonstationary processes which deal with a
single sequence [14], [15]. It is obvious that any meaningful sta-
tistical analysis of a single nonstationary sequence is only pos-
sible if some additional restrictions or assumptions on the na-
ture of the nonstationarity are imposed. In this way, the notion
of a “locally stationary” process has been introduced in [14],
with numerous following papers that explore this intuitively ap-
pealing idea of “slow nonstationarity” (e.g., [15]). In [15], a
model with multiple observations of a time-continuous nonsta-
tionary process was considered, and a best-basis search algo-
rithm proposed to convert the covariance operator estimation
problem into the problem of estimating “a band or near diagonal
matrix, although this condition is not required in the best basis
search.” In our discussion of multiple observations of a nonsta-
tionary time series, our restriction on the admissible covariance
model to be within the class of models already con-
fines admissible (inverse) covariance matrices to a very sparse
structure without any additional assumptions being made about
the type of time variations. Of course, additional valid assump-
tions may improve the adaptive antenna properties if properly
exploited. Yet in this paper we consider the generic
model for our nonstationary time series with i.i.d. training
samples (observations) of the same nonstationary process avail-
able for adaptive estimation of its covariance matrix. In fact,

models have been under quite intensive investiga-
tion for different applications, including acoustic (speech) pro-
cessing [16]. In most of these applications, multiple (indepen-
dent) observations of the same nonstationary process are not
available, and so special assumptions regarding the nature of
the model are imposed.

In the first approach, the time-varying parameters are esti-
mated using the dynamic model

(12)

where are the parameters of the TVAR model, and is dis-
crete time . In this case, the parameters
are updated depending on the utilized adaptive algorithm, such
as steepest descent or the recursive least-squares [17]. In the
second approach, the TVAR parameters are explicitly (a priori)
defined as a linear combination of weighted time-dependent
functions:

(13)

where are the (estimated) weights, and are some pre-
defined time functions.

We can see that, in addition to the model restric-
tion, both methods enforce quite restrictive additional assump-
tions, and neither can directly generate a model ap-
proximation of the given covariance matrix for some
nonstationary process. For multiple observations we do not need
to impose any of these restrictions. In dealing with our first
nonstatistical issue (2), we have to specify the necessary and
sufficient conditions for an arbitrary Hermitian matrix to have
a approximation of a certain kind. For the second

statistical issue (6), (7), we have to find the ML estimate of a
covariance matrix given multiple i.i.d. ob-

servations.
In this paper we address mainly the second “statistical” issue,

driven by the problem of adaptive target detection masked by
nonstationary interference (clutter), with a very limited sample
size . Our method is derived mainly by providing a
“signal processing” interpretation to the analytical results on the
“band method” for positive matrix and operator extensions. This
method was presented in 1981 by Dym and Gohberg [18], and
was further extended in [19]–[21].

This paper is organized as follows. In Section II, we com-
pare the well-known properties of the stationary autoregressive
model, , with those of the time-varying autoregressive
model, . We show that these models share an im-
portant covariance matrix property, namely that the inverse of
the Toeplitz covariance matrix in the stationary case and the in-
verse of the Hermitian covariance matrix in the nonstationary
case are both band (also called banded) matrices with band-
width . On the other hand, an important difference
between the models is that the stability condition that is nec-
essary for the stationary model does not exist in the
time-dependent case. We also reintroduce the Dym–Gohberg re-
sults on band matrix extensions (Theorems 1–3), which, given
the -wide band of some Hermitian matrix, allow us to
calculate its unique extension that has zeros outside this band in
its inverse, under certain specified conditions. We demonstrate
that, when applied to covariance matrices, this method can be
considered a generalization of the famous Burg maximum-en-
tropy extension of the -wide band of some Toeplitz
covariance matrix.

Section III proves an important new result (Theorem 4):
that for a given set of independent Gaussian observations
(training samples), the ML covariance matrix estimate of a

model is specified by exactly the same equations
as the Dym–Gohberg transformation of the sample covariance
matrix. We demonstrate that the only necessary and sufficient
condition for the ML estimate of a covariance
matrix to exist is that the number of training samples exceeds
the order of the model . We also derive
results arising from Theorem 3 that deal with the properties
of likelihood-ratio (LR) tests which determine whether or not
a covariance matrix is the covariance matrix of a
given set of independent training samples (Theorems 5 and 6).

Section IV describes an example of our mod-
eling for HF OTH radar applications. We introduce some sea-
clutter data collected by a surface-wave radar, whereby the radar
and backscattered signals propagate in a surface (Norton) wave
mode over the highly saline ocean surface [22], with no iono-
spheric propagation. Hence this clutter is true sea clutter, unlike
that from a sky-wave radar, where returns are contaminated by
ionospheric propagation. We demonstrate that this data can be
accurately modeled by a stationary AR model with the relatively
high order , and then use this model to represent iono-
spherically propagated sea clutter that is affected by phase-path
variations during the collection period. We show that conven-
tional Doppler processing fails to resolve a hypothetical target
that has a similar Doppler frequency to the clutter, whereas
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adaptive filtering based on the model can success-
fully detect such slow-moving targets.

Our summary and conclusions are presented in Section V.

II. PROPERTIES OF AND MODELS

RELEVANT TO THE MATRIX EXTENSION PROBLEM

Consider the observation of i.i.d. -variate complex
Gaussian vectors

(14)

where

(15)

and where is the expectation operator. Let us compare the
properties of a stationary discrete-time process with
those of a time-varying (nonstationary) process. The
vector is an -variate sample of a stationary

process if its elements satisfy [23]

(16)

where

(17)

For any stationary discrete-time process, its -variate covari-
ance matrix is a non-negative definite Toeplitz matrix, since

(18)

where . For the process
(16), multiplying by and taking expectations then leads to

for
for .

(19)

Since , this equation can be presented in matrix
form

(20)

where

(21)

This equation is known as the order Yule-Walker equa-
tion [23]. Since an process can also be viewed as an

process with and for , it can
be rewritten as [23]

. . .
. . .

...
...

. . .
. . .

...

...

...
(22)

This equation means that the vector
is the first column of the inverse matrix, i.e.,

...

...

(23)

The Gohberg–Semencul formula [24] can now be used to restore
the entire inverse matrix using just its first column (or
row). Specifically, the (non-Toeplitz) inverse matrix is

(24)

where is the -variate lower-triangular Toeplitz matrix
whose elements are

(25)

with the definitions and for , and where
is the -variate lower-triangular Toeplitz matrix

(26)

with .
Incidentally, this unique restoration of the entire inverse ma-

trix using just the vector (23) demonstrates that this inverse ma-
trix is a -wide band matrix, i.e., all its elements outside
the band are zero. This is a consequence of the Go-
hberg–Semencul formula (24) where both triangular matrices
and are in fact -wide band matrices for the
model.

Meanwhile, it is well-known [23] that the positive-defi-
niteness of the general Toeplitz covariance matrix

is equivalent to the condition that the polyno-
mial

(27)

i.e., does not have any zeros inside the unit disk. Here

(28)

For an model with for , (27) is the same as
the condition for a stable process, meaning that the covariance
lag approaches zero as .

It is an important fact that the -variate Toeplitz matrix
, whose band inverse is (23), is a solution to the famous

Carathéodory moment problem [25].

For a given finite sequence of covariance
lags of some stationary random process with discrete
time, find the set of all possible functions of the
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Carathéodory class (corresponding to the spectral
functions ), such that

(29)

and

(30)

In terms of Toeplitz covariance matrix extension, the
Carathéodory problem is to specify for all pos-
sible extensions (completions) to the central -wide
band of this matrix, which is specified by the entries .
The Carathéodory problem has a solution if and only if the

-variate Toeplitz matrix
is non-negative-definite. The solution is unique if and only
if is not invertible. Moreover, if , then the
problem has infinitely many solutions, and all of them are
described by the Artemenko–Geronimus formula [25], [26].
Amongst all these solutions, there is a single one that, under
the constraints of (30), maximizes the function

(31)

which is proportional to the entropy of the distribution
. For the given set of parameters ,

this solution is specified by (20)–(26), and is known by the
signal processing community as Burg’s maximum-entropy
(ME) solution. Therefore, the model is the ME approx-
imation of a stationary process with the given initial
covariance lags (moments) . Equivalently, the
ME matrix extension of the band matrix is
uniquely specified by the parameters .

Finally, let us introduce another important representa-
tion of the p.d. Toeplitz matrix . For an arbitrary

-variate Hermitian Toeplitz covariance matrix ,
the Yule-Walker equation can be written as [23]

(32)

where

(33)

Then the predictor coefficients provide a decomposition of
as a product of lower triangular, diagonal, and upper triangular
matrices (see [23, Theorem 2.13])

(34)

where and

. . .
...

...
...

. . .

(35)

Note that for the model with , all solutions for
(32) are specified by nonzero parameters, which means
that the covariance matrix is uniquely specified by the all

different -variate central matrices of the matrix .
We have introduced these well-known properties of the

model to compare them with the properties
that are described below.

The model for the -variate vector
is defined similarly to (16), but with time-de-

pendent AR coefficients :

(36)

where

(37)

Again, multiplying by and taking expectations gives us

(38)

From this equation, we can directly derive the set of
linear equations:

...
...

...
...

...

(39)
Since , we may rewrite this as

(40)

where

...
...

...

(41)

with , and where is the exchange matrix:

. .
. (42)

If we let and , then we get

(43)

Note that is the -variate central (diagonal) block
of the covariance matrix . We can treat (43)
as the version of the order Yule-Walker equa-
tion (20) which specifies all nonzero elements of the
model , ; .
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Equation (39) can now be used to prove that the inverse of
is a p.d. -wide band matrix. Let us introduce

the -variate -wide band upper-triangular matrix ,
similarly to [23, Theorem 2.13] (for the stationary case): [see
(44) at the bottom of the page]. The first -variate block is
built from the vectors that are calculated from (43) by

(45)

(where is removed by the normalization). The remaining
columns are formed from the for , aug-

mented by zeros. Let us now investigate the product .
According to (39) and (45), it is

. . .
...

...
...

...
. . .

. . .
...

...
. . .

...
. . .

...
...

...
. . .

. . .
...

...
...

...
. . .

. . .

(46)

where

(47)

and where denotes a (so-far) unspecified complex number,
and is a lower-triangular matrix with ones on the diagonal
and unspecified elements below it. Since is a Hermitian
matrix, we have

(48)

so , and finally

(49)

Since is an -wide band upper-triangular matrix,
is a -wide band Hermitian matrix. In fact,

(49) is the well-known Cholesky decomposition of the p.d. ma-
trix , and its positive-definiteness is guaranteed by
regardless of . Therefore no special conditions on the ad-
missible values of
are imposed for the generic model. In particular,
the p.d. requirement on the Toeplitz covariance matrix

for the stationary model (27) does not
exist for the generic model. In fact, since there exists
a unique Cholesky decomposition for any p.d. Hermitian matrix,
we have demonstrated that the single necessary and sufficient
condition for a p.d. Hermitian matrix to be a covariance
matrix of a generic process is the condition

(50)

i.e., the elements of its inverse are zero outside the band. The
fact that this condition does not have an associated stability
condition analogous to (27) has a straightforward physical in-
terpretation. A p.d. Toeplitz covariance matrix can be expanded
to an arbitrary dimension, which means that the underlying AR
model has to generate statistically the same signals as
(the stability condition). On the contrary, a nonstationary

process is observed over the particular time interval
, and none of the properties of this (generic)

process can be accurately extrapolated beyond this
interval. Therefore, the “stability condition” is nonsensical for
a generic TVAR process and is not required, but estimation of
its properties (specifically the coefficients ) is
possible only if multiple i.i.d. observations are available. For
adaptive radar clutter estimation, this opportunity exists and is
frequently exploited.

Now that the properties of a covariance matrix
have been specified, we may formulate the

approximation and covariance matrix extension
problems.

. . .
...

...
. . .

...
...

. . .
. . .

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
. . .

(44)
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Definition 1: Suppose that a given -variate Hermitian ma-
trix is positive-definite, then the Dym–Gohberg

approximation of is the p.d. Hermitian matrix
such that

for

for .
(51)

The solution to the problem of finding given is pro-
vided by the following theorem that was first proven by H. Dym
and I. Gohberg [18].

Theorem 1 [18]: Given an -variate Hermitian matrix
, suppose that

...
. . .

...

(52)

For , let

...
...

. . .
... ...

(53)

and

...
...

. . .
...

... (54)

where and .
Furthermore, let the -variate triangular matrices and be
defined as

(55)

(56)

Then the -variate matrix given by

(57)

is the unique p.d. Hermitian matrix that satisfies (51).
See [18] for the proof.
In fact, the Dym–Gohberg theorem now comes as no sur-

prise, after we have introduced our “ Yule-Walker”
equation (40), augmented by (45), and proven the decomposi-
tion (49).

Clearly, Theorem 1 gives a specific solution to the “nonsta-
tionary” Carathéodory problem, whereby we are given “in-
side the band”, i.e., , , rather than the
stationary covariance lags . All possible solu-
tions of this extension problem are described by the formula

introduced in [18], [21] that could be treated as the nonsta-
tionary (time-varying) generalization of the Artemenko–Geron-
imus formula [26]. Obviously, (57) and (34) coincide for the sta-
tionary case (i.e., ).

Recall that in (23) is the specific ME (Burg) solution to
the Carathéodory problem. The following theorem can be con-
sidered a generalization of this result.

Theorem 2 [20], [21]: Given an -variate Hermitian ma-
trix that satisfies (52), the band exten-
sion (53)–(57) is the unique positive extension of the band

for which the determinant is maximal.
The next theorem specifies the necessary and sufficient con-

ditions for a matrix to have a positive approximation.
Theorem 3 [21]: Given an -variate Hermitian matrix

, the necessary and sufficient condition
for a p.d. extension of the band to exist is that all
the submatrices are p.d., i.e.,

...
. . .

...

(58)
While condition (58) is clearly similar to for the
Carathéodory problem, the main distinction is that in the non-
stationary (non-Toeplitz) case, no requirements on the zeros of
the polynomials

(59)

are made. Instead, we have the above p.d. condition on all
-variate different block matrices in .

We define the time-frequency function (time-fre-
quency distribution) as [17]

(60)

which serves as an obvious generalization for the stationary
process spectrum [23]

(61)

Again, the time-frequency function is specified for
arbitrary , while (27) is required for to be an

spectrum (see [27] for details).
Of course, the “Burg spectrum” (61) is indeed the

spectrum of a stationary process that may be estimated from a
single (sufficiently long) observation. In this regard, (60) is not
a spectrum as such, and may be calculated only for particular
values of estimated via multiple observations.

Finally, we mention that our use of the Dym–Gohberg
approximation with the properties (51) is just one possible

approximation of a p.d. Hermitian matrix as far
as the “nonstatistical criterion” (2) is concerned. For example, it
is quite possible that small perturbations in the elements of the
band would improve the SNR loss factor (2) for
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a given and , and similarly for the “statistical” loss factor
(3). Yet, for ML covariance matrix estimation within the class
of matrices, the optimality of the Dym–Gohberg
approximation is proven here.

III. ML MODEL IDENTIFICATION

According to our multiple observation model (14), we
consider i.i.d. -variate complex Gaussian vectors

, so that the likelihood function (LF) can be
introduced in the usual way [23]:

(62)

We need to find the maximum of the LF over the class of struc-
tured p.d. Hermitian matrices with

(63)

which according to (50) is the only necessary and sufficient con-
dition for the matrix to be a matrix . Let

(64)

then

(65)

where

(66)

is the sample (direct data) covariance matrix. For (i.e.,
), we now need to solve the ML equation

(67)

Since only the for are subject to optimization,
the ML equation is then

for
for .

(68)

Since [28]

(69)

we get the following ML equation:

for

for .
(70)

(We have introduced the notation here to emphasize its sim-
ilarity to .) On the other hand, for , all central

-variate blocks of the sample covariance matrix are
positive-definite (with probability one), i.e.,

...
...

(71)

Since this means that the condition for Theorem 3 is satisfied
for , the unique Dym–Gohberg transformation

such that

for

for
(72)

satisfies the ML condition (70), i.e., . In fact, we
have just proven the following theorem.

Theorem 4: Let be i.i.d. random
vectors, then the ML estimate of the covariance ma-
trix is given by (72), provided that .

We see that, unlike the stationary model with its
Toeplitz covariance matrix (with a band inverse), the Dym–Go-
hberg band-extension method gives a closed-form solution to
the problem of finding the ML Hermitian covariance matrix es-
timate of a model, analogously to Anderson’s fa-
mous solution of the ML estimate of an arbitrary Hermitian ma-
trix [7]. This result has a straightforward physical interpretation:
since no special conditions are imposed on the set of admissible
AR lags , they are selected in the way that retains the ML
covariance lag estimates within the band .

Corollary 1: The maximum of the LF over the class of
models is

(73)

where

...
... (74)

Indeed, for the ML covariance matrix estimate
(72)

(75)
since . According to (57)

(76)

since is a triangular matrix whose determinant is equal to the
product of its diagonal elements. Therefore

(77)

This corollary is important for proving our next theorem,
which deals with the following hypothesis test. Suppose that
for a given set of i.i.d. complex Gaussian observations

we wish to test the hypothesis

(78)
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where is a particular covariance matrix that belongs to the
class of models, against the alternative hypothesis

(79)

The main difference between this testing problem and the clas-
sical one studied in, for example, [29], is that here the admissible
class of covariance matrices is the set of covariance
matrices, rather than the entire class of Hermitian matrices .

In the classical testing problem

(80)

the likelihood ratio (LR) is [29]

(81)

The ML over the set of p.d. Hermitian matrices is (for )

(82)

since , which leads to the LR [29]

(83)

For the model, according to Corollary 1:

(84)

and so

(85)

since , where is the
ML covariance matrix estimate which, according to
(72), has the same elements as the sample matrix in the band

.
Comparison of the LR (85) with the classical

one (83) shows that, instead of the unstructured ML covari-
ance matrix estimate (for ), we now use
the estimate , and so instead of the
sample support requirement

(86)

for the general test, we can now use only

(87)

i.i.d. training samples. All this can be summarized as follows.
Theorem 5: For given i.i.d. training vectors

and a given covariance ma-
trix model , the LR test of size for

(88)

rejects if , where

(89)

where is the ML estimate of the covariance
matrix (72), and is chosen so that the size of the test is .

Let us introduce our final theorem.
Theorem 6: For any given covariance matrix

model and i.i.d. training vectors , the
LR test of size for the hypothesis

(90)

rejects if

(91)

where is chosen so that the size of the test is .
This theorem is the -generalization of the well-

known sphericity test [29] for an arbitrary Hermitian covariance
matrix.

Theorems 5 and 6 verify the expected fact that the ML esti-
mate can be treated as a sufficient statistic for any hypothesis test
regarding some model that belongs to the admissible class used
in the ML derivation. In our case, the admissible set is the class
of all models, and the ML estimate clearly
gives the ultimate value of unity for both LRs and . More-
over, this test is now available for , which means a
significant reduction in the required i.i.d. sample size com-
pared with the general test (83), where cannot be less than the
dimension of the problem .

Finally, given the ML estimate , the ML estimate of the
time-frequency function is

(92)

with , and where and are uniquely specified
by .

IV. MODELING OF HF RADAR RETURNS

CONTAMINATED BY IONOSPHERIC PHASE-PATH VARIATIONS

As mentioned in the Introduction, one physical phenomenon
that converts potentially stationary OTH radar clutter into a
time-varying process is phase-path variation along the iono-
spheric propagation channel. A simplistic interpretation of this
phenomenon is the variation of the virtual height of the iono-
spheric layer involved in the oblique backscattering during the
coherent integration time (CIT) [30]. This variation in propaga-
tion path (radar slant range) introduces a multiplicative Doppler
frequency modulation (FM) over the CIT. Therefore originally
stationary sea clutter, that could be accurately modeled as an

process, is observed as a process.
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Fig. 1. Doppler power spectrum estimates of the original and AR(m)-modeled data.

As a stationary clutter return, we used a clutter time-series
data from a particular range cell collected by an experimental
high-frequency (HF) surface-wave radar facility [31]. Unlike
sky-wave radar, surface-wave radar observe clutter returns
directly via surface wave (not involving ionospheric propaga-
tion), hence such clutter is unperturbed by the ionosphere and
can be treated as “ideal” stationary clutter. The CIT comprises

repetition periods, i.e., a single data vector consists of
512 complex values. Fig. 1 shows the conventionally averaged
Doppler power spectrum for samples, which involves
forward- and backward-averaging of every 128-element partial
Doppler spectrum. We used the 512 values to estimate the

stationary AR model, AR(23), in the following way.
First, we used sliding-window averaging to form a number of
24-variate training vectors

(93)

and computed the covariance matrix estimate

(94)

Then we form the -variate vector

(95)

and find the roots of the associated polynomial
to form the new polynomial [32]

(96)

where

(97)

and are the roots of inside the unit disk, , taking
multiplicity into account. The new -variate vector

has no zeros inside the unit disk, and so
can be presented as [32]

(98)

where is the AR(23) 128-variate p.d. Toeplitz covariance
matrix given by via the Gohberg–Semencul formula (24).
This technique differs from the well-known Burg estimation
technique by using a p.d. Hermitian matrix ( in our case) to

initialize Toeplitz covariance matrix estimation (“embedding”).
Fig. 1 shows a sample power spectrum obtained by averaging
over artificially generated vectors of
AR(23) random numbers produced by this model. We see that
this AR(23) model generates a power spectrum that is indistin-
guishable from the observed surface-wave radar data.

Though experimentally derived, this AR(23) model will be
used in following simulations as the clairvoyant (true) model of
stationary (unperturbed) clutter. First, the effect of Doppler FM
introduced by phase-path variation is simulated by the product

(99)

where are the -variate vectors (snapshots) of sta-
tionary clutter generated by our AR(23) model, and is the
diagonal matrix

(100)

where is the index of the periodic FM, and is its (relative)
frequency. In nature, FM is not necessarily periodic, so the FM
periodicity will not be referenced in our simulations.

Our model means that if

(101)

then

(102)

For the FM parameters , and , Fig. 2 illus-
trates the exact TVAR(23) time-frequency function. We clearly
see that the distinctive main maxima of the original AR(23)
spectrum in Fig. 1 are reproduced in their time-varying fashion.
The impact of phase-path variation on conventional OTH radar
Doppler processing (which is just a weighted FFT) is shown in
Fig. 3, where simulated Doppler spectra are plotted for both the
original data and the modulated vector . We see a signif-
icant broadening of the dominant spectral lines, known as the
first-order Bragg lines [33]. Note that a target return (ionospheri-
cally uncontaminated) usually appears as a pure tone at a certain
Doppler frequency.

It is now obvious that conventional target detection will fail
for a weak target located close to, or between, the Bragg lines
due to this broadening. Indeed, Fig. 4 introduces spectra for sta-
tionary AR(23) data with an “artificial target” , and
also for the data having undergone simulated FM
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Fig. 2. Exact TVAR(23) time-frequency function.

Fig. 3. Doppler spectra (weighted Fourier transforms) of a single N = 128 time sequence of a stationary surface-wave clutter return, and a single realization of
a TVAR(23) model of sky-wave clutter.

Fig. 4. Doppler spectra (weighted Fourier transforms) of a single realization of a AR(23) stationary model, and a TVAR(23) model of sky-wave clutter with an
artificial target.

, where is the target’s amplitude and is its spatial
frequency. This clearly illustrates the viability of conventional
processing in this case for the original data, but not for the con-
taminated data.

Specifically, the stationary clairvoyant filter is

(103)

and for our example Doppler frequency , this
filter gives a (normalized) output SNR (4) of

(104)

Note that the clairvoyant filter for the time-varying
model has the same (normalized) output SNR, since in this case

(105)

and

(106)

Conventional Doppler processing for the stationary case
gives, as expected, the reasonably high SNR for our target

Doppler frequency of , but for time-varying
scenario , the normalized SNR for
is much smaller at , which makes detection of
this target impossible, as illustrated by Fig. 4.

In [34], [35], various “desmearing” techniques were proposed
based on the assumption of local stationarity for the model (99)
with sufficiently slow FM. This allows us to estimate locally
a (necessarily) low-order ( or 4) process, and
then a direct estimation of the local frequency increment be-
tween adjacent “stationary” intervals. While those techniques
led to a noticeable detection improvement in some cases, they
suffers from an inherent contradiction: a quite high AR order

is needed to capture the real clutter spectrum behavior, but
over this significant time interval (24 lags in our example) the
assumption regarding local stationarity usually fails.

Our current approach again relies on the fact that both target
and clutter returns are equally affected by the same ionospheric
phase-path variations; but instead of using a low-order
model over short time intervals, we can now estimate the
TVAR(23) covariance matrix given training
samples (resolution cells). Fig. 5 shows a sample TVAR(23)
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Fig. 5. Sample TVAR(23) time-frequency function for T = 48 training samples.

Fig. 6. Histogram of normalized SNR improvement achieved by adaptive TVAR processing.

time-frequency clutter function for
samples. Comparison of this estimate with the true function
in Fig. 2 demonstrates that the time variations of the Bragg
lines are accurately reproduced in the sample estimate, which
enables the FM to be accurately estimated.

Finally, Fig. 6 shows a sample histogram of the SNR improve-
ment achieved by the adaptive TVAR(23) filter (4)

(107)
where

(108)

We see that for training samples, the av-
erage SNR degradation (due to the finite-sample support in es-
timating the covariance matrix) relative to the clair-
voyant filter value (16.0 dB) is slightly above 3 dB, which per-
mits efficient target detection, something that is not possible by
conventional processing.

Recall that in order to achieve a similar SNR loss factor by
adaptive filtering that does not exploit the TVAR(23) model, the
sample size would be required [8], which is
considerably more than our in this example. For HF
OTH radar applications with a relatively small number of homo-
geneous range cells available, this reduction in sample support
with modeling is very important.

V. SUMMARY AND CONCLUSIONS

We have considered TVAR models for particular radar appli-
cations where multiple i.i.d. observations of the same nonsta-
tionary process are available. Typical examples with identically

affected clutter returns backscattered by different radar range
resolution cells are introduced and examined. Such multiple ob-
servations allow us to not impose any additional restrictions on
the nature of the time variations (such as “local stationarity”).
We showed that the only necessary and sufficient condition for a
p.d. Hermitian matrix to be a covariance matrix of a
model is that its inverse is a -wide band matrix. We
also reintroduced results on solving the band-extension problem
(Theorems 1–3) provided by Dym and Gohberg. Here the goal
is to find the specific extension (completion) to the given

-wide band of a Hermitian matrix whose inverse has zeros
outside this band. This problem is the time-varying generaliza-
tion of Burg’s famous ME extension to a -wide band
Toeplitz Hermitian matrix. As in the stationary (Burg) case, the
Dym–Gohberg extension has maximum possible determinant
(and, hence, ME) for the completed Hermitian matrix. Dym and
Gohberg also showed that the only necessary and sufficient con-
dition for the extension to exist is that all -variate sub-
matrices in the band are p.d. For the usual sample covariance
matrix built with i.i.d. training samples, this con-
dition is satisfied.

We demonstrated that the Dym–Gohberg extension of the
-wide band of is the ML estimate of the

Hermitian covariance matrix for i.i.d. complex
Gaussian observations. We also introduced LR tests for the null
hypothesis that a specific covariance matrix is the
covariance matrix of the training data.

Our estimation technique was then applied
to a particular HF OTH radar problem where ionospheric
phase-path variations introduce unwanted Doppler FM. We
first showed that the underlying stationary clutter is accu-
rately represented by an AR(23) model, with the ionospheric
contamination causing significant broadening of the main
Doppler spectrum peaks, thus masking targets that are nearby
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in Doppler frequency. Whereas conventional processing (a
weighted FFT) fails to detect such targets, we demonstrated
that TVAR(23) modeling with adaptive (ML) covariance matrix
estimation using only training samples can provide
a significant detection improvement. A similar improvement
using conventional (unstructured) clutter covariance matrix
estimation requires a sample size that significantly exceeds
the dimension of the problem ( in our example).
Thus, the relatively high order of the model has
enough flexibility to capture even subtle features of the clutter
return, yet gives a great reduction in required sample support
(48 instead of about 256 in our example).

This example is only one demonstration of the practical im-
portance of our modeling for multiple observations
of nonstationary phenomena. Moreover, we have not addressed
all the problems and issues that are associated with this model,
such as order estimation. These will be addressed in our next
paper.
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